Permukaan. Persamaan Codazzi dan Persamaan Gauss. Wono Setya Budhi Februari, 2014 KK Analisis Geometri, FMIPA-ITB.

Ukuran: px
Mulai penontonan dengan halaman:

Download "Permukaan. Persamaan Codazzi dan Persamaan Gauss. Wono Setya Budhi Februari, 2014 KK Analisis Geometri, FMIPA-ITB."

Transkripsi

1 Persamaan Codazzi dan Persamaan Gauss Wono Setya Budhi Februari, 2014 KK Analisis Geometri, FMIPA-ITB 1 / 16

2 Persamaan Codazzi dan Gauss 1 Pada bagian ini kita akan mencari nilai x u u, x uv dan x vv dinyatakan dalam basis yang ada yaitu x u, x v dan n = x u x v x u x v 2 / 16

3 Persamaan Codazzi dan Gauss 1 Pada bagian ini kita akan mencari nilai x u u, x uv dan x vv dinyatakan dalam basis yang ada yaitu x u, x v dan n = x u x v x u x v 2 Misalkan x u u = Γ u u ux u + Γ v u ux v + l n x uv = Γ u uv x u + Γ v uv x v + mn x vv = Γ u vv x u + Γ v vv x v + nn 2 / 16

4 Persamaan Codazzi dan Gauss 1 Pada bagian ini kita akan mencari nilai x u u, x uv dan x vv dinyatakan dalam basis yang ada yaitu x u, x v dan n = x u x v x u x v 2 Misalkan x u u = Γ u u ux u + Γ v u ux v + l n x uv = Γ u uv x u + Γ v uv x v + mn x vv = Γ u vv x u + Γ v vv x v + nn 3 Karena x uv = x vu, maka Γ uv? = Γ vu.? Fungsi Γ??? disebut sebagai lambang Christofel 2 / 16

5 Persamaan Codazzi dan Gauss 1 Misalkan x u u = Γ u u ux u + Γ v u ux v + l n x uv = Γ u uv x u + Γ v uv x v + mn x vv = Γ u vv x u + Γ v vv x v + nn 3 / 16

6 Persamaan Codazzi dan Gauss 1 Misalkan x u u = Γ u u ux u + Γ v u ux v + l n x uv = Γ u uv x u + Γ v uv x v + mn x vv = Γ u vv x u + Γ v vv x v + nn 2 Karena {x u, x v } tidak selalu orthogonal, maka dst x u u x u = Γ u u u x u x u + Γ v u ux u x u 3 / 16

7 Persamaan Codazzi dan Gauss 1 Misalkan x u u = Γ u u ux u + Γ v u ux v + l n x uv = Γ u uv x u + Γ v uv x v + mn x vv = Γ u vv x u + Γ v vv x v + nn 2 Karena {x u, x v } tidak selalu orthogonal, maka dst x u u x u = Γ u u u x u x u + Γ v u ux u x u 3 x u u x u = Γ u u ue + Γ v u uf x u u x v = Γ u u uf + Γ v u ug 3 / 16

8 Persamaan Codazzi dan Gauss 1 x u u x u = Γ u u ue + Γ v u uf x u u x v = Γ u u uf + Γ v u ug 4 / 16

9 Persamaan Codazzi dan Gauss 1 x u u x u = Γ u u ue + Γ v u uf x u u x v = Γ u u uf + Γ v u ug 2 Sedangkan E = x u x u, maka E u =... dan x u u x u = 1 2 E u 4 / 16

10 Persamaan Codazzi dan Gauss 1 x u u x u = Γ u u ue + Γ v u uf x u u x v = Γ u u uf + Γ v u ug 2 Sedangkan E = x u x u, maka E u =... dan x u u x u = 1 2 E u 3 Untuk x u u x v = (x u x v ) u x u x uv = F u 1 2 E v, sebab E v = (x u x u ) v = 2x u x uv 4 / 16

11 Persamaan Codazzi dan Gauss 1 x u u x u = Γ u u ue + Γ v u uf x u u x v = Γ u u uf + Γ v u ug 2 Sedangkan E = x u x u, maka E u =... dan x u u x u = 1 2 E u 3 Untuk x u u x v = (x u x v ) u x u x uv = F u 1 2 E v, sebab E v = (x u x u ) v = 2x u x uv 4 Jadi [ Γ u u u Γ v u u ] [ E F = F G ] 1 [ 1 2 E u F u 1 2 E v ] 4 / 16

12 Persamaan Codazzi dan Gauss 1 Lengkapnya [ Γ u u u Γ v u u ] [ E F = F G ] 1 [ 1 2 E u F u 1 2 E v ] 5 / 16

13 Persamaan Codazzi dan Gauss 1 Lengkapnya [ Γ u u u Γ v u u ] [ E F = F G ] 1 [ 1 2 E u F u 1 2 E v ] 2 [ Γ u uv Γ v uv ] [ E F = F G ] 1 [ 12 E v 1 2 G u ] 5 / 16

14 Persamaan Codazzi dan Gauss 1 Lengkapnya [ Γ u u u Γ v u u ] [ E F = F G ] 1 [ 1 2 E u F u 1 2 E v ] 2 [ Γ u uv Γ v uv ] [ E F = F G ] 1 [ 12 E v 1 2 G u ] 3 [ Γ u vv Γ v vv ] [ E F = F G ] 1 [ Fv 1 2 G u 1 2 G v ] 5 / 16

15 Persamaan Codazzi dan Gauss 1 Lengkapnya [ Γ u u u Γ v u u ] [ E F = F G ] 1 [ 1 2 E u F u 1 2 E v ] 2 [ Γ u uv Γ v uv ] [ E F = F G ] 1 [ 12 E v 1 2 G u ] 3 [ Γ u vv Γ v vv ] [ E F = F G ] 1 [ Fv 1 2 G u 1 2 G v 4 Komponen tangen dari x u u, x uv, x vv cukup dihitung dari bentuk dasar pertama. ] 5 / 16

16 Matriks Penyajian Operator Bentuk 1 Operator [ ] bentuk S p : T p M T p M terhadap basis {x u, x v }, yaitu a c b d 6 / 16

17 Matriks Penyajian Operator Bentuk 1 Operator [ ] bentuk S p : T p M T p M terhadap basis {x u, x v }, yaitu a c b d 2 Misalkan S p (x u ) = ax u + bx v dan S p (x v ) = cx u + dx v. Kita harus mencari a, b, c, d. 6 / 16

18 Matriks Penyajian Operator Bentuk 1 Operator [ ] bentuk S p : T p M T p M terhadap basis {x u, x v }, yaitu a c b d 2 Misalkan S p (x u ) = ax u + bx v dan S p (x v ) = cx u + dx v. Kita harus mencari a, b, c, d. 3 Untuk mencari a, b, S p (x u ) x u = ae + bf D xu n x u = ae + bf x u u n = ae + bf l = ae + bf 6 / 16

19 Matriks Penyajian Operator Bentuk 1 Operator [ ] bentuk S p : T p M T p M terhadap basis {x u, x v }, yaitu a c b d 7 / 16

20 Matriks Penyajian Operator Bentuk 1 Operator [ ] bentuk S p : T p M T p M terhadap basis {x u, x v }, yaitu a c b d 2 Misalkan S p (x u ) = ax u + bx v dan S p (x v ) = cx u + dx v. Kita harus mencari a, b, c, d. 7 / 16

