Syarif Abdullah (G ) Matematika Terapan FMIPA Institut Pertanian Bogor.

Ukuran: px
Mulai penontonan dengan halaman:

Download "Syarif Abdullah (G ) Matematika Terapan FMIPA Institut Pertanian Bogor."

Transkripsi

1 Syarif Abdullah (G ) Matematika Terapan FMIPA Institut Pertanian Bogor 25 Maret 2016 Ringkasan Kuliah ke-6 Analisis Numerik (16 Maret 2016) Materi : System Persamaan Linear Sistem Persamaan Linear Persamaan linear: c 1 x 1 + c 2 x c n x n = k Sistem persamaan linear (SPL): SPL dapat ditulis dalam bentuk matriks: a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2 a m1 x 1 + a m2 x a mn x n = b m Ax = b a 11 a 12 a 1n x 1 b 1 a 21 a 22 a 2n x 2 b [ ] [ ] = [ 2 ] a m1 a m2 a mn x n b n A x b Kekonsistenan Sistem Persamaan Linear Pangkat(A) = pangkat(a b) = n SPL mempunyai solusi tunggal. Pangkat(A) pangkat(a b) SPL tidak mempunyai solusi.

2 Bila suatu SPL mempunyai solusi tunggal, maka terdapat banyak cara untuk mencari penyelesaian SPL tersebut, di antaranya adalah : x = A -1 b. Metode langsung yang dapat digunakan untuk mencari penyelesaian SPL antara lain: Metode substitusi langkah mundur & substitusi langkah maju, metode eliminasi Gauss, dan sebagainya. Bentuk Matriks Segitiga Atas dan Substitusi Langkah Mundur a 11 x 1 + a 12 x 2 + a 13 x a 1,n 1 x n 1 + a 1n x n = b 1 a 22 x 2 + a 23 x a 2,n 1 x n 1 + a 2n x n = b 2 [ a 33 x a 3,n 1 x n 1 + a 3n x n = b 3 a 11 a 12 a 13 a 1,n 1 a 1n 0 a 22 a 23 a 2,n 1 a 2n 0 0 a 33 a 3,n 1 a 3n a n 1,n 1 x n 1 + a n 1,n x n = b n a n 1,n 1 a nn a nn ] [ a nn x n = b n x 1 x 2 x 3 x n 1 x n ] = [ b 1 b 2 b 3 b n 1 Andaikan Ax = b adalah sistem persamaan linear segitiga atas. Jika aii 0, untuk setiap i b n ] = 1, 2,, n, maka terdapat suatu penyelesaian tunggal bagi SPL tersebut. Untuk menyelesaikan Ax = b dengan metode substitusi langkah mundur, maka semua unsur pada diagonal utama haruslah tak nol. Mula-mula hitung: Kemudian gunakan aturan: n x n = b n a nn x i = b i j=i+1 a ij x j untuk i = n 1, n 2,,1. a ii

3 Bentuk Matriks Segitiga Bawah dan Substitusi Langkah Maju a 11 x 1 = b 1 a 21 x 1 + a 22 x 2 = b 2 a 31 x 1 + a 32 x 2 + a 33 x 3 = b 3 a n 1,1 x 1 + a n 1,2 x 2 + a n 1,3 x a n 1,n 1 x n 1 = b n 1 a n1 x 1 + a n2 x 2 + a n3 x a nn x n = b n a x 1 b 1 a 21 a x 2 b 2 a 31 a 32 a x 3 b = 3 a n 1,1 a n 1,2 a n 1,3 a n 1,n 1 0 x n 1 [ a n1 a n2 a n3 a n 1,n a nn ] [ b n 1 x n ] [ b n ] Andaikan Ax = b adalah sistem persamaan linear segitiga bawah. Jika aii 0 untuk setiap i = 1, 2,, n, maka terdapat suatu penyelesaian tunggal bagi SPL tersebut. Untuk menyelesaikan Ax = b menggunakan metode substitusi langkah maju, maka semua unsur pada diagonal utama haruslah tak nol. Mula-mula hitung: Kemudian gunakan aturan: x i = b i i 1 j=1 a ii x 1 = b 1 a 11 a ij x j untuk i = 2,3,, n.

4 2. Eliminasi Gauss Naïve Operasi OBE pada Matriks Segitiga Atas Langkah Substitusi Mundur Metode eliminasi Gauss naif merupakan metode yang dikembangkan dari metode eliminasi. Langkah penyelesaian: 1. Tulis SPL dalam bentuk matriks diperbesar 2. Ubah matriks tersebut menjadi matriks segitiga atas atau segitiga bawah dengan operasi baris elementer (OBE) Contoh soal: Diketahui SPL dengan 4 persamaan dan 4 variabel sebagai berikut: 6x 1 2x 2 + 2x 3 + 4x 4 = 16 12x 1 8x 2 + 6x x 4 = 26 3x 1 13x 2 + 9x 3 + 3x 4 = 19 6x 1 + 4x 2 + x 3 18x 4 = 34 Tentukan penyelesaian SPL tersebut dengan eliminasi Gauss! Dengan substitusi mundur, diperoleh: x 1 = 3, x 2 = 1, x 3 = 2, x 4 = 1

5 VEKTOR ERROR DAN VEKTOR RESIDU Misalkan diberikan SPL sebagai berikut: Ax = b Vektor error dari SPL tersebut adalah e x - x dengan x : nilai hampiran x: nilai eksak Vektor residu dari SPL tersebut adalah r Ax b Secara verbal, vektor residu adalah sisa yang dihasilkan oleh suatu nilai hampiran x jika dimasukkan kembali ke SPL awal. r Ax b r Ax Ax r A( x x) r Ae 3. Eliminasi Gauss dengan Pivoting Partial Pivoting Langkah penyelesaian SPL dengan pivot parsial: 1) Tentukan r sehingga 2) Tukarkan baris i dengan baris r, jika i = r maka tidak ditukar 3) Buat nol elemen di bawah aii, i = 1, 2,, n-1. 4) Kembali ke langkah 1 hingga membentuk matriks segitiga atas 5) Lakukan substitusi mundur untuk memperoleh solusi Contoh SPL (1) dari ilustrasi: { ε x 1 + x 2 = 1 x 1 + x 2 = 2 Dengan menggunakan pivot parsial akan diperoleh:

6 { x 1 + x 2 = 2 ε x 1 + x 2 = 1 dan diperoleh solusi: x 2 = 1 2ε 1 ε 1, Scaled Partial Pivoting Langkah penyelesaian SPL dengan pivot parsial terskala: 1) Definisikan vektor indeks l = [l 1, l 2,, l n ] = [1,2,, n] Definisikan vektor skala s = [s 1, s 2,, s n ] dengan s i = max 1 j n a ij, 1 i n 2) Tentukan rasio masing-masing baris { a l i,1 s li ; 1 i n} 3) Pilih j, yaitu indeks dengan rasio maksimum. Baris j adalah pivot untuk iterasi k (k = 1, 2,, n-1). Jika banyaknya rasio maksimum lebih dari satu, maka pilih indeks terkecil. 4) Tukarkan lk dengan lk pada vektor indeks. 5) Tukarkan baris pada matriks sesuai dengan vektor indeks. 6) Buat nol elemen di bawah akk. 7) Kembali ke langkah 3. Vektor indeks yang digunakan adalah yang terbentuk pada langkah 5.

