SUBGELANGGANG KOMUTATIF MAKSIMAL DARI GELANGGANG POLINOM MIRING

Ukuran: px
Mulai penontonan dengan halaman:

Download "SUBGELANGGANG KOMUTATIF MAKSIMAL DARI GELANGGANG POLINOM MIRING"

Transkripsi

1 SUBGELANGGANG KOMUTATIF MAKSIMAL DARI GELANGGANG POLINOM MIRING Prof. Dr. Amir Kamal Amir, M.Sc Dra. Nur Erawaty, M.Si Filawati, S.Si Jurusa Matematika, Fakultas Matemetika da Ilmu Pegetahua Alam, Uiversitas Hasauddi, Jl. Peritis Kemerdekaa KM.10, Makassar, fila.fmipa08@gmail.com Abstrak Misalka R adalah gelaggag dega idetitas 1, σ adalah suatu edomorfisma da δ adalah suatu σ-derivatif. Gelaggag poliom mirig atas R dega peubah x adalah gelaggag: R x; σ, δ = {f x = r x + + r 0 r i R} dega atura perkalia xr = σ r x + δ r, utuk setiap r R. Atura perkalia tersebut megakibatka gelaggag poliom mirig bersifat tidak komutatif, meskipu gelaggag tumpua R merupaka gelaggag komutatif. Pada sisi lai, terdapat himpua bagia di dalam gelaggag poliom mirig yag bersifat komutatif. Gelaggag poliom mirig dapat memuat lebih dari satu subgelaggag yag bersifat komutatif, da dari subgelaggag yag bersifat komutatif tersebut, ada yag maksimal. Dapat ditujukka bahwa R merupaka subgelaggag komutatif maksimal dari gelaggag poliom mirig R x; σ apabila R komutatif da σ berorder tak higga (σ 1). Selai itu, dapat juga ditujukka bahwa R merupaka subgelaggag komutatif maksimal dari gelaggag poliom mirig R x; δ apabila R komutatif, R memiliki karakteristik ol da δ tidak ol. Abstract Let R be a rig with idetity 1, σ be a edomorphism of R ad δ is a σ-derivatio. The Skew Polyomial Rig over R i a idetermiate x is: R x; σ, δ = {f x = r x + + r 0 r i R} with multiplicatio rule xr = σ r x + δ r, for all r R. The multiplicatio rule resulted i skew polyomial rig R x; σ, δ is ot commutative although R is commutative. O the other had, there is a subset i the polyomial rig oblique commutes. Skew polyomial rig ca load more tha oe subrig who commutes, ad from which it commutes subrig there are maximum. It ca be show that R is a commutative subrig maximum of the skew polyomial rig of R x; σ if R commutative ad σ is of ifiite order. I additio, it ca also be show that R is maximal commutative subrig of R x; δ if R commutative, R has characteristic zero ad δ is o-zero. Keywords: Skew polyomial rig, maximal commutativity 1

2 1. PENDAHULUAN Defiisi dari gelaggag poliom mirig (gelaggag tak komutatif) pertama kali diperkealka oleh Ore, yag megkombiasika ide awal dari Hilbert (kasus δ = 0) da Schlessiger (kasus σ = 1). Sejak kemucula artikel dari Ore ii, Gelaggag Poliom Mirig telah bayak memeraka pera yag petig dalam teori gelaggag tak komutatif. Berikut diberika defiisi legkap dari gelaggag poliom mirig. Defiisi 1.1 Misalka R adalah gelaggag dega idetitas 1, σ: R R adalah edomorfisma gelaggag (tidak mesti pemetaa satu-satu) da δ: R R adalah σ-derivatif, yaitu: 1. δ suatu edomorfisma grup terhadap operator tambah dalam R, 2. δ ab = σ a δ b + δ a b ; utuk setiap a, b R. Gelaggag poliom mirig atas R dega peubah x adalah gelaggag: R x; σ, δ = {f x = r x + + r 0 r i R} dega xr = σ r x + δ r, utuk setiap r R. (Richter: 2012) Operator bier di dalam gelaggag poliom mirig yag megadug σ da δ megakibatka gelaggag poliom mirig bersifat tidak komutatif, meskipu gelaggag tumpuaya merupaka gelaggag komutatif. Pada sisi lai, terdapat himpua bagia di dalam gelaggag poliom mirig yag bersifat komutatif. Gelaggag poliom mirig dapat memuat lebih dari satu subgelaggag yag bersifat komutatif, da dari subgelaggag yag bersifat komutatif tersebut, ada yag maksimal. Dapat ditujukka bahwa R merupaka subgelaggag komutatif maksimal dari gelaggag poliom mirig R x; σ apabila R komutatif da σ berorder tak higga (σ 1). Selai itu, dapat juga ditujukka bahwa R merupaka subgelaggag komutatif maksimal dari gelaggag poliom mirig R x; δ apabila R komutatif, R memiliki karakteristik ol da δ tidak ol. 2. METODE PENELITIAN Kajia ii merupaka kajia ilmu muri yag bersifat studi literatur. Oleh karea itu, kajia ii aka megguaka pedekata eksploratif da adaptasi. Khususya, dalam hal ii aka dimafaatka pegetahua yag peulis miliki dari hasil peelitia jural yag diperoleh sebelumya. 3. HASIL DAN PEMBAHASAN 3.1 Struktur Gelaggag Poliom Mirig Gelaggag poliom mirig atas R dega peubah x adalah gelaggag: R x; σ, δ = {f x = r x = r 0 + r 1 x + + r x r i R} dega atura perkalia xr = σ r x + δ(r), utuk setiap r R, dega σ da δ berturut-turut adalah suatu edomorfisma da suatu σ-derivatif. Perkalia di dalam gelaggag poliom mirig yag megadug σ da δ megakibatka gelaggag poliom mirig bersifat tidak komutatif. 2

3 Jika σ = 1 atau σ adalah edomorfisma idetitas, maka gelaggag poliom mirig cukup ditulis R[x; δ] da lebih dikeal dega ama gelaggag operator diferesial. Jika δ = 0, maka gelaggag poliom mirig cukup ditulis R[x; σ]. Jika σ = 1 atau σ adalah edomorfisma idetitas, maka gelaggag poliom mirig cukup ditulis R[x; δ] da lebih dikeal dega ama gelaggag operator diferesial. Jika δ = 0, maka gelaggag poliom mirig cukup ditulis R[x; σ]. Berikut diberika cotoh dari gelaggag poliom mirig. Cotoh : Gelaggag Poliom Mirig Utuk Kasus σ = 1 Misalka R = k[y]. Edomorfisma pada R didefiisika sebagai berikut. σ r 0 + r 1 y + r 2 y r y = r 0 + r 1 y + r 2 y r y, utuk setiap r 0 + r 1 y + r 2 y r y R. Adapu pemetaa δ pada R didefiisika sebagai berikut. δ r 0 + r 1 y + r 2 y r y = r 1 + 2r 2 y r y 1, utuk setiap r 0 + r 1 y + r 2 y r y R, yag memeuhi syarat σ-derivatif. Dega demikia, R[x; δ] merupaka gelaggag poliom mirig. Cotoh : Gelaggag Poliom Mirig Utuk Kasus δ = 0 Misalka k sebarag lapaga dega karakteristik ol da R = k[y] adalah gelaggag poliom. Didefiisika σ y = qy utuk suatu q k 0,1. Maka utuk setiap p y k y, diperoleh σ p y = p(qy), yag merupaka suatu automorfisma dari R. Pemetaa δ pada R didefiisika δ p y = 0 utuk setiap p y k y. 3.2 Subgelaggag Komutatif Maksimal Subgelaggag Komutatif Maksimal dalam R x: σ Proposisi i=0 a i x i R[x; σ, δ] merupaka usur pemusat dari R dalam R[x; σ, δ] jika da haya jika: ra i = j =i a j π i j (r) berlaku utuk setiap i 0,1,, da setiap r R. Proposisi Misalka R gelaggag komutatif. Jika utuk setiap Z + terdapat r R sedemikia sehigga σ r r adalah usur regular, maka R merupaka subgelaggag komutatif maksimal dalam R x: σ. Lebih khusus, jika R gelaggag komutatif da σ berorder tak higga, maka R merupaka subgelaggag komutatif maksimal. Cotoh : Cotoh Subgelaggag Komutatif Maksimal Misalka k sebarag lapaga dega karakteristik ol da R = k[y] adalah gelaggag poliom. Didefiisika σ y = qy utuk suatu q k 0,1. Maka utuk setiap p y k y, diperoleh σ p y = p(qy), yag merupaka suatu automorfisma dari R. Pemetaa δ pada R didefiisika δ p y = 0 utuk setiap p y k y yag memeuhi syarat σ-derivatif. 3