21 Matriks Penyajian Operator Bentuk 1 Operator [ ] bentuk S p : T p M T p M terhadap basis {x u, x v }, yaitu a c b d 2 Misalkan S p (x u ) = ax u + bx v dan S p (x v ) = cx u + dx v. Kita harus mencari a, b, c, d. 3 Untuk mencari a, b l = ae + bf m = af + bg 7 / 16

22 Matriks Penyajian Operator Bentuk 1 Untuk mencari a, b, l = ae + bf m = af + bg 8 / 16

23 Matriks Penyajian Operator Bentuk 1 Untuk mencari a, b, l = ae + bf m = af + bg 2 Jadi [ l m m n ] [ E F = F G ] [ a c b d ] 8 / 16

24 Matriks Penyajian Operator Bentuk 1 Untuk mencari a, b, l = ae + bf m = af + bg 2 Jadi [ l m m n ] [ E F = F G ] [ a c b d ] 3 Dengan demikian [ a c b d ] [ E F = F G ] 1 [ l m m n ] 8 / 16

25 Matriks Penyajian Operator Bentuk 1 Dengan demikian [ a c b d ] [ E F = F G ] 1 [ l m m n ] 9 / 16

26 Matriks Penyajian Operator Bentuk 1 Dengan demikian [ a c b d ] [ E F = F G ] 1 [ l m m n ] 2 [ a c b d ] = 1 [ lg mf mg nf EG F 2 lf + me mf + ne ] 9 / 16

27 Memanfaatkan Kesamaan Turunan ke Tiga 1 Kita mengetahui bahwa n u = D xu n = S p (x u ) = (ax u + bx v ) n v = D xv n = S p (x v ) = (cx u + dx v ) 10 / 16

28 Memanfaatkan Kesamaan Turunan ke Tiga 1 Kita mengetahui bahwa n u = D xu n = S p (x u ) = (ax u + bx v ) n v = D xv n = S p (x v ) = (cx u + dx v ) 2 Pada awal slide, kita mempunyai x u u = Γ u u ux u + Γ v u ux v + l n x uv = Γ u uv x u + Γ v uv x v + mn x vv = Γ u vv x u + Γ v vv x v + nn 10 / 16

29 Memanfaatkan Kesamaan Turunan ke Tiga 1 Kita mengetahui bahwa n u = D xu n = S p (x u ) = (ax u + bx v ) n v = D xv n = S p (x v ) = (cx u + dx v ) 2 Pada awal slide, kita mempunyai x u u = Γ u u ux u + Γ v u ux v + l n x uv = Γ u uv x u + Γ v uv x v + mn x vv = Γ u vv x u + Γ v vv x v + nn 3 Selanjutnya, dengan mencari x u uv = x uvu dan menggunakan ke bebas linearan x u, x v dan n, maka akan diperoleh 10 / 16

30 Memanfaatkan Kesamaan Turunan ke Tiga 1 Selanjutnya, dengan mencari x u uv = x uvu dan menggunakan ke bebas linearan x u, x v dan n, maka akan diperoleh 11 / 16

31 Memanfaatkan Kesamaan Turunan ke Tiga 1 Selanjutnya, dengan mencari x u vv = x vvu dan menggunakan ke bebas linearan x u, x v dan n, maka akan diperoleh 12 / 16

32 Khususnya dari dua persamaan n 1 Persamaan Codazzi 13 / 16

33 Selanjutnya, kita mempunyai persamaan Gauss 14 / 16

34 Kurvature Gauss untuk Koordinat Orthogonal 1 Kita akan membuktikan (di latihan) bahwa K = 1 (( ) ( ) ) 2 Ev Gu + EG EG v EG u Theorem 15 / 16

35 Kurvature Gauss untuk Koordinat Orthogonal 1 Kita akan membuktikan (di latihan) bahwa K = 1 (( ) ( ) ) 2 Ev Gu + EG EG v EG u Theorem Teorem Egregium Gauss Kelengkungan Gauss ditentukan hanya oleh bentuk dasar pertama saja. 15 / 16

36 Kurvature Gauss untuk Koordinat Orthogonal 1 Kita akan membuktikan (di latihan) bahwa K = 1 (( ) ( ) ) 2 Ev Gu + EG EG v EG u Theorem Teorem Egregium Gauss Kelengkungan Gauss ditentukan hanya oleh bentuk dasar pertama saja. artinya nilai K dapat dihitung dari bentuk E, F, G dan turunan (parsial)nya. 15 / 16

37 Kurvature Gauss untuk Koordinat Orthogonal Corollary Jika dua permukaan isometri secara lokal, kelengkungan Gauss sama pada titik yang berkaitan. 16 / 16

Ruang Hasil Kali Dalam

Ruang Hasil Kali Dalam Ruang Hasil Kali Dalam (Gram Schmidt) Wono Setya Budhi KKAG FMIPA ITB v 0.1 Maret 2015 Wono Setya Budhi (KKAG FMIPA ITB) Ruang Hasil Kali Dalam v 0.1 Maret 2015 1 / 13 Misalkan S subhimpunan di V, kita

Lebih terperinci

Ruang Hasil Kali Dalam

Ruang Hasil Kali Dalam Ruang Hasil Kali Dalam Hasil Kali Dalam dan Norm Wono Setya Budhi KKAG FMIPA ITB v 0.1 Maret 2015 Wono Setya Budhi (KKAG FMIPA ITB) Ruang Hasil Kali Dalam v 0.1 Maret 2015 1 / 12 Pada bab ini kita akan

Lebih terperinci

Teknik pengintegralan: Integral parsial (Integral by part)

Teknik pengintegralan: Integral parsial (Integral by part) Teknik pengintegralan: Integral parsial (Integral by part) Kalkulus 2 Nanang Susyanto Departemen Matematika FMIPA UGM 06 Februari 2017 NS (FMIPA UGM) Teknik pengintegralan 06/02/2017 1 / 14 Mari mengingat

Lebih terperinci

Variabel Banyak Bernilai Real 1 / 1

Variabel Banyak Bernilai Real 1 / 1 Fungsi Variabel Banyak Bernilai Real Turunan Parsial dan Turunan Wono Setya Budhi KK Analisis dan Geometri, FMIPA ITB Variabel Banyak Bernilai Real 1 / 1 Turunan Parsial dan Turunan Usaha pertama untuk

Lebih terperinci

6 Sistem Persamaan Linear

6 Sistem Persamaan Linear 6 Sistem Persamaan Linear Pada bab, kita diminta untuk mencari suatu nilai x yang memenuhi persamaan f(x) = 0. Pada bab ini, masalah tersebut diperumum dengan mencari x = (x, x,..., x n ) yang secara sekaligus

Lebih terperinci

Hand-Out Geometri Transformasi. Bab I. Pendahuluan

Hand-Out Geometri Transformasi. Bab I. Pendahuluan Hand-Out Geometri Transformasi Bab I. Pendahuluan 1.1 Vektor dalam R 2 Misalkan u = (x 1,y 1 ), v = (x 2,y 2 ) dan w = (x 3,y 3 ) serta k skalar (bilangan real) Definisi 1. : Penjumlahan vektor u + v =

Lebih terperinci

Solusi Sistem Persamaan Linear Ax = b

Solusi Sistem Persamaan Linear Ax = b Solusi Sistem Persamaan Linear Ax = b Kie Van Ivanky Saputra April 27, 2009 K V I Saputra (Analisis Numerik) Kuliah Sistem Persamaan Linier c April 27, 2009 1 / 9 Review 1 Substitusi mundur pada sistem