7 Contoh: Tentukan solusi dari SPL berikut menggunakan eliminasi Gauss dengan pivot parsial terskala! [ 1 1 1] [ ) Definisikan vektor indeks dan vektor skala x 1 x 2 5 ] = [ 2 ] x 3 1 l = [1,2,3] = [l 1, l 2, l 3 ] s = [2,1,4] = [s 1, s 2, s 3 ] 2) Untuk iterasi pertama (k = 1), tentukan j, yaitu indeks dengan rasio maksimum. Jika banyaknya rasio maksimum lebih dari satu, maka dipilih indeks terkecil. { a l i,1 ; i = 1,2,3} = { 1 s li 2, 2 2, 1 4 } = {0.5,1,0.25} 3) Diperoleh vektor indeks baru: [2,1,3] 4) Tukarkan baris pada matriks sesuai dengan vektor indeks. Diperoleh: x 1 2 [ ] [ x 2 ] = [ 5] x 3 1 5) Buat nol elemen-elemen di bawah a11. Diperoleh: x 1 2 [ ] [ x 2 ] = [ 3] x 3 3 6) Untuk iterasi kedua (k=2), vektor indeks dan vektor skala yang digunakan adalah: l = [2,1,3] = [l 1, l 2, l 3 ] s = [2,1,4] = [s 1, s 2, s 3 ] 7) Tentukan rasio baru dengan menggunakan vektor indeks dan vektor skala pada 6. Baris ketiga menjadi pivot untuk k=2. 8) Diperoleh vektor indeks { a l i,2 ; i = 2,3} = { 1 s li 2, 3 } = {0.5, 0.75} 4 [2,3,1] 9) Tukarkan baris pada matriks sesuai dengan vektor indeks (tukarkan baris kedua dan ketiga), diperoleh: x 1 2 [ ] [ x 2 ] = [ 3 ] x ) Buat nol elemen di bawah a22, diperoleh:

8 11) Dengan substitusi mundur, diperoleh: [ ] [ x 2 ] = [ 3 ] 0 0 x 3 4 x 1, x 3, x x 1 4. Sistem Tridiagonal dan Sistem Banded Kestabilan Numerik Eliminasi Gauss dikatakan stabil secara numerik jika matriks koefisien A dari SPL yang diberikan adalah dominan secara diagonal (strictly diagonally dominant), atau merupakan matriks simetris definit positif. Sistem Tridiagonal Sebuah matriks berukuran n x n disebut mempunyai struktur banded jika terdapat bilangan bulat k (k n) sehingga aij = 0 ketika i j k. Suatu sistem yang direpresentasikan dengan matriks yang memenuhi: 1. Terdapat 3 diagonal, yaitu diagonal utama, superdiagonal, dan subdiagonal. 2. Elemen-elemen aij 0 jika i j 1 dan aij=0 jika i j 2. d1 c1 x1 b1 a d c x b a2 d3 c 3 x 3 b ai di c i x i b i a d c x b n2 n1 n1 n1 n1 an 1 dn xn bn Langkah penyelesaian sistem tridiagonal dengan metode eliminasi Gauss: Buat nol elemen-elemen a1, a2,, an-1, dengan

9 Nilai di dan bi akan berubah menjadi: i = 1,2,,n-1 Dengan metode substitusi mundur, diperoleh solusi untuk x1, x2,, xn. Matriks A = (aij)nxn adalah strictly diagonally dominant, jika: Dalam kasus tridiagonal sistem, dengan asumsi: a0 = an = 0

10 Sistem Pentadiagonal Suatu sistem yang direpresentasikan dengan matriks yang memenuhi: 1.Terdapat 5 diagonal, yaitu diagonal utama, 2 super-diagonal, dan 2 subdiagonal. 2.Elemen-elemen aij 0 jika i j 2 dan aij = 0 jika i j 3, untuk setiap i, j. Langkah penyelesaian sistem pentadiagonal dengan metode eliminasi Gauss: 1Buat a1=0, dengan cara: 2Nilai d2, c2, dan b2 akan berubah menjadi: 3Buat e1=0, dengan cara: 4Elemen-elemen a2, d3, dan b3 akan berubah menjadi:

11 5Buat nol elemen ai, dengan: 6Elemen-elemen di+1, ci+1, dan bi+1 akan berubah menjadi: 7Buat nol elemen ei, dengan: 8Elemen-elemen ai+1, di+2, dan bi+2 juga akan berubah menjadi: Solusi yang diperoleh dengan metode eliminasi Gauss: Dengan substitusi mundur, diperoleh solusi untuk x1, x2,, xn:

12 Block Pentadiagonal Di mana: Contoh: Tentukan solusi dari SPL berikut:

13 Jawab: Dengan substitusi mundur, diperoleh: KESIMPULAN SPL adalah kumpulan dari m persamaan linear dengan n variabel, yang secara umum dapat dituliskan ke dalam bentuk:

14 Metode untuk menyelesaikan SPL: 1. Metode eliminasi Gauss (tanpa pivot) 2. Metode eliminasi Gauss dengan pivot Sistem tridiagonal dan pentadiagonal dapat diselesaikan dengan metode eliminasi Gauss (tanpa pivot). Sumber : 1. Cheney, Ward and David Kingaid, Numerical Mathematics and Computing, Sixth Edition, The Thomson Corporation, Munir, Rinaldi, Metode Numerik, Revisi Ketiga, Informatika, Bandung, 2013.

PAM 252 Metode Numerik Bab 3 Sistem Persamaan Linier

PAM 252 Metode Numerik Bab 3 Sistem Persamaan Linier PAM 252 Metode Numerik Bab 3 Sistem Persamaan Linier Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2013/2014 1 Mahdhivan Syafwan Metode Numerik: Sistem Persamaan Linier

Lebih terperinci

6 Sistem Persamaan Linear

6 Sistem Persamaan Linear 6 Sistem Persamaan Linear Pada bab, kita diminta untuk mencari suatu nilai x yang memenuhi persamaan f(x) = 0. Pada bab ini, masalah tersebut diperumum dengan mencari x = (x, x,..., x n ) yang secara sekaligus

Lebih terperinci

PAM 252 Metode Numerik Bab 3 Sistem Persamaan Linier

PAM 252 Metode Numerik Bab 3 Sistem Persamaan Linier PAM 252 Metode Numerik Bab 3 Sistem Persamaan Linier Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2016/2017 1 Mahdhivan Syafwan Metode Numerik: Sistem Persamaan Linier

Lebih terperinci

Pertemuan Ke 2 SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST.,MT

Pertemuan Ke 2 SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST.,MT Pertemuan Ke SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST,MT Pendahuluan Suatu sistem persamaan linier (atau himpunan persaman linier simultan) adalah satu set persamaan dari sejumlah unsur yang tak diketahui

Lebih terperinci

Solusi Sistem Persamaan Linear Ax = b

Solusi Sistem Persamaan Linear Ax = b Solusi Sistem Persamaan Linear Ax = b Kie Van Ivanky Saputra April 27, 2009 K V I Saputra (Analisis Numerik) Kuliah Sistem Persamaan Linier c April 27, 2009 1 / 9 Review 1 Substitusi mundur pada sistem

