Materi W9b GEOMETRI RUANG. Kelas X, Semester 2. B. Menggambar dan Menghitung jarak.

Ukuran: px
Mulai penontonan dengan halaman:

Download "Materi W9b GEOMETRI RUANG. Kelas X, Semester 2. B. Menggambar dan Menghitung jarak."

Transkripsi

1 Materi W9b GEOMETRI RUANG Kelas X, Semester 2 B. Menggambar dan Menghitung jarak

2 B. Menggambar dan Menghitung Jarak Jarak dua objek dalam dimensi tiga adalah jarak terpendek yang ditarik dari kedua objek itu (1) Jarak dua titik P dan Q Jarak titik P dan Q adalah panjang ruas garis PQ d. P Q.

3 Nomor W5201 Pada kubus ABCD.EFGH dengan rusuk 8 cm terdapat titik P di tengah-tengah AB. Jarak titik G ke titik P adalah A. 9 cm B. 10 cm C. 12 cm D. 14 cm E. 15 cm E A H D F B G C Menu

4 (2) Jarak titik P ke garis g Tarik garis dari P memotong tegak lurus dengan g Titik potong garis tersebut P. dengan g adalah Q Jarak titk P ke garis g adalah panjang ruas garis PQ d Q. g

5 Nomor W8602 Pada kubus ABCD.EFGH dengan rusuk 6 cm, tentukanlah jarak titik B ke garis EG A. 2 6 cm B. 3 6 cm C. 2 3 cm D. 3 3 cm E H F G 6 E. 4 3 cm A D. B C

6 Nomor W7903 Pada kubus ABCD.EFGH dengan rusuk 6 cm, tentukanlah jarak titik C ke garis AG A. 2 6 cm B. 3 6 cm C. 2 3 cm D. 3 3 cm E H F G 6 E. 4 3 cm D. C A B

7 (3) Jarak titik P ke bidang W Tarik garis dari P menembus tegak lurus bidang W Titik tembus garis tersebut dengan bidang W adalah Q Jarak titk P ke bidang W adalah panjang ruas garis PQ. P d W Q.

8 Nomor W1504 Pada kubus ABCD.EFGH dengan rusuk 6 cm terdapat titik P ditengah-tengah AE. Tentukanlah jarak titik P ke bidang BDHF A. 2 3 cm B. 3 3 cm C. 2 2 cm D. 3 2 cm E. 4 3 cm E H D F G C A 6 B

9 Nomor W3405 Pada kubus ABCD.EFGH dengan rusuk 6 cm, tentukanlah jarak titik C ke bidang BDG A. 2 3 cm B. 3 3 cm C. 2 2 cm D. 3 2 cm E H F G E. 4 3 cm D. C A 6 B

10 (4) Jarak dua garis g dan h yang sejajar Ambil sembarang titik P pada garis g Tarik garis dari P memotong tegak lurus dengan h Titik potong garis tersebut dengan h adalah Q Jarak garis g ke garis h adalah panjang ruas garis PQ P. d g Q. h

11 Nomor W4806 Pada kubus ABCD.EFGH dengan rusuk 8 cm tentukanlah jarak garis AB ke garis HG A. 6 3 cm H B. 8 3 cm C. 6 2 cm D. 8 2 cm E F G E. 6 5 cm D C A 8 B

12 (5) Jarak dua bidang V dan W yang sejajar Ambil sembarang titik P pada bidang V Tarik garis dari titik P menembus tegak lurus bidang W Titik tembus garis tersebut pada W adalah Q P. V Jarak bidang V ke bidang W adalah panjang ruas garis PQ W d. Q

13 Nomor W1607 Pada kubus ABCD.EFGH dengan rusuk 8 cm tentukanlah jarak bidang ADHE dan bidang BCGF H A. 6 3 cm B. 8 3 cm E F C. 6 2 cm D. 8 2 cm E. 8 cm D G C A 8 B

14 Nomor W3408 Pada kubus ABCD.EFGH dengan rusuk 6 cm tentukanlah jarak bidang BDG dan bidang AFH A. 2 3 cm H G B. 3 3 cm C. 2 2 cm D. 3 2 cm E F E. 4 3 cm D C A 6 B

15 Soal Latihan W9b Menggambar dan Menghitung jarak

16 Soal 01W135 Pada kubus ABCD.EFGH dengan rusuk 6 cm jarak titik H ke P dimana P adalah titik tengah BF adalah. cm A. 6 2 B. 9 C. 6 5 D. 8 E. 3 6

17 Soal 02W231 Pada kubus ABCD.EFGH dengan rusuk 6 cm terdapat titik P di tengah-tengah EH dan titik Q perpotongah diagonal-diagonal BCGF. Jarak titik P ke Q adalah.. cm A. 4 B. 3 5 C. 4 3 D. 5 2 E. 3 2

18 Soal 03W532 Pada kubus ABCD.EFGH dengan rusuk 8 cm, jarak titik A ke garis HF adalah. cm A. 5 3 B. 4 6 C. 3 6 D. 6 E. 6 3

19 Soal 04W217 Pada kubus ABCD.EFGH dengan rusuk 6 cm, jarak titik A ke garis EC adalah. cm A. 2 6 B. 3 6 C. 6 2 D. 6 3 E. 4

20 Soal 05W397 Pada kubus ABCD.EFGH dengan rusuk 6 cm terdapat titik P ditengah-tengah HG. Jarak titik P ke garis AG adalah..cm A. 3 6 B. 4 C. 2 6 D. 6 3 E. 6

21 Soal 06W491 Pada kubus ABCD.EFGH dengan rusuk 4 cm terdapat titik P dari perpotongan BG dan CF. Jarak titik P ke bidang ADHE adalah.cm A. 2 B. 2 2 C. 2 3 D. 3 2 E. 4

22 Soal 07W438 Pada kubus ABCD.EFGH dengan panjang rusuk 4 2 cm terdapat titik P di tengah-tengah AE. Jarak titik P ke bidang BDHF adalah.cm A. 4 2 B. 4 C. 3 D. 3 3 E. 4 3

23 Soal 08W396 Pada kubus ABCD.EFGH dengan rusuk 6 cm jarak titik E ke bidang AFH adalah cm A. 2 6 B. 4 3 C. 6 D. 4 E. 2 3

24 Soal 09W414 Pada kubus ABCD.EFGH dengan rusuk 6 cm jarak garis EH ke garis BC adalah.cm A. 6 2 B. 6 3 C. 6 D. 2 6 E. 4

25 Soal 10W436 Pada kubus ABCD.EFGH dengan rusuk 12 cm jarak garis AE ke garis HF adalah.cm A. 6 B. 6 2 C. 4 2 D. 8 E. 4

26 Soal 11W277 Pada kubus ABCD.EFGH dengan rusuk 8 cm jarak garis EG ke garis BD adalah.cm A. 6 2 B. 8 2 C. 8 D. 4 2 E. 6