Lebih terperinci

adalah isomorphik dengan im( ), 2) The rank plus nullity Theorem dim(ker ( ) )+dim(im ( )

adalah isomorphik dengan im( ), 2) The rank plus nullity Theorem dim(ker ( ) )+dim(im ( ) The Rank Plus Nullity Theorem L(V,W) 1) Sembarang komplemen dari ker () adalah isomorphik dengan im( ), 2) The rank plus nullity Theorem dim(ker () )+dim(im () ) = dim(v) Teorema 2.8. Misal atau rk() +

Lebih terperinci

GAMBARAN UMUM SMA/MA. Hak Cipta pada Pusat Penilaian Pendidikan BALITBANG DEPDIKNAS 1

GAMBARAN UMUM SMA/MA. Hak Cipta pada Pusat Penilaian Pendidikan BALITBANG DEPDIKNAS 1 GAMBARAN UMUM Pada ujian nasional tahun pelajaran 006/007, bentuk tes Matematika tingkat berupa tes tertulis dengan bentuk soal pilihan ganda, sebanyak 0 soal dengan alokasi waktu 0 menit. Acuan yang digunakan

Lebih terperinci

Aljabar Linier & Matriks

Aljabar Linier & Matriks Aljabar Linier & Matriks 1 Pendahuluan Ruang vektor tidak hanya terbatas maksimal 3 dimensi saja 4 dimensi, 5 dimensi, dst ruang n-dimensi Jika n adalah bilangan bulat positif, maka sekuens sebanyak n

Lebih terperinci

2 Me o i g e P e n il it n a T e b l. 1 ti s m ti n A t a ( r p ) k - T e b l. 2 n ti s Me ti n A t a ( r p ) k

2 Me o i g e P e n il it n a T e b l. 1 ti s m ti n A t a ( r p ) k - T e b l. 2 n ti s Me ti n A t a ( r p ) k J A g K u uu g - g Vuz B K A z Nu Ru R u I J u g, III ) : I N : 87 8 Ju I Lg Uv Ru, Bu, Du, N g Y Juu K Fu U v Ru K Ku B J HR u K,, u 76-6697 E- : u@u A g v uz g u xg u u u, z v uz g g uu u u u g u N u

Lebih terperinci

SYARAT ADANYA KETERKAITAN ANTARA RING EXCHANGE DAN RING QB 1 PENDAHULUAN

SYARAT ADANYA KETERKAITAN ANTARA RING EXCHANGE DAN RING QB 1 PENDAHULUAN SYARAT ADANYA KETERKAITAN ANTARA RING EXCHANGE DAN RING QB SISWANDI 1 Abstrak Dalam teori ring ada berbagai macam klas dari ring yang merupakan akibat dari diberikannya aksioma-aksioma baru. Di antara

Lebih terperinci

1 Mengapa Perlu Belajar Geometri Daftar Pustaka... 1

1 Mengapa Perlu Belajar Geometri Daftar Pustaka... 1 Daftar Isi 1 Mengapa Perlu Belajar Geometri 1 1.1 Daftar Pustaka.................................... 1 2 Ruang Euclid 3 2.1 Geometri Euclid.................................... 8 2.2 Pencerminan dan Transformasi

Lebih terperinci

UJIAN NASIONAL TAHUN PELAJARAN 2006/2007

UJIAN NASIONAL TAHUN PELAJARAN 2006/2007 UJIAN NASIONAL TAHUN PELAJARAN 006/007 PANDUAN MATERI SMA DAN MA M A T E M A T I K A PROGRAM STUDI IPA PUSAT PENILAIAN PENDIDIKAN BALITBANG DEPDIKNAS KATA PENGANTAR Dalam rangka sosialisasi kebijakan dan

Lebih terperinci

UJIAN NASIONAL TAHUN PELAJARAN 2007/2008

UJIAN NASIONAL TAHUN PELAJARAN 2007/2008 UJIAN NASIONAL TAHUN PELAJARAN 007/008 PANDUAN MATERI SMA DAN MA M A T E M A T I K A PROGRAM STUDI IPA PUSAT PENILAIAN PENDIDIKAN BALITBANG DEPDIKNAS KATA PENGANTAR Dalam rangka sosialisasi kebijakan dan

Lebih terperinci

KS KALKULUS DAN ALJABAR LINEAR Vektor di Ruang N TIM KALIN

KS KALKULUS DAN ALJABAR LINEAR Vektor di Ruang N TIM KALIN KS091206 KALKULUS DAN ALJABAR LINEAR Vektor di Ruang N TIM KALIN TUJUAN INSTRUKSIONAL KHUSUS Setelah menyelesaikan pertemuan ini mahasiswa diharapkan: Dapat mengetahui definisi dan dapat menghitung perkalian

Lebih terperinci

Persamaan Di erensial Orde-2

Persamaan Di erensial Orde-2 oki neswan FMIPA-ITB Persamaan Di erensial Orde- Persamaan diferensial orde-n adalah persamaan yang melibatkan x; y; dan turunan-turunan y; dengan yang paling tinggi adalah turunan ke-n: F x; y; y ; y

Lebih terperinci

Pengintegralan Fungsi Rasional

Pengintegralan Fungsi Rasional Pengintegralan Fungsi Rasional Ahmad Kamsyakawuni, M.Kom Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Jember 25 Maret 2014 Pengintegralan Fungsi Rasional 1 Pengintegralan Fungsi Rasional 2

Lebih terperinci

SUKU BANYAK. A. Teorema Sisa 1) F(x) = (x b) H(x) + S, maka S = F(b) 2) F(x) = (ax b) H(x) + S, maka S = F( a

SUKU BANYAK. A. Teorema Sisa 1) F(x) = (x b) H(x) + S, maka S = F(b) 2) F(x) = (ax b) H(x) + S, maka S = F( a SUKU BANYAK A. Teorema Sisa 1) F(x) = (x b) H(x) + S, maka S = F(b) 2) F(x) = (ax b) H(x) + S, maka S = F( a b ) 3) F(x) : [(x a)(x b)], maka S(x) = (x a)s 2 + S 1, dengan S 2 adalah sisa pembagian pada

Lebih terperinci

Aljabar Linear Elementer Part IV. Oleh : Yeni Susanti

Aljabar Linear Elementer Part IV. Oleh : Yeni Susanti Aljabar Linear Elementer Part IV Vektor di Ruang R 2, R 3 dan R n Oleh : Yeni Susanti Vektor di Ruang R 2, R 3 dan R n Vektor: besaran yang mempunyai besar dan arah. Vektor secara geometris bisa digambarkan

Lebih terperinci

MASALAH SYARAT BATAS (MSB)

MASALAH SYARAT BATAS (MSB) Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo PENDAHULUAN MODEL KABEL MENGGANTUNG DEFINISI MSB Persamaan diferensial (PD) dikatakan berdimensi 1 jika domainnya berupa himpunan bagian pada R 1.

Lebih terperinci

TEKNIK PENGINTEGRALAN

TEKNIK PENGINTEGRALAN TEKNIK PENGINTEGRALAN Departemen Matematika FMIPA IPB Bogor, 202 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 202 / 2 Topik Bahasan Pendahuluan 2 Manipulasi Integran 3 Integral Parsial 4 Dekomposisi

Lebih terperinci

Syarif Abdullah (G ) Matematika Terapan FMIPA Institut Pertanian Bogor.