Lebih terperinci

SOLUSI SISTEM PERSAMAAN LINEAR

SOLUSI SISTEM PERSAMAAN LINEAR SOLUSI SISTEM PERSAMAAN LINEAR Bentuk umum persamaan linear dengan n peubah diberikan sebagai berikut : a1 x1 + a2 x2 +... + an xn = b ; a 1, a 2,..., a n R merupakan koefisien dari persamaaan dan x 1,

Lebih terperinci

ELIMINASI GAUSS MAKALAH. Untuk Memenuhi Tugas Terstruktur Mata Kuliah Metode Numerik Dosen Saluky M.Kom. Di Susun Oleh: Kelompok VII Matematika C/VII

ELIMINASI GAUSS MAKALAH. Untuk Memenuhi Tugas Terstruktur Mata Kuliah Metode Numerik Dosen Saluky M.Kom. Di Susun Oleh: Kelompok VII Matematika C/VII ELIMINASI GAUSS MAKALAH Untuk Memenuhi Tugas Terstruktur Mata Kuliah Metode Numerik Dosen Saluky M.Kom Di Susun Oleh: Kelompok VII Matematika C/VII Anggota : 1. Eko Kurniawan P. (59451064) 2. Siti Nurhairiyah

Lebih terperinci

SISTEM PERSAMAAN LINEAR ( BAGIAN II )

SISTEM PERSAMAAN LINEAR ( BAGIAN II ) SISTEM PERSAMAAN LINEAR ( BAGIAN II ) D. FAKTORISASI MATRIKS D2 2. METODE ITERASI UNTUK MENYELESAIKAN SPL D3 3. NILAI EIGEN DAN VEKTOR EIGEN D4 4. POWER METHOD Beserta contoh soal untuk setiap subbab 2

Lebih terperinci

SISTEM PERSAMAAN LINEAR

SISTEM PERSAMAAN LINEAR Pokok Bahasan : Sistem persamaan linier Sub Pokok Bahasan : Sistem persamaan linier Eliminasi Gauss Eliminasi Gauss Jordan Penyelesaian SPL dengan invers SISTEM PERSAMAAN LINEAR Tujuan : Menyelesaikan

Lebih terperinci

Laporan Praktikum 7 Analisis Numerik

Laporan Praktikum 7 Analisis Numerik Laporan Praktikum 7 Analisis Numerik Syarif Abdullah (G551150381) Matematika Terapan Departemen Matematika FMIPA IPB E-mail: syarif abdullah@apps.ipb.ac.id 14 April 2016 SYSTEM PERSAMAAN LINEAR METODE

Lebih terperinci

Aplikasi Aljabar Lanjar pada Metode Numerik

Aplikasi Aljabar Lanjar pada Metode Numerik Aplikasi Aljabar Lanjar pada Metode Numerik IF223 Aljabar Geometri Oleh: Rinaldi Munir Program Studi Informatika, STEI-ITB Rinaldi Munir - IF223 Aljabar Geometri Apa itu Metode Numerik? Numerik: berhubungan

Lebih terperinci

BAB 4 Sistem Persamaan Linear. Sistem m persamaan linear dalam n variabel LG=C adalah himpunan persamaan linear

BAB 4 Sistem Persamaan Linear. Sistem m persamaan linear dalam n variabel LG=C adalah himpunan persamaan linear BAB 4 Sistem Persamaan Linear berbentuk Sistem m persamaan linear dalam n variabel LG=C adalah himpunan persamaan linear Dengan koefisien dan adalah bilangan-bilangan yang diberikan. Sistem ini disebut

Lebih terperinci

Penghitungan Polusi Udara Dalam Ruangan dengan Metode Eliminasi Gauss

Penghitungan Polusi Udara Dalam Ruangan dengan Metode Eliminasi Gauss Penghitungan Polusi Udara Dalam Ruangan dengan Metode Eliminasi Gauss Tri Hastuti Yuniati (23515009) 1 Program Studi Magister Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

Sistem Persamaan Linier FTI-UY

Sistem Persamaan Linier FTI-UY BAB V Sistem Persamaan Linier Salah satu hal penting dalam aljabar linear dan dalam banak masalah matematika terapan adalah menelesaikan suatu sistem persamaan linear. Representasi Sistem Persamaan Linear

Lebih terperinci

GENERALISASI METODE GAUSS-SEIDEL UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR ABSTRACT

GENERALISASI METODE GAUSS-SEIDEL UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR ABSTRACT GENERALISASI METODE GAUSS-SEIDEL UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR Andri Ramadhan 1, Syamsudhuha 2, Asli Sirait 2 1 Mahasiswa Program Studi S1 Matematika 2 Laboratorium Matematika Terapan, Jurusan

Lebih terperinci

Solusi Persamaan Linier Simultan

Solusi Persamaan Linier Simultan Solusi Persamaan Linier Simultan Obyektif : 1. Mengerti penggunaan solusi persamaan linier 2. Mengerti metode eliminasi gauss. 3. Mampu menggunakan metode eliminasi gauss untuk mencari solusi 1. Sistem

Lebih terperinci

Bentuk umum : SPL. Mempunyai penyelesaian disebut KONSISTEN. Tidak mempunyai penyelesaian disebut TIDAK KONSISTEN TUNGGAL BANYAK

Bentuk umum : SPL. Mempunyai penyelesaian disebut KONSISTEN. Tidak mempunyai penyelesaian disebut TIDAK KONSISTEN TUNGGAL BANYAK Bentuk umum : dimana x, x,..., x n variabel tak diketahui, a ij, b i, i =,,..., m; j =,,..., n bil. diketahui. Ini adalah SPL dengan m persamaan dan n variabel. SPL Mempunyai penyelesaian disebut KONSISTEN

Lebih terperinci

Metode Matriks Balikan

Metode Matriks Balikan Metode Matriks Balikan MisalkanA -1 adalahmatriksbalikandaria. Sistempersamaan lanjar Ax = b dapat diselesaikan sebagai berikut: Ax= b A -1 Ax= A -1 b I x= A -1 b (A -1 A = I ) x= A -1 b Cara penyelesaiandenganmengalikanmatriksa

Lebih terperinci

Part II SPL Homogen Matriks

Part II SPL Homogen Matriks Part II SPL Homogen Matriks SPL Homogen Bentuk Umum SPL homogen dalam m persamaan dan n variabel x 1, x 2,, x n : a 11 x 1 + a 12 x 2 + + a 1n x n = 0 a 21 x 1 + a 22 x 2 + + a 2n x n = 0 a m1 x 1 + a

Lebih terperinci

5. PERSAMAAN LINIER. 1. Berikut adalah contoh SPL yang terdiri dari 4 persamaan linier dan 3 variabel.

5. PERSAMAAN LINIER. 1. Berikut adalah contoh SPL yang terdiri dari 4 persamaan linier dan 3 variabel. 1. Persamaan Linier 5. PERSAMAAN LINIER Persamaan linier adalah suatu persamaan yang variabel-variabelnya berpangkat satu. Disamping persamaan linier ada juga persamaan non linier. Contoh : a) 2x + 3y