4 Dega demikia, R x: σ merupaka gelaggag poliom mirig. Jika q buka akar uity, maka berdasarka Proposisi 3.2.2, R merupaka subgelaggag komutatif maksimal. Tetapi jika q merupaka akar uity, maka x da y adalah usur pusat yag megakibatka R buka subgelaggag komutatif maksimal Subgelaggag Komutatif Maksimal dalam R x: δ Lemma Misalka q = r Z(R). Peryataa berikut berlaku: (i) Jika = 0, maka rq qr = 0; (ii) i=0 q i x i R[x; δ] da Jika 1, maka rq qr memiliki pagkat palig besar 1, dega koefisie q δ r ; (iii) xq qx = i=0 δ q i x i. Proposisi Misalka R gelaggag komutatif dega karakteristik ol. Jika δ tidak ol, maka R merupaka subgelaggag komutatif maksimal dalam R[x; δ]. Cotoh : Misalka k adalah lapaga dega karakteristik p > 0 da misalka R = k y. Jika δ merupaka σ-derivatif, maka x p merupaka usur pusat dalam R[x; δ]. Akibatya, R buka merupaka subgelaggag komutatif maksimal. Ii meujukka bahwa asumsi karakteristik dari R pada Proposisi tidak dapat diubah. 4 KESIMPULAN 1. Struktur dari gelaggag poliom mirig. a. Gelaggag poliom mirig atas R dega peubah x adalah gelaggag: R x; σ, δ = {f x = r x = r 0 + r 1 x + + r x r i R} dega atura perkalia xr = σ r x + δ(r), utuk setiap r R, dega σ da δ berturutturut adalah suatu edomorfisma da suatu σderivatif. Perkalia di dalam gelaggag poliom mirig yag megadug σ da δ megakibatka gelaggag poliom mirig bersifat tidak komutatif. Jika σ = 1 atau σ adalah edomorfisma idetitas, maka gelaggag poliom mirig cukup ditulis R[x; δ] da lebih dikeal dega ama gelaggag operator diferesial. Jika δ = 0, maka gelaggag poliom mirig cukup ditulis R[x; σ]. b. Pada sisi lai, terdapat himpua bagia dari gelaggag poliom mirig yag bersifat komutatif da sekaligus merupaka subgelaggag dari gelaggag poliom mirig tersebut, yaitu gelaggag tumpua dega lambag R, pemusat R dalam gelaggag poliom mirig dega lambag C R[x;σ,δ] R, da pusat dari gelaggag poliom mirig dega lambag Z R x; σ, δ. Dari subgelaggag yag bersifat komutatif tersebut, ada yag maksimal. 2. Betuk subgelaggag komutatif maksimal dari gelaggag poliom mirig. a. Gelaggag tumpua R merupaka subgelaggag komutatif maksimal dari gelaggag poliom mirig R x; σ jika R komutatif da σ berorder tak higga (σ 1). b.gelaggag tumpua R merupaka subgelaggag komutatif maksimal dari gelaggag poliom mirig R x; δ jika R komutatif dega karakteristik ol da δ tidak ol. 4

5 DAFTAR PUSTAKA Grillet, P. Atoie Abstract Algebra, 2d Editio. New York : Spgelaggager Sciece ad Busiess Media, LLC. ( diakses 26 Jui 2014 ) McCoell, J.C. ad Robso, J.C Nocommutative Noetheria Rigs. New York: Joh Wiley ad Sos. Fraleigh, Joh B A First Course I Abstract Algebra, 5 th editio. New York: Addiso Wesley Publishig Compay. Richter, J Ore Commutative Subrigs ad Algebraic Depedece. Extesios, Their Maximal ( ohar/liceciat.pdf, diakses 26 Jui 2014 ) Sasom, N Reversible Skew Lauret Polyomial Rigs, Rigs Of Ivariats ad Related Rigs. ( diakses 27 Oktober 2014 ) Amir, A.K Pusat dari Beberapa Gelaggag Poliom Mirig: Suatu Kajia Pustaka. Jural Matematika. Oiert, J Ideal ad Maximal Commutative Subrigs of Graded Rigs. 5

RING MATRIKS ATAS RING KOMUTATIF. Achmad Abdurrazzaq, Ari Wardayani, Suroto Universitas Jenderal Soedirman

RING MATRIKS ATAS RING KOMUTATIF. Achmad Abdurrazzaq, Ari Wardayani, Suroto Universitas Jenderal Soedirman JMP : Volume 7 Nomor 1, Jui 2015, hal 11-18 RING MATRIKS ATAS RING KOMUTATIF Achmad Abdurrazzaq, Ari Wardayai, Suroto razzaqgaesha@gmailcom Uiversitas Jederal Soedirma ABSTRACT This paper discusses a matrices

Lebih terperinci

SIFAT-SIFAT SEMIGRUP SIMETRIS INTERVAL

SIFAT-SIFAT SEMIGRUP SIMETRIS INTERVAL SIFAT-SIFAT SEMIGRUP SIMETRIS INTERVAL Riza Febri Yusma Sri Gemawati Asli Sirait *riza_febri@yahoo.com Mahasiswa Program S Matematika Dose Jurusa Matematika Fakultas Matematika da Ilmu Pegetahua Alam Uiveritas

Lebih terperinci

Semigrup Matriks Admitting Struktur Ring

Semigrup Matriks Admitting Struktur Ring Semigrup Matriks dmittig Struktur ig K a r y a t i Jurusa Pedidika Matematika FMIP, Uiversitas Negeri Yogyakarta Email: yatiuy@yahoo.com bstrak Diberika adalah rig komutatif dega eleme satua da adalah

Lebih terperinci

SIFAT-SIFAT FUNGSI EKSPONENSIAL BERBASIS BILANGAN NATURAL YANG DIDEFINISIKAN SEBAGAI LIMIT

SIFAT-SIFAT FUNGSI EKSPONENSIAL BERBASIS BILANGAN NATURAL YANG DIDEFINISIKAN SEBAGAI LIMIT Jural Matematika UNAND Vol. 4 No. 1 Hal. 12 22 ISSN : 2303 2910 c Jurusa Matematika FMIPA UNAND SIFAT-SIFAT FUNGSI EKSPONENSIAL BERBASIS BILANGAN NATURAL YANG DIDEFINISIKAN SEBAGAI LIMIT ENIVA RAMADANI

Lebih terperinci

Homomorfisma Pada Semimodul Atas Aljabar Max-Plus

Homomorfisma Pada Semimodul Atas Aljabar Max-Plus Homomorfisma Pada Semimodul Atas Aljabar Max-Plus A 14 Oleh : Musthofa Jurusa Pedidika Matematika FMIPA UNY Abstrak Kosep homorfisma telah bayak dibahas pada beberapa struktur aljabar yaitu pada ruag vektor

Lebih terperinci

GRUP TERURUT PARSIAL PADA MATRIKS SIMETRI BERUKURAN 2 2

GRUP TERURUT PARSIAL PADA MATRIKS SIMETRI BERUKURAN 2 2 Jural LOG!K@, Jilid 7, No, 7, Hal 46-5 ISSN 978 8568 GRU ERURU ARSIAL ADA MARIKS SIMERI BERUKURAN Irmatul Hasaah Uiversitas Islam Negeri Sulta Maulaa Hasauddi Bate Email: irmatulhasaah@uibateacid Abstract:

Lebih terperinci

TEOREMA WEYL UNTUK OPERATOR HYPONORMAL

TEOREMA WEYL UNTUK OPERATOR HYPONORMAL Jural UJMC, Volume 3, Nomor, Hal. - 6 pissn : 460-3333 eissn : 579-907X TEOREMA WEYL UNTUK OPERATOR HYPONORMAL Guawa Uiversitas Muhammadiyah Purwokerto, gu.oge@gmail.com Abstract This paper aims at describig

Lebih terperinci

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n LIMIT 4.. FUNGSI LIMIT Defiisi 4.. A R Titik c R adalah titik limit dari A, jika utuk setiap δ > 0 ada palig sedikit satu titik di A, c sedemikia sehigga c < δ. Defiisi diatas dapat disimpulka dega cara

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang Masalah

BAB I PENDAHULUAN. A. Latar Belakang Masalah BAB I PENDAHULUAN A. Latar Belakag Masalah Struktur alabar adalah suatu himpua yag di dalamya didefiisika suatu operasi bier yag memeuhi aksioma-aksioma tertetu. Gelaggag ( Rig ) merupaka suatu struktur

Lebih terperinci

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR Nur Aei Prodi Matematika, FST-UINAM uraeiatullah@gmail.com Ifo: Jural MSA Vol. 3 No. 2 Edisi: Juli Desember

Lebih terperinci

Beberapa Sifat Semigrup Matriks Atas Daerah Integral Admitting Struktur Ring 1

Beberapa Sifat Semigrup Matriks Atas Daerah Integral Admitting Struktur Ring 1 Beberapa Sifat Semigrup Matriks Atas Daerah Itegral Admittig Struktur ig K a r y a t i Jurusa Pedidika Matematika FMIPA, Uiversitas Negeri Yogyakarta Email: yatiuy@yahoo.com Abstrak Diberika adalah daerah

Lebih terperinci

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR Nur Aei Prodi Matematika, FST-UINAM uraeiatullah@gmail.com Ifo: Jural MSA Vol. 3 No. 2 Edisi: Juli Desember

Lebih terperinci

SEMI MODUL POLINOMIAL FUZZY ATAS ALJABAR MAX-PLUS FUZZY

SEMI MODUL POLINOMIAL FUZZY ATAS ALJABAR MAX-PLUS FUZZY JMP : Volume 3 Nomor 1, Jui 2011 SEMI MODUL POLINOMIAL FUZZY ATAS ALJABAR MAX-PLUS FUZZY Ari Wardayai da Suroto Prodi Matematika, Jurusa MIPA, Fakultas Sais da Tekik Uiversitas Jederal Soedirma (email

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No. 1, 41-45, April 2001, ISSN : KETERHUBUNGAN GALOIS FIELD DAN LAPANGAN PEMISAH

JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No. 1, 41-45, April 2001, ISSN : KETERHUBUNGAN GALOIS FIELD DAN LAPANGAN PEMISAH Vol. 4. No. 1, 41-45, Aril 2001, ISSN : 1410-8518 KETERHUBUNGAN GALOIS FIELD DAN LAPANGAN PEMISAH Bambag Irawato Jurusa Matematika FMIPA UNDIP Abstact I this aer, it was leared of the ecessary ad sufficiet

Lebih terperinci

BAB II TEORI DASAR. Definisi Grup G disebut grup komutatif atau grup abel jika berlaku hukum

BAB II TEORI DASAR. Definisi Grup G disebut grup komutatif atau grup abel jika berlaku hukum BAB II TEORI DASAR 2.1 Aljabar Liier Defiisi 2. 1. 1 Grup Himpua tak kosog G disebut grup (G, ) jika pada G terdefiisi operasi, sedemikia rupa sehigga berlaku : a. Jika a, b eleme dari G, maka a b eleme

Lebih terperinci

BAB III RUANG HAUSDORFF. Pada bab ini akan dibahas mengenai ruang Hausdorff, kekompakan pada

BAB III RUANG HAUSDORFF. Pada bab ini akan dibahas mengenai ruang Hausdorff, kekompakan pada 8 BAB III RUANG HAUSDORFF Pada bab ii aka dibahas megeai ruag Hausdorff, kekompaka pada ruag Hausdorff da ruag regular legkap. Pembahasa diawali dega medefiisika Ruag Hausdorff da beberapa sifatya kemudia

Lebih terperinci

MATHunesa (Volume 3 No 3) 2014

MATHunesa (Volume 3 No 3) 2014 MATHuesa (Volume 3 No 3) 014 MINIMUM PENUTUP TITIK DAN MINIMUM PENUTUP SISI PADA GRAF KOMPLIT DAN GRAF BIPARTIT KOMPLIT Yessi Riskiada Kusumawardai Program Studi S1 Matematika, Fakultas Matematika da Ilmu

Lebih terperinci

Fungsi Kompleks. (Pertemuan XXVII - XXX) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

Fungsi Kompleks. (Pertemuan XXVII - XXX) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya TKS 4007 Matematika III Fugsi Kompleks (Pertemua XXVII - XXX) Dr. AZ Jurusa Tekik Sipil Fakultas Tekik Uiversitas Brawijaya Pedahulua Persamaa x + 1 = 0 tidak memiliki akar dalam himpua bilaga real. Pertayaaya,

Lebih terperinci

Pengaruh Kenon-Unitalan Modul Terhadap Hasil Kali Tensor

Pengaruh Kenon-Unitalan Modul Terhadap Hasil Kali Tensor 6 : Pegaruh Keo Uitala odul. Pegaruh Keo-Uitala odul Terhadap Hasil Kali Tesor Oleh : Jurusa atetika FIP UNDIP Jl. Prof. H. Soedarto, S.H., Serag 5075 eil : ikkepri@yahoo.com BSTK. Pembahasa tetag teori

Lebih terperinci

SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS

SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS Prosidig Semiar Nasioal Peelitia, Pedidika da Peerapa MIPA, Fakultas MIPA, Uiversitas Negeri Yogyakarta, 4 Mei 0 SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS Musthofa Jurusa Pedidika Matematika FMIPA

Lebih terperinci

I. DERET TAKHINGGA, DERET PANGKAT

I. DERET TAKHINGGA, DERET PANGKAT I. DERET TAKHINGGA, DERET PANGKAT. Pedahulua Pembahasa tetag deret takhigga sebagai betuk pejumlaha suku-suku takhigga memegag peraa petig dalam fisika. Pada bab ii aka dibahas megeai pegertia deret da

Lebih terperinci

PERTEMUAN 13. VEKTOR dalam R 3

PERTEMUAN 13. VEKTOR dalam R 3 PERTEMUAN VEKTOR dalam R Pegertia Ruag Vektor Defiisi R Jika adalah sebuah bilaga bulat positif, maka tupel - - terorde (ordered--tuple) adalah sebuah uruta bilaga riil ( a ),a,..., a. Semua tupel - -terorde

Lebih terperinci

PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT

PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT Prosidig Semiar Nasioal Matematika da Terapaya 06 p-issn : 0-0384; e-issn : 0-039 PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT Liatus

Lebih terperinci

BAB I PENDAHULUAN. , membentuk struktur ring terhadap operasi penjumlahan matriks dan operasi pergandaan matriks baku. Himpunan bagian dari

BAB I PENDAHULUAN. , membentuk struktur ring terhadap operasi penjumlahan matriks dan operasi pergandaan matriks baku. Himpunan bagian dari BB I PENDHULUN. Latar Belakag Masalah Struktur rig (gelaggag) R adalah suatu himpua R yag kepadaya didefiisika dua operasi bier yag disebut pejumlaha da pergadaa yag memeuhi aksioma-aksioma tertetu, yaitu:

Lebih terperinci

Pendekatan Nilai Logaritma dan Inversnya Secara Manual

Pendekatan Nilai Logaritma dan Inversnya Secara Manual Pedekata Nilai Logaritma da Iversya Secara Maual Moh. Affaf Program Studi Pedidika Matematika, STKIP PGRI BANGKALAN affafs.theorem@yahoo.com Abstrak Pada pegaplikasiaya, bayak peggua yag meggatugka masalah

Lebih terperinci

KETERKAITAN ANTARA MODUL BEBAS DENGAN MODUL DILIHAT DARI SIFAT-SIFAT HOMOMORFISME MODUL

KETERKAITAN ANTARA MODUL BEBAS DENGAN MODUL DILIHAT DARI SIFAT-SIFAT HOMOMORFISME MODUL KETERKAITAN ANTARA MODUL BEBAS DENGAN MODUL DILIHAT DARI SIFAT-SIFAT HOMOMORFISME MODUL Khusul Afifa 1, Abdussakir 2 1 Mahasiswa Jurusa Matematika UIN Maulaa Malik Ibrahim Malag 2 Dose Jurusa Matematika

Lebih terperinci

SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS. Abstrak

SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS. Abstrak Prosidig Semiar Nasioal Peelitia, Pedidika da Peerapa MIPA, Fakultas MIPA, Uiversitas Negeri Yogyakarta, 4 Mei 0 SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS Musthofa Jurusa Pedidika Matematika FMIPA

Lebih terperinci

II. TINJAUAN PUSTAKA. Secara umum apabila a bilangan bulat dan b bilangan bulat positif, maka ada tepat = +, 0 <

II. TINJAUAN PUSTAKA. Secara umum apabila a bilangan bulat dan b bilangan bulat positif, maka ada tepat = +, 0 < II. TINJAUAN PUSTAKA 2.1 Keterbagia Secara umum apabila a bilaga bulat da b bilaga bulat positif, maka ada tepat satu bilaga bulat q da r sedemikia sehigga : = +, 0 < dalam hal ii b disebut hasil bagi

Lebih terperinci

HUBUNGAN PELABELAN GRACEFUL PADA DIGRAF BIDIRECTIONAL G DAN GRAF UNDERLYING DARI G

HUBUNGAN PELABELAN GRACEFUL PADA DIGRAF BIDIRECTIONAL G DAN GRAF UNDERLYING DARI G J Sais MIPA Desember 7 Vol 1 No Hal: 197 - ISSN 1978-187 ABSTRACT HUBUNGAN PELABELAN GRACEFUL PADA DIGRAF BIDIRECTIONAL G DAN GRAF UNDERLYING DARI G Kristiaa Wijaya Jurusa Matematika FMIPA Uiversitas Jember

Lebih terperinci

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai definisi suatu ring serta

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai definisi suatu ring serta BAB II LANDASAN TEORI Pada bab ii aka dibahas megeai defiisi suatu rig serta beberaa sifat yag dierluka dalam embahasa oliomial ermutasi Pejelasa megeai rig dimulai dega defiisi dari suatu sistem matematika

Lebih terperinci

Mariatul Kiftiah. JurusanMatematika FMIPA Universitas Tanjungpura, Pontianak Jl. A Yani Pontianak ABSTRACT

Mariatul Kiftiah. JurusanMatematika FMIPA Universitas Tanjungpura, Pontianak Jl. A Yani Pontianak ABSTRACT Prosidig Semirata2015 bidag MIPA BKS-PTN Barat Uiversitas Tajugpura Potiaak EKSISTENSI DAN KETUNGGALAN TITIK TETAP DARI PEMETAAN KANNAN DI RUANG MODULAR (THE EXISTENCE AND UNIQUENESS OF A FIXED POINT FOR

Lebih terperinci

PEMBUKTIAN AUTOMORFISMA PADA GELANGGANG POLINOM MIRING UNTUK PEMBENTUKAN GELANGGANG POLINOM MIRING BERSUSUN. Amir Kamal Amir

PEMBUKTIAN AUTOMORFISMA PADA GELANGGANG POLINOM MIRING UNTUK PEMBENTUKAN GELANGGANG POLINOM MIRING BERSUSUN. Amir Kamal Amir PEMBUKTIAN AUTOMORFISMA PADA GELANGGANG POLINOM MIRING UNTUK PEMBENTUKAN GELANGGANG POLINOM MIRING BERSUSUN Amir Kamal Amir Jurusan Matematika Fakultas MIPA Universitas Hasanuddin Jl. Perintis Kemerdekaan

Lebih terperinci

Jurnal Matematika Murni dan Terapan Vol. 6 No.1 Juni 2012: 9-16 KRITERIA KEKONVERGENAN CAUCHY PADA RUANG METRIK KABUR INTUITIONISTIC

Jurnal Matematika Murni dan Terapan Vol. 6 No.1 Juni 2012: 9-16 KRITERIA KEKONVERGENAN CAUCHY PADA RUANG METRIK KABUR INTUITIONISTIC Jural Matematika Muri da Teraa Vol. 6 No.1 Jui 01: 9-16 KRITERIA KEKONVERGENAN CAUCHY PADA RUANG METRIK KABUR INTUITIONISTIC Muhammad Ahsar Karim 1 Faisal Yui Yulida 3 [1,,3] PS Matematika FMIPA Uiversitas

Lebih terperinci

Secara umum, suatu barisan dapat dinyatakan sebagai susunan terurut dari bilangan-bilangan real:

Secara umum, suatu barisan dapat dinyatakan sebagai susunan terurut dari bilangan-bilangan real: BARISAN TAK HINGGA Secara umum, suatu barisa dapat diyataka sebagai susua terurut dari bilaga-bilaga real: u 1, u 2, u 3, Barisa tak higga merupaka suatu fugsi dega domai berupa himpua bilaga bulat positif

Lebih terperinci

HUBUNGAN VARIETY DAN IDEAL RADIKAL SKRIPSI. Oleh : Ambar Mujiarti J2A

HUBUNGAN VARIETY DAN IDEAL RADIKAL SKRIPSI. Oleh : Ambar Mujiarti J2A HUBUNGAN VARIETY DAN IDEAL RADIKAL SKRIPSI Oleh : Ambar Mujiarti J2A 004 003 PROGRAM STUDI MATEMATIKA JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS DIPONEGORO SEMARANG 2009

Lebih terperinci

BAB I PENDAHULUAN. Integral adalah salah satu konsep penting dalam Matematika yang

BAB I PENDAHULUAN. Integral adalah salah satu konsep penting dalam Matematika yang BAB I PENDAHULUAN 1.1 Latar Belakag Masalah Itegral adalah salah satu kosep petig dalam Matematika yag dikemukaka pertama kali oleh Isac Newto da Gottfried Wilhelm Leibiz pada akhir abad ke-17. Selajutya

Lebih terperinci

SKEMA PEMBAGIAN RAHASIA DENGAN KODE LINEAR

SKEMA PEMBAGIAN RAHASIA DENGAN KODE LINEAR SKEMA PEMBAGIAN RAHASIA DENGAN KODE LINEAR A- Riigsih, Idah Emilia Wijayati 2 Mahasiswa S Jurusa Matematika FMIPA Uiversitas Gadjah Mada 2 Jurusa Matematika FMIPA Uiversitas Gadjah Mada Abstrak Skema pembagia

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 1, 41-48, April 2003, ISSN : MATRIKS STOKASTIK GANDA DAN SIFAT-SIFATNYA

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 1, 41-48, April 2003, ISSN : MATRIKS STOKASTIK GANDA DAN SIFAT-SIFATNYA JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No., 4-48, April 00, ISSN : 40-858 MATRIKS STOKASTIK GANDA DAN SIFAT-SIFATNYA Suryoto Jurusa Matematika F-MIPA Uiversas Dipoegoro Semarag Abstrak Suatu matriks tak

Lebih terperinci

MATERI PEMBEKALAN PESERTA OLIMPIADE NASIONAL MATEMATIKA PERGURUAN TINGGI BIDANG ALJABAR

MATERI PEMBEKALAN PESERTA OLIMPIADE NASIONAL MATEMATIKA PERGURUAN TINGGI BIDANG ALJABAR MATERI PEMBEKALAN PESERTA OLIMPIADE NASIONAL MATEMATIKA PERGURUAN TINGGI BIDANG ALJABAR Oleh: AGUS MAMAN ABADI JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI

Lebih terperinci

SIFAT SIFAT RUANG VEKTOR ATAS LAPANGAN

SIFAT SIFAT RUANG VEKTOR ATAS LAPANGAN SIFAT SIFAT RUANG VEKTOR ATAS LAPANGAN Dose Pegampu : Pof. D. Si Wahyui DISUSUN OLEH: Nama : Muh. Zaki Riyato Nim : 02/156792/PA/08944 Pogam Studi : Matematika JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN

Lebih terperinci

) didefinisikan sebagai persamaan yang dapat dinyatakan dalam bentuk: a x a x a x b... b adalah suatu urutan bilangan dari bilangan s1, s2,...