27 Soal 12W415 Pada kubus ABCD.EFGH dengan rusuk 6 cm jarak garis BE ke bidang DCGH adalah..cm A. 6 B. 6 2 C. 2 6 D. 4 E. 3

28 Soal 13W376 Pada kubus ABCD.EFGH dengan rusuk 6 cm jarak bidang AFH ke bidang BDG adalah.. A. 3 2 B. 3 C. 3 D. 2 3 E. 4 2

29 Soal 14W278 Pada kubus ABCD.EFGH dengan rusuk 6 cm jarak garis BG ke garis HF adalah.. A. 3 B. 4 C. 4 2 D. 2 3 E. 4 3

30 Soal 15W456 Pada kubus ABCD.EFGH dengan rusuk 6 cm jarak garis HB ke garis AC adalah..cm A. 6 2 B. 2 6 C. 6 D. 3 3 E. 3

31 Soal 16W275 Pada kubus ABCD.EFGH dengan rusuk 12 cm jarak garis FD ke garis BG adalah..cm A. 6 B. 2 2 C. 2 3 D. 2 6 E. 4 3

32 Soal 17W332 Pada kubus ABCD.EFGH dengan rusuk 12 cm jarak garis AH ke garis DG adalah..cm A. 3 3 B. 4 3 C. 3 2 D. 4 2 E. 6 2

33 Soal 18W513 Pada kubus ABCD.EFGH dengan rusuk 6 cm terdapat titik P yakni perpotongan diagonal EFGH. Jarak garis AP ke BD adalah..cm A. 2 3 B. 3 2 C. 5 2 D. 3 3 E. 6

34 Soal 19W518 Pada kubus ABCD.EFGH dengan rusuk 12 cm jarak garis AB ke bidang CDEF adalah.cm A. 6 2 B. 6 3 C. 3 3 D. 3 2 E. 6

35 Soal 20W594 Pada kubus ABCD.EFGH dengan rusuk 4 cm jarak garis HD ke bidang ACF adalah.cm A. 5 B. 6 C. 4 5 D. 6 2 E. 0

36 Soal 21W414 Pada kubus ABCD.EFGH dengan rusuk 6 cm jarak garis EG ke bidang ACF adalah.cm A. 2 3 B. 0 C. 3 2 D. 2 2 E. 3 3

37 Soal 22W275 Pada kubus ABCD.EFGH dengan rusuk 8 cm Jika titik P ditengah-tengah EF dan Q titik tengah BC maka jarak PQ adalah.cm A. 8 2 B. 4 2 C. 4 3 D. 4 6 E. 6

38 Soal 23W257 Pada kubus ABCD.EFGH dengan rusuk 6 cm jarak garis AF ke bidang BDG adalah A. 3 3 B. 2 3 C. 3 2 D. 2 2 E. 3

39 Soal 24W294 Pada kubus ABCD.EFGH dengan rusuk 12 cm titik-titik K, L dan M berturut-turut merupakan titik tengah BC, CD dan CG. Jarak antara AFH dan KLM adalah A. 6 B. 4 3 C. 6 2 D. 4 2 E. 6 3

40 Soal 25W417 Pada kubus ABCD.EFGH dengan rusuk 16 cm titik P di tengah-tengah AB. Jarak titik P ke garis FH adalah.cm A B. 6 2 C. 6 3 D. 2 6 E. 4 3

41 Soal 26W398 Pada kubus ABCD.EFGH dengan rusuk 3 cm diketahui titik P ditengah-tengah DH, jarak garis EF dan BP adalah.cm 6 6 A. B C. 3 3 D. E

42

Materi W9a GEOMETRI RUANG. Kelas X, Semester 2. A. Kedudukan Titik, Garis dan Bidang dalam Ruang.

Materi W9a GEOMETRI RUANG. Kelas X, Semester 2. A. Kedudukan Titik, Garis dan Bidang dalam Ruang. Materi W9a GEOMETRI RUANG Kelas X, Semester 2 A. Kedudukan Titik, Garis dan Bidang dalam Ruang www.yudarwi.com A. Kedudukan Titik, Garis dan bidang dalam Ruang (1) Kedudukan Titik dan titik Titik berimpit

Lebih terperinci

Materi W9c GEOMETRI RUANG. Kelas X, Semester 2. C. Menggambar dan Menghitung Sudut.

Materi W9c GEOMETRI RUANG. Kelas X, Semester 2. C. Menggambar dan Menghitung Sudut. Materi W9c GEOMETRI RUANG Kelas X, Semester C. Menggambar dan Menghitung Sudut www.yudarwi.com C. Menggambar dan Menghitung Sudut Sudut dalam dimensi tiga adalah sudut antara garis dan garis, garis dan

Lebih terperinci

LEMBAR KERJA SISWA KE-3

LEMBAR KERJA SISWA KE-3 LEMBAR KERJA SISWA KE-3 Mata Pelajaran : Matematika Pokok Bahasan : Dimensi Tiga Kelas / Semester : X / 2 Pertemuan Ke : 4 dan 5 Alokasi Waktu : 4 jam ( 4 x 45 menit ) C. Menggambar Kubus dan Balok 01.

Lebih terperinci

LEMBAR AKTIVITAS SISWA DIMENSI TIGA (WAJIB)

LEMBAR AKTIVITAS SISWA DIMENSI TIGA (WAJIB) Nama Siswa Kelas LEMBAR AKTIVITAS SISWA DIMENSI TIGA (WAJIB) 5. Diagonal Ruang adalah Ruas garis yang menghubungkan dua titik : sudut yang saling berhadapan dalam satu ruang. : Kompetensi Dasar (KURIKULUM

Lebih terperinci

Modul Matematika X IPA Semester 2 Dimensi Tiga

Modul Matematika X IPA Semester 2 Dimensi Tiga Modul Matematika X IPA Semester Dimensi Tiga Tahun Pelajaran 0 05 SMA Santa Angela Jl. Merdeka No. Bandung Dimensi Tiga X IPA Sem /0-05 Peta Konsep Pengertian titik, garis, dan bidang Titik terhadap garis

Lebih terperinci

LEMBAR AKTIVITAS SISWA DIMENSI TIGA (PEMINATAN)

LEMBAR AKTIVITAS SISWA DIMENSI TIGA (PEMINATAN) Nama Siswa Kelas : : Kompetensi Dasar (KURIKULUM 2013): LEMBAR AKTIVITAS SISWA DIMENSI TIGA (PEMINATAN) 3. Bidang Bidang (Bidang datar) merupakan kumpulan titik yang membentuk suatu luasan (bidang) datar