Lebih terperinci

Matematika Teknik INVERS MATRIKS

Matematika Teknik INVERS MATRIKS INVERS MATRIKS Dalam menentukan solusi suatu SPL selama ini kita dihadapkan kepada bentuk matriks diperbesar dari SPL. Cara lain yang akan dikenalkan disini adalah dengan melakukan OBE pada matriks koefisien

Lebih terperinci

Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk :

Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk : Persamaan Linear Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk : a x + a y = b Persamaan jenis ini disebut sebuah persamaan linear dalam peubah x dan y. Definisi

Lebih terperinci

MUH1G3/ MATRIKS DAN RUANG VEKTOR

MUH1G3/ MATRIKS DAN RUANG VEKTOR MUHG3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN Determinan Matriks Determinan Matriks Sub Pokok Bahasan Permutasi dan Determinan Matriks Determinan dengan OBE Determinan dengan Ekspansi Kofaktor Beberapa Aplikasi

Lebih terperinci

SISTEM PERSAMAAN LINEAR

SISTEM PERSAMAAN LINEAR SISTEM PERSAMAAN LINEAR BAB 1 Dr. Abdul Wahid Surhim POKOK BAHASAN 1.1 Pengantar Sistem Persamaan Linear (SPL) 1.2 Eliminasi GAUSS-JORDAN 1.3 Matriks dan operasi matriks 1.4 Aritmatika Matriks, Matriks

Lebih terperinci

PERBANDINGAN KOMPLEKSITAS ALGORITMA METODE-METODE PENYELESAIAN SISTEM PERSAMAAN LANJAR

PERBANDINGAN KOMPLEKSITAS ALGORITMA METODE-METODE PENYELESAIAN SISTEM PERSAMAAN LANJAR PERBANDINGAN KOMPLEKSITAS ALGORITMA METODE-METODE PENYELESAIAN SISTEM PERSAMAAN LANJAR Achmad Dimas Noorcahyo NIM 3508076 Program Studi Teknik Informatika, Institut Teknologi Bandung Jalan Ganeca 0, Bandung

Lebih terperinci

(Departemen Matematika FMIPA-IPB) Matriks Bogor, / 66

(Departemen Matematika FMIPA-IPB) Matriks Bogor, / 66 MATRIKS Departemen Matematika FMIPA-IPB Bogor, 2012 (Departemen Matematika FMIPA-IPB) Matriks Bogor, 2012 1 / 66 Topik Bahasan 1 Matriks 2 Operasi Matriks 3 Determinan matriks 4 Matriks Invers 5 Operasi

Lebih terperinci

PENDAHULUAN A. Latar Belakang 1. Metode Langsung Metode Langsung Eliminasi Gauss (EGAUSS) Metode Eliminasi Gauss Dekomposisi LU (DECOLU),

PENDAHULUAN A. Latar Belakang 1. Metode Langsung Metode Langsung Eliminasi Gauss (EGAUSS) Metode Eliminasi Gauss Dekomposisi LU (DECOLU), PENDAHULUAN A. Latar Belakang Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan, seperti dalam bidang fisika, kimia, ekonomi, atau pada persoalan rekayasa.

Lebih terperinci

SISTEM PERSAMAAN LINIER

SISTEM PERSAMAAN LINIER 2 SISTEM PERSAMAAN LINIER Ëistem persamaan linier merupakan salah satu model dan masalah matematika yang banyak dijumpai di dalam berbagai disiplin, termasuk matematika, statistika, fisika, biologi, ilmu-ilmu

Lebih terperinci

MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI

MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI 214 MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI Astri Fitria Nur ani Aljabar Linear 1 1/1/214 1 DAFTAR ISI DAFTAR ISI... i BAB I MATRIKS DAN SISTEM PERSAMAAN A. Pendahuluan... 1 B. Aljabar

Lebih terperinci

BAB III : SISTEM PERSAMAAN LINIER

BAB III : SISTEM PERSAMAAN LINIER 3.1 PENDAHULUAN BAB III : SISTEM PERSAMAAN LINIER Penyelesaian suatu sistem n persamaan dengan n bilangan tak diketahui banyak dijumpai dalam permasalahan teknik. Di dalam Bab ini akan dipelajari sistem

Lebih terperinci

Solusi Numerik Sistem Persamaan Linear

Solusi Numerik Sistem Persamaan Linear Solusi Numerik Sistem Persamaan Linear Modul #2 Praktikum AS2205 Astronomi Komputasi Oleh Dr. Muhamad Irfan Hakim Program Studi Astronomi Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi

Lebih terperinci

dimana a 1, a 2,, a n dan b adalah konstantakonstanta

dimana a 1, a 2,, a n dan b adalah konstantakonstanta Persamaan linear adalah persamaan dimana peubahnya tidak memuat eksponensial, trigonometri (seperti sin, cos, dll.), perkalian, pembagian dengan peubah lain atau dirinya sendiri. Secara umum persamaan

Lebih terperinci

Pertemuan 1 Sistem Persamaan Linier dan Matriks

Pertemuan 1 Sistem Persamaan Linier dan Matriks Matriks & Ruang Vektor Pertemuan Sistem Persamaan Linier dan Matriks Start Matriks & Ruang Vektor Outline Materi Pengenalan Sistem Persamaan Linier (SPL) SPL & Matriks Matriks & Ruang Vektor Persamaan

Lebih terperinci

BAB X SISTEM PERSAMAAN LINIER

BAB X SISTEM PERSAMAAN LINIER BAB X SISTEM PERSAMAAN LINIER 10.1 Definisi Persamaan linier adalah persamaan aljabar yang terdiri dari satu atau lebih peubah dan masing-masing peubah mempunyai derajad satu. Sebagai contoh persamaan

Lebih terperinci

BAB 4 PENYELESAIAN SISTEM PERSAMAAN LINEAR

BAB 4 PENYELESAIAN SISTEM PERSAMAAN LINEAR BAB 4 PENYELESAIAN SISTEM PERSAMAAN LINEAR A. Latar Belakang Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan, seperti dalam bidang fisika, kimia, ekonomi,

Lebih terperinci

Penyelesaian Sistem Persamaan Linear (SPL) Dengan Dekomposisi QR

Penyelesaian Sistem Persamaan Linear (SPL) Dengan Dekomposisi QR Penyelesaian Sistem Persamaan Linear (SPL) Dengan Dekomposisi QR Shelvia Mandasari #1 M Subhan *2 Meira Parma Dewi *3 # Student of Mathematics Department State University of Padang Indonesia * Lecturers

Lebih terperinci

II. M A T R I K S ... A... Contoh II.1 : Macam-macam ukuran matriks 2 A. 1 3 Matrik A berukuran 3 x 1. Matriks B berukuran 1 x 3

II. M A T R I K S ... A... Contoh II.1 : Macam-macam ukuran matriks 2 A. 1 3 Matrik A berukuran 3 x 1. Matriks B berukuran 1 x 3 11 II. M A T R I K S Untuk mencari pemecahan sistem persamaan linier dapat digunakan beberapa cara. Salah satu yang paling mudah adalah dengan menggunakan matriks. Dalam matematika istilah matriks digunakan

