Materi W9b GEOMETRI RUANG. Kelas X, Semester 2. B. Menggambar dan Menghitung jarak.

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Materi W9b GEOMETRI RUANG. Kelas X, Semester 2. B. Menggambar dan Menghitung jarak."

Transkripsi

1 Materi W9b GEOMETRI RUANG Kelas X, Semester 2 B. Menggambar dan Menghitung jarak

2 B. Menggambar dan Menghitung Jarak Jarak dua objek dalam dimensi tiga adalah jarak terpendek yang ditarik dari kedua objek itu (1) Jarak dua titik P dan Q Jarak titik P dan Q adalah panjang ruas garis PQ d. P Q.

3 Nomor W5201 Pada kubus ABCD.EFGH dengan rusuk 8 cm terdapat titik P di tengah-tengah AB. Jarak titik G ke titik P adalah A. 9 cm B. 10 cm C. 12 cm D. 14 cm E. 15 cm E A H D F B G C Menu

4 (2) Jarak titik P ke garis g Tarik garis dari P memotong tegak lurus dengan g Titik potong garis tersebut P. dengan g adalah Q Jarak titk P ke garis g adalah panjang ruas garis PQ d Q. g

5 Nomor W8602 Pada kubus ABCD.EFGH dengan rusuk 6 cm, tentukanlah jarak titik B ke garis EG A. 2 6 cm B. 3 6 cm C. 2 3 cm D. 3 3 cm E H F G 6 E. 4 3 cm A D. B C

6 Nomor W7903 Pada kubus ABCD.EFGH dengan rusuk 6 cm, tentukanlah jarak titik C ke garis AG A. 2 6 cm B. 3 6 cm C. 2 3 cm D. 3 3 cm E H F G 6 E. 4 3 cm D. C A B

7 (3) Jarak titik P ke bidang W Tarik garis dari P menembus tegak lurus bidang W Titik tembus garis tersebut dengan bidang W adalah Q Jarak titk P ke bidang W adalah panjang ruas garis PQ. P d W Q.

8 Nomor W1504 Pada kubus ABCD.EFGH dengan rusuk 6 cm terdapat titik P ditengah-tengah AE. Tentukanlah jarak titik P ke bidang BDHF A. 2 3 cm B. 3 3 cm C. 2 2 cm D. 3 2 cm E. 4 3 cm E H D F G C A 6 B

9 Nomor W3405 Pada kubus ABCD.EFGH dengan rusuk 6 cm, tentukanlah jarak titik C ke bidang BDG A. 2 3 cm B. 3 3 cm C. 2 2 cm D. 3 2 cm E H F G E. 4 3 cm D. C A 6 B

10 (4) Jarak dua garis g dan h yang sejajar Ambil sembarang titik P pada garis g Tarik garis dari P memotong tegak lurus dengan h Titik potong garis tersebut dengan h adalah Q Jarak garis g ke garis h adalah panjang ruas garis PQ P. d g Q. h

11 Nomor W4806 Pada kubus ABCD.EFGH dengan rusuk 8 cm tentukanlah jarak garis AB ke garis HG A. 6 3 cm H B. 8 3 cm C. 6 2 cm D. 8 2 cm E F G E. 6 5 cm D C A 8 B

12 (5) Jarak dua bidang V dan W yang sejajar Ambil sembarang titik P pada bidang V Tarik garis dari titik P menembus tegak lurus bidang W Titik tembus garis tersebut pada W adalah Q P. V Jarak bidang V ke bidang W adalah panjang ruas garis PQ W d. Q

13 Nomor W1607 Pada kubus ABCD.EFGH dengan rusuk 8 cm tentukanlah jarak bidang ADHE dan bidang BCGF H A. 6 3 cm B. 8 3 cm E F C. 6 2 cm D. 8 2 cm E. 8 cm D G C A 8 B

14 Nomor W3408 Pada kubus ABCD.EFGH dengan rusuk 6 cm tentukanlah jarak bidang BDG dan bidang AFH A. 2 3 cm H G B. 3 3 cm C. 2 2 cm D. 3 2 cm E F E. 4 3 cm D C A 6 B

15 Soal Latihan W9b Menggambar dan Menghitung jarak

16 Soal 01W135 Pada kubus ABCD.EFGH dengan rusuk 6 cm jarak titik H ke P dimana P adalah titik tengah BF adalah. cm A. 6 2 B. 9 C. 6 5 D. 8 E. 3 6

17 Soal 02W231 Pada kubus ABCD.EFGH dengan rusuk 6 cm terdapat titik P di tengah-tengah EH dan titik Q perpotongah diagonal-diagonal BCGF. Jarak titik P ke Q adalah.. cm A. 4 B. 3 5 C. 4 3 D. 5 2 E. 3 2

18 Soal 03W532 Pada kubus ABCD.EFGH dengan rusuk 8 cm, jarak titik A ke garis HF adalah. cm A. 5 3 B. 4 6 C. 3 6 D. 6 E. 6 3

19 Soal 04W217 Pada kubus ABCD.EFGH dengan rusuk 6 cm, jarak titik A ke garis EC adalah. cm A. 2 6 B. 3 6 C. 6 2 D. 6 3 E. 4

20 Soal 05W397 Pada kubus ABCD.EFGH dengan rusuk 6 cm terdapat titik P ditengah-tengah HG. Jarak titik P ke garis AG adalah..cm A. 3 6 B. 4 C. 2 6 D. 6 3 E. 6

21 Soal 06W491 Pada kubus ABCD.EFGH dengan rusuk 4 cm terdapat titik P dari perpotongan BG dan CF. Jarak titik P ke bidang ADHE adalah.cm A. 2 B. 2 2 C. 2 3 D. 3 2 E. 4

22 Soal 07W438 Pada kubus ABCD.EFGH dengan panjang rusuk 4 2 cm terdapat titik P di tengah-tengah AE. Jarak titik P ke bidang BDHF adalah.cm A. 4 2 B. 4 C. 3 D. 3 3 E. 4 3

23 Soal 08W396 Pada kubus ABCD.EFGH dengan rusuk 6 cm jarak titik E ke bidang AFH adalah cm A. 2 6 B. 4 3 C. 6 D. 4 E. 2 3

24 Soal 09W414 Pada kubus ABCD.EFGH dengan rusuk 6 cm jarak garis EH ke garis BC adalah.cm A. 6 2 B. 6 3 C. 6 D. 2 6 E. 4

25 Soal 10W436 Pada kubus ABCD.EFGH dengan rusuk 12 cm jarak garis AE ke garis HF adalah.cm A. 6 B. 6 2 C. 4 2 D. 8 E. 4

26 Soal 11W277 Pada kubus ABCD.EFGH dengan rusuk 8 cm jarak garis EG ke garis BD adalah.cm A. 6 2 B. 8 2 C. 8 D. 4 2 E. 6

27 Soal 12W415 Pada kubus ABCD.EFGH dengan rusuk 6 cm jarak garis BE ke bidang DCGH adalah..cm A. 6 B. 6 2 C. 2 6 D. 4 E. 3

28 Soal 13W376 Pada kubus ABCD.EFGH dengan rusuk 6 cm jarak bidang AFH ke bidang BDG adalah.. A. 3 2 B. 3 C. 3 D. 2 3 E. 4 2

29 Soal 14W278 Pada kubus ABCD.EFGH dengan rusuk 6 cm jarak garis BG ke garis HF adalah.. A. 3 B. 4 C. 4 2 D. 2 3 E. 4 3

30 Soal 15W456 Pada kubus ABCD.EFGH dengan rusuk 6 cm jarak garis HB ke garis AC adalah..cm A. 6 2 B. 2 6 C. 6 D. 3 3 E. 3