Syarif Abdullah (G ) Matematika Terapan FMIPA Institut Pertanian Bogor. Syarif Abdullah (G551150381) Matematika Terapan FMIPA Institut Pertanian Bogor e-mail: syarif_abdullah@apps.ipb.ac.id 25 Maret 2016 Ringkasan Kuliah ke-6 Analisis Numerik (16 Maret 2016) Materi : System

Lebih terperinci

Aljabar Linier & Matriks

Aljabar Linier & Matriks Aljabar Linier & Matriks 1 Vektor Orthogonal Vektor-vektor yang saling tegak lurus juga sering disebut vektor orthogonal. Dua vektor disebut saling tegak lurus jika dan hanya jika hasil perkalian titik-nya

Lebih terperinci

INDIKATOR 10 : Menyelesaikan masalah program linear 1. Pertidaksamaan yang memenuhi pada gambar di bawah ini adalah... Y

INDIKATOR 10 : Menyelesaikan masalah program linear 1. Pertidaksamaan yang memenuhi pada gambar di bawah ini adalah... Y INDIKATOR : Menyelesaikan masalah program linear. Pertidaksamaan yang memenuhi pada gambar di bawah ini adalah... Y 8 8 X x + y 8; x + y ; x + y x + y 8; x + y ; x + y x + y 8; x + y ; x + y x + y 8; x

Lebih terperinci

Ruang Vektor Real. Modul 1 PENDAHULUAN

Ruang Vektor Real. Modul 1 PENDAHULUAN Modul Ruang Vektor Real Drs. R.J. Pamuntjak, M.Sc. P PENDAHULUAN ada bagian pertama Modul 5 Aljabar Linear Elementer I sudah kita bahas sepuluh sifat untuk R dan R 3 mengenai penjumlahan dan perkalian

Lebih terperinci

Pembahasan Matematika IPA SNMPTN 2012 Kode 483

Pembahasan Matematika IPA SNMPTN 2012 Kode 483 Tutur Widodo Pembahasan Matematika IPA SNMPTN 0 Pembahasan Matematika IPA SNMPTN 0 Kode 8 Oleh Tutur Widodo. Di dalam kotak terdapat bola biru, 6 bola merah dan bola putih. Jika diambil 8 bola tanpa pengembalian,

Lebih terperinci

BAB 2 GRAF PRIMITIF. 2.1 Definisi Graf

BAB 2 GRAF PRIMITIF. 2.1 Definisi Graf BAB 2 GRAF PRIMITIF Pada bab ini akan dijelaskan beberapa konsep dasar seperti definisi dan teorema yang dijadikan landasan teori dalam penelitian ini. Konsep dasar tersebut berkaitan dengan definisi graf,

Lebih terperinci

Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN) Bidang Matematika. Kode Paket 634. Oleh : Fendi Alfi Fauzi 1. x 0 x 2.

Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN) Bidang Matematika. Kode Paket 634. Oleh : Fendi Alfi Fauzi 1. x 0 x 2. Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri SNMPTN) Bidang Matematika Kode Paket 6 Oleh : Fendi Alfi Fauzi. lim x 0 cos x x tan x + π )... a) b) 0 c) d) e) Jawaban : C Pembahasan: lim x 0

Lebih terperinci

Geometri di Bidang Euclid

Geometri di Bidang Euclid Modul 1 Geometri di Bidang Euclid Dr. Wono Setya Budhi G PENDAHULUAN eometri merupakan ilmu pengetahuan yang sudah lama, mulai dari ribuan tahun yang lalu. Berpikir secara geometris dari satu bentuk ke

Lebih terperinci

Contoh: tanpa & dengan texture mapping

Contoh: tanpa & dengan texture mapping Contoh: tanpa & dengan texture mapping Texture Mapping Memetakan peta tekstur 2D (2D texture map) ke permukaan objek kemudian memproyeksikannya ke bidang proyeksi (projection plane) Teknik: Forward mapping

Lebih terperinci

C. { 0, 1, 2, 3, 4 } D. { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }

C. { 0, 1, 2, 3, 4 } D. { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 } 1. Himpunan penyelesaian dari 2x - 3 7, x { bilangan cacah }, adalah... A. { 0, 1, 2 } B. { 0, 1, 2, 3, 4, 5 } 2x - 3 7, x {bilangan cacah} 2x 7 + 3 2x 10 x 5 Hp : { 0, 1, 2, 3, 4, 5 } C. { 0, 1, 2, 3,

Lebih terperinci

Prinsip Kuadrat Terkecil

Prinsip Kuadrat Terkecil Prinsip Kuadrat Terkecil Dari suatu pengukuran yang tidak saling bergantung (independent): d1, d2, d3, d4,..., dn. Dari pengukuran tersebut dapat dicari nilai rata-rata (d) yang merupakan nilai yang paling

Lebih terperinci

Kalkulus 2. Teknik Pengintegralan ke - 3. Tim Pengajar Kalkulus ITK. Institut Teknologi Kalimantan. Januari 2018

Kalkulus 2. Teknik Pengintegralan ke - 3. Tim Pengajar Kalkulus ITK. Institut Teknologi Kalimantan. Januari 2018 Kalkulus 2 Teknik Pengintegralan ke - 3 Tim Pengajar Kalkulus ITK Institut Teknologi Kalimantan Januari 2018 Tim Pengajar Kalkulus ITK (Institut Teknologi Kalimantan) Kalkulus 2 Januari 2018 1 / 27 Daftar

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

Pembahasan Soal OSK SMA 2018 OLIMPIADE SAINS KABUPATEN/KOTA SMA OSK Matematika SMA. (Olimpiade Sains Kabupaten/Kota Matematika SMA)

Pembahasan Soal OSK SMA 2018 OLIMPIADE SAINS KABUPATEN/KOTA SMA OSK Matematika SMA. (Olimpiade Sains Kabupaten/Kota Matematika SMA) Pembahasan Soal OSK SMA 018 OLIMPIADE SAINS KABUPATEN/KOTA SMA 018 OSK Matematika SMA (Olimpiade Sains Kabupaten/Kota Matematika SMA) Disusun oleh: Pak Anang Pembahasan Soal OSK SMA 018 OLIMPIADE SAINS

Lebih terperinci

Pilihlah jawaban yang paling tepat. 1. Ingkaran dari pernyataan: (~ q r) adalah... A. ~ ~ (~ q r) B. ( q ~ r ) C. ( ~ q) ~ r D. ~ (~ q r) E.