Lebih terperinci

JURUSAN PENDIDIKAN MATEMATIKA FMIPA UNIVERSITAS NEGERI YOGYAKARTA

JURUSAN PENDIDIKAN MATEMATIKA FMIPA UNIVERSITAS NEGERI YOGYAKARTA CATATAN KULIAH ALJABAR LINEAR MUSTHOFA JURUSAN PENDIDIKAN MATEMATIKA FMIPA UNIVERSITAS NEGERI YOGYAKARTA 20 SISTEM PERSAMAAN LINEAR Tujuan : Menyelesaikan sistem persamaan linear. OPERASI BARIS ELEMENTER

Lebih terperinci

Membentuk Algoritma untuk Pemecahan Sistem Persamaan Lanjar secara Numerik

Membentuk Algoritma untuk Pemecahan Sistem Persamaan Lanjar secara Numerik Membentuk Algoritma untuk Pemecahan Sistem Persamaan Lanjar secara Numerik Bervianto Leo P - 13514047 Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha

Lebih terperinci

Matematika Teknik DETERMINAN

Matematika Teknik DETERMINAN DETERMINN da satu cara lagi dalam menentukan solusi SPL dengan bekerja pada matriks koefisiennya. Cara berikut hanya akan berlaku untuk matriks koefiien berupa matriks bujursangkar atau SPL mempunyai banyak

Lebih terperinci

BAB II SISTEM PERSAMAAN LINEAR. Sistem persamaan linear ditemukan hampir di semua cabang ilmu

BAB II SISTEM PERSAMAAN LINEAR. Sistem persamaan linear ditemukan hampir di semua cabang ilmu BAB II SISTEM PERSAMAAN LINEAR Sistem persamaan linear ditemukan hampir di semua cabang ilmu pengetahuan. Di bidang ilmu ukur, diperlukan untuk mencari titik potong dua garis dalam satu bidang. Di bidang

Lebih terperinci

Ujian Tengah Semester

Ujian Tengah Semester Ujian Tengah Semester Mata Kuliah : PAM 252 Metode Numerik Jurusan : Matematika FMIPA Unand Hari/Tanggal : Selasa/31 Maret 2015 Waktu : 10.00 11.40 (100 menit) Dosen : Dr. Susila Bahri (Kelas A dan C)

Lebih terperinci

Pertemuan 14. persamaan linier NON HOMOGEN

Pertemuan 14. persamaan linier NON HOMOGEN Pertemuan 14 persamaan linier NON HOMOGEN 10 Metode GAUSS Aljabar Linier Hastha 2016 10.2.2 METODE ELIMINASI GAUSS Apabila [A][X]=[B] maka dengan menyusun matriks baru yaitu matriks [A.B] akan didapat

Lebih terperinci

Modul Praktikum. Aljabar Linier. Disusun oleh: Machudor Yusman IR., M.Kom. Ucapan Terimakasih:

Modul Praktikum. Aljabar Linier. Disusun oleh: Machudor Yusman IR., M.Kom. Ucapan Terimakasih: Modul Praktikum Aljabar Linier Disusun oleh: Machudor Yusman IR., M.Kom. Ucapan Terimakasih: David Abror Gabriela Minang Sari Hanan Risnawati Ichwan Almaza Nuha Hanifah Riza Anggraini Saiful Anwar Tri

Lebih terperinci

Bab 7 Sistem Pesamaan Linier. Oleh : Devie Rosa Anamisa

Bab 7 Sistem Pesamaan Linier. Oleh : Devie Rosa Anamisa Bab 7 Sistem Pesamaan Linier Oleh : Devie Rosa Anamisa Pendahuluan Bentuk umum dari aljabar linier sebagai berikut: a11x1 + a12a 12X2 +... + a1na 1nXn = b1b a21x1 + a22a 22X2 +... + a2na 2nXn = b2b...............

Lebih terperinci

Operasi Baris Elementer (OBE) dan Eliminasi Gauss-Jordan (EGJ)

Operasi Baris Elementer (OBE) dan Eliminasi Gauss-Jordan (EGJ) Operasi Baris Elementer (OBE) dan Eliminasi Gauss-Jordan (EGJ) Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U Agustus 2015 MZI (FIF Tel-U) OBE dan

Lebih terperinci

BAB II KAJIAN TEORI. yang diapit oleh dua kurung siku sehingga berbentuk empat persegi panjang atau

BAB II KAJIAN TEORI. yang diapit oleh dua kurung siku sehingga berbentuk empat persegi panjang atau BAB II KAJIAN TEORI Pada bab ini akan diberikan kajian teori mengenai matriks dan operasi matriks, program linear, penyelesaian program linear dengan metode simpleks, masalah transportasi, hubungan masalah

Lebih terperinci

BAB 4 : SISTEM PERSAMAAN LINIER

BAB 4 : SISTEM PERSAMAAN LINIER BAB 4 : SISTEM PERSAMAAN LINIER 4.1 PERSAMAAN LINIER Misalnya x 2 Matematika analitik membicarakan ilmu ukur secara aljabar. Garis lurus pada bidang x 1 dan x 2 dapat dinyatakan sebagai persamaan a 1 x

Lebih terperinci

Menentukan Nilai Eigen Tak Dominan Suatu Matriks Definit Negatif Menggunakan Metode Kuasa Invers dengan Shift

Menentukan Nilai Eigen Tak Dominan Suatu Matriks Definit Negatif Menggunakan Metode Kuasa Invers dengan Shift Jurnal Penelitian Sains Volume 14 Nomer 1(A) 14103 Menentukan Nilai Eigen Tak Dominan Suatu Matriks Definit Negatif Menggunakan Metode Kuasa Invers dengan Shift Yuli Andriani Jurusan Matematika FMIPA,

Lebih terperinci

Dalam bentuk SPL masalah ini dapat dinyatakan sebagai berikut:

Dalam bentuk SPL masalah ini dapat dinyatakan sebagai berikut: SISTEM PERSAMAAN LINIER Persamaan linier adalah persamaan dimana peubahnya tidak memuat fungsi eksponensial, trigonometri, logaritma serta tidak melibatkan suatu hasil kali peubah atau akar peubah atau

Lebih terperinci

Sistem Persamaan Aljabar Linier

Sistem Persamaan Aljabar Linier Sistem Persamaan Aljabar Linier Dimana: a ij = koefisien konstanta; x j = unknown ; b j = konstanta; n = banyaknya persamaan Metode-Metode untuk menyelesaikan Sistem Persamaan Aljabar Linier: 1. Metode

Lebih terperinci

Keunggulan Penyelesaian Persamaan Linear dengan Metode Dekomposisi LU dalam Komputerisasi

Keunggulan Penyelesaian Persamaan Linear dengan Metode Dekomposisi LU dalam Komputerisasi Keunggulan Penyelesaian Persamaan Linear dengan Metode Dekomposisi LU dalam Komputerisasi Elvina Riama K. Situmorang 55) Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi

Lebih terperinci

PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN GENERALISASI METODE JACOBI

PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN GENERALISASI METODE JACOBI PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN GENERALISASI METODE JACOBI Sandra Roza 1*, M. Natsir 2, Asli Sirait 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen JurusanMatematika Fakultas Matematika dan

Lebih terperinci

Sistem Persamaan Linear Homogen 3P x 3V Metode OBE

Sistem Persamaan Linear Homogen 3P x 3V Metode OBE Sistem Persamaan Linear Homogen 3P x 3V Metode OBE Ogin Sugianto sugiantoogin@yahoo.co.id penma2b.wordpress.com Majalengka, 12 November 2016 Sistem Persamaan Linear (SPL) Homogen yang akan dibahas kali

Lebih terperinci

Penyelesaian Sistem Persamaan Linear Fully Fuzzy Menggunakan Metode Iterasi Jacobi

Penyelesaian Sistem Persamaan Linear Fully Fuzzy Menggunakan Metode Iterasi Jacobi Penyelesaian Sistem Persamaan Linear Fully Fuzzy Menggunakan Metode Iterasi Jacobi Corry Corazon Marzuki 1, Herawati 2 Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sultan Syarif Kasim Riau Jl.