31 Soal 16W275 Pada kubus ABCD.EFGH dengan rusuk 12 cm jarak garis FD ke garis BG adalah..cm A. 6 B. 2 2 C. 2 3 D. 2 6 E. 4 3

32 Soal 17W332 Pada kubus ABCD.EFGH dengan rusuk 12 cm jarak garis AH ke garis DG adalah..cm A. 3 3 B. 4 3 C. 3 2 D. 4 2 E. 6 2

33 Soal 18W513 Pada kubus ABCD.EFGH dengan rusuk 6 cm terdapat titik P yakni perpotongan diagonal EFGH. Jarak garis AP ke BD adalah..cm A. 2 3 B. 3 2 C. 5 2 D. 3 3 E. 6

34 Soal 19W518 Pada kubus ABCD.EFGH dengan rusuk 12 cm jarak garis AB ke bidang CDEF adalah.cm A. 6 2 B. 6 3 C. 3 3 D. 3 2 E. 6

35 Soal 20W594 Pada kubus ABCD.EFGH dengan rusuk 4 cm jarak garis HD ke bidang ACF adalah.cm A. 5 B. 6 C. 4 5 D. 6 2 E. 0

36 Soal 21W414 Pada kubus ABCD.EFGH dengan rusuk 6 cm jarak garis EG ke bidang ACF adalah.cm A. 2 3 B. 0 C. 3 2 D. 2 2 E. 3 3

37 Soal 22W275 Pada kubus ABCD.EFGH dengan rusuk 8 cm Jika titik P ditengah-tengah EF dan Q titik tengah BC maka jarak PQ adalah.cm A. 8 2 B. 4 2 C. 4 3 D. 4 6 E. 6

38 Soal 23W257 Pada kubus ABCD.EFGH dengan rusuk 6 cm jarak garis AF ke bidang BDG adalah A. 3 3 B. 2 3 C. 3 2 D. 2 2 E. 3

39 Soal 24W294 Pada kubus ABCD.EFGH dengan rusuk 12 cm titik-titik K, L dan M berturut-turut merupakan titik tengah BC, CD dan CG. Jarak antara AFH dan KLM adalah A. 6 B. 4 3 C. 6 2 D. 4 2 E. 6 3

40 Soal 25W417 Pada kubus ABCD.EFGH dengan rusuk 16 cm titik P di tengah-tengah AB. Jarak titik P ke garis FH adalah.cm A B. 6 2 C. 6 3 D. 2 6 E. 4 3

41 Soal 26W398 Pada kubus ABCD.EFGH dengan rusuk 3 cm diketahui titik P ditengah-tengah DH, jarak garis EF dan BP adalah.cm 6 6 A. B C. 3 3 D. E

42

Materi W9a GEOMETRI RUANG. Kelas X, Semester 2. A. Kedudukan Titik, Garis dan Bidang dalam Ruang.

Materi W9a GEOMETRI RUANG. Kelas X, Semester 2. A. Kedudukan Titik, Garis dan Bidang dalam Ruang. Materi W9a GEOMETRI RUANG Kelas X, Semester 2 A. Kedudukan Titik, Garis dan Bidang dalam Ruang www.yudarwi.com A. Kedudukan Titik, Garis dan bidang dalam Ruang (1) Kedudukan Titik dan titik Titik berimpit

Lebih terperinci

Materi W9c GEOMETRI RUANG. Kelas X, Semester 2. C. Menggambar dan Menghitung Sudut.

Materi W9c GEOMETRI RUANG. Kelas X, Semester 2. C. Menggambar dan Menghitung Sudut. Materi W9c GEOMETRI RUANG Kelas X, Semester C. Menggambar dan Menghitung Sudut www.yudarwi.com C. Menggambar dan Menghitung Sudut Sudut dalam dimensi tiga adalah sudut antara garis dan garis, garis dan

Lebih terperinci

LEMBAR KERJA SISWA KE-3

LEMBAR KERJA SISWA KE-3 LEMBAR KERJA SISWA KE-3 Mata Pelajaran : Matematika Pokok Bahasan : Dimensi Tiga Kelas / Semester : X / 2 Pertemuan Ke : 4 dan 5 Alokasi Waktu : 4 jam ( 4 x 45 menit ) C. Menggambar Kubus dan Balok 01.

Lebih terperinci

LEMBAR AKTIVITAS SISWA DIMENSI TIGA (WAJIB)

LEMBAR AKTIVITAS SISWA DIMENSI TIGA (WAJIB) Nama Siswa Kelas LEMBAR AKTIVITAS SISWA DIMENSI TIGA (WAJIB) 5. Diagonal Ruang adalah Ruas garis yang menghubungkan dua titik : sudut yang saling berhadapan dalam satu ruang. : Kompetensi Dasar (KURIKULUM

Lebih terperinci

Dimensi 3. Penyusun : Deddy Sugianto, S.Pd

Dimensi 3. Penyusun : Deddy Sugianto, S.Pd YAYASAN PENDIDIKAN KARTINI NUSANTARA SEKOLAH MENENGAH ATAS (SMA) KARTINI I JAKARTA 2009 Dimensi 3 Penyusun : Deddy Sugianto, S.Pd YAYASAN PENDIDIKAN KARTINI NUSANTARA SEKOLAH MENENGAH ATAS (SMA) KARTINI

Lebih terperinci

A. KUBUS Definisi Kubus adalah bangun ruang yang dibatasi enam sisi berbentuk persegi yang kongruen.

A. KUBUS Definisi Kubus adalah bangun ruang yang dibatasi enam sisi berbentuk persegi yang kongruen. A. KUBUS Definisi Kubus adalah bangun ruang yang dibatasi enam sisi berbentuk persegi yang kongruen. Gambar 1.1 Kubus Sifat-sifat Kubus 1. Semua sisi kubus berbentuk persegi. Kubus mempunyai 6 sisi persegi

Lebih terperinci

Modul Matematika X IPA Semester 2 Dimensi Tiga

Modul Matematika X IPA Semester 2 Dimensi Tiga Modul Matematika X IPA Semester Dimensi Tiga Tahun Pelajaran 0 05 SMA Santa Angela Jl. Merdeka No. Bandung Dimensi Tiga X IPA Sem /0-05 Peta Konsep Pengertian titik, garis, dan bidang Titik terhadap garis

Lebih terperinci

Modul Matematika Semester 2 Dimensi Tiga

Modul Matematika Semester 2 Dimensi Tiga Modul Matematika Semester Dimensi Tiga Tahun Pelajaran 07 08 SMA Santa Angela Jl. Merdeka No. Bandung Peta Konsep Pengertian titik, garis, dan bidang Titik terhadap garis Dimensi Tiga Kedudukan titik,

Lebih terperinci

LEMBAR AKTIVITAS SISWA DIMENSI TIGA (PEMINATAN)

LEMBAR AKTIVITAS SISWA DIMENSI TIGA (PEMINATAN) Nama Siswa Kelas : : Kompetensi Dasar (KURIKULUM 2013): LEMBAR AKTIVITAS SISWA DIMENSI TIGA (PEMINATAN) 3. Bidang Bidang (Bidang datar) merupakan kumpulan titik yang membentuk suatu luasan (bidang) datar

Lebih terperinci

LEMBAR AKTIVITAS SISWA DIMENSI TIGA Ruas garis PQ Ruas garis QR Garis PQ = garis QR (karena bila diperpanjang akan mewakili garis yang sama)

LEMBAR AKTIVITAS SISWA DIMENSI TIGA Ruas garis PQ Ruas garis QR Garis PQ = garis QR (karena bila diperpanjang akan mewakili garis yang sama) Nama Siswa Kelas LEMBAR AKTIVITAS SISWA DIMENSI TIGA Ruas garis PQ Ruas garis QR : Garis PQ = garis QR (karena bila diperpanjang akan : mewakili garis yang sama) A. PENGERTIAN TITIK, GARIS DAN BIDANG Titik,

Lebih terperinci

DAFTAR ISI PRAKATA DAFTAR ISI KATA KATA MOTIVASI TUJUAN PEMBELAJARAN KUBUS DAN BALOK

DAFTAR ISI PRAKATA DAFTAR ISI KATA KATA MOTIVASI TUJUAN PEMBELAJARAN KUBUS DAN BALOK PRAKATA Puji syukur penulis panjatkan kepada Tuhan Yang Maha Esa karena buku ini dapat diselesaikan. Buku ini penulis hadirkan sebagai panduan bagi siswa dalam mempelajari salah satu materi matematika.