) didefinisikan sebagai persamaan yang dapat dinyatakan dalam bentuk: a x a x a x b... b adalah suatu urutan bilangan dari bilangan s1, s2,... SISEM PERSAMAAN LINIER DAN MARIKS. SISEM PERSAMAAN LINIER Secara umum, persamaa liier dega variabel ( x, x,..., x ) didefiisika sebagai persamaa yag dapat diyataka dalam betuk: a x a x a x b... dega a,

Lebih terperinci

INVERS TERGENERALISASI MATRIKS ATAS ALJABAR MAXPLUS Musthofa Jurusan Pendidikan Matematika FMIPA UNY

INVERS TERGENERALISASI MATRIKS ATAS ALJABAR MAXPLUS Musthofa Jurusan Pendidikan Matematika FMIPA UNY INVERS TERGENERALISASI MATRIKS ATAS ALJABAR MAXPLUS Musthofa Jurusa Pedidika Matematika FMIPA UNY musthofa@uy.ac.id Abstrak Jika A matriks atas lapaga, maka pasti terdapat dega tuggal suatu matriks B yag

Lebih terperinci

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang 5. DERET

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang 5. DERET Pertemua 7. BAHAN AJAR ANALISIS REAL Matematika STKIP Tuaku Tambusai Bagkiag 5. da kekovergeaya 5. DERET Diberika sebuah barisa a, dapat didefeisika barisa bilaga real S N dega S N := N a = a + a 2 +...

Lebih terperinci

HUBUNGAN ANTARA KONVERGEN HAMPIR PASTI, KONVERGEN DALAM PELUANG, DAN KONVERGEN DALAM SEBARAN

HUBUNGAN ANTARA KONVERGEN HAMPIR PASTI, KONVERGEN DALAM PELUANG, DAN KONVERGEN DALAM SEBARAN Jural Matematika UNAND Vol. 2 No. 2 Hal. 0 6 ISSN : 2303 290 c Jurusa Matematika FMIPA UNAND HUBUNGAN ANTARA KONVERGEN HAMPIR PASTI, KONVERGEN DALAM PELUANG, DAN KONVERGEN DALAM SEBARAN VIRA AGUSTA, DODI

Lebih terperinci

SIFAT SIFAT RUANG VEKTOR ATAS LAPANGAN (FIELD)

SIFAT SIFAT RUANG VEKTOR ATAS LAPANGAN (FIELD) SIFAT SIFAT RUANG VEKTOR ATAS LAPANGAN (FIELD) Muhamad Zaki Riyato NIM: 02/156792/PA/08944 E-mail: zaki@mail.ugm.ac.id http://zaki.math.web.id Dose Pembimbig: Pof. D. Si Wahyui Pedahulua Sebelum melagkah

Lebih terperinci

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4 Program Studi : Tekik Iformatika Miggu ke : 4 INDUKSI MATEMATIKA Hampir semua rumus da hukum yag berlaku tidak tercipta dega begitu saja sehigga diraguka kebearaya. Biasaya, rumus-rumus dapat dibuktika

Lebih terperinci

BARISAN PANGKAT TERURUT MATRIKS PADA ALJABAR MAX PLUS

BARISAN PANGKAT TERURUT MATRIKS PADA ALJABAR MAX PLUS BRISN PNGKT TERURUT MTRIKS PD LJBR MX PLUS Nurwa Jurusa Matematika FMIP Uiversitas Negeri Gorotalo E-mail: urwa_mat@ug.ac.id bstrak Diberika matriks R yag memeuhi = λ. Matriks adalah k + c c k taktereduksi

Lebih terperinci

TINJAUAN PUSTAKA. 2.1 Ruang Vektor. Definisi (Darmawijaya, 2007) Diketahui (V, +) grup komutatif dan (F,,. ) lapangan dengan elemen identitas

TINJAUAN PUSTAKA. 2.1 Ruang Vektor. Definisi (Darmawijaya, 2007) Diketahui (V, +) grup komutatif dan (F,,. ) lapangan dengan elemen identitas II. TINJAUAN PUSTAKA 2.1 Ruag Vektor Defiisi 2.1.1 (Darmawijaya, 2007) Diketahui (V, +) grup komutatif da (F,,. ) lapaga dega eleme idetitas 1. V disebut ruag vektor (vector space) atas F jika ada operasi

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, , Agustus 2003, ISSN : METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, , Agustus 2003, ISSN : METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT Vol. 6. No., 97-09, Agustus 003, ISSN : 40-858 METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT Robertus Heri Jurusa Matematika FMIPA UNDIP Abstrak Tulisa ii membahas peetua persamaa ruag

Lebih terperinci

MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR. Dosen Pengampu : Darmadi, S.Si, M.Pd

MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR. Dosen Pengampu : Darmadi, S.Si, M.Pd MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR Dose Pegampu : Darmadi, S.Si, M.Pd Disusu : Kelas 5A / Kelompok 5 : Dia Dwi Rahayu (084. 06) Hefetamala (084. 4) Khoiril Haafi (084. 70) Liaatul Nihayah (084. 74)

Lebih terperinci

terurut dari bilangan bulat, misalnya (7,2) (notasi lain 2

terurut dari bilangan bulat, misalnya (7,2) (notasi lain 2 Bab Bilaga kompleks BAB BILANGAN KOMPLEKS Defiisi Bilaga Kompleks Sebelum medefiisika bilaga kompleks, pembaca diigatka kembali pada permasalah dalam sistem bilaga yag telah dikeal sebelumya Yag pertama

Lebih terperinci

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi 6. Pecacaha Lajut Relasi Rekuresi Relasi rekuresi utuk dereta {a } adalah persamaa yag meyataka a kedalam satu atau lebih suku sebelumya, yaitu a 0, a,, a -, utuk seluruh bilaga bulat, dega 0, dimaa 0

Lebih terperinci

PEMBENTUKAN GELANGGANG POLINOM MIRING DARI QUATERNION

PEMBENTUKAN GELANGGANG POLINOM MIRING DARI QUATERNION Pembentukan Gelanggang Polinom Miring dari Quaternion (Amir Kamal Amir) PEMBENTUKAN GELANGGANG POLINOM MIRING DARI QUATERNION Amir Kamal Amir 1 1 Jurusan Matematika Fakultas MIPA Universitas Hasanuddin

Lebih terperinci

PEMBUKTIAN SIFAT RUANG BANACH PADA B 1/4 (K) Malahayati

PEMBUKTIAN SIFAT RUANG BANACH PADA B 1/4 (K) Malahayati Jural Matematika Muri da Terapa εpsilo Vol. 07, No.01, (2013), Hal. 33 44 PEMBUKTIAN SIFAT RUANG BANACH PADA B 1/4 (K) Malahayati Program Studi Matematika Fakultas Sais da Tekologi UIN Sua Kalijaga Yogyakarta