Pilihlah jawaban yang paling tepat. 1. Ingkaran dari pernyataan: (~ q r) adalah... A. ~ ~ (~ q r) B. ( q ~ r ) C. ( ~ q) ~ r D. ~ (~ q r) E. Pilihlah jawaban yang paling tepat. Ingkaran dari pernyataan: (~ q r) adalah... A. ~ ~ (~ q r) B. ( q ~ r ) C. ( ~ q) ~ r D. ~ (~ q r) E. ( q ~ r) Jawaban : B Ingkaran p ( q r ) adalah (p ( q r )) p (q

Lebih terperinci

BAB 4 Sistem Persamaan Linear. Sistem m persamaan linear dalam n variabel LG=C adalah himpunan persamaan linear

BAB 4 Sistem Persamaan Linear. Sistem m persamaan linear dalam n variabel LG=C adalah himpunan persamaan linear BAB 4 Sistem Persamaan Linear berbentuk Sistem m persamaan linear dalam n variabel LG=C adalah himpunan persamaan linear Dengan koefisien dan adalah bilangan-bilangan yang diberikan. Sistem ini disebut

Lebih terperinci

Soal-Soal dan Pembahasan Matematika IPA SNMPTN 2012 Tanggal Ujian: 13 Juni 2012

Soal-Soal dan Pembahasan Matematika IPA SNMPTN 2012 Tanggal Ujian: 13 Juni 2012 Soal-Soal dan Pembahasan Matematika IPA SNMPTN 01 Tanggal Ujian: 13 Juni 01 1. Lingkaran (x + 6) + (y + 1) 5 menyinggung garis y 4 di titik... A. ( -6, 4 ). ( -1, 4 ) E. ( 5, 4 ) B. ( 6, 4) D. ( 1, 4 )

Lebih terperinci

VEKTOR 2 SMA SANTA ANGELA. A. Pengertian Vektor Vektor adalah besaran yang memiliki besar dan arah. Dilambangkan dengan :

VEKTOR 2 SMA SANTA ANGELA. A. Pengertian Vektor Vektor adalah besaran yang memiliki besar dan arah. Dilambangkan dengan : 1 SMA SANTA ANGELA VEKTOR A. Pengertian Vektor Vektor adalah besaran yang memiliki besar dan arah. Dilambangkan dengan : A B Keterangan : Titik A disebut titik Pangkal Titik B disebut titik Ujung Dinotasikan

Lebih terperinci

Aljabar Linear dan Matriks. Semester Pendek TA 2010/2011 S1 Teknik Informatika. Dosen Pengampu: Heri Sismoro, M.Kom.

Aljabar Linear dan Matriks. Semester Pendek TA 2010/2011 S1 Teknik Informatika. Dosen Pengampu: Heri Sismoro, M.Kom. 1. Introduction Mata Kuliah: Aljabar Linear dan Matriks Semester Pendek TA 2010/2011 S1 Teknik Informatika Dosen Pengampu: Heri Sismoro, M.Kom. Sistem Persamaan Linear Sistem Linear m kali n : suatu himpunan

Lebih terperinci

Jika titik O bertindak sebagai titik pangkal, maka ruas-ruas garis searah mewakili

Jika titik O bertindak sebagai titik pangkal, maka ruas-ruas garis searah mewakili 4.5. RUMUS PERBANDINGAN VEKTOR DAN KOORDINAT A. Pengertian Vektor Posisi dari Suatu Titik Misalnya titik A, B, C Dan D. adalah titik sebarang di bidang atau di ruang. Jika titik O bertindak sebagai titik

Lebih terperinci

dimana a 1, a 2,, a n dan b adalah konstantakonstanta

dimana a 1, a 2,, a n dan b adalah konstantakonstanta Persamaan linear adalah persamaan dimana peubahnya tidak memuat eksponensial, trigonometri (seperti sin, cos, dll.), perkalian, pembagian dengan peubah lain atau dirinya sendiri. Secara umum persamaan

Lebih terperinci

MATEMATIKA EKONOMI ( FUNGSI LINIER, GRAFIK FUNGSI DAN SISTEM PERSAMAAN LINIER )

MATEMATIKA EKONOMI ( FUNGSI LINIER, GRAFIK FUNGSI DAN SISTEM PERSAMAAN LINIER ) MATEMATIKA EKONOMI ( FUNGSI LINIER, GRAFIK FUNGSI DAN SISTEM PERSAMAAN LINIER ) KELOMPOK 2 1. UMAR ATTAMIMI (01212043) 2. SITI WASI ATUL MUFIDA (01212096) 3. DEVI PRATNYA. P. (01212078) 4. POPPY MERLIANA

Lebih terperinci

CONTOH SOAL MATEMATIKA SMP SATU ATAP: 1. Hasil dari (3 + (-4)) (5 + 3) adalah... A. 8 B. -7 C. -8 D Hasil dari adalah... A.

CONTOH SOAL MATEMATIKA SMP SATU ATAP: 1. Hasil dari (3 + (-4)) (5 + 3) adalah... A. 8 B. -7 C. -8 D Hasil dari adalah... A. CONTOH SOAL MATEMATIKA SMP SATU ATAP: 1. Hasil dari (3 + (-4)) (5 + 3) adalah... A. 8 B. -7 C. -8 D. -15 2. Hasil dari 12+13-14 adalah... A. 320 B. 512 C. 712 D. 1 E. 3. Ibu membeli 24 permen yang akan

Lebih terperinci

Regularitas Operator Potensial Layer Tunggal

Regularitas Operator Potensial Layer Tunggal JMS Vol. No., al. 8-5, April 997 egularitas Operator Potensial Layer Tunggal Wono Setya Budi Jurusan Matematika, FMIPA Institut Teknologi Bandung Jl. Ganesa 0 Bandunng, 403 Abstrak egulitas operator =

Lebih terperinci

FUNGSI. Berdasarkan hubungan antara variabel bebas dan terikat, fungsi dibedakan dua: fungsi eksplisit dan fungsi implisit.

FUNGSI. Berdasarkan hubungan antara variabel bebas dan terikat, fungsi dibedakan dua: fungsi eksplisit dan fungsi implisit. FUNGSI Fungsi merupakan hubungan antara dua variabel atau lebih. Variabel dibedakan :. Variabel bebas yaitu variabel yang besarannya dpt ditentukan sembarang, mis:,, 6, 0 dll.. Variabel terikat yaitu variabel

Lebih terperinci

Part II SPL Homogen Matriks

Part II SPL Homogen Matriks Part II SPL Homogen Matriks SPL Homogen Bentuk Umum SPL homogen dalam m persamaan dan n variabel x 1, x 2,, x n : a 11 x 1 + a 12 x 2 + + a 1n x n = 0 a 21 x 1 + a 22 x 2 + + a 2n x n = 0 a m1 x 1 + a

Lebih terperinci

Aljabar Linier. Kuliah

Aljabar Linier. Kuliah Aljabar Linier Kuliah 13 14 15 Materi Kuliah Transformasi Linier dari F n ke F m Perubahan Matriks Basis Matriks dari Transformasi Linier Perubahan Basis untuk Transformasi Linier Matriks-matriks Ekivalen

Lebih terperinci

Bab 2 LANDASAN TEORI. 2.1 Definisi Graf

Bab 2 LANDASAN TEORI. 2.1 Definisi Graf Bab 2 LANDASAN TEORI 2.1 Definisi Graf Suatu graf G terdiri dari himpunan tak kosong terbatas dari objek yang dinamakan titik dan himpunan pasangan (boleh kosong) dari titik G yang dinamakan sisi. Himpunan

Lebih terperinci

Matematika Teknik Dasar-2 6 Koordinat Bola dan Silinder. Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya

Matematika Teknik Dasar-2 6 Koordinat Bola dan Silinder. Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya Matematika Teknik Dasar-2 6 Koordinat Bola dan Silinder Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya BOLA - definisi Bola adalah lokus sebuah titik yang bergerak sehingga jaraknya

Lebih terperinci

untuk setiap x sehingga f g

untuk setiap x sehingga f g Jadi ( f ( f ) bernilai nol untuk setiap x, sehingga ( f ( f ) fungsi nol atau ( f ( f ) Aksioma 5 Ambil f, g F, R, ( f g )( f g ( g( g( ( f g)( Karena ( f g )( ( f g)( untuk setiap x sehingga f g Aksioma