Lebih terperinci

1. Titik, Garis dan Bidang Dalam Ruang. a. Defenisi. Titik ditentukan oleh letaknya dan tidak mempunyai ukuran sehingga dikatakan berdimensi nol

1. Titik, Garis dan Bidang Dalam Ruang. a. Defenisi. Titik ditentukan oleh letaknya dan tidak mempunyai ukuran sehingga dikatakan berdimensi nol 1. Titik, Garis dan Bidang Dalam Ruang a. Defenisi Titik ditentukan oleh letaknya dan tidak mempunyai ukuran sehingga dikatakan berdimensi nol Titik digambarkan dengan sebuah noktah dan penamaannya menggunakan

Lebih terperinci

A B. Kedudukan titik, Garis dan bidang dalam bangun ruang. Pengertian titik

A B. Kedudukan titik, Garis dan bidang dalam bangun ruang. Pengertian titik Pengertian titik Kedudukan titik, Garis dan bidang dalam bangun ruang Suatu titik ditentukan oleh letaknya dan tidak mempunyai besaran. Sebuah titik dilukiskan dengan noktah dan biasanya dinotasikan dengan

Lebih terperinci

MAKALAH BANGUN RUANG. Diajukan Untuk Memenuhi Salah Satu Tugas Guru Bidang Matematika. Disusun Oleh: 1. Titin 2. Silvi 3. Ai Riska 4. Sita 5.

MAKALAH BANGUN RUANG. Diajukan Untuk Memenuhi Salah Satu Tugas Guru Bidang Matematika. Disusun Oleh: 1. Titin 2. Silvi 3. Ai Riska 4. Sita 5. MAKALAH BANGUN RUANG Diajukan Untuk Memenuhi Salah Satu Tugas Guru Bidang Matematika Disusun Oleh: 1. Titin 2. Silvi 3. Ai Riska 4. Sita 5. Ayu YAYASAN PENDIDIKAN TERPADU PONDOK PESANTREN MADRASAH THASANAWIYAH

Lebih terperinci

Lampiran B1: Rencana Pelaksanaan Pembelajaran RENCANA PELAKSANAAN PEMBELAJARAN (RPP van Hiele) dimensi tiga.

Lampiran B1: Rencana Pelaksanaan Pembelajaran RENCANA PELAKSANAAN PEMBELAJARAN (RPP van Hiele) dimensi tiga. Lampiran B1: Rencana Pelaksanaan Pembelajaran RENCANA PELAKSANAAN PEMBELAJARAN (RPP van Hiele) Nama Sekolah Mata Pelajaran Kelas / Semester : SMA Negeri 1 Wundulako : Matematika : X / 2 (dua) Standar Kompetensi

Lebih terperinci

Dimensi Tiga (Sudut Pada Bangun Ruang)

Dimensi Tiga (Sudut Pada Bangun Ruang) Dimensi Tiga (Sudut Pada Bangun Ruang) Sudut terbentuk karena dua sinar garis bertemu pada suatu titik. Dalam bangun ruang, ada banyak titik yang dapat menjadi pertemuan dua sinar garis. Sudut pada bangun

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN KELAS EKSPERIMEN

RENCANA PELAKSANAAN PEMBELAJARAN KELAS EKSPERIMEN 97 RENCANA PELAKSANAAN PEMBELAJARAN KELAS EKSPERIMEN Nama Sekolah : SMP Negeri 29 Bandung Mata Pelajaran : Matematika Kelas/Semester : VIII/II (Genap) Alokasi Waktu : 2 x 40 menit (1 pertemuan) A. Standar

Lebih terperinci

(Dengan Pendekatan Vektor) Oleh: Murdanu, M.Pd.

(Dengan Pendekatan Vektor) Oleh: Murdanu, M.Pd. (Dengan Pendekatan Vektor) Oleh: Muru, M.Pd. JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA PROGRAM STUDI MATEMATIKA TAHUN AKADEMIK /. Diberikan

Lebih terperinci

KEGIATAN BELAJAR II SUDUT ANTARA GARIS DAN BIDANG

KEGIATAN BELAJAR II SUDUT ANTARA GARIS DAN BIDANG KEGIATAN BELAJAR II SUDUT ANTARA GARIS DAN BIDANG A. Pengantar g h 1 h 3 h 2 H Gambar 2.1 Pada Gambar 2 (ii) mana yang dimaksud sudut antara garis g dan bidang H? Sudut antara g dengan h 1, h 2, h 3, atau

Lebih terperinci

Geometri (bangun ruang)

Geometri (bangun ruang) Geometri (bangun ruang) 9.1 BENTUK DASAR BANGUN RUANG 1. Kubus Luas = 6s2 Vol = s3 (s = panjang sisi) 2. Balok Luas = 2 x (p.l + p.t + l.t) Vol = p.l.t 3. Prisma Luas = 2 x l. alas + selimut Vol = luas

Lebih terperinci

SOAL-JAWAB MATEMATIKA PEMINATAN DIMENSI TIGA. Sebuah kubus ABCD.EFGH memiliki panjang rusuk 4 cm. P adalah titik tengah CD. Tentukan panjang EP!

SOAL-JAWAB MATEMATIKA PEMINATAN DIMENSI TIGA. Sebuah kubus ABCD.EFGH memiliki panjang rusuk 4 cm. P adalah titik tengah CD. Tentukan panjang EP! SOAL-JAWAB MATEMATIKA PEMINATAN DIMENSI TIGA Soal Sebuah kubus ABCD.EFGH memiliki panjang rusuk 4 cm. P adalah titik tengah CD. Tentukan panjang EP! Lihat gambar! Panjang EP didapat dengan rumus Pythagoras

Lebih terperinci

ANGKET KEPERCAYAAN DIRI

ANGKET KEPERCAYAAN DIRI ANGKET KEPERCAYAAN DIRI 45 46 Angket Kepercayaan Diri Nama : Nomer Absen : Kelas : Jenis Kelamin : Petunjuk Pengisian Di bawah ini terdapat beberapa pernyataan tentang diri Anda yang berkaitan dengan kepercayaan

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA 5 BAB II KAJIAN PUSTAKA 2.1. Kajian Teori 2.1.1. Pengertian Luas Permukaan Bangun Ruang Luas daerah permukaan bangun ruang adalah jumlah luas daerah seluruh permukaannya yaitu luas daerah bidang-bidang

Lebih terperinci

MODUL MATEMATIKA. Geometri Dimensi Tiga. Maylisa Handayani,S.Pd. Penyusun: MAT. 06. Geometri Dimensi Tiga

MODUL MATEMATIKA. Geometri Dimensi Tiga. Maylisa Handayani,S.Pd. Penyusun: MAT. 06. Geometri Dimensi Tiga MODUL MATEMATIKA Geometri Dimensi Tiga Penyusun: Maylisa Handayani,S.Pd MAT. 06. Geometri Dimensi Tiga i Kata Pengantar Puji sukur kami haturkan ke hadirat Tuhan Yang Maha Esa atas segala karunianya, sehingga

Lebih terperinci

KUBUS DAN BALOK. Kata-Kata Kunci: unsur-unsur kubus dan balok jaring-jaring kubus dan balok luas permukaan kubus dan balok volume kubus dan balok

KUBUS DAN BALOK. Kata-Kata Kunci: unsur-unsur kubus dan balok jaring-jaring kubus dan balok luas permukaan kubus dan balok volume kubus dan balok 8 KUBUS DAN BALOK Perhatikan benda-benda di sekitar kita. Dalam kehidupan sehari-hari kita sering memanfaatkan benda-benda seperti gambar di samping, misalnya kipas angin, video cd, dan kardus bekas mainan.