Lebih terperinci

FAKTORISASI MATRIKS NON-NEGATIF MENGGUNAKAN ALGORITMA CHOLESKY BERBANTUAN SCILAB

FAKTORISASI MATRIKS NON-NEGATIF MENGGUNAKAN ALGORITMA CHOLESKY BERBANTUAN SCILAB Prosidig Semiar Nasioal Matematika da Pidika Matematika (SESIOMADIKA) 017 ISBN: 978-60-60550-1-9 Matematika Terapa, hal. 1-5 FAKTORISASI MATRIKS NON-NEGATIF MENGGUNAKAN ALGORITMA CHOLESKY BERBANTUAN SCILAB

Lebih terperinci

Distribusi Sampel & Statistitik Terurut

Distribusi Sampel & Statistitik Terurut Distribusi Sampel & Statistitik Terurut Sampel Acak, Rataa sampel, X-bar, Variasi sampel, S, Teorema Limit Pusat, Distribusi t,, F Statistik Terurut MA 3181 Teori Peluag 11 November 014 Utriwei Mukhaiyar

Lebih terperinci

Pembentukan Ideal Prim Gelanggang Polinom Miring Atas Daerah ( )

Pembentukan Ideal Prim Gelanggang Polinom Miring Atas Daerah ( ) Vol. 8, No.2, 64-68, Januari 2012 Pembentukan Ideal Prim Gelanggang Polinom Miring Atas Daerah ( ) Amir Kamal Amir Abstrak Misalkan R adalah suatu gelanggang dengan identitas 1, adalah suatu endomorfisma

Lebih terperinci

HALAMAN Dengan definisi limit barisan buktikan limit berikut ini : = 0. a. lim PENYELESAIAN : jadi terbukti bahwa lim = 0 = 5. b.

HALAMAN Dengan definisi limit barisan buktikan limit berikut ini : = 0. a. lim PENYELESAIAN : jadi terbukti bahwa lim = 0 = 5. b. Didowload dari ririez.blog.us.ac.id HALAMAN 36 37 5. Dega defiisi limit barisa buktika limit berikut ii : a. lim = 0 lim 1 2 + 3 = 0 > 0 h 1 = 2 + 3 0 = 1 2 + 3 1 2 1 2 1 2 < jadi terbukti bahwa lim =

Lebih terperinci

Sistem Bilangan Kompleks (Bagian Ketiga)

Sistem Bilangan Kompleks (Bagian Ketiga) Sistem Bilaga Kompleks (Bagia Ketiga) Supama Jurusa Matematika, FMIPA UGM Yogyakarta 55281, INDONESIA Email:maspomo@yahoo.com, supama@ugm.ac.id (Pertemua Miggu III) Outlie 1 Akar Bilaga Kompleks 2 Akar

Lebih terperinci

SIFAT-SIFAT DASAR MATRIKS SKEW HERMITIAN Basic Properties of Skew Hermitian Matrices

SIFAT-SIFAT DASAR MATRIKS SKEW HERMITIAN Basic Properties of Skew Hermitian Matrices Jural Barekeg Vol. 7 No. 2 Hal. 19 26 (2013) SIFAT-SIFAT DASAR MATRIKS SKEW HERMITIAN Basic Properties of Skew Hermitia Matrices LIDIA SALAKA 1, HENRY W. M. PATTY 2, MOZART WINSTON TALAKUA 3 1 Mahasiswa

Lebih terperinci

EMPAT CARA UNTUK MENENTUKAN NILAI INTEGRAL POISSON., Sri Gemawati 2, Agusni 2. Mahasiswa Program Studi S1 Matematika 2

EMPAT CARA UNTUK MENENTUKAN NILAI INTEGRAL POISSON., Sri Gemawati 2, Agusni 2. Mahasiswa Program Studi S1 Matematika 2 EMPAT CARA UNTUK MENENTUKAN NLA NTEGRAL POSSON Novrialma *, Sri Gemawati, Agusi Mahasiswa Program Studi S Matematika Dose Jurusa Matematika Fakultas Matematika da lmu Pegetahua Alam Uiversitas Riau Kampus

Lebih terperinci

Aji Wiratama, Yuni Yulida, Thresye Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat Jl. Jend. A. Yani km 36 Banjarbaru

Aji Wiratama, Yuni Yulida, Thresye Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat Jl. Jend. A. Yani km 36 Banjarbaru Jural Matematika Muri da Terapa εpsilo Vol.8 No.2 (24) Hal. 39-45 APLIKASI METODE DEKOMPOSISI ADOMIAN UNTUK MENENTUKAN FORMULA TRANSFORMASI LAPLACE Aji Wiratama, Yui Yulida, Thresye Program Studi Matematika

Lebih terperinci

BUKTI ALTERNATIF KONVERGENSI DERET PELL DAN PELL-LUCAS (ALTERNATIVE PROOF THE CONVERGENCE OF PELL AND PELL-LUCAS SERIES)

BUKTI ALTERNATIF KONVERGENSI DERET PELL DAN PELL-LUCAS (ALTERNATIVE PROOF THE CONVERGENCE OF PELL AND PELL-LUCAS SERIES) rosidig Semirata2015 bidag MIA BKS-TN Barat Uiversitas Tajugpura otiaak BUKTI ALTERNATIF KONVERGENSI DERET ELL DAN ELL-LUCAS (ALTERNATIVE ROOF THE CONVERGENCE OF ELL AND ELL-LUCAS SERIES) Baki Swita 1

Lebih terperinci

TUGAS ANALISIS REAL LANJUT. a b < a + A. b + B < A B.

TUGAS ANALISIS REAL LANJUT. a b < a + A. b + B < A B. TUGAS ANALISIS REAL LANJUT NOVEMBER 207 () (a) Jika b > 0, B > 0, da a b < A, buktika ab < ba. Kemudia buktika B a b < a + A b + B < A B. (b) Buktika [ 2 (a + b)] 2 2 (a2 + b 2 ). Kemudia tujukka bahwa

Lebih terperinci

InfinityJurnal Ilmiah Program Studi Matematika STKIP Siliwangi Bandung, Vol 2, No.1, Februari 2013

InfinityJurnal Ilmiah Program Studi Matematika STKIP Siliwangi Bandung, Vol 2, No.1, Februari 2013 IfiityJural Ilmiah Program Studi Matematika STKIP Siliwagi Badug, Vol 2, No.1, Februari 2013 KEKONTINUAN FUNGSI PADA RUANG METRIK Oleh: Cece Kustiawa Jurusa Pedidika Matematika FPMIPA UPI, cecekustiawa@yahoo.com

Lebih terperinci

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian BAB I PENDAHULUAN A. Latar Belakag Masalah Matematika merupaka suatu ilmu yag mempuyai obyek kajia abstrak, uiversal, medasari perkembaga tekologi moder, da mempuyai pera petig dalam berbagai disipli,

Lebih terperinci

Setelah mempelajari modul ini Anda diharapkan dapat: a. memeriksa apakah suatu pemetaan merupakan operasi;

Setelah mempelajari modul ini Anda diharapkan dapat: a. memeriksa apakah suatu pemetaan merupakan operasi; Modul 1 Operasi Dr. Ahmad Muchlis B PENDAHULUAN erapakah 97531 86042? Kalau Ada megguaka kalkulator, jawabaya amat bergatug pada tipe kalkulator yag Ada pakai. 9 Kalkulator ilmiah Casio fx-250 memberika

Lebih terperinci

,n N. Jelas barisan ini terbatas pada dengan batas M =: 1, dan. barisan ini kovergen ke 0.