Lebih terperinci

LEMBAR AKTIVITAS SISWA PERSAMAAN DAN PERTIDAKSAMAAN NILAI MUTLAK

LEMBAR AKTIVITAS SISWA PERSAMAAN DAN PERTIDAKSAMAAN NILAI MUTLAK Nama Siswa LEMBAR AKTIVITAS SISWA PERSAMAAN DAN PERTIDAKSAMAAN NILAI MUTLAK : Kelas : KOMPETENSI DASAR: 3.2 Mendeskripsikan dan menganalisis konsep nilai mutlak dalam persamaan dan pertidaksamaan serta

Lebih terperinci

(Departemen Matematika FMIPA-IPB) Matriks Bogor, / 66

(Departemen Matematika FMIPA-IPB) Matriks Bogor, / 66 MATRIKS Departemen Matematika FMIPA-IPB Bogor, 2012 (Departemen Matematika FMIPA-IPB) Matriks Bogor, 2012 1 / 66 Topik Bahasan 1 Matriks 2 Operasi Matriks 3 Determinan matriks 4 Matriks Invers 5 Operasi

Lebih terperinci

JENIS JENIS FUNGSI 2. Gambar. Jenis Fungsi. mengandung banyak suku (polinom) dalam variabel bebas y = a 0 + a 1 x + a 2 x a n x n

JENIS JENIS FUNGSI 2. Gambar. Jenis Fungsi. mengandung banyak suku (polinom) dalam variabel bebas y = a 0 + a 1 x + a 2 x a n x n Telkom University Alamanda JENIS JENIS FUNGSI1 JENIS JENIS FUNGSI 2 Jenis Fungsi Gambar 1. FUNGSI POLINOM mengandung banyak suku (polinom) dalam variabel bebas y = a 0 + a 1 x + a 2 x 2 + + a n x n 2.

Lebih terperinci

INTISARI KALKULUS 2. Penyusun: Drs. Warsoma Djohan M.Si. Open Source. Not For Commercial Use

INTISARI KALKULUS 2. Penyusun: Drs. Warsoma Djohan M.Si. Open Source. Not For Commercial Use INTISARI KALKULUS 2 Penyusun: Drs. Warsoma Djohan M.Si. Program Studi Matematika - FMIPA Institut Teknologi Bandung Januari 200 Pengantar Kalkulus & 2 merupakan matakuliah wajib tingkat pertama bagi semua

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 015 CALON TIM OLIMPIADE MATEMATIKA INDONESIA 016 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Disusun oleh : 1. 015 = 5 13 31 Banyaknya faktor

Lebih terperinci

MASALAH INTERPOLASI 1-D DAN 2-D

MASALAH INTERPOLASI 1-D DAN 2-D MASALAH INTERPOLASI 1-D DAN 2-D Hendra Gunawan ITB Bandung http://personal.fmipa.itb.ac.id/hgunawan/ Analysis and Geometry Group Bandung Institute of Technology Bandung, Indonesia Seminar Nasional Analisis

Lebih terperinci

Catatan Kuliah Aljabar Linier. Abstrak

Catatan Kuliah Aljabar Linier. Abstrak Catatan Kuliah Aljabar Linier Subiono subiono3@telkom.net 4 Agustus 9 Page of 3 Abstrak Dalam catatan kuliah ini diberikan beberapa materi dari mata kuliah Aljabar Linier untuk program Sarjana (S) jurusan

Lebih terperinci

SIFAT-SIFAT GRAF KOSET DAN GRAF KONJUGASI DARI GRUP NON KOMUTATIF

SIFAT-SIFAT GRAF KOSET DAN GRAF KONJUGASI DARI GRUP NON KOMUTATIF MATEMATIKA LAPORAN PENELITIAN PENGUATAN PROGRAM STUDI SIFAT-SIFAT GRAF KOSET DAN GRAF KONJUGASI DARI GRUP NON KOMUTATIF Spektrum Graf Konjugasi dan Graf Komplemen Graf Konjugasi dari Grup Dihedral Disusun

Lebih terperinci

LINGKARAN 2. A. Kedudukan titik dan Garis terhadap Lingkaran 11/18/2015. Peta Konsep. A. Kedudukan Titik dan Garis Terhadap. Lingkaran.

LINGKARAN 2. A. Kedudukan titik dan Garis terhadap Lingkaran 11/18/2015. Peta Konsep. A. Kedudukan Titik dan Garis Terhadap. Lingkaran. /8/205 Peta Konsep Jurnal Materi MIPA Peta Konsep Lingkaran Daftar Hadir MateriA LINGKARAN 2 Kelas XI, Semester 3 Berpusat di O(0, 0) Berpusat di P(a, b) A. Kedudukan Titik dan Garis Terhadap Lingkaran

Lebih terperinci

SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 2011/2012

SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 2011/2012 SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMA/MA IPA TAHUN PELAJARAN 0/0. Akar-akar persamaan kuadrat x +ax - 40 adalah p dan q. Jika p - pq + q 8a, maka nilai a... A. -8 B. -4 C. 4 D. 6 E. 8 BAB III Persamaan

Lebih terperinci

PAM 252 Metode Numerik Bab 3 Sistem Persamaan Linier

PAM 252 Metode Numerik Bab 3 Sistem Persamaan Linier PAM 252 Metode Numerik Bab 3 Sistem Persamaan Linier Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2013/2014 1 Mahdhivan Syafwan Metode Numerik: Sistem Persamaan Linier

Lebih terperinci

DINAS PENDIDIKAN KOTA BEKASI TAHUN PELAJARAN 2013/2014 LEMBAR SOAL

DINAS PENDIDIKAN KOTA BEKASI TAHUN PELAJARAN 2013/2014 LEMBAR SOAL DINAS PENDIDIKAN KOTA BEKASI TAHUN PELAJARAN 0/0 LEMBAR SOAL Mata Pelajaran : Matematika Jenjang : SMA/MA Program Studi : IPA Hari/Tanggal : Jam : PETUNJUK UMUM. Isilah lembar jawaban tes uji coba Ujian

Lebih terperinci

Aljabar Linier Elementer. Kuliah 27

Aljabar Linier Elementer. Kuliah 27 Aljabar Linier Elementer Kuliah 27 Materi Kuliah Transformasi Linier Invers Matriks Transformasi Linier Umum //24 Yanita, Matematika FMIPA Unand 2 Transformasi Linier Satu ke satu dan Sifat-sifatnya Definisi

Lebih terperinci

PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - I

PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - I PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - I 1. Pendahuluan Pengertian Persamaan Diferensial Metoda Penyelesaian -contoh Aplikasi 1 1.1. Pengertian Persamaan Differensial Secara Garis Besar Persamaan

Lebih terperinci

ALJABAR LINEAR DAN MATRIKS

ALJABAR LINEAR DAN MATRIKS ALJABAR LINEAR DAN MATRIKS VEKTOR Definisi Vektor Ada dua besaran yaitu: Vektor mempunyai besar dan arah Skalar mempunyai besar A B A : titik awal B : titik akhir Notasi vektor biasanya menggunakan huruf

Lebih terperinci

MATEMATIKA EKONOMI 1 FUNGSI DAN GRAFIK. DOSEN Fitri Yulianti, SP, MSi.