Lebih terperinci

LEMBAR AKTIVITAS SISWA DIMENSI TIGA Ruas garis PQ Ruas garis QR Garis PQ = garis QR (karena bila diperpanjang akan mewakili garis yang sama)

LEMBAR AKTIVITAS SISWA DIMENSI TIGA Ruas garis PQ Ruas garis QR Garis PQ = garis QR (karena bila diperpanjang akan mewakili garis yang sama) Nama Siswa Kelas LEMBAR AKTIVITAS SISWA DIMENSI TIGA Ruas garis PQ Ruas garis QR : Garis PQ = garis QR (karena bila diperpanjang akan : mewakili garis yang sama) A. PENGERTIAN TITIK, GARIS DAN BIDANG Titik,

Lebih terperinci

1. Titik, Garis dan Bidang Dalam Ruang. a. Defenisi. Titik ditentukan oleh letaknya dan tidak mempunyai ukuran sehingga dikatakan berdimensi nol

1. Titik, Garis dan Bidang Dalam Ruang. a. Defenisi. Titik ditentukan oleh letaknya dan tidak mempunyai ukuran sehingga dikatakan berdimensi nol 1. Titik, Garis dan Bidang Dalam Ruang a. Defenisi Titik ditentukan oleh letaknya dan tidak mempunyai ukuran sehingga dikatakan berdimensi nol Titik digambarkan dengan sebuah noktah dan penamaannya menggunakan

Lebih terperinci

A B. Kedudukan titik, Garis dan bidang dalam bangun ruang. Pengertian titik

A B. Kedudukan titik, Garis dan bidang dalam bangun ruang. Pengertian titik Pengertian titik Kedudukan titik, Garis dan bidang dalam bangun ruang Suatu titik ditentukan oleh letaknya dan tidak mempunyai besaran. Sebuah titik dilukiskan dengan noktah dan biasanya dinotasikan dengan

Lebih terperinci

DAFTAR ISI PRAKATA DAFTAR ISI KATA KATA MOTIVASI TUJUAN PEMBELAJARAN KUBUS DAN BALOK

DAFTAR ISI PRAKATA DAFTAR ISI KATA KATA MOTIVASI TUJUAN PEMBELAJARAN KUBUS DAN BALOK PRAKATA Puji syukur penulis panjatkan kepada Tuhan Yang Maha Esa karena buku ini dapat diselesaikan. Buku ini penulis hadirkan sebagai panduan bagi siswa dalam mempelajari salah satu materi matematika.

Lebih terperinci

Lampiran B1: Rencana Pelaksanaan Pembelajaran RENCANA PELAKSANAAN PEMBELAJARAN (RPP van Hiele) dimensi tiga.

Lampiran B1: Rencana Pelaksanaan Pembelajaran RENCANA PELAKSANAAN PEMBELAJARAN (RPP van Hiele) dimensi tiga. Lampiran B1: Rencana Pelaksanaan Pembelajaran RENCANA PELAKSANAAN PEMBELAJARAN (RPP van Hiele) Nama Sekolah Mata Pelajaran Kelas / Semester : SMA Negeri 1 Wundulako : Matematika : X / 2 (dua) Standar Kompetensi

Lebih terperinci

Dimensi Tiga (Sudut Pada Bangun Ruang)

Dimensi Tiga (Sudut Pada Bangun Ruang) Dimensi Tiga (Sudut Pada Bangun Ruang) Sudut terbentuk karena dua sinar garis bertemu pada suatu titik. Dalam bangun ruang, ada banyak titik yang dapat menjadi pertemuan dua sinar garis. Sudut pada bangun

Lebih terperinci

(Dengan Pendekatan Vektor) Oleh: Murdanu, M.Pd.

(Dengan Pendekatan Vektor) Oleh: Murdanu, M.Pd. (Dengan Pendekatan Vektor) Oleh: Muru, M.Pd. JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA PROGRAM STUDI MATEMATIKA TAHUN AKADEMIK /. Diberikan

Lebih terperinci

KEGIATAN BELAJAR II SUDUT ANTARA GARIS DAN BIDANG

KEGIATAN BELAJAR II SUDUT ANTARA GARIS DAN BIDANG KEGIATAN BELAJAR II SUDUT ANTARA GARIS DAN BIDANG A. Pengantar g h 1 h 3 h 2 H Gambar 2.1 Pada Gambar 2 (ii) mana yang dimaksud sudut antara garis g dan bidang H? Sudut antara g dengan h 1, h 2, h 3, atau

Lebih terperinci

ANGKET KEPERCAYAAN DIRI

ANGKET KEPERCAYAAN DIRI ANGKET KEPERCAYAAN DIRI 45 46 Angket Kepercayaan Diri Nama : Nomer Absen : Kelas : Jenis Kelamin : Petunjuk Pengisian Di bawah ini terdapat beberapa pernyataan tentang diri Anda yang berkaitan dengan kepercayaan

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA 5 BAB II KAJIAN PUSTAKA 2.1. Kajian Teori 2.1.1. Pengertian Luas Permukaan Bangun Ruang Luas daerah permukaan bangun ruang adalah jumlah luas daerah seluruh permukaannya yaitu luas daerah bidang-bidang

Lebih terperinci

MODUL MATEMATIKA. Geometri Dimensi Tiga. Maylisa Handayani,S.Pd. Penyusun: MAT. 06. Geometri Dimensi Tiga

MODUL MATEMATIKA. Geometri Dimensi Tiga. Maylisa Handayani,S.Pd. Penyusun: MAT. 06. Geometri Dimensi Tiga MODUL MATEMATIKA Geometri Dimensi Tiga Penyusun: Maylisa Handayani,S.Pd MAT. 06. Geometri Dimensi Tiga i Kata Pengantar Puji sukur kami haturkan ke hadirat Tuhan Yang Maha Esa atas segala karunianya, sehingga

Lebih terperinci

KUBUS DAN BALOK. Kata-Kata Kunci: unsur-unsur kubus dan balok jaring-jaring kubus dan balok luas permukaan kubus dan balok volume kubus dan balok

KUBUS DAN BALOK. Kata-Kata Kunci: unsur-unsur kubus dan balok jaring-jaring kubus dan balok luas permukaan kubus dan balok volume kubus dan balok 8 KUBUS DAN BALOK Perhatikan benda-benda di sekitar kita. Dalam kehidupan sehari-hari kita sering memanfaatkan benda-benda seperti gambar di samping, misalnya kipas angin, video cd, dan kardus bekas mainan.