,n N. Jelas barisan ini terbatas pada dengan batas M =: 1, dan. barisan ini kovergen ke 0. PROGRAM STUDI PENDIDIKAN MATEMATIKA FKIP UNMUH PONOROGO SOAL UJIAN TENGAH SEMESTER GENAP TA 03/04 Mata Ujia : Aalisis Real Tipe Soal : REGULER Dose : Dr. Jula HERNADI Waktu : 90 meit Hari, Taggal : Selasa,

Lebih terperinci

PEMBUKTIAN AUTOMORFISMA PADA GELANGGANG POLINOM MIRING UNTUK PEMBENTUKAN GELANGGANG POLINOM MIRING BERSUSUN

PEMBUKTIAN AUTOMORFISMA PADA GELANGGANG POLINOM MIRING UNTUK PEMBENTUKAN GELANGGANG POLINOM MIRING BERSUSUN PEMBUKTIAN AUTOMORFISMA PADA GELANGGANG POLINOM MIRING UNTUK PEMBENTUKAN GELANGGANG POLINOM MIRING BERSUSUN Amir Kamal Amir 1 Jurusan Matematika Fakultas MIPA Universitas Hasanuddin Jl. Perintis Kemerdekaan

Lebih terperinci

Hendra Gunawan. 12 Februari 2014

Hendra Gunawan. 12 Februari 2014 MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2013/2014 12 Februari 2014 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 82 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg

Lebih terperinci

IDEAL PRIMA DAN IDEAL MAKSIMAL PADA GELANGGANG POLINOMIAL PRIME IDEAL AND MAXIMAL IDEAL IN A POLYNOMIAL RING

IDEAL PRIMA DAN IDEAL MAKSIMAL PADA GELANGGANG POLINOMIAL PRIME IDEAL AND MAXIMAL IDEAL IN A POLYNOMIAL RING IDEAL PRIMA DAN IDEAL MAKSIMAL PADA GELANGGANG POLINOMIAL Qharnida Khariani, Amir Kamal Amir dan Nur Erawati Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Hasanuddin (UNHAS)

Lebih terperinci

PEMETAAN KONTRAKTIF PADA RUANG b-metrik CONE R BERNILAI R 2

PEMETAAN KONTRAKTIF PADA RUANG b-metrik CONE R BERNILAI R 2 J. Math. ad Its Appl. ISSN: 829-605X Vol. 3, No. 2, Nopember 206, -0 PEMETAAN KONTRAKTIF PADA RUANG b-metrik CONE R BERNILAI R 2 Suarsii, Mahmud Yuus 2, Sadjido 3, Auda Nuril Z 4,2,3,4 Jurusa Matematika,

Lebih terperinci

Pengantar Statistika Matematika II

Pengantar Statistika Matematika II Pegatar Statistika Matematika II Metode Evaluasi Atia Ahdika, S.Si., M.Si. Prodi Statistika FMIPA Uiversitas Islam Idoesia April 11, 2017 atiaahdika.com Pegguaa metode estimasi yag berbeda dapat meghasilka

Lebih terperinci

III PEMBAHASAN. λ = 0. Ly = 0, maka solusi umum dari persamaan diferensial (3.3) adalah

III PEMBAHASAN. λ = 0. Ly = 0, maka solusi umum dari persamaan diferensial (3.3) adalah III PEMBAHASAN Pada bagia ii aka diformulasika masalah yag aka dibahas. Solusi masalah aka diselesaika dega Metode Dekomposisi Adomia. Selajutya metode ii aka diguaka utuk meyelesaika model yag diyataka

Lebih terperinci

Distribusi Pendekatan (Limiting Distributions)

Distribusi Pendekatan (Limiting Distributions) Distribusi Pedekata (Limitig Distributios) Ada 3 tekik utuk meetuka distribusi pedekata: 1. Tekik Fugsi Distribusi Cotoh 2. Tekik Fugsi Pembagkit Mome Cotoh 3. Tekik Teorema Limit Pusat Cotoh Fitriai Agustia,

Lebih terperinci

ANALISIS REAL I PENGANTAR. (Introduction to Real Analysis I) M. Zaki Riyanto, S.Si DIKTAT KULIAH ANALISIS

ANALISIS REAL I PENGANTAR. (Introduction to Real Analysis I) M. Zaki Riyanto, S.Si DIKTAT KULIAH ANALISIS DIKTAT KULIAH ANALISIS PENGANTAR ANALISIS REAL I (Itroductio to Real Aalysis I) M Zaki Riyato, SSi e-mail: zaki@mailugmacid http://zakimathwebid COPYRIGHT 008-009 Pegatar Aalisis Real I HALAMAN PERSEMBAHAN

Lebih terperinci

Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1

Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1 Barisa Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 9/0/06 Matematika Barisa Tak Higga Secara sederhaa, barisa merupaka susua dari bilaga bilaga yag urutaya berdasarka bilaga

Lebih terperinci

FOURIER Juni 2014, Vol. 3, No. 1, TEOREMA TITIK TETAP PADA RUANG QUASI METRIK TERASING TANPA MENGGUNAKAN SIFAT KEKONTINUAN FUNGSI

FOURIER Juni 2014, Vol. 3, No. 1, TEOREMA TITIK TETAP PADA RUANG QUASI METRIK TERASING TANPA MENGGUNAKAN SIFAT KEKONTINUAN FUNGSI FOURIER Jui 04, Vol. 3, No., 4 6 TEOREMA TITIK TETAP PADA RUANG QUASI METRIK TERASING TANPA MENGGUNAKAN SIFAT KEKONTINUAN FUNGSI Malahayati, Mutia Utami, Program Studi Matematika Fakultas Sais da tekologi

Lebih terperinci

SIFAT-SIFAT DAN STRUKTUR ALJABAR MATRIKS PENYAJIAN DARI PERSEGI AJAIB

SIFAT-SIFAT DAN STRUKTUR ALJABAR MATRIKS PENYAJIAN DARI PERSEGI AJAIB SIFAT-SIFAT DAN STRUKTUR ALJABAR MATRIKS PENYAJIAN DARI PERSEGI AJAIB Suryoto 1, Harjito 2, Titi Udjiai SRRM 3, Nikke Prima Puspita 4 1,2,3,4 Departeme Matematika FSM Uiversitas Dipoegoro Jl. Prof. H.

Lebih terperinci

Induksi matematik untuk memecahkan problema deret dan bilangan bulat bentuk kuadrat sempurna

Induksi matematik untuk memecahkan problema deret dan bilangan bulat bentuk kuadrat sempurna Iduksi matematik utuk memecahka problema deret da bilaga bulat betuk kuadrat sempura Oleh: Sutopo Jurusa Fisika FMIPA UM sutopo@fisika.um.ac.id Ditulis pada sekitar bula Februari 2011. Diuggah pada 3 Desember

Lebih terperinci

II LANDASAN TEORI. Sebuah bilangan kompleks dapat dinyatakan dalam bentuk. z = x jy. (2.4)

II LANDASAN TEORI. Sebuah bilangan kompleks dapat dinyatakan dalam bentuk. z = x jy. (2.4) 3 II LANDASAN TEORI 2.1 Peubah Kompleks da Fugsi Kompleks Sebuah bilaga kompleks dapat diyataka dalam betuk z = x + jy, (2.1) dega x da y adalah bilaga-bilaga real da j = 1. Bilaga x disebut bagia real

Lebih terperinci

Bab 2. Sistem Bilangan Real Aksioma Bilangan Real Misalkan adalah himpunan bilangan real, P himpunan bilangan positif dan fungsi + dan.

Bab 2. Sistem Bilangan Real Aksioma Bilangan Real Misalkan adalah himpunan bilangan real, P himpunan bilangan positif dan fungsi + dan. Bab Sistem Bilaga Real.. Aksioma Bilaga Real Misalka adalah himpua bilaga real, P himpua bilaga positif da fugsi + da. dari ke da asumsika memeuhi aksioma-aksioma berikut: Aksioma Lapaga Utuk semua bilaga

Lebih terperinci

KEKONVERGENAN BARISAN DI DALAM RUANG

KEKONVERGENAN BARISAN DI DALAM RUANG KEKONVERGENAN BARISAN DI DALAM RUANG FUNGSI KONTINU C[a, b] Firdaus Ubaidillah 1, Soepara Darmawijaya, Ch. Rii Idrati 1 Jurusa Matematika FMIPA Uiversitas Gadjah Mada Yogyakarta e-mail: irdaus_u@yahoo.com

Lebih terperinci

Deret Fourier. Modul 1 PENDAHULUAN

Deret Fourier. Modul 1 PENDAHULUAN Modul Deret Fourier Prof. Dr. Bambag Soedijoo P PENDAHULUAN ada modul ii dibahas masalah ekspasi deret Fourier Sius osius utuk suatu fugsi periodik ataupu yag diaggap periodik, da dibahas pula trasformasi

Lebih terperinci

Supriyadi Wibowo Jurusan Matematika F MIPA UNS

Supriyadi Wibowo Jurusan Matematika F MIPA UNS Prosidig Semiar Nasioal Peelitia, Pedidika da Peerapa MIPA akultas MIPA, Uiversitas Negeri Yogyakarta, 16 Mei 29 HUBUNGAN ANTARA ORDER DERIVATI- DARI UNGSI f : DENGAN DIMENSI-γ DARI HIMPUNAN RAKTAL Supriyadi

Lebih terperinci

LANDASAN TEORI. Pada bab ini akan diberikan beberapa konsep dasar (pengertian) yang akan digunakan dalam. pembahasan penelitian. 2.