MATEMATIKA EKONOMI 1 FUNGSI DAN GRAFIK. DOSEN Fitri Yulianti, SP, MSi. MATEMATIKA EKONOMI 1 FUNGSI DAN GRAFIK DOSEN Fitri Yulianti, SP, MSi. Fungsi Fungsi merupakan hubungan antara dua variabel atau lebih. Variabel dibedakan : 1. Variabel bebas yaitu variabel yang besarannya

Lebih terperinci

Representasi Graph dan Beberapa Graph Khusus

Representasi Graph dan Beberapa Graph Khusus Modul 2 Representasi Graph dan Beberapa Graph Khusus Prof. Dr. Didi Suryadi, M.Ed. Dr. Nanang Priatna, M.Pd. W PENDAHULUAN alaupun representasi graph secara piktorial merupakan hal yang sangat menarik

Lebih terperinci

Materi W9b GEOMETRI RUANG. Kelas X, Semester 2. B. Menggambar dan Menghitung jarak.

Materi W9b GEOMETRI RUANG. Kelas X, Semester 2. B. Menggambar dan Menghitung jarak. Materi W9b GEOMETRI RUANG Kelas X, Semester 2 B. Menggambar dan Menghitung jarak www.yudarwi.com B. Menggambar dan Menghitung Jarak Jarak dua objek dalam dimensi tiga adalah jarak terpendek yang ditarik

Lebih terperinci

D FTR II H Juu... D f I.... huu... Bg.... R uu Mh.... h.... Tg h Thu g Kj... uu

D FTR II H Juu... D f I.... huu... Bg.... R uu Mh.... h.... Tg h Thu g Kj... uu ERN OBBYIT D M KEMENNGN EMIU OBM u T ug Kw U M uh. D w O h: Mfchu N (08430008) ugu (09430038) ROGRM TUDI IMU HUBUNGN INTERNION F KUT IMU OI IMU OITIK U NIVERIT MET RIYDI URKRT 2011 D FTR II H Juu... D

Lebih terperinci

Matematika. Matematika adalah seni memahami, bahkan yang tidak terlihat. Wono Setya Budhi FMIPA ITB

Matematika. Matematika adalah seni memahami, bahkan yang tidak terlihat. Wono Setya Budhi FMIPA ITB Matematika Matematika adalah seni memahami, bahkan yang tidak terlihat Wono Setya Budhi FMIPA ITB Apa itu Matematika? Matematika berkembang karena kebutuhan untuk menyelesaikan suatu masalah. Misalkan

Lebih terperinci

BAB 2. Konsep Dasar. 2.1 Definisi graf

BAB 2. Konsep Dasar. 2.1 Definisi graf BAB 2 Konsep Dasar 21 Definisi graf Suatu graf G = (V(G), E(G)) didefinisikan sebagai pasangan himpunan 2 titik V(G) dan himpunan sisi E(G) dengan V(G) dan E(G) [ VG ( )] Sebagai contoh, graf G 1 = (V(G

Lebih terperinci

PERTIDAKSAMAAN

PERTIDAKSAMAAN PERTIDAKSAMAAN A. Pengertian 1. Notasi Pertidaksamaan Misalnya ada dua bilangan riil a dan b. Ada beberapa notasi yang bisa dibuat yaitu: a. a dikatakan kurang dari b, ditulis a b jika dan hanya jika a

Lebih terperinci

Matriks biasanya dituliskan menggunakan kurung dan terdiri dari baris dan kolom: A =

Matriks biasanya dituliskan menggunakan kurung dan terdiri dari baris dan kolom: A = Bab 2 cakul fi080 by khbasar; sem1 2010-2011 Matriks Dalam BAB ini akan dibahas mengenai matriks, sifat-sifatnya serta penggunaannya dalam penyelesaian persamaan linier. Matriks merupakan representasi

Lebih terperinci

Aljabar Linier Elementer. Kuliah 26

Aljabar Linier Elementer. Kuliah 26 Aljabar Linier Elementer Kuliah 26 Materi Kuliah Transformasi Linier Umum Kernel dan Range 10/11/2014 Yanita, Matematika FMIPA Unand 2 Transformasi Linier Umum Definisi Misalkan V dan W adalah ruang vektor

Lebih terperinci

PERSAMAAN GARIS BAHAN BELAJAR MANDIRI 4

PERSAMAAN GARIS BAHAN BELAJAR MANDIRI 4 BAHAN BELAJAR MANDIRI 4 PERSAMAAN GARIS PENDAHULUAN Secara umum bahan belajar mandiri ini menjelaskan tentang konsep garis, dan persamaan garis lurus yang dinyatakan ke dalam bentuk implisit maupun bentuk

Lebih terperinci

BAB III KONSEP DASAR TEORI GRAF. Teori graf adalah salah satu cabang matematika yang terus berkembang

BAB III KONSEP DASAR TEORI GRAF. Teori graf adalah salah satu cabang matematika yang terus berkembang BAB III KONSEP DASAR TEORI GRAF Teori graf adalah salah satu cabang matematika yang terus berkembang dengan pesat. Teori ini sangat berguna untuk mengembangkan model-model terstruktur dalam berbagai keadaan.

Lebih terperinci

FUNGSI REGULAR. Endang Cahya M.A 1 Jurusan Matematika FMIPA ITB Jl. Ganesa 10, Bandung, Indonesia

FUNGSI REGULAR. Endang Cahya M.A 1 Jurusan Matematika FMIPA ITB Jl. Ganesa 10, Bandung, Indonesia FUNGSI REGULAR Endang Cahya M.A Jurusan Matematika FMIPA ITB Jl. Ganesa 0, Bandung, 403-Indonesia Abstrak Tulisan ini membahas bagaimana mengkonstruksi sebuah fungsi Regular dari suatu fungsi panharmonik,

Lebih terperinci

PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS VETERAN BANGUN NUSANTARA SUKOHARJO

PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS VETERAN BANGUN NUSANTARA SUKOHARJO PERANGKAT PEMBELAJARAN MATA KULIAH : ALJABAR LINIER 2 KODE : MKK414515 DOSEN PENGAMPU : Annisa Prima Exacta, M.Pd. PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS

Lebih terperinci

1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l B. 2 < p < 3 C.

1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l B. 2 < p < 3 C. 1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l 2 < p < 3 p > 3 1 < p < 2 p < 1 atau p > 2 Kunci : C Persamaan fungsi : F(x)

Lebih terperinci

FUNGSI, SISTEM PERSAMAAN LINIER DAN MENGGAMBAR GRAFIK

FUNGSI, SISTEM PERSAMAAN LINIER DAN MENGGAMBAR GRAFIK FUNGSI, SISTEM PERSAMAAN LINIER DAN MENGGAMBAR GRAFIK TUGAS MATEMATIKA EKONOMI DISUSUN OLEH : DENY PRASETYA 01212074 IAN ANUGERAH 01212035 M. UMAR A 01212016 ARON GARDIKA 01212140 SAIFUL RAHMAN 01212020

Lebih terperinci

8.1 Transformasi Linier Umum. Bukan lagi transformasi R n R m, tetapi transformasi linier dari

8.1 Transformasi Linier Umum. Bukan lagi transformasi R n R m, tetapi transformasi linier dari 8.1 Transformasi Linier Umum Bukan lagi transformasi R n R m, tetapi transformasi linier dari ruang vektor V vektor W. Definisi Jika T: V W adalah suatu fungsi dari suatu ruang vektor V ke ruang vektor

Lebih terperinci

TEKNIK PENGINTEGRALAN

TEKNIK PENGINTEGRALAN TEKNIK PENGINTEGRALAN KALKULUS S- Teknik Industri Outline Integral Parsial Integral Fungsi Trigonometri Substitusi Trigonometri Integral Fungsi Rasional . Integral Parsial Formula Integral Parsial : u

Lebih terperinci

DASAR-DASAR ANALISIS MATEMATIKA

DASAR-DASAR ANALISIS MATEMATIKA (Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. December 26, 2007 Misalkan f kontinu pada interval [a, b]. Apakah masuk akal untuk membahas luas daerah

Lebih terperinci

Persamaan Diferensial Biasa

Persamaan Diferensial Biasa Persamaan Diferensial Biasa Pendahuluan, Persamaan Diferensial Orde-1 Toni Bakhtiar Departemen Matematika IPB September 2012 Toni Bakhtiar (m@thipb) PDB September 2012 1 / 37 Pendahuluan Konsep Dasar Beberapa

Lebih terperinci

ALJABAR LINEAR [LATIHAN!]