Lebih terperinci

Sistem Persamaan Linier (SPL)

Sistem Persamaan Linier (SPL) Sistem Persamaan Linier (SPL) Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U Agustus 2015 MZI (FIF Tel-U) SPL Agustus 2015 1 / 27 Acknowledgements

Lebih terperinci

PERBANDINGAN METODE GAUSS-SEIDEL PREKONDISI DAN METODE SOR UNTUK MENDAPATKAN SOLUSI SISTEM PERSAMAAN LINEAR. Merintan Afrina S ABSTRACT

PERBANDINGAN METODE GAUSS-SEIDEL PREKONDISI DAN METODE SOR UNTUK MENDAPATKAN SOLUSI SISTEM PERSAMAAN LINEAR. Merintan Afrina S ABSTRACT PERBANDINGAN METODE GAUSS-SEIDEL PREKONDISI DAN METODE SOR UNTUK MENDAPATKAN SOLUSI SISTEM PERSAMAAN LINEAR Merintan Afrina S Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

METODE ITERATIF YANG DIPERCEPAT UNTUK Z-MATRIKS ABSTRACT

METODE ITERATIF YANG DIPERCEPAT UNTUK Z-MATRIKS ABSTRACT METODE ITERATIF YANG DIPERCEPAT UNTUK Z-MATRIKS Mildayani 1, Syamsudhuha 2, Aziskhan 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus

Lebih terperinci

MODUL PRAKTIKUM METODE NUMERIK NAZARUDDIN

MODUL PRAKTIKUM METODE NUMERIK NAZARUDDIN MODUL PRAKTIKUM METODE NUMERIK NAZARUDDIN JURUSAN INFORMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS SYIAH KUALA BANDA ACEH 2012 DAFTAR ISI DAFTAR ISI... 1 KATA PENGANTAR... 2 PENDAHULUAN...

Lebih terperinci

Part III DETERMINAN. Oleh: Yeni Susanti

Part III DETERMINAN. Oleh: Yeni Susanti Part III DETERMINAN Oleh: Yeni Susanti Perhatikan determinan matriks ukuran 2x2 berikut: Pada masing-masing jumlahan dan Terdapat wakil dari setiap baris dan setiap kolom. Bagaimana dengan tanda + (PLUS)

Lebih terperinci

METODE GAUSS-SEIDEL PREKONDISI DENGAN MENGGUNAKAN EKSPANSI NEUMANN ABSTRACT

METODE GAUSS-SEIDEL PREKONDISI DENGAN MENGGUNAKAN EKSPANSI NEUMANN ABSTRACT METODE GAUSS-SEIDEL PREKONDISI DENGAN MENGGUNAKAN EKSPANSI NEUMANN Juanita Adrika, Syamsudhuha 2, Asmara Karma 2 Mahasiswa Program Studi S Matematika 2 Dosen Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

02-Pemecahan Persamaan Linier (1)

02-Pemecahan Persamaan Linier (1) -Pemecahan Persamaan Linier () Dosen: Anny Yuniarti, M.Comp.Sc Gasal - Anny Agenda Bagian : Vektor dan Persamaan Linier Bagian : Teori Dasar Eliminasi Bagian 3: Eliminasi Menggunakan Matriks Bagian 4:

Lebih terperinci

BAB II DETERMINAN DAN INVERS MATRIKS

BAB II DETERMINAN DAN INVERS MATRIKS BAB II DETERMINAN DAN INVERS MATRIKS A. OPERASI ELEMENTER TERHADAP BARIS DAN KOLOM SUATU MATRIKS Matriks A = berdimensi mxn dapat dibentuk matriks baru dengan menggandakan perubahan bentuk baris dan/atau

Lebih terperinci

Aljabar Matriks. Aljabar Matriks

Aljabar Matriks. Aljabar Matriks Aljabar Matriks No No Unit Unit Kompetensi 1 Menerapkan keamanan web dinamis 2 Membuat halaman web dinamis dasar 3 Membuat halaman web dinamis lanjut 4 Menerapkan web hosting 5 Menerapkan konten web memenuhi

Lebih terperinci

BAB I MATRIKS DEFINISI : NOTASI MATRIKS :

BAB I MATRIKS DEFINISI : NOTASI MATRIKS : BAB I MATRIKS DEFINISI : Matriks adalah himpunan skalar (bilangan riil atau kompleks) yang disusun/dijajarkan berbentuk persegi panjang (menurut baris dan kolom). Skalar-skalar itu disebut elemen matriks.

Lebih terperinci

Penggunaan Metode Dekomposisi LU Untuk Penentuan Produksi Suatu Industri Dengan Model Ekonomi Leontief

Penggunaan Metode Dekomposisi LU Untuk Penentuan Produksi Suatu Industri Dengan Model Ekonomi Leontief Penggunaan Metode Dekomposisi LU Untuk Penentuan Produksi Suatu Industri Dengan Model Ekonomi Leontief Achmad Dimas Noorcahyo - 13508076 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika

Lebih terperinci

Modifikasi Metode Gauss atau Operasi Baris Elementer pada Solusi Sistim Persamaan Linier 3 Variabel dan 3 Persamaan

Modifikasi Metode Gauss atau Operasi Baris Elementer pada Solusi Sistim Persamaan Linier 3 Variabel dan 3 Persamaan Modifikasi Metode Gauss atau Operasi Baris Elementer pada Solusi Sistim Persamaan Linier 3 Variabel dan 3 Persamaan Edwin Julius Solaiman Fakultas Teknologi Informasi, Universitas Advent Indonesia Abstrak

Lebih terperinci

METODE GAUSS-SEIDEL PREKONDISI UNTUK MENCARI SOLUSI SISTEM PERSAMAAN LINEAR. Alhumaira Oryza Sativa 1 ABSTRACT ABSTRAK

METODE GAUSS-SEIDEL PREKONDISI UNTUK MENCARI SOLUSI SISTEM PERSAMAAN LINEAR. Alhumaira Oryza Sativa 1 ABSTRACT ABSTRAK METODE GAUSS-SEIDEL PREKONDISI UNTUK MENCARI SOLUSI SISTEM PERSAMAAN LINEAR Alhumaira Oryza Sativa 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau

Lebih terperinci

3 Langkah Determinan Matriks 3x3 Metode OBE

3 Langkah Determinan Matriks 3x3 Metode OBE 3 Langkah Determinan Matriks 3x3 Metode OBE Ogin Sugianto sugiantoogin@yahoo.co.id penma2b.wordpress.com Majalengka, 10 Oktober 2016 Selain metode Sarrus dan Minor-Kofaktor, ada satu metode lain yang dapat