Lebih terperinci

Daftar Nilai Ketuntasan Siswa Pra Siklus No Nama KKM Nilai Keterangan 1 Era Susanti Tuntas 2 Nuri Safitri Belum Tuntas 3 Aldo Kurniawan

Daftar Nilai Ketuntasan Siswa Pra Siklus No Nama KKM Nilai Keterangan 1 Era Susanti Tuntas 2 Nuri Safitri Belum Tuntas 3 Aldo Kurniawan 34 35 Daftar Nilai Ketuntasan Siswa Pra Siklus No Nama KKM Nilai Keterangan 1 Era Susanti 60 80 Tuntas 2 Nuri Safitri 60 45 Belum Tuntas 3 Aldo Kurniawan 60 75 Tuntas 4 Anggi Septiana 60 70 Tuntas 5 Desi

Lebih terperinci

Siswa dapat menyebutkan dan mengidentifikasi bagian-bagian lingkaran

Siswa dapat menyebutkan dan mengidentifikasi bagian-bagian lingkaran KISI-KISI PENULISAN SOAL DAN URAIAN ULANGAN KENAIKAN KELAS Jenis Sekolah Penulis Mata Pelajaran Jumlah Soal Kelas Bentuk Soal AlokasiWaktu Acuan : SMP/MTs : Gresiana P : Matematika : 40 nomor : VIII (delapan)

Lebih terperinci

Bangun Ruang dan Unsur-unsurnya (1)

Bangun Ruang dan Unsur-unsurnya (1) Modul 1 Bangun Ruang dan Unsur-unsurnya (1) Drs. A. Sardjana, M.Pd. PENDAHULUAN G eometri merupakan cabang Matematika yang mempelajari titik, garis, bidang dan benda-benda ruang serta sifat-sifatnya, ukuran-ukurannya

Lebih terperinci

. P GEOMETRI RUANG 3 11/21/2015. A. Menggambar dan Menghitung Jarak. Peta Konsep. A. Menggambar dan Menghitung jarak. Nomor M5201

. P GEOMETRI RUANG 3 11/21/2015. A. Menggambar dan Menghitung Jarak. Peta Konsep. A. Menggambar dan Menghitung jarak. Nomor M5201 Peta Konsep Jurnal Peta Konsep aftar air Materi Materi MIP OMTRI RUN 3 Kelas XII, Semester Menggambar an Menghitung jarak eometri Ruang 3 Menggambar an Menghitung Jarak Menggambar an Menghitung Suut SoalLatihan

Lebih terperinci

MAT. 06. Geometri Dimensi Tiga

MAT. 06. Geometri Dimensi Tiga MAT. 06. Geometri Dimensi Tiga i Kode MAT. 06 Geometri Dimensi Tiga BAGIAN PROYEK PENGEMBANGAN KURIKULUM DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DEPARTEMEN

Lebih terperinci

TRYOUT UAS SMT GANJIL 2015

TRYOUT UAS SMT GANJIL 2015 TRYOUT UAS SMT GANJIL 201 1. Himpunan penyelesaian dari SPLDV dibawah ini adalah... 3x 2y = x + 3y = 2 A. (, -2 ) B. ( 2, - ) C. ( -2, ) D. ( -2, - ) E. ( -, 2 ) 2. Tentukan himpunan penyelesaian SPL TV

Lebih terperinci

K13 Revisi Antiremed Kelas 12 Matematika

K13 Revisi Antiremed Kelas 12 Matematika K Revisi Antiremed Kelas Matematika Geometri Bidang Ruang - Latihan Soal Doc. Name: RKARMATWJB00 Version : 0-0 halaman 0. Diketahui kubus ABCD,EFGH dengan panjang rusuk. Jika P titik HG,Q titik tengah

Lebih terperinci

DIMENSI TIGA 1. Standar Kompetensi: Menentukan kedudukan, jarak, dan besar sudut yang melibatkan titik, garis, dan bidang dalam ruang dimensi tiga.

DIMENSI TIGA 1. Standar Kompetensi: Menentukan kedudukan, jarak, dan besar sudut yang melibatkan titik, garis, dan bidang dalam ruang dimensi tiga. DIMENSI TIGA 1 Standar Kompetensi: Menentukan kedudukan, jarak, dan besar sudut yang melibatkan titik, garis, dan bidang dalam ruang dimensi tiga. Kompetensi Dasar: 1. Menentukan kedudukan titik, garis,

Lebih terperinci

KEDUDUKAN TITIK, GARIS, DAN BIDANG DALAM RUANG

KEDUDUKAN TITIK, GARIS, DAN BIDANG DALAM RUANG KEDUDUKAN TITIK, GARIS, DAN BIDANG DALAM RUANG 1. Penertian Titik, Garis Dan Bidan Tia unsur dasar dalam eometri, yaitu titik, aris, dan bidan. Ketia unsur tersebut, dapat jua disebut sebaai tia unsur

Lebih terperinci

Untuk memudahkan buat segitiga yang memuat titik A dan garis k. Puncak segitiga adalah titik A dan alasnya garis k

Untuk memudahkan buat segitiga yang memuat titik A dan garis k. Puncak segitiga adalah titik A dan alasnya garis k 3. Jarak Dalam Ruang a. Jarak Titik ke Garis Jarak titik A ke garis k adalah panjang segmen garis dari titik A ke titik potong garis melalui titik A tegak lurus garis k Untuk memudahkan buat segitiga yang

Lebih terperinci

Antiremed Kelas 12 Matematika

Antiremed Kelas 12 Matematika Antiremed Kelas Matematika 04- Diagonal Ruang, Diagonal Bidang, Bidang Diagonal. Doc. Name: KARMATWJB040 Version : 0-09 halaman 0. Diketahui kubus ABCD,EFGH dengan panjang rusuk. Jika P titik HG,Q titik

Lebih terperinci

Dr. Winarno, S. Si, M. Pd. - Modul Matematika PGMI - 1 BAB I PENDAHULUAN

Dr. Winarno, S. Si, M. Pd. - Modul Matematika PGMI - 1 BAB I PENDAHULUAN Dr. Winarno, S. Si, M. Pd. - Modul Matematika PGMI - 1 BAB I PENDAHULUAN A. Latar Belakang Ada beberapa pendapat yang disampaikan para ahli mengenai definisi dari istilah matematika. Matematika didefinisikan

Lebih terperinci

BAB II KAJIAN TEORI. Morgan, dkk (dalam Walgito, 2004: 167) memberikan definisi mengenai

BAB II KAJIAN TEORI. Morgan, dkk (dalam Walgito, 2004: 167) memberikan definisi mengenai 1 BAB II KAJIAN TEORI 2.1 Hakikat Belajar Matematika Morgan, dkk (dalam Walgito, 2004: 167) memberikan definisi mengenai belajar yaitu: Learning can be defined as any relatively permanent change in behavior