ALJABAR LINEAR [LATIHAN!] Pada dasarnya cara yang digunakan untuk memperoleh penyelesaian sistem persamaan linear adalah sama yaitu mengubah sistem persamaan linear menjadi matriks yang diperbesar, kemudian mengubah matriks yang

Lebih terperinci

PREDIKSI UJIAN NASIONAL 2009

PREDIKSI UJIAN NASIONAL 2009 LEMBAGA PENJAMINAN MUTU PENDIDIKAN (LPMP) PROVINSI DAERAH KHUSUS IBU KOTA JAKARTA Alamat : Jl. Nangka No. 60, Tanjung Barat, Jagakarsa, Jakarta Selatan, Telp. (0) 79, 7099, 7067, Fax. (0) 7067 PREDIKSI

Lebih terperinci

Indikator : Menentukan penarikan kesimpulan dari beberapa premis. Modus Ponens Modus Tollens Silogisme

Indikator : Menentukan penarikan kesimpulan dari beberapa premis. Modus Ponens Modus Tollens Silogisme Indikator : Menentukan penarikan kesimpulan dari beberapa premis Modus Ponens Modus Tollens Silogisme p q p q p q p ~q q r q ~p p r Bentuk ekuivalen : p q ~q ~p p q ~p q Soal 1 : Diketahui premis : Premis

Lebih terperinci

Solusi: [Jawaban E] Solusi: [Jawaban D]

Solusi: [Jawaban E] Solusi: [Jawaban D] SOLUSI SMA/MA MATEMATIKA Program Studi IPA Kerjasama UNIVERSITAS GUNADARMA dengan Dinas Pendidikan Provinsi DKI Jakarta, Kota/Kabupaten BODETABEK, Tangerang Selatan, Karawang, Serang, Pandeglang, dan Cilegon

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Pada bagian ini akan dijelaskan beberapa konsep dasar yang berkaitan dengan permasalahan, seperti definisi dan teorema yang dijadikan landasan dalam penelitian ini. 2.1 Graf Graf

Lebih terperinci

SOLUSI PREDIKSI UJIAN NASIONAL MATEMATIKA SMA/MA IPA, KELOMPOK 2, TEBO

SOLUSI PREDIKSI UJIAN NASIONAL MATEMATIKA SMA/MA IPA, KELOMPOK 2, TEBO SOLUSI PREDIKSI UJIAN NASIONAL MATEMATIKA SMA/MA IPA, KELOMPOK, TEBO. Perhatikan premis-premis berikut. Premis : Jika bilangan genap maka 7 tidak habis dibagi Premis : Jika 7 tidak habis dibagi maka bilangan

Lebih terperinci

PEMBUATAN LAPORAN PEMBUKUAN SIMPAN PINJAM

PEMBUATAN LAPORAN PEMBUKUAN SIMPAN PINJAM PEMBUATAN LAPORAN PEMBUKUAN SIMPAN PINJAM oleh: Drs. Wihandaru Sotya P, M.Si Pendahuluan Pembukuan merupakan pekerjaan yang tidak sulit namun memerlukan ketelitian, khususnya yang berkaitan dengan simpan

Lebih terperinci

, ω, L dan C adalah riil, tunjukkanlah

, ω, L dan C adalah riil, tunjukkanlah . Jika z j j PROBLEM SE# Sistem Bilangan Kompleks, tentukanlah bagian riil dan bagian imajiner dari bilangan kompleks z z. Carilah harga dan y yang memenuhi persamaan : y j y, j, ( ) ( ). Carilah bentuk

Lebih terperinci

TRANSFORMASI LINEAR. Disusun untuk Memenuhi Tugas Mata Kuliah Aljabar Linear. Dosen Pengampu : Abdul Aziz Saefudin, M.Pd

TRANSFORMASI LINEAR. Disusun untuk Memenuhi Tugas Mata Kuliah Aljabar Linear. Dosen Pengampu : Abdul Aziz Saefudin, M.Pd TRANSFORMASI LINEAR Disusun untuk Memenuhi Tugas Mata Kuliah Aljabar Linear Dosen Pengampu : Abdul Aziz Saefudin, M.Pd Disusun oleh : Kelompok 7/ Kelas III A Endar Alviyunita 34400094 Ahmat Sehari ---------------

Lebih terperinci

LINGKARAN. Lingkaran merupakan tempat kedudukan titik-titik yang berjarak sama terhadap titik tertentu. Perhatikan gambar berikut.

LINGKARAN. Lingkaran merupakan tempat kedudukan titik-titik yang berjarak sama terhadap titik tertentu. Perhatikan gambar berikut. LINGKARAN Lingkaran merupakan tempat kedudukan titik-titik ang berjarak sama terhadap titik tertentu. Perhatikan gambar berikut. r P Titik P disebut pusat, sedangkan Jarak P ke lingkaran dinamakan jari-jari.

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2009/2010

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2009/2010 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 9/. Diberikan premis sebagai berikut : Premis : Jika harga BBM naik, maka harga bahan pokok naik. Premis : Jika harga bahan pokok naik maka

Lebih terperinci

PETUNJUK UMUM PETUNJUK KHUSUS

PETUNJUK UMUM PETUNJUK KHUSUS LEMBAR SOAL PERSIAPAN UJIAN NASIONAL SMA/MA Tahun Ajaran 00/009 MATEMATIKA Program Studi IPA (Berdasarkan Lampiran Permendiknas No.77 Tahun 00) Try Out UN Matematika IPA SMA/MA - Esis PETUNJUK UMUM. Tuliskan

Lebih terperinci

BAB 10. DESAIN RANGKAIAN BERURUT

BAB 10. DESAIN RANGKAIAN BERURUT BAB 10. DESAIN RANGKAIAN BERURUT 2 DESAIN PENCACAH NILAI SPESIFIKASI : X=1 cacahan naik 2, z= 1 jika cacahan > 5 X=0 cacahan turun 1, z= 1 jika cacahan < 0 mesin Mealy 3 0 DESAIN PENCACAH NILAI 1/1 1/0

Lebih terperinci

Soal-Soal dan Pembahasan Matematika IPA SNMPTN 2012 Tanggal Ujian: 13 Juni 2012

Soal-Soal dan Pembahasan Matematika IPA SNMPTN 2012 Tanggal Ujian: 13 Juni 2012 Soal-Soal dan Pembahasan Matematika IPA SNMPTN 01 Tanggal Ujian: 13 Juni 01 1. Lingkaran (x + 6) + (y + 1) 5 menyinggung garis y 4 di titik... A. ( -6 4 ). ( -1 4 ) E. ( 5 4 ) B. ( 6 4) D. ( 1 4 ) BAB

Lebih terperinci