Lebih terperinci

6- Operasi Matriks. MEKANIKA REKAYASA III MK Unnar-Dody Brahmantyo 1

6- Operasi Matriks. MEKANIKA REKAYASA III MK Unnar-Dody Brahmantyo 1 6- Operasi Matriks Contoh 6-1 : Budi diminta tolong oleh ibunya untuk membeli 2 kg gula dan 1 kg kopi. Dengan uang Rp. 10.000,- Budi mendapatkan uang kembali Rp. 3.000,-. Dihari yang lain, Budi membeli

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA A Matriks 1 Pengertian Matriks Definisi 21 Matriks adalah kumpulan bilangan bilangan yang disusun secara khusus dalam bentuk baris kolom sehingga membentuk empat persegi panjang

Lebih terperinci

Course of Calculus MATRIKS. Oleh : Hanung N. Prasetyo. Information system Departement Telkom Politechnic Bandung

Course of Calculus MATRIKS. Oleh : Hanung N. Prasetyo. Information system Departement Telkom Politechnic Bandung Course of Calculus MATRIKS Oleh : Hanung N. Prasetyo Information system Departement Telkom Politechnic Bandung Matriks dan vektor merupakan pengembangan dari sistem persamaan Linier. Matriks dapat digunakan

Lebih terperinci

Aljabar Linear Elementer MUG1E3 3 SKS

Aljabar Linear Elementer MUG1E3 3 SKS // ljabar Linear Elementer MUGE SKS // 9:7 Jadwal Kuliah Hari I Selasa, jam. Hari II Kamis, jam. Sistem Penilaian UTS % US % Quis % // 9:7 M- ljabar Linear // Silabus : Bab I Matriks dan Operasinya Bab

Lebih terperinci

II. SISTEM PERSAMAAN LANJAR I. PENDAHULUAN

II. SISTEM PERSAMAAN LANJAR I. PENDAHULUAN Solusi Sistem Persamaan Lanjar Homogen dengan Eliminasi Gauss-Jordan Sandy Socrates 135844 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha

Lebih terperinci

PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN METODE ITERASI

PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN METODE ITERASI PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN METODE ITERASI Susilo Nugroho (M0105068) 1. Latar Belakang Masalah Sistem persamaan linear yang terdiri dari n persamaan dengan n variabel x 1, x 2,..., x n

Lebih terperinci

PENYELESAIAN SISTEM PERSAMAAN LINIER INTERVAL DENGAN METODE DEKOMPOSISI TUGAS AKHIR. Oleh : YULIA DEPEGA

PENYELESAIAN SISTEM PERSAMAAN LINIER INTERVAL DENGAN METODE DEKOMPOSISI TUGAS AKHIR. Oleh : YULIA DEPEGA PENYELESAIAN SISTEM PERSAMAAN LINIER INTERVAL DENGAN METODE DEKOMPOSISI TUGAS AKHIR Diajukan Sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains Pada Jurusan Matematika Oleh : YULIA DEPEGA 18543936

Lebih terperinci

M AT E M AT I K A E K O N O M I MATRIKS DAN SPL I N S TITUT P ERTA N I A N BOGOR

M AT E M AT I K A E K O N O M I MATRIKS DAN SPL I N S TITUT P ERTA N I A N BOGOR M AT E M AT I K A E K O N O M I MATRIKS DAN SPL TO N I BAKHTIAR I N S TITUT P ERTA N I A N BOGOR 2 0 1 2 Kesetimbangan Dua Pasar Permintaan kopi bergantung tidak hanya pada harganya tetapi juga pada harga

Lebih terperinci

BAB 1 PENDAHULUAN. Sebuah garis dalam bidang xy secara aljabar dapat dinyatakan oleh persamaan yang berbentuk

BAB 1 PENDAHULUAN. Sebuah garis dalam bidang xy secara aljabar dapat dinyatakan oleh persamaan yang berbentuk BAB 1 PENDAHULUAN 1.1 Latar belakang Sebagian besar dari sejarah ilmu pengetahuan alam adalah catatan dari usaha manusia secara kontinu untuk merumuskan konsep-konsep yang dapat menguraikan permasalahan

Lebih terperinci

Operasi Pada Matriks a. Penjumlahan pada Matriks ( berlaku untuk matriks matriks yang berukuran sama ). Jika A = a ij. maka matriks A = ( a ij)

Operasi Pada Matriks a. Penjumlahan pada Matriks ( berlaku untuk matriks matriks yang berukuran sama ). Jika A = a ij. maka matriks A = ( a ij) MATRIKS a a a... a n a a a... an A a a a... a n............... am am am... a mn Matriks A dengan m baris dan n kolom (A m n). Notasi Matriks : a, dimana a adalah elemen pada baris ke i kolom ke j Kesamaan

Lebih terperinci

MATRIK dan RUANG VEKTOR

MATRIK dan RUANG VEKTOR MATRIK dan RUANG VEKTOR A. Matrik. Pendahuluan Sebuah matrik didefinisikan sebagai susunan persegi panjang dari bilangan bilangan yang diatur dalam baris dan kolom. Matrik ditulis sebagai berikut: a a

Lebih terperinci

MATEMATIKA INFORMATIKA 2 TEKNIK INFORMATIKA UNIVERSITAS GUNADARMA FENI ANDRIANI

MATEMATIKA INFORMATIKA 2 TEKNIK INFORMATIKA UNIVERSITAS GUNADARMA FENI ANDRIANI MATEMATIKA INFORMATIKA 2 TEKNIK INFORMATIKA UNIVERSITAS GUNADARMA FENI ANDRIANI SAP (1) Buku : Suryadi H.S. 1991, Pengantar Aljabar dan Geometri analitik Vektor Definisi, Notasi, dan Operasi Vektor Susunan

Lebih terperinci

Pemanfaatan Matriks dalam Penyeimbangan Persamaan Reaksi Kimia

Pemanfaatan Matriks dalam Penyeimbangan Persamaan Reaksi Kimia Pemanfaatan Matriks dalam Penyeimbangan Persamaan Reaksi Kimia Chalvin 13514032 1 Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132,

Lebih terperinci

BAB X MATRIK DAN SISTEM PERSAMAAN LINIER SIMULTAN

BAB X MATRIK DAN SISTEM PERSAMAAN LINIER SIMULTAN 1 BAB X MATRIK DAN SISTEM PERSAMAAN LINIER SIMULTAN Pembahasan berikut ini akan meninjau salah satu implementasi operasi matrik untuk menyelesaikan sistem persamaan linier simultan. Selain menggunakan

Lebih terperinci

Matriks - Definisi. Sebuah matriks yang memiliki m baris dan n kolom disebut matriks m n. Sebagai contoh: Adalah sebuah matriks 2 3.