LANDASAN TEORI. Pada bab ini akan diberikan beberapa konsep dasar (pengertian) yang akan digunakan dalam. pembahasan penelitian. 2. II. LANDASAN TEORI Pada bab ii aka diberika beberapa kosep dasar (pegertia) yag aka diguaka dalam pembahasa peelitia 2.1 Ruag Vektor Defiisi 3.1.1 (Darmawijaya, 2007) Diketahui (V, +) grup komutatif da

Lebih terperinci

RUANG VEKTOR MATRIKS FUZZY

RUANG VEKTOR MATRIKS FUZZY RUANG VEKTOR MATRIKS FUZZY Siti Robiatul Adawiyah 1, Rade Sulaima 2 1 Jurusa Matematika, Fakultas Matematika da Ilmu Pegetahua Alam, Uiversitas Negeri Surabaya, 60231 2 Jurusa Matematika, Fakultas Matematika

Lebih terperinci

RUANG BASIS SOLUSI. Ini disusun untuk memenuhi tugas mata kuliah. Aljabar Linier DISUSUN OLEH : DONNA SEPTIAN CAHYA RINI (08411.

RUANG BASIS SOLUSI. Ini disusun untuk memenuhi tugas mata kuliah. Aljabar Linier DISUSUN OLEH : DONNA SEPTIAN CAHYA RINI (08411. RUANG BASIS SOLUSI Ii disusu utuk memeuhi tugas mata kuliah Aljabar Liier DISUSUN OLEH : DONNA SEPIAN CAHYA RINI (08411.114) FIRIA ASUI (08411.133) NURUL AISYAH (08411.211) SULIS SEYOWAI (08411.260) SULISIANI

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2016/2017 3 Februari 2017 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg Batas

Lebih terperinci

1 Persamaan rekursif linier non homogen koefisien konstan tingkat satu

1 Persamaan rekursif linier non homogen koefisien konstan tingkat satu Secara umum persamaa rekursif liier tigkat-k bisa dituliska dalam betuk: dega C 0 0. C 0 x + C 1 x 1 + C 2 x 2 + + C k x k = b, Jika b = 0 maka persamaa rekursif tersebut diamaka persamaa rekursif liier

Lebih terperinci

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL Defiisi Persamaa diferesial adalah persamaa yag melibatka variabelvariabel tak bebas da derivatif-derivatifya terhadap variabel-variabel bebas. Berikut ii adalah

Lebih terperinci

Sistem Bilangan Real. Modul 1 PENDAHULUAN

Sistem Bilangan Real. Modul 1 PENDAHULUAN Modul 1 Sistem Bilaga Real Prof. R. Soematri D PENDAHULUAN alam modul ii aka dibahas sifat-sifat pokok bilaga real. Meskipu pembaca sudah akrab bear dega bilaga real amu modul ii aka membahasya lebih cermat

Lebih terperinci

ISIAN SINGKAT! 1. Diberikan hasil kali digit digit dari n harus sama dengan 25

ISIAN SINGKAT! 1. Diberikan hasil kali digit digit dari n harus sama dengan 25 head office : Kompleks Sawaga Permai Blok A5 No.1A, Sawaga, Depok 16511 Telp.01-951 1160. cotact perso : 0-878787-1-8585 / 081-8691-10 Bidag Studi Kode Berkas Waktu : Matematika : MA-L01 (solusi) : 90

Lebih terperinci

MATEMATIKA DISKRIT FUNGSI

MATEMATIKA DISKRIT FUNGSI 1 MATEMATIKA DISKRIT FUNGSI Fugsi Misalka A da B himpua. Relasi bier f dari A ke B merupaka suatu fugsi jika setiap eleme di dalam A dihubugka dega tepat satu eleme di dalam B. Jika f adalah fugsi dari

Lebih terperinci

Pendiferensialan. Modul 1 PENDAHULUAN

Pendiferensialan. Modul 1 PENDAHULUAN Modul Pediferesiala Prof R Soematri D PENDAHULUAN alam modul ii dibahas fugsi berilai real yag didefiisika pada suatu iterval Defiisi derivatif suatu fugsi dimulai dega derivatif di suatu titik, kemudia

Lebih terperinci

TESIS KARAKTERISASI RING-RING DENGAN SIFAT JUMLAH BASIS TETAP DAN TOPIK-TOPIK YANG TERKAIT

TESIS KARAKTERISASI RING-RING DENGAN SIFAT JUMLAH BASIS TETAP DAN TOPIK-TOPIK YANG TERKAIT TESIS KAAKTEISASI ING-ING DENGAN SIFAT JUMLAH BASIS TETAP DAN TOPIK-TOPIK YANG TEKAIT CHAACTEISATION OF INGS WITH INVAIANT BASIS NUMBE AND ELATED TOPICS SAMSUL AIFIN 09/290722/PPA/02875 POGAM STUDI S2

Lebih terperinci

Himpunan Kritis Pada Graph Caterpillar

Himpunan Kritis Pada Graph Caterpillar 1 0 Himpua Kritis Pada Graph Caterpillar Chairul Imro, Budi Setiyoo, R. Simajutak, Edy T. Baskoro {imro-its,budi}@matematika.its.ac.id, {rio,ebaskoro}@ds.math.itb.ac.id Ues, Semarag, 4 7 Juli 006 Abstrak

Lebih terperinci

REPRESENTASI KANONIK UNTUK FUNGSI KARAKTERISTIK DARI SEBARAN TERBAGI TAK HINGGA

REPRESENTASI KANONIK UNTUK FUNGSI KARAKTERISTIK DARI SEBARAN TERBAGI TAK HINGGA Jural Matematika UNAND Vol. 3 No. Hal. 7 34 ISSN : 33 9 c Jurusa Matematika FMIPA UNAND REPRESENTASI KANONIK UNTUK FUNGSI KARAKTERISTIK DARI SEBARAN TERBAGI TAK HINGGA EKA RAHMI KAHAR, DODI DEVIANTO Program

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN JURAL MATEMATKA DA KOMPUTER Vol. 6. o., 77-85, Agustus 003, SS : 40-858 DSTRBUS WAKTU BERHET PADA PROSES PEMBAHARUA Sudaro Jurusa Matematika FMPA UDP Abstrak Dalam proses stokhastik yag maa kejadia dapat

Lebih terperinci

Jurnal Matematika Murni dan Terapan Vol. 4 No.2 Desember 2010: 1-13 TEOREMA TITIK TETAP BANACH PADA RUANG METRIK-D

Jurnal Matematika Murni dan Terapan Vol. 4 No.2 Desember 2010: 1-13 TEOREMA TITIK TETAP BANACH PADA RUANG METRIK-D Jural Mateatika Muri da Terapa Vol 4 No Deseber : - 3 TEOREMA TITIK TETAP BANACH PADA RUANG METRIK-D Muhaad Ahsar Kari, Dewi Sri Susati, da Nurul Huda Progra Studi Mateatika Uiversitas Labug Magkurat Jl

Lebih terperinci