Lebih terperinci

Daftar Nilai Ketuntasan Siswa Pra Siklus No Nama KKM Nilai Keterangan 1 Era Susanti Tuntas 2 Nuri Safitri Belum Tuntas 3 Aldo Kurniawan

Daftar Nilai Ketuntasan Siswa Pra Siklus No Nama KKM Nilai Keterangan 1 Era Susanti Tuntas 2 Nuri Safitri Belum Tuntas 3 Aldo Kurniawan 34 35 Daftar Nilai Ketuntasan Siswa Pra Siklus No Nama KKM Nilai Keterangan 1 Era Susanti 60 80 Tuntas 2 Nuri Safitri 60 45 Belum Tuntas 3 Aldo Kurniawan 60 75 Tuntas 4 Anggi Septiana 60 70 Tuntas 5 Desi

Lebih terperinci

Siswa dapat menyebutkan dan mengidentifikasi bagian-bagian lingkaran

Siswa dapat menyebutkan dan mengidentifikasi bagian-bagian lingkaran KISI-KISI PENULISAN SOAL DAN URAIAN ULANGAN KENAIKAN KELAS Jenis Sekolah Penulis Mata Pelajaran Jumlah Soal Kelas Bentuk Soal AlokasiWaktu Acuan : SMP/MTs : Gresiana P : Matematika : 40 nomor : VIII (delapan)

Lebih terperinci

PEMBELAJARAN GEOMETRI DENGAN WINGEOM 3-DIM

PEMBELAJARAN GEOMETRI DENGAN WINGEOM 3-DIM BAB 5 PEMBELAJARAN GEOMETRI DENGAN WINGEOM 3-DIM Setelah mempelajari bab 5 ini, diharapkan: 1. Pembaca dapat menggunakan Program Wingeom 3-dim untuk topik kubus dan balok. 2. Pembaca dapat menggunakan

Lebih terperinci

Bangun Ruang dan Unsur-unsurnya (1)

Bangun Ruang dan Unsur-unsurnya (1) Modul 1 Bangun Ruang dan Unsur-unsurnya (1) Drs. A. Sardjana, M.Pd. PENDAHULUAN G eometri merupakan cabang Matematika yang mempelajari titik, garis, bidang dan benda-benda ruang serta sifat-sifatnya, ukuran-ukurannya

Lebih terperinci

. P GEOMETRI RUANG 3 11/21/2015. A. Menggambar dan Menghitung Jarak. Peta Konsep. A. Menggambar dan Menghitung jarak. Nomor M5201

. P GEOMETRI RUANG 3 11/21/2015. A. Menggambar dan Menghitung Jarak. Peta Konsep. A. Menggambar dan Menghitung jarak. Nomor M5201 Peta Konsep Jurnal Peta Konsep aftar air Materi Materi MIP OMTRI RUN 3 Kelas XII, Semester Menggambar an Menghitung jarak eometri Ruang 3 Menggambar an Menghitung Jarak Menggambar an Menghitung Suut SoalLatihan

Lebih terperinci

MAT. 06. Geometri Dimensi Tiga

MAT. 06. Geometri Dimensi Tiga MAT. 06. Geometri Dimensi Tiga i Kode MAT. 06 Geometri Dimensi Tiga BAGIAN PROYEK PENGEMBANGAN KURIKULUM DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DEPARTEMEN

Lebih terperinci

TRYOUT UAS SMT GANJIL 2015

TRYOUT UAS SMT GANJIL 2015 TRYOUT UAS SMT GANJIL 201 1. Himpunan penyelesaian dari SPLDV dibawah ini adalah... 3x 2y = x + 3y = 2 A. (, -2 ) B. ( 2, - ) C. ( -2, ) D. ( -2, - ) E. ( -, 2 ) 2. Tentukan himpunan penyelesaian SPL TV

Lebih terperinci

K13 Revisi Antiremed Kelas 12 Matematika

K13 Revisi Antiremed Kelas 12 Matematika K Revisi Antiremed Kelas Matematika Geometri Bidang Ruang - Latihan Soal Doc. Name: RKARMATWJB00 Version : 0-0 halaman 0. Diketahui kubus ABCD,EFGH dengan panjang rusuk. Jika P titik HG,Q titik tengah

Lebih terperinci

BAB II KEMAMPUAN PENALARAN ADAPTIF MELALUI MODEL PROBLEM BASED LEARNING DALAM MATERI KUBUS DAN BALOK. 1. Pengertian Model Problem Based Learning

BAB II KEMAMPUAN PENALARAN ADAPTIF MELALUI MODEL PROBLEM BASED LEARNING DALAM MATERI KUBUS DAN BALOK. 1. Pengertian Model Problem Based Learning BAB II KEMAMPUAN PENALARAN ADAPTIF MELALUI MODEL PROBLEM BASED LEARNING DALAM MATERI KUBUS DAN BALOK A. Model Problem Based Learning 1. Pengertian Model Problem Based Learning Wena mendefinisikan problem

Lebih terperinci

DIMENSI TIGA 1. Standar Kompetensi: Menentukan kedudukan, jarak, dan besar sudut yang melibatkan titik, garis, dan bidang dalam ruang dimensi tiga.

DIMENSI TIGA 1. Standar Kompetensi: Menentukan kedudukan, jarak, dan besar sudut yang melibatkan titik, garis, dan bidang dalam ruang dimensi tiga. DIMENSI TIGA 1 Standar Kompetensi: Menentukan kedudukan, jarak, dan besar sudut yang melibatkan titik, garis, dan bidang dalam ruang dimensi tiga. Kompetensi Dasar: 1. Menentukan kedudukan titik, garis,

Lebih terperinci

KEDUDUKAN TITIK, GARIS, DAN BIDANG DALAM RUANG

KEDUDUKAN TITIK, GARIS, DAN BIDANG DALAM RUANG KEDUDUKAN TITIK, GARIS, DAN BIDANG DALAM RUANG 1. Penertian Titik, Garis Dan Bidan Tia unsur dasar dalam eometri, yaitu titik, aris, dan bidan. Ketia unsur tersebut, dapat jua disebut sebaai tia unsur

Lebih terperinci

Untuk memudahkan buat segitiga yang memuat titik A dan garis k. Puncak segitiga adalah titik A dan alasnya garis k

Untuk memudahkan buat segitiga yang memuat titik A dan garis k. Puncak segitiga adalah titik A dan alasnya garis k 3. Jarak Dalam Ruang a. Jarak Titik ke Garis Jarak titik A ke garis k adalah panjang segmen garis dari titik A ke titik potong garis melalui titik A tegak lurus garis k Untuk memudahkan buat segitiga yang

Lebih terperinci

Antiremed Kelas 12 Matematika

Antiremed Kelas 12 Matematika Antiremed Kelas Matematika 04- Diagonal Ruang, Diagonal Bidang, Bidang Diagonal. Doc. Name: KARMATWJB040 Version : 0-09 halaman 0. Diketahui kubus ABCD,EFGH dengan panjang rusuk. Jika P titik HG,Q titik