Lebih terperinci

Matematika Semester V

Matematika Semester V Created By Nur Zakyah Muin,S.Pd Page 1 DIMENSI TIGA KOMPETENSI DASAR Mengidentifikasi bangun ruang dan unsur-unsurnya Menghitung luas permukaan bangun ruang Menerapkan konsep volum bangun ruang Menentukan

Lebih terperinci

M O D U L 3 Dimensi Tiga

M O D U L 3 Dimensi Tiga M O D U L 3 Dimensi Tiga Standar Kompetensi Memecahkan masalah yang berkaitan dengan sistem persamaan linear dan pertidaksamaan satu variabel Kompetensi Dasar 3.1 Menentukan kedudukan titik, garis, dan

Lebih terperinci

MENGGAMBAR BIDANG A. MEMBAGI GARIS DAN SUDUT

MENGGAMBAR BIDANG A. MEMBAGI GARIS DAN SUDUT MENGGAMBAR BIDANG A. MEMBAGI GARIS DAN SUDUT 1. MEMBAGI GARIS a. Membagi garis menjadi 2 bagian yang sama panjang Membagi garis menjadi 2 bagian yang sama panjang menggunakan jangka dapat diikuti melalui

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI A. Kajian Pustaka Berdasarkan penelitian yang dilakukan oleh Rini Fatmawati dengan judul Peningkatan Pembelajaran Melalui Model Pembelajaran Picture and Picture pada Pokok Bahasan

Lebih terperinci

CATATAN LAPANGAN OPTIMALISASI PENGGUNAAN STRATEGI TWO STAY TWO STRAY UNTUK MENINGKATKAN KEAKTIFAN DAN KEBERANIAN BELAJAR MATEMATIKA SISWA

CATATAN LAPANGAN OPTIMALISASI PENGGUNAAN STRATEGI TWO STAY TWO STRAY UNTUK MENINGKATKAN KEAKTIFAN DAN KEBERANIAN BELAJAR MATEMATIKA SISWA Lampiran 1 79 CATATAN LAPANGAN OPTIMALISASI PENGGUNAAN STRATEGI TWO STAY TWO STRAY UNTUK MENINGKATKAN KEAKTIFAN DAN KEBERANIAN BELAJAR MATEMATIKA SISWA (PTK Bagi Siswa Kelas VIIIE SMP Negeri 2 Banyudono

Lebih terperinci

BAB II KAJIAN TEORI. Pembelajaran sebagai proses belajar yang dibangun oleh guru untuk

BAB II KAJIAN TEORI. Pembelajaran sebagai proses belajar yang dibangun oleh guru untuk BAB II KAJIAN TEORI A. Pembelajaran Matematika Pembelajaran sebagai proses belajar yang dibangun oleh guru untuk mengembangkan kreativitas berpikir yang dapat meningkatkan kemampuan berpikir siswa, serta

Lebih terperinci

( ) 2. Nilai x yang memenuhi log 9. Jadi 4x 12 = 3 atau x = 3,75

( ) 2. Nilai x yang memenuhi log 9. Jadi 4x 12 = 3 atau x = 3,75 Here is the Problem and the Answer. Diketahui premis premis berikut! a. Jika sebuah segitiga siku siku maka salah satu sudutnya 9 b. Jika salah satu sudutnya 9 maka berlaku teorema Phytagoras Ingkaran

Lebih terperinci

Jadwal Pelaksanaan Penelitian Kelas Eksperimen (X-5) dan Kelas Kontrol (X-4) SMA Negeri 2 Purworejo. No Hari, Tanggal Jam ke- Kelas Materi

Jadwal Pelaksanaan Penelitian Kelas Eksperimen (X-5) dan Kelas Kontrol (X-4) SMA Negeri 2 Purworejo. No Hari, Tanggal Jam ke- Kelas Materi Lampiran 1 Jadwal Pelaksanaan Penelitian Kelas Eksperimen (X-5) dan Kelas Kontrol (X-4) SMA Negeri 2 Purworejo No Hari, Tanggal Jam ke- Kelas Materi 1 Selasa, 31 Mei 2016 3 4 X-4 Pretest 2 Selasa, 31 Mei

Lebih terperinci

GAMBAR TEKNIK PROYEKSI ISOMETRI. Gambar Teknik Proyeksi Isometri

GAMBAR TEKNIK PROYEKSI ISOMETRI. Gambar Teknik Proyeksi Isometri GAMBAR TEKNIK PROYEKSI ISOMETRI Gambar Teknik i halaman ini sengaja dibiarkan kosong Gambar Teknik ii Daftar Isi Daftar Isi... iii... 1 1 Pendahuluan... 1 2 Sumbu, Garis, dan Bidang Isometri... 2 3 Skala

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) 58 Lampiran 1 59 Lampiran 2 60 61 Lampiran 3 RENCANA PELAKSANAAN PEMBELAJARAN (RPP) SIKLUS I Nama Sekolah : SDN Karangduren 4 Mata Pelajaran : Matematika Kelas/Semester : 4/II Alokasi Waktu : 4 x 35 menit

Lebih terperinci

BAB II KAJIAN TEORI. berbagai metode sehingga siswa dapat melakukan kegiatan belajar secara

BAB II KAJIAN TEORI. berbagai metode sehingga siswa dapat melakukan kegiatan belajar secara BAB II KAJIAN TEORI A. Kajian Teori 1. Pembelajaran Matematika di SMP Menurut Sugihartono (2012: 81), pembelajaran adalah suatu upaya yang dilakukan secara sengaja oleh pendidik untuk menyampaikan ilmu

Lebih terperinci

Geometri. Bab. Di unduh dari : Bukupaket.com. Titik Garis Bidang Ruang Jarak Sudut Diagonal A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR

Geometri. Bab. Di unduh dari : Bukupaket.com. Titik Garis Bidang Ruang Jarak Sudut Diagonal A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR Bab Geometri A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR Kompetensi Dasar Setelah mengikuti pembelajaran ini siswa mampu: 1. Memiliki motivasi internal, kemampuan bekerjasama, konsisten, sikap disiplin,

Lebih terperinci

Bab 7. Bangun Ruang Sisi Datar. Standar Kompetensi. Memahami sifat-sifat kubus, balok, prisma, limas dan bagian-bagiannya serta menentukan ukurannya

Bab 7. Bangun Ruang Sisi Datar. Standar Kompetensi. Memahami sifat-sifat kubus, balok, prisma, limas dan bagian-bagiannya serta menentukan ukurannya Bab 7 Bangun Ruang Sisi Datar Standar Kompetensi Memahami sifat-sifat kubus, balok, prisma, limas dan bagian-bagiannya serta menentukan ukurannya Kompetensi Dasar 4.1 Menentukan unsur dan bagian-bagian