Matriks - Definisi. Sebuah matriks yang memiliki m baris dan n kolom disebut matriks m n. Sebagai contoh: Adalah sebuah matriks 2 3. MATRIKS Pokok Bahasan Matriks definisi Notasi matriks Matriks yang sama Panambahan dan pengurangan matriks Perkalian matriks Transpos suatu matriks Matriks khusus Determinan suatu matriks bujursangkar

Lebih terperinci

ALJABAR LINIER DAN MATRIKS

ALJABAR LINIER DAN MATRIKS ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE) Macam Matriks Matriks Nol (0) Matriks yang semua entrinya nol. Ex: Matriks Identitas (I) Matriks persegi dengan entri pada diagonal utamanya

Lebih terperinci

Penerapan Matriks dalam Analisis Sektor Perekonomian Indonesia

Penerapan Matriks dalam Analisis Sektor Perekonomian Indonesia Penerapan Matriks dalam Analisis Sektor Perekonomian Indonesia Scarletta Julia Yapfrine (13514074) Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha

Lebih terperinci

MATRIKS. Matematika. FTP UB Mas ud Effendi. Matematika

MATRIKS. Matematika. FTP UB Mas ud Effendi. Matematika MATRIKS FTP UB Mas ud Effendi Pokok Bahasan Transpos suatu matriks Matriks khusus Determinan suatu matriks bujursangkar Invers suatu matriks bujursangkar Penyelesaian set persamaan linier Nilai-eigen dan

Lebih terperinci

uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg

uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg uiopasdfghjklzxcvbnmqwertyuiopasd Qwertyuiopasdfghjklzxcvbnmqwerty cvbnmqwertyuiopasdfghjklzxcvbnmq fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg

Lebih terperinci

MODEL EKONOMI LEONTIEF DALAM MENENTUKAN EKSPOR IMPOR SUATU NEGARA DENGAN MENGGUNAKAN DEKOMPOSISI Lower Upper (LU)

MODEL EKONOMI LEONTIEF DALAM MENENTUKAN EKSPOR IMPOR SUATU NEGARA DENGAN MENGGUNAKAN DEKOMPOSISI Lower Upper (LU) Jurnal Matematika, Statistika,& Komputasi 1 Vol.... No... 21... MODEL EKONOMI LEONTIEF DALAM MENENTUKAN EKSPOR IMPOR SUATU NEGARA DENGAN MENGGUNAKAN DEKOMPOSISI Lower Upper (LU) Fachrul Islam 1, Jeffry

Lebih terperinci

Pertemuan 2 Matriks, part 2

Pertemuan 2 Matriks, part 2 Pertemuan 2 Matriks, part 2 Beberapa Jenis Matriks Khusus 1. Matriks Bujur Sangkar Suatu matriks dengan banyak baris = banyak kolom = n disebut matriks bujur sangkar berukuran n (berordo n). Barisan elemen

Lebih terperinci

SISTEM PERSAMAAN LINEAR DAN ELIMINASI GAUSS

SISTEM PERSAMAAN LINEAR DAN ELIMINASI GAUSS SISTEM PERSAMAAN LINEAR DAN ELIMINASI GAUSS Dr. Eng. Supriyanto, M.Sc Lab. Komputer, Departemen Fisika, Universitas Indonesia email: supri@fisika.ui.ac.id atau supri92@gmail.com 5 Februari 2005 Abstract

Lebih terperinci

PENYELESAIAN SISTEM PERSAMAAN LINIER KOMPLEKS MENGGUNAKAN METODE ITERASI GAUSS-SEIDEL TUGAS AKHIR

PENYELESAIAN SISTEM PERSAMAAN LINIER KOMPLEKS MENGGUNAKAN METODE ITERASI GAUSS-SEIDEL TUGAS AKHIR PENYELESAIAN SISTEM PERSAMAAN LINIER KOMPLEKS MENGGUNAKAN METODE ITERASI GAUSS-SEIDEL TUGAS AKHIR Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika Oleh :

Lebih terperinci

Aljabar Linear Elementer MA SKS. 07/03/ :21 MA-1223 Aljabar Linear 1

Aljabar Linear Elementer MA SKS. 07/03/ :21 MA-1223 Aljabar Linear 1 Aljabar Linear Elementer MA SKS 7//7 : MA- Aljabar Linear Jadwal Kuliah Hari I Hari II jam jam Sistem Penilaian UTS 4% UAS 4% Quis % 7//7 : MA- Aljabar Linear Silabus : Bab I Matriks dan Operasinya Bab

Lebih terperinci

a11 a12 x1 b1 Kumpulan Materi Kuliah #1 s/d #03 Tahun Ajaran 2016/2016: Oleh: Prof. Dr. Ir. Setijo Bismo, DEA.

a11 a12 x1 b1 Kumpulan Materi Kuliah #1 s/d #03 Tahun Ajaran 2016/2016: Oleh: Prof. Dr. Ir. Setijo Bismo, DEA. a11 a12 x1 b1 a a x b 21 22 2 2 Kumpulan Materi Kuliah #1 s/d #03 Tahun Ajaran 2016/2016: Oleh: Prof. Dr. Ir. Setijo Bismo, DEA. a11 a12 x1 b1 a a x b 21 22 2 2 a11 a12 x1 b1 a a x b 21 22 2 2 Setijo Bismo

Lebih terperinci

Penerapan Matriks dalam Kriptografi

Penerapan Matriks dalam Kriptografi Penerapan Matriks dalam Kriptografi Malvin Juanda/13514044 Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia 13514044@std.stei.itb.ac.id

Lebih terperinci

Penyelesaian SPL dalam Rangkaian Listrik

Penyelesaian SPL dalam Rangkaian Listrik Penyelesaian SPL dalam Rangkaian Listrik Harry Octavianus Purba (13514050) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132,

Lebih terperinci

PERANGKAT LUNAK BANTU ANALISIS NUMERIK METODE DETERMINAN CRAMER, ELIMINASI GAUSS DAN LELARAN GAUSS-SEIDEL UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR

PERANGKAT LUNAK BANTU ANALISIS NUMERIK METODE DETERMINAN CRAMER, ELIMINASI GAUSS DAN LELARAN GAUSS-SEIDEL UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR PERANGKAT LUNAK BANTU ANALISIS NUMERIK METODE DETERMINAN CRAMER, ELIMINASI GAUSS DAN LELARAN GAUSS-SEIDEL UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR Tacbir Hendro Pudjiantoro A B S T R A K Salah satu

Lebih terperinci

Matriks adalah susunan segi empat siku-siku dari objek yang diatur berdasarkan baris (row) dan kolom (column). Objek-objek dalam susunan tersebut

Matriks adalah susunan segi empat siku-siku dari objek yang diatur berdasarkan baris (row) dan kolom (column). Objek-objek dalam susunan tersebut Matriks adalah susunan segi empat siku-siku dari objek yang diatur berdasarkan baris (row) dan kolom (column). Objek-objek dalam susunan tersebut dinamakan entri dalam matriks atau disebut juga elemen

Lebih terperinci

Aljabar Linear. & Matriks. Evangs Mailoa. Pert. 4

Aljabar Linear. & Matriks. Evangs Mailoa. Pert. 4 Aljabar Linear & Matriks Pert. 4 Evangs Mailoa Sistem Persamaan Linier & Matriks 1. Matriks dan Operasi Matriks 2. Pengantar Sistem Persamaan Linier 3. Eliminasi Gaus 4. Invers: Aturan Aritmatika Matriks

Lebih terperinci