Lebih terperinci

Dr. Winarno, S. Si, M. Pd. - Modul Matematika PGMI - 1 BAB I PENDAHULUAN

Dr. Winarno, S. Si, M. Pd. - Modul Matematika PGMI - 1 BAB I PENDAHULUAN Dr. Winarno, S. Si, M. Pd. - Modul Matematika PGMI - 1 BAB I PENDAHULUAN A. Latar Belakang Ada beberapa pendapat yang disampaikan para ahli mengenai definisi dari istilah matematika. Matematika didefinisikan

Lebih terperinci

BAB II KAJIAN TEORI. Morgan, dkk (dalam Walgito, 2004: 167) memberikan definisi mengenai

BAB II KAJIAN TEORI. Morgan, dkk (dalam Walgito, 2004: 167) memberikan definisi mengenai 1 BAB II KAJIAN TEORI 2.1 Hakikat Belajar Matematika Morgan, dkk (dalam Walgito, 2004: 167) memberikan definisi mengenai belajar yaitu: Learning can be defined as any relatively permanent change in behavior

Lebih terperinci

Matematika Semester V

Matematika Semester V Created By Nur Zakyah Muin,S.Pd Page 1 DIMENSI TIGA KOMPETENSI DASAR Mengidentifikasi bangun ruang dan unsur-unsurnya Menghitung luas permukaan bangun ruang Menerapkan konsep volum bangun ruang Menentukan

Lebih terperinci

M O D U L 3 Dimensi Tiga

M O D U L 3 Dimensi Tiga M O D U L 3 Dimensi Tiga Standar Kompetensi Memecahkan masalah yang berkaitan dengan sistem persamaan linear dan pertidaksamaan satu variabel Kompetensi Dasar 3.1 Menentukan kedudukan titik, garis, dan

Lebih terperinci

MENGGAMBAR BIDANG A. MEMBAGI GARIS DAN SUDUT

MENGGAMBAR BIDANG A. MEMBAGI GARIS DAN SUDUT MENGGAMBAR BIDANG A. MEMBAGI GARIS DAN SUDUT 1. MEMBAGI GARIS a. Membagi garis menjadi 2 bagian yang sama panjang Membagi garis menjadi 2 bagian yang sama panjang menggunakan jangka dapat diikuti melalui

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI A. Kajian Pustaka Berdasarkan penelitian yang dilakukan oleh Rini Fatmawati dengan judul Peningkatan Pembelajaran Melalui Model Pembelajaran Picture and Picture pada Pokok Bahasan

Lebih terperinci

CATATAN LAPANGAN OPTIMALISASI PENGGUNAAN STRATEGI TWO STAY TWO STRAY UNTUK MENINGKATKAN KEAKTIFAN DAN KEBERANIAN BELAJAR MATEMATIKA SISWA

CATATAN LAPANGAN OPTIMALISASI PENGGUNAAN STRATEGI TWO STAY TWO STRAY UNTUK MENINGKATKAN KEAKTIFAN DAN KEBERANIAN BELAJAR MATEMATIKA SISWA Lampiran 1 79 CATATAN LAPANGAN OPTIMALISASI PENGGUNAAN STRATEGI TWO STAY TWO STRAY UNTUK MENINGKATKAN KEAKTIFAN DAN KEBERANIAN BELAJAR MATEMATIKA SISWA (PTK Bagi Siswa Kelas VIIIE SMP Negeri 2 Banyudono

Lebih terperinci

GAMBAR TEKNIK PROYEKSI ISOMETRI. Gambar Teknik Proyeksi Isometri

GAMBAR TEKNIK PROYEKSI ISOMETRI. Gambar Teknik Proyeksi Isometri GAMBAR TEKNIK PROYEKSI ISOMETRI Gambar Teknik i halaman ini sengaja dibiarkan kosong Gambar Teknik ii Daftar Isi Daftar Isi... iii... 1 1 Pendahuluan... 1 2 Sumbu, Garis, dan Bidang Isometri... 2 3 Skala

Lebih terperinci

BAB II KAJIAN TEORI. Pembelajaran sebagai proses belajar yang dibangun oleh guru untuk

BAB II KAJIAN TEORI. Pembelajaran sebagai proses belajar yang dibangun oleh guru untuk BAB II KAJIAN TEORI A. Pembelajaran Matematika Pembelajaran sebagai proses belajar yang dibangun oleh guru untuk mengembangkan kreativitas berpikir yang dapat meningkatkan kemampuan berpikir siswa, serta

Lebih terperinci

SD kelas 6 - MATEMATIKA BAB 11. BIDANG DATARLatihan Soal 11.1

SD kelas 6 - MATEMATIKA BAB 11. BIDANG DATARLatihan Soal 11.1 SD kelas 6 - MATEMATIKA BAB 11. BIDANG DATARLatihan Soal 11.1 1. Perhatikan gambar di bawah ini! http://primemobile.co.id/assets/uploads/materi/123/1701_5.png Dari bangun datar di atas, maka sifat bangun

Lebih terperinci

( ) 2. Nilai x yang memenuhi log 9. Jadi 4x 12 = 3 atau x = 3,75

( ) 2. Nilai x yang memenuhi log 9. Jadi 4x 12 = 3 atau x = 3,75 Here is the Problem and the Answer. Diketahui premis premis berikut! a. Jika sebuah segitiga siku siku maka salah satu sudutnya 9 b. Jika salah satu sudutnya 9 maka berlaku teorema Phytagoras Ingkaran

Lebih terperinci

Geometri. Bab. Di unduh dari : Bukupaket.com. Titik Garis Bidang Ruang Jarak Sudut Diagonal A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR

Geometri. Bab. Di unduh dari : Bukupaket.com. Titik Garis Bidang Ruang Jarak Sudut Diagonal A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR Bab Geometri A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR Kompetensi Dasar Setelah mengikuti pembelajaran ini siswa mampu: 1. Memiliki motivasi internal, kemampuan bekerjasama, konsisten, sikap disiplin,

Lebih terperinci

MENGGAMBAR BIDANG A. MEMBAGI GARIS DAN SUDUT

MENGGAMBAR BIDANG A. MEMBAGI GARIS DAN SUDUT MENGGAMBAR BIDANG A. MEMBAGI GARIS DAN SUDUT MENGGAMBAR BIDANG A. MEMBAGI GARIS DAN SUDUT 1. MEMBAGI GARIS a. Membagi garis menjadi 2 bagian yang sama panjang Membagi garis menjadi 2 bagian yang sama

Lebih terperinci

empat8geometri - - GEOMETRI - - Geometri 4108 Matematika BANGUN RUANG DAN BANGUN DATAR

empat8geometri - - GEOMETRI - - Geometri 4108 Matematika BANGUN RUANG DAN BANGUN DATAR - - GEOMETRI - - Modul ini singkron dengan Aplikasi Android, Download melalui Play Store di HP Kamu, ketik di pencarian empat8geometri Jika Kamu kesulitan, Tanyakan ke tentor bagaimana cara downloadnya.