Lebih terperinci

>> SOAL MATEMATIKA SMA KELAS X SEMESTER 2 << ( 100 SOAL MATEMATIKA )

>> SOAL MATEMATIKA SMA KELAS X SEMESTER 2 << ( 100 SOAL MATEMATIKA ) >> SOAL MATEMATIKA SMA KELAS X SEMESTER > Pilihlah jawaban yang benar! Soal nomor samai 60 tentang Trigonometri:. Cos 0 o senilai dengan. cos 0 o cos 0 o sin 0 o cos 0 o sin

Lebih terperinci

LUAS IRISAN PENAMPANG H G E F D C H G E F D C

LUAS IRISAN PENAMPANG H G E F D C H G E F D C LUS IRISN PNMPN Soal-soal Latihan a. Pada kubus. dengan rusuk = 1, R pada sehingga R= ¾. Lukis dan hitunglah luas irisan penampang yang melalui R // // dengan kubus. b. iketahui kubus. dengan rusuk = 1,

Lebih terperinci

Bangun Ruang (2)_soal Kelas 4 SD. 1. Unsur pada bangun ruang kubus yang berjumlah 8 adalah... A. Titik sudut B. Bidang sisi C. Rusuk D.

Bangun Ruang (2)_soal Kelas 4 SD. 1. Unsur pada bangun ruang kubus yang berjumlah 8 adalah... A. Titik sudut B. Bidang sisi C. Rusuk D. Bangun Ruang (2)_soal Kelas 4 SD 1. Unsur pada bangun ruang kubus yang berjumlah 8 adalah.... A. Titik sudut B. Bidang sisi C. Rusuk D. Diagonal sisi 2. Perhatikan gambar berikut! Bangun ruang di atas

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2009/2010

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2009/2010 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 9/. Diberikan premis sebagai berikut : Premis : Jika harga BBM naik, maka harga bahan pokok naik. Premis : Jika harga bahan pokok naik maka

Lebih terperinci

VIII. Bangun Ruang, Simetri, dan Pencerminan BAB. Peta Konsep. Kata Kunci. Tujuan Pembelajaran

VIII. Bangun Ruang, Simetri, dan Pencerminan BAB. Peta Konsep. Kata Kunci. Tujuan Pembelajaran BAB VIII Bangun Ruang, Simetri, dan Pencerminan Tujuan Pembelajaran Setelah mempelajari bab ini, kamu diharapkan mampu: 1. Menyebutkan sifat-sifat balok dan kubus, 2. Membuat jaring-jaring balok dan kubus,

Lebih terperinci

Bangun Ruang. 2s = s 2. 3s = s 3. Contoh Soal : Berapa Volume, luas dan keliling kubus di bawah ini?

Bangun Ruang. 2s = s 2. 3s = s 3. Contoh Soal : Berapa Volume, luas dan keliling kubus di bawah ini? SD - Bangun Ruang. Kubus H G E F D C s A s B Cii-cii Kubus :. Jumlah bidang sisi ada 6 buah yang bebentuk buju sangka (ABCD, EFGH, ABFE, BCGF, CDHG, ADHE,). Mempunyai 8 titik sudut (A, B, C, D, E, F, G,

Lebih terperinci

SMA NEGERI 5 BEKASI UJIAN SEKOLAH

SMA NEGERI 5 BEKASI UJIAN SEKOLAH PEMERINTAH KOTA BEKASI DINAS PENDIDIKAN SMA NEGERI 5 BEKASI Jl. Gamprit Jatiwaringin Asri Pondok Gede 0-4600 UJIAN SEKOLAH TAHUN PELAJARAN 04/05 L E M B A R S O A L Mata Pelajaran : Matematika Kelas/Program

Lebih terperinci

DIMENSI TIGA. 3. Limas. Macam-macam Bangun Ruang : 1. Kubus : 1 luas alas x tinggi. Volume Limas = 3. = luas alas + luas bidang sisi tegak

DIMENSI TIGA. 3. Limas. Macam-macam Bangun Ruang : 1. Kubus : 1 luas alas x tinggi. Volume Limas = 3. = luas alas + luas bidang sisi tegak DIMENSI TIA Macam-macam angun Ruang :. Limas. Kubus : Volume Limas luas alas x tinggi Kubus AD. EH di atas mempunyai rusuk-rusuk yang panjangnya a. Panjang diagonal bidang (AH) a Panjang diagonal ruang

Lebih terperinci

Lampiran 1 PROFIL MADRASAH

Lampiran 1 PROFIL MADRASAH Lampiran 1 PROFIL MADRASAH Nama Madrasah : MA AL BIDAYAH Status : TERAREDITASI B Tanggal : 11 November 2009 Alamat Madrasah : Jl.Hadiningrat No.03 Desa Candi ecamatan Bandungan abupaten Semarang 50665

Lebih terperinci

C. 30 Januari 2001 B. 29 Januari 2001

C. 30 Januari 2001 B. 29 Januari 2001 1. Notasi pembentuk himpunan dari B = {1, 4, 9} adalah... A. B = {x x kuadrat tiga bilangan asli yang pertama} B. B = {x x bilangan tersusun yang kurang dari 10} C. B = {x x kelipatan bilangan 2 dan 3

Lebih terperinci

PEMERINTAH KOTA BONTANG DINAS PENDIDIKAN YAYASAN VIDATRA R-SMA-BI YPVDP

PEMERINTAH KOTA BONTANG DINAS PENDIDIKAN YAYASAN VIDATRA R-SMA-BI YPVDP Jl. Raya Badak No., Kompleks PT Badak NGL Bontang, Kalimantan Timur 75 Telepon: (058) 559, 5598, 5515 Faksimile: (058) 5591 Contoh Soal Ulangan Umum Semester II Tahun Pelajaran 011/01 Mata Pelajaran Kelas

Lebih terperinci

SOAL PREDIKSI ULANGAN KENAIKAN KELAS MATEMATIKA TINGKAT SMP KELAS 8 TAHUN 2014 WAKTU 120 MENIT

SOAL PREDIKSI ULANGAN KENAIKAN KELAS MATEMATIKA TINGKAT SMP KELAS 8 TAHUN 2014 WAKTU 120 MENIT SOAL PREDIKSI ULANGAN KENAIKAN KELAS MATEMATIKA TINGKAT SMP KELAS 8 TAHUN 2014 WAKTU 120 MENIT Pilihan 1. Pada gambar berikut, tali busur ditunjukkan oleh A. AO B. CO C. BO D. BC 2. Panjang jari jari suatu