Lebih terperinci

Jadwal Pelaksanaan Penelitian Kelas Eksperimen (X-5) dan Kelas Kontrol (X-4) SMA Negeri 2 Purworejo. No Hari, Tanggal Jam ke- Kelas Materi

Jadwal Pelaksanaan Penelitian Kelas Eksperimen (X-5) dan Kelas Kontrol (X-4) SMA Negeri 2 Purworejo. No Hari, Tanggal Jam ke- Kelas Materi Lampiran 1 Jadwal Pelaksanaan Penelitian Kelas Eksperimen (X-5) dan Kelas Kontrol (X-4) SMA Negeri 2 Purworejo No Hari, Tanggal Jam ke- Kelas Materi 1 Selasa, 31 Mei 2016 3 4 X-4 Pretest 2 Selasa, 31 Mei

Lebih terperinci

Lampiran 1.1 Surat Izin Penelitian

Lampiran 1.1 Surat Izin Penelitian LAMPIRAN 1 Lampiran 1.1 Surat Izin Penelitian Lampiran 1.2 Surat Keterangan Telah Melaksanakan Penelitian Lampiran 1.3 Surat Permohonan Validasi (Validator I) Lampiran 1.4 Surat Permohonan Validasi (Validator

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) 58 Lampiran 1 59 Lampiran 2 60 61 Lampiran 3 RENCANA PELAKSANAAN PEMBELAJARAN (RPP) SIKLUS I Nama Sekolah : SDN Karangduren 4 Mata Pelajaran : Matematika Kelas/Semester : 4/II Alokasi Waktu : 4 x 35 menit

Lebih terperinci

Sisi-Sisi pada Bidang Trapesium

Sisi-Sisi pada Bidang Trapesium Sisi-Sisi pada Bidang Trapesium Sebuah bidang yang berbentuk trapesium terdiri dari empat sisi (rusuk) dimana terdapat sepasang sisi yang sejajar. Kedua sisi yang sejajar tidak sama panjangnya. Dua sisi

Lebih terperinci

we w lcom lc e om Tu T rn u O rn n O

we w lcom lc e om Tu T rn u O rn n O welcome Turn On Diagonal bidang 1. Inamaratus solikhah 2. Muhammad Asbi Sukandar Exit HOME Diagonal Bidang, Diagonal Ruang, Bidang Diagonal, Dan Penerapannya Latihan 1 Materi Latihan 2 Latihan 3 Latihan

Lebih terperinci

NO NO INDUK NAMA SISWA Nikmatul Yuliana Fitria Afifatu R Nur Luthfiyani F M Astri Khoirul Anas 76

NO NO INDUK NAMA SISWA Nikmatul Yuliana Fitria Afifatu R Nur Luthfiyani F M Astri Khoirul Anas 76 DATA NAMA SISWA KELAS VIII A EKSPERIMEN NO NO INDUK NAMA SISWA NILAI 1 8629 Nikmatul Yuliana 86 2 8584 Fitria Afifatu R 100 3 8640 Nur Luthfiyani F M 76 4 8616 Astri Khoirul Anas 76 5 8663 Hadanas Sabila

Lebih terperinci

Bab 7. Bangun Ruang Sisi Datar. Standar Kompetensi. Memahami sifat-sifat kubus, balok, prisma, limas dan bagian-bagiannya serta menentukan ukurannya

Bab 7. Bangun Ruang Sisi Datar. Standar Kompetensi. Memahami sifat-sifat kubus, balok, prisma, limas dan bagian-bagiannya serta menentukan ukurannya Bab 7 Bangun Ruang Sisi Datar Standar Kompetensi Memahami sifat-sifat kubus, balok, prisma, limas dan bagian-bagiannya serta menentukan ukurannya Kompetensi Dasar 4.1 Menentukan unsur dan bagian-bagian

Lebih terperinci

>> SOAL MATEMATIKA SMA KELAS X SEMESTER 2 << ( 100 SOAL MATEMATIKA )

>> SOAL MATEMATIKA SMA KELAS X SEMESTER 2 << ( 100 SOAL MATEMATIKA ) >> SOAL MATEMATIKA SMA KELAS X SEMESTER > Pilihlah jawaban yang benar! Soal nomor samai 60 tentang Trigonometri:. Cos 0 o senilai dengan. cos 0 o cos 0 o sin 0 o cos 0 o sin

Lebih terperinci

BAB II KAJIAN TEORI. berbagai metode sehingga siswa dapat melakukan kegiatan belajar secara

BAB II KAJIAN TEORI. berbagai metode sehingga siswa dapat melakukan kegiatan belajar secara BAB II KAJIAN TEORI A. Kajian Teori 1. Pembelajaran Matematika di SMP Menurut Sugihartono (2012: 81), pembelajaran adalah suatu upaya yang dilakukan secara sengaja oleh pendidik untuk menyampaikan ilmu

Lebih terperinci

LUAS IRISAN PENAMPANG H G E F D C H G E F D C

LUAS IRISAN PENAMPANG H G E F D C H G E F D C LUS IRISN PNMPN Soal-soal Latihan a. Pada kubus. dengan rusuk = 1, R pada sehingga R= ¾. Lukis dan hitunglah luas irisan penampang yang melalui R // // dengan kubus. b. iketahui kubus. dengan rusuk = 1,

Lebih terperinci

SMA NEGERI 5 BEKASI UJIAN SEKOLAH

SMA NEGERI 5 BEKASI UJIAN SEKOLAH PEMERINTAH KOTA BEKASI DINAS PENDIDIKAN SMA NEGERI 5 BEKASI Jl. Gamprit Jatiwaringin Asri Pondok Gede 0-86080 UJIAN SEKOLAH TAHUN PELAJARAN 0/05 L E M B A R S O A L Mata Pelajaran : Matematika Kelas/Program

Lebih terperinci

Bangun Ruang (2)_soal Kelas 4 SD. 1. Unsur pada bangun ruang kubus yang berjumlah 8 adalah... A. Titik sudut B. Bidang sisi C. Rusuk D.

Bangun Ruang (2)_soal Kelas 4 SD. 1. Unsur pada bangun ruang kubus yang berjumlah 8 adalah... A. Titik sudut B. Bidang sisi C. Rusuk D. Bangun Ruang (2)_soal Kelas 4 SD 1. Unsur pada bangun ruang kubus yang berjumlah 8 adalah.... A. Titik sudut B. Bidang sisi C. Rusuk D. Diagonal sisi 2. Perhatikan gambar berikut! Bangun ruang di atas

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2009/2010

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2009/2010 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 9/. Diberikan premis sebagai berikut : Premis : Jika harga BBM naik, maka harga bahan pokok naik. Premis : Jika harga bahan pokok naik maka

Lebih terperinci

VIII. Bangun Ruang, Simetri, dan Pencerminan BAB. Peta Konsep. Kata Kunci. Tujuan Pembelajaran

VIII. Bangun Ruang, Simetri, dan Pencerminan BAB. Peta Konsep. Kata Kunci. Tujuan Pembelajaran BAB VIII Bangun Ruang, Simetri, dan Pencerminan Tujuan Pembelajaran Setelah mempelajari bab ini, kamu diharapkan mampu: 1. Menyebutkan sifat-sifat balok dan kubus, 2. Membuat jaring-jaring balok dan kubus,

Lebih terperinci

Bangun Ruang. 2s = s 2. 3s = s 3. Contoh Soal : Berapa Volume, luas dan keliling kubus di bawah ini?