Lebih terperinci

SOAL BANGUN RUANG. a. 1000 dm 3 b. 600 dm 3 c. 400 dm 3 d. 100 dm 3 e. 10 dm 3

SOAL BANGUN RUANG. a. 1000 dm 3 b. 600 dm 3 c. 400 dm 3 d. 100 dm 3 e. 10 dm 3 SOAL BANGUN RUANG Soal Pilihan Ganda 1. Diketahui kubus dengan panjang diagonal sisi 5 2 meter, luas permukaan kubus tersebut adalah a. 5 m 2 b. 25 m 2 c. 100 m 2 d. 150 m 2 e. 250 m 2 2. Dikeatui bak

Lebih terperinci

Geometri Ruang (Dimensi 3)

Geometri Ruang (Dimensi 3) Geometri Ruang (Dimensi 3) Beberapa Benda Ruang Yang Beraturan Kubus Tabung volume = a³ luas = 6a² rusuk kubus = a panjang diagonal = a 2 panjang diagonal ruang = a 3 r = jari-jari t = tinggi volume =

Lebih terperinci

Pembahasan OSN Matematika SMA Tahun 2013 Seleksi Tingkat Provinsi. Tutur Widodo. Bagian Pertama : Soal Isian Singkat

Pembahasan OSN Matematika SMA Tahun 2013 Seleksi Tingkat Provinsi. Tutur Widodo. Bagian Pertama : Soal Isian Singkat Pembahasan OSN Matematika SMA Tahun 013 Seleksi Tingkat Provinsi Tutur Widodo Bagian Pertama : Soal Isian Singkat 1. Diberikan tiga lingkaran dengan radius r =, yang saling bersinggungan. Total luas dari

Lebih terperinci

Ringkasan Materi Matematika Untuk SMP Persiapan UN Web : erajenius.blogspot.com --- FB. : Era Jenius --- CP

Ringkasan Materi Matematika Untuk SMP Persiapan UN Web : erajenius.blogspot.com --- FB. : Era Jenius --- CP Lingkaran & Garis Singgung A. Unsur-Unsur Lingkaran Lingkaran adalah tempat kedudukan titik-titik yang berjarak sama terhadap satu titik tetap yang disebut titik pusat lingkaran. Lambang lingkaran dengan

Lebih terperinci

PROYEKSI ISOMETRI PENDAHULUAN

PROYEKSI ISOMETRI PENDAHULUAN PROYEKSI ISOMETRI PENDAHULUAN Proyeksi isometri(k) dapat digolongkan sebagai gambar piktorial. Ketiga bidang pada sebuah objek 3D digambar dan tampak jelas. Dimensi objek gambar pun dapat diukur langsung

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2009/2010

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2009/2010 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 9/. Diberikan premis sebagai berikut : Premis : Jika harga BBM naik, maka harga bahan pokok naik. Premis : Jika harga bahan pokok naik maka

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 015 CALON TIM OLIMPIADE MATEMATIKA INDONESIA 016 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Disusun oleh : 1. 015 = 5 13 31 Banyaknya faktor

Lebih terperinci

. A.M. A. Titik, Garis, dan Bidang BANGUN GEOMETRI

. A.M. A. Titik, Garis, dan Bidang BANGUN GEOMETRI A. Titik, Garis, dan Bidang BANGUN GEOMETRI Suatu titik menyatakan letak atau posisi dari sesuatu yang tidak mempunyai ukuran, maka titik tidak mempunyai ukuran. Dikatakan bahwa titik berdimensi nol (tak

Lebih terperinci

SILABUS PEMBELAJARAN

SILABUS PEMBELAJARAN SILABUS PEMBELAJARAN Nama Sekolah :... Mata Pelajaran : MATEMATIKA Kelas / Program : X / UMUM Semester : GENAP STANDAR KOMPETENSI: 4. Menggunakan logika matematika dalam pemecahan masalah yang berkaitan

Lebih terperinci

Geometri. Bab. Titik Garis Bidang Ruang Jarak Sudut Diagonal A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR

Geometri. Bab. Titik Garis Bidang Ruang Jarak Sudut Diagonal A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR Bab Geometri A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR Kompetensi Dasar Setelah mengikuti pembelajaran ini siswa mampu: 1. memiliki motivasi internal dan merasakan keindahan dan keteraturan matematika

Lebih terperinci

LAMPIRAN 1 RPP SIKLUS 1 DENGAN MODEL PEMBELAJARAN KOOPERATIF TIPE THINK PAIR SHARE

LAMPIRAN 1 RPP SIKLUS 1 DENGAN MODEL PEMBELAJARAN KOOPERATIF TIPE THINK PAIR SHARE LAMPIRAN 1 RPP SIKLUS 1 DENGAN MODEL PEMBELAJARAN KOOPERATIF TIPE THINK PAIR SHARE 108 RENCANA PELAKSANAAN PEMBELAJARAN SIKLUS 1 MODEL PEMBELAJARAN KOOPERATIF TIPE THINK PAIR SHARE Satuan Pendidikan Mata

Lebih terperinci

DINAS PENDIDIKAN KABUPATEN MALANG MGMP MATEMATIKA SMPN SATAP TRYOUT UN menit

DINAS PENDIDIKAN KABUPATEN MALANG MGMP MATEMATIKA SMPN SATAP TRYOUT UN menit DINAS PENDIDIKAN KABUPATEN MALANG MGMP MATEMATIKA SMPN SATAP P.15 TRYOUT UN 2013 Mata Pelajaran Matematika Hari/Tanggal Waktu 120 menit 1. Hasil dari -15 + (-12 : 3) adalah... a -19 b -11 c -9 d 9 2. Hasil

Lebih terperinci

PAKET 5 1. Hasil dari 4 5 2, 6 adalah B C D.

PAKET 5 1. Hasil dari 4 5 2, 6 adalah B C D. 1 3 1. Hasil dari 4 5 2, 6 adalah... 2 4 A. 13 7 B. 17 7 C. 13 12 D. 17 12 2. Operasi @ artinya kalikan bilangan pertama dengan dua, kemudian kurangilah hasilnya dengan tiga kali bilangan kedua. Nilai

Lebih terperinci

MATA KULIAH PROYEKSI & PERSPEKTIF

MATA KULIAH PROYEKSI & PERSPEKTIF SEMESTER GASAL 2010 MATA KULIAH PROYEKSI & PERSPEKTIF Oleh: Dwi Retno Sri Ambarwati, M.Sn JURUSAN PENDIDIKAN SENI RUPA Company FBS UNY PROYEKSI Definisi Gambar Proyeksi adalah gambar bayangan atau konstruksi

Lebih terperinci

Kumpulan Soal Matematika Kelas VIII (BSE Dewi N)

Kumpulan Soal Matematika Kelas VIII (BSE Dewi N) Faktorisasi Suku Aljabar A. Pilihlah salah satu jawaban yang tepat. 1. Pada bentuk aljabar 2x 2 + 3xy y 2 terdapat... variabel. a. 1 c. 3 b. 2 d. 4 2. Suku dua terdapat pada bentuk aljabar... a. 2x 2 +

Lebih terperinci

SOAL PERSIAPAN UJIAN NASIONAL TAHUN PELAJARAN 2016 / 2017

SOAL PERSIAPAN UJIAN NASIONAL TAHUN PELAJARAN 2016 / 2017 SOAL PERSIAPAN UJIAN NASIONAL TAHUN PELAJARAN 06 / 07 MATA PELAJARAN : Matematika KELOMPOK : TEKNIK (RPL, TKJ). Bentuk sederhana dari p q r 0 0 0 0 p q r 8 0 p q r 8 pqr 6 5 5 p q r p q r p q r 5 adalah....