Bangun Ruang. 2s = s 2. 3s = s 3. Contoh Soal : Berapa Volume, luas dan keliling kubus di bawah ini? SD - Bangun Ruang. Kubus H G E F D C s A s B Cii-cii Kubus :. Jumlah bidang sisi ada 6 buah yang bebentuk buju sangka (ABCD, EFGH, ABFE, BCGF, CDHG, ADHE,). Mempunyai 8 titik sudut (A, B, C, D, E, F, G,

Lebih terperinci

PEMERINTAH KOTA BONTANG DINAS PENDIDIKAN YAYASAN VIDATRA R-SMA-BI YPVDP

PEMERINTAH KOTA BONTANG DINAS PENDIDIKAN YAYASAN VIDATRA R-SMA-BI YPVDP Jl. Raya Badak No., Kompleks PT Badak NGL Bontang, Kalimantan Timur 75 Telepon: (058) 559, 5598, 5515 Faksimile: (058) 5591 Contoh Soal Ulangan Umum Semester II Tahun Pelajaran 011/01 Mata Pelajaran Kelas

Lebih terperinci

DIMENSI TIGA. 3. Limas. Macam-macam Bangun Ruang : 1. Kubus : 1 luas alas x tinggi. Volume Limas = 3. = luas alas + luas bidang sisi tegak

DIMENSI TIGA. 3. Limas. Macam-macam Bangun Ruang : 1. Kubus : 1 luas alas x tinggi. Volume Limas = 3. = luas alas + luas bidang sisi tegak DIMENSI TIA Macam-macam angun Ruang :. Limas. Kubus : Volume Limas luas alas x tinggi Kubus AD. EH di atas mempunyai rusuk-rusuk yang panjangnya a. Panjang diagonal bidang (AH) a Panjang diagonal ruang

Lebih terperinci

SMA NEGERI 5 BEKASI UJIAN SEKOLAH

SMA NEGERI 5 BEKASI UJIAN SEKOLAH PEMERINTAH KOTA BEKASI DINAS PENDIDIKAN SMA NEGERI 5 BEKASI Jl. Gamprit Jatiwaringin Asri Pondok Gede 0-4600 UJIAN SEKOLAH TAHUN PELAJARAN 04/05 L E M B A R S O A L Mata Pelajaran : Matematika Kelas/Program

Lebih terperinci

LKS 1. Unsur-unsur & Sifat-sifat Kubus dan Balok. Kelompok :

LKS 1. Unsur-unsur & Sifat-sifat Kubus dan Balok. Kelompok : LKS 1 Unsur-unsur & Sifat-sifat Kubus dan Balok Mata Pelajaran : Matematika Satuan Pendidikan : SMP Nilai Anggota Kelompok : 1. 2. 3. 4. 5. Kelompok : Kompetensi Dasar : 5.1 Mengidentifikasi sifat-sifat

Lebih terperinci

PROYEKSI ISOMETRI PENDAHULUAN

PROYEKSI ISOMETRI PENDAHULUAN PROYEKSI ISOMETRI PENDAHULUAN Proyeksi isometri(k) dapat digolongkan sebagai gambar piktorial. Ketiga bidang pada sebuah objek 3D digambar dan tampak jelas. Dimensi objek gambar pun dapat diukur langsung

Lebih terperinci

SURAT PERMOHONAN VALIDASI

SURAT PERMOHONAN VALIDASI Lampiran : 1 bendel instrumen SURAT PERMOHONAN VALIDASI Hal : permohonan validasi instrumen Kepada Yth. Rahayu achmiati, S.Pd Di SMP N 2 Badegan Dengan hormat, Saya yang bertanda tangan dibawah ini: Nama

Lebih terperinci

SEGITIGA DAN SEGIEMPAT

SEGITIGA DAN SEGIEMPAT SEGITIGA DAN SEGIEMPAT A. Pengertian Segitiga Jika tiga buah titik A, B dan C yang tidak segaris saling di hubungkan,dimana titik A dihubungkan dengan B, titik B dihubungkan dengan titik C, dan titik C

Lebih terperinci

BAB II KAJIAN PUSTAKA. bentuk satuan tertentu guna keperluan belajar. 12 Departemen Pendidikan

BAB II KAJIAN PUSTAKA. bentuk satuan tertentu guna keperluan belajar. 12 Departemen Pendidikan 15 BAB II KAJIAN PUSTAKA A. Modul Pembelajaran 1. Pengertian Modul Pembelajaran Istilah modul dipinjam dari dunia teknologi, yaitu alat ukur yang lengkap dan merupakan satu kesatuan program yang dapat

Lebih terperinci

C. 30 Januari 2001 B. 29 Januari 2001

C. 30 Januari 2001 B. 29 Januari 2001 1. Notasi pembentuk himpunan dari B = {1, 4, 9} adalah... A. B = {x x kuadrat tiga bilangan asli yang pertama} B. B = {x x bilangan tersusun yang kurang dari 10} C. B = {x x kelipatan bilangan 2 dan 3

Lebih terperinci

PEMANFAATAN APLIKASI GEOGEBRA DALAM GEOMETRI RUANG

PEMANFAATAN APLIKASI GEOGEBRA DALAM GEOMETRI RUANG PEMANFAATAN APLIKASI GEOGEBRA DALAM GEOMETRI RUANG DI SUSUN OLEH : AULIA DWI UTARI FADILAH NUR NUR HASANAH PRODI PENDIDIKAN MATEMATIKA 4/SEMESTER 5 FAKULTAS ILMU TARBIYAH DAN KEGURUAN UNIVERSITAS ISLAM

Lebih terperinci

SOAL PREDIKSI ULANGAN KENAIKAN KELAS MATEMATIKA TINGKAT SMP KELAS 8 TAHUN 2014 WAKTU 120 MENIT

SOAL PREDIKSI ULANGAN KENAIKAN KELAS MATEMATIKA TINGKAT SMP KELAS 8 TAHUN 2014 WAKTU 120 MENIT SOAL PREDIKSI ULANGAN KENAIKAN KELAS MATEMATIKA TINGKAT SMP KELAS 8 TAHUN 2014 WAKTU 120 MENIT Pilihan 1. Pada gambar berikut, tali busur ditunjukkan oleh A. AO B. CO C. BO D. BC 2. Panjang jari jari suatu

Lebih terperinci

SOAL BANGUN RUANG. a. 1000 dm 3 b. 600 dm 3 c. 400 dm 3 d. 100 dm 3 e. 10 dm 3

SOAL BANGUN RUANG. a. 1000 dm 3 b. 600 dm 3 c. 400 dm 3 d. 100 dm 3 e. 10 dm 3 SOAL BANGUN RUANG Soal Pilihan Ganda 1. Diketahui kubus dengan panjang diagonal sisi 5 2 meter, luas permukaan kubus tersebut adalah a. 5 m 2 b. 25 m 2 c. 100 m 2 d. 150 m 2 e. 250 m 2 2. Dikeatui bak

Lebih terperinci

Geometri Ruang (Dimensi 3)

Geometri Ruang (Dimensi 3) Geometri Ruang (Dimensi 3) Beberapa Benda Ruang Yang Beraturan Kubus Tabung volume = a³ luas = 6a² rusuk kubus = a panjang diagonal = a 2 panjang diagonal ruang = a 3 r = jari-jari t = tinggi volume =

Lebih terperinci

LAMPIRAN Data Penelitian Nilai Siswa

LAMPIRAN Data Penelitian Nilai Siswa LAMPIRAN Data Penelitian Nilai Siswa No Parameter Satuan Baku mutu Metode analisis G43 67 44 53 51 G44 67 43 39 39 G45 68 37 45 52 G46 71 41 41 53 G47 61 33 45 52 G48 66 39 41 53 G49 67 44 40 42 G50 75

Lebih terperinci

Ringkasan Materi Matematika Untuk SMP Persiapan UN Web : erajenius.blogspot.com --- FB. : Era Jenius --- CP

Ringkasan Materi Matematika Untuk SMP Persiapan UN Web : erajenius.blogspot.com --- FB. : Era Jenius --- CP Lingkaran & Garis Singgung A. Unsur-Unsur Lingkaran Lingkaran adalah tempat kedudukan titik-titik yang berjarak sama terhadap satu titik tetap yang disebut titik pusat lingkaran. Lambang lingkaran dengan

Lebih terperinci

Pembahasan OSN Matematika SMA Tahun 2013 Seleksi Tingkat Provinsi. Tutur Widodo. Bagian Pertama : Soal Isian Singkat

Pembahasan OSN Matematika SMA Tahun 2013 Seleksi Tingkat Provinsi. Tutur Widodo. Bagian Pertama : Soal Isian Singkat Pembahasan OSN Matematika SMA Tahun 013 Seleksi Tingkat Provinsi Tutur Widodo Bagian Pertama : Soal Isian Singkat 1. Diberikan tiga lingkaran dengan radius r =, yang saling bersinggungan. Total luas dari

Lebih terperinci

PAKET 5 1. Hasil dari 4 5 2, 6 adalah B C D.

PAKET 5 1. Hasil dari 4 5 2, 6 adalah B C D. 1 3 1. Hasil dari 4 5 2, 6 adalah... 2 4 A. 13 7 B. 17 7 C. 13 12 D. 17 12 2. Operasi @ artinya kalikan bilangan pertama dengan dua, kemudian kurangilah hasilnya dengan tiga kali bilangan kedua. Nilai

Lebih terperinci

Lampiran 1 PROFIL MADRASAH

Lampiran 1 PROFIL MADRASAH Lampiran 1 PROFIL MADRASAH Nama Madrasah : MA AL BIDAYAH Status : TERAREDITASI B Tanggal : 11 November 2009 Alamat Madrasah : Jl.Hadiningrat No.03 Desa Candi ecamatan Bandungan abupaten Semarang 50665

Lebih terperinci

SANGGAR 14 SMA JAKARTA TIMUR

SANGGAR 14 SMA JAKARTA TIMUR SANGGAR 4 SMA JAKARTA TIMUR SOAL DAN SOLUSI TRY OUT BERSAMA KE- Selasa, 0 Januari 05. Diketahui dua premis: Premis : Jika Romeo sakit maka Juliet menangis Premis : Juliet tersenyum-senyum Negasi dari kerimpulan

Lebih terperinci

DINAS PENDIDIKAN KABUPATEN MALANG MGMP MATEMATIKA SMPN SATAP TRYOUT UN menit

DINAS PENDIDIKAN KABUPATEN MALANG MGMP MATEMATIKA SMPN SATAP TRYOUT UN menit DINAS PENDIDIKAN KABUPATEN MALANG MGMP MATEMATIKA SMPN SATAP P.15 TRYOUT UN 2013 Mata Pelajaran Matematika Hari/Tanggal Waktu 120 menit 1. Hasil dari -15 + (-12 : 3) adalah... a -19 b -11 c -9 d 9 2. Hasil

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2009/2010

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2009/2010 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 9/. Diberikan premis sebagai berikut : Premis : Jika harga BBM naik, maka harga bahan pokok naik. Premis : Jika harga bahan pokok naik maka

Lebih terperinci

MATA KULIAH PROYEKSI & PERSPEKTIF

MATA KULIAH PROYEKSI & PERSPEKTIF SEMESTER GASAL 2010 MATA KULIAH PROYEKSI & PERSPEKTIF Oleh: Dwi Retno Sri Ambarwati, M.Sn JURUSAN PENDIDIKAN SENI RUPA Company FBS UNY PROYEKSI Definisi Gambar Proyeksi adalah gambar bayangan atau konstruksi

Lebih terperinci

BAB II KAJIAN TEORETIS

BAB II KAJIAN TEORETIS BAB II KAJIAN TEORETIS A. Pembelajaran Matematika Pembelajaran matematika adalah proses interaksi antara guru dan siswa yang melibatkan pengembangan pola berfikir dan mengolah logika pada suatu lingkungan

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 015 CALON TIM OLIMPIADE MATEMATIKA INDONESIA 016 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Disusun oleh : 1. 015 = 5 13 31 Banyaknya faktor

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA BAB II KAJIAN PUSTAKA A. Kajian Pustaka 1. Pembelajaran Matematika Pembelajaran merupakan hal yang penting dalam dunia pendidikan. Dalam pembelajaran berkaitan dengan kondisi lingkungan serta interaksi

Lebih terperinci

SILABUS PEMBELAJARAN

SILABUS PEMBELAJARAN SILABUS PEMBELAJARAN Nama Sekolah :... Mata Pelajaran : MATEMATIKA Kelas / Program : X / UMUM Semester : GENAP STANDAR KOMPETENSI: 4. Menggunakan logika matematika dalam pemecahan masalah yang berkaitan

Lebih terperinci

. A.M. A. Titik, Garis, dan Bidang BANGUN GEOMETRI

. A.M. A. Titik, Garis, dan Bidang BANGUN GEOMETRI A. Titik, Garis, dan Bidang BANGUN GEOMETRI Suatu titik menyatakan letak atau posisi dari sesuatu yang tidak mempunyai ukuran, maka titik tidak mempunyai ukuran. Dikatakan bahwa titik berdimensi nol (tak

Lebih terperinci

BANGUN RUANG BAHAN BELAJAR MANDIRI 5

BANGUN RUANG BAHAN BELAJAR MANDIRI 5 BAHAN BELAJAR MANIRI 5 BANGUN RUANG PENAHULUAN untuk membantu calon guru dan guru Sekolah dasar dalam memahami konsep geometri bangun ruang, bidang empat (limas), bidang enam (prisma), dan bangun ruang

Lebih terperinci

Geometri. Bab. Titik Garis Bidang Ruang Jarak Sudut Diagonal A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR

Geometri. Bab. Titik Garis Bidang Ruang Jarak Sudut Diagonal A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR Bab Geometri A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR Kompetensi Dasar Setelah mengikuti pembelajaran ini siswa mampu: 1. memiliki motivasi internal dan merasakan keindahan dan keteraturan matematika

Lebih terperinci

KUMPULAN SOAL MATEMATIKA KELAS VIII (BSE DEWI N)

KUMPULAN SOAL MATEMATIKA KELAS VIII (BSE DEWI N) KUMPULAN SOAL MATEMATIKA KELAS VIII (BSE DEWI N) Kumpulan Soal Matematika Kelas VIII (BSE Dewi N) Faktorisasi Suku Aljabar A. Pilihlah salah satu jawaban yang tepat. 1. Pada bentuk aljabar 2x2 + 3xy y2

Lebih terperinci

MATEMATIKA. Pertemuan 2 N.A

MATEMATIKA. Pertemuan 2 N.A MATEMATIKA Pertemuan 2 N.A smile.akbar@yahoo.co.id Awali setiap aktivitas dengan membaca Basmallah Soal 1 (Operasi Bentuk Aljabar) Bentuk Sederhana dari adalah a. b. c. d. Pembahasan ( A ) Soal 2 (Pola

Lebih terperinci

PAKET 2 1. Hasil dari. adalah...

PAKET 2 1. Hasil dari. adalah... 1. Hasil dari A. B. C. D. 1 7 17 7 1 12 17 12 1 5, 75 4 2 adalah... 2 5 2. Operasi @ artinya kalikan bilangan pertama dengan tiga, kemudian kurangilah hasilnya dengan dua kali bilangan kedua. Nilai dari

Lebih terperinci

LAMPIRAN 1 RPP SIKLUS 1 DENGAN MODEL PEMBELAJARAN KOOPERATIF TIPE THINK PAIR SHARE

LAMPIRAN 1 RPP SIKLUS 1 DENGAN MODEL PEMBELAJARAN KOOPERATIF TIPE THINK PAIR SHARE LAMPIRAN 1 RPP SIKLUS 1 DENGAN MODEL PEMBELAJARAN KOOPERATIF TIPE THINK PAIR SHARE 108 RENCANA PELAKSANAAN PEMBELAJARAN SIKLUS 1 MODEL PEMBELAJARAN KOOPERATIF TIPE THINK PAIR SHARE Satuan Pendidikan Mata

Lebih terperinci