Lebih terperinci

BANGUN RUANG BAHAN BELAJAR MANDIRI 5

BANGUN RUANG BAHAN BELAJAR MANDIRI 5 BAHAN BELAJAR MANIRI 5 BANGUN RUANG PENAHULUAN untuk membantu calon guru dan guru Sekolah dasar dalam memahami konsep geometri bangun ruang, bidang empat (limas), bidang enam (prisma), dan bangun ruang

Lebih terperinci

19. VEKTOR. 2. Sudut antara dua vektor adalah θ. = a 1 i + a 2 j + a 3 k; a. a =

19. VEKTOR. 2. Sudut antara dua vektor adalah θ. = a 1 i + a 2 j + a 3 k; a. a = 19. VEKTOR A. Vektor Secara Geometri 1. Ruas garis berarah AB = b a. Sudut antara dua vektor adalah θ 3. Bila AP : PB = m : n, maka: B. Vektor Secara Aljabar a1 1. Komponen dan panjang vektor: a = a =

Lebih terperinci

PENALARAN DALAM GEOMETRI PELATIHAN GURU-GURU MATEMATIKA DI MANOKWARI PAPUA BARAT

PENALARAN DALAM GEOMETRI PELATIHAN GURU-GURU MATEMATIKA DI MANOKWARI PAPUA BARAT PENALARAN DALAM GEOMETRI PELATIHAN GURU-GURU MATEMATIKA DI MANOKWARI PAPUA BARAT Oleh: Drs.Turmudi, M.Ed., M.Sc., Ph.D. PENDIDIKAN MATEMATIKA UNIVERSITAS PENDIDIKAN INDONESIA 2010 1 PENALARAN DALAM GEOMETRI

Lebih terperinci

LAMPIRAN 1 SURAT IJIN DAN SURAT KETERANGAN PENELITIAN

LAMPIRAN 1 SURAT IJIN DAN SURAT KETERANGAN PENELITIAN LAMPIRAN 119 120 LAMPIRAN 1 SURAT IJIN DAN SURAT KETERANGAN PENELITIAN 120 121 122 123 124 LAMPIRAN 2 JADWAL PENELITIAN DAN JURNAL MAGANG 124 125 126 127 128 LAMPIRAN 3 HASIL VALIDASI DAN TINGKAT KESUKARAN

Lebih terperinci

LAMPIRAN 1 SURAT IJIN DAN SURAT KETERANGAN PENELITIAN

LAMPIRAN 1 SURAT IJIN DAN SURAT KETERANGAN PENELITIAN LAMPIRAN 119 120 LAMPIRAN 1 SURAT IJIN DAN SURAT KETERANGAN PENELITIAN 120 121 122 123 124 LAMPIRAN 2 JADWAL PENELITIAN DAN JURNAL MAGANG 124 125 126 127 128 LAMPIRAN 3 HASIL VALIDASI DAN TINGKAT KESUKARAN

Lebih terperinci

Rencana Pelaksanaan Pembelajaran (RPP) (Siklus I Tindakan 1) I. Standar Kompetensi Menentukan sifat bangun ruang dan hubungan antar bangun.

Rencana Pelaksanaan Pembelajaran (RPP) (Siklus I Tindakan 1) I. Standar Kompetensi Menentukan sifat bangun ruang dan hubungan antar bangun. Rencana Pelaksanaan Pembelajaran (RPP) (Siklus I Tindakan 1) Mata Pelajaran : Matematika Kelas / Semester : IV / 2 Pokok Bahasan : Sifat-Sifat Bangun Ruang Sub Pokok Bahasan : Sifat-Sifat Kubus Alokasi

Lebih terperinci

SMA KELAS X SEMESTER 2 RUANG DIMENSI TIGA

SMA KELAS X SEMESTER 2 RUANG DIMENSI TIGA untuk SMA KELAS X SEMESTER 2 RUANG DIMENSI TIGA Disusun oleh : Nisa Ul Istiqomah 1 MATEMATIKA SMA Jilid IB kelas X Berdasarkan standar isi 2006 Penyusun Pembimbing Validator Modul : Nisa Ul Istiqomah :

Lebih terperinci

50 LAMPIRAN NILAI SISWA SOAL INSTRUMEN Nama : Kelas : No : BERILAH TANDA SILANG (X) PADA JAWABAN YANG DIANGGAP BENAR! 1. Persegi adalah.... a. Bangun segiempat yang mempunyai empat sisi dan panjang

Lebih terperinci

Kajian Matematika SMP Palupi Sri Wijiyanti, M.Pd Semester/Kelas : 3A3 Tanggal Pengumpulan : 14 Desember 2015

Kajian Matematika SMP Palupi Sri Wijiyanti, M.Pd Semester/Kelas : 3A3 Tanggal Pengumpulan : 14 Desember 2015 PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS PGRI YOGYAKARTA TAHUN 2015 Mata Kuliah Dosen Pengampu : : Kajian Matematika SMP Palupi Sri Wijiyanti, M.Pd Semester/Kelas

Lebih terperinci

Lampiran 1 Jadwal Pertemuan

Lampiran 1 Jadwal Pertemuan LAMPIRAN 57 58 Lampiran 1 Jadwal Pertemuan No Hari/Tanggal Kegiatan Tempat 1 Senin, 11 April 2016 Siklus I,pertemuan I SDN Kumpulrejo 03 2 Sabtu, 16 April 2016 Siklus I,pertemuan II SDN Kumpulrejo 03 3

Lebih terperinci

PAKET 2 1. Hasil dari. adalah...

PAKET 2 1. Hasil dari. adalah... 1. Hasil dari A. B. C. D. 1 7 17 7 1 12 17 12 1 5, 75 4 2 adalah... 2 5 2. Operasi @ artinya kalikan bilangan pertama dengan tiga, kemudian kurangilah hasilnya dengan dua kali bilangan kedua. Nilai dari

Lebih terperinci

Beberapa Benda Ruang Yang Beraturan

Beberapa Benda Ruang Yang Beraturan Beberapa Benda Ruang Yang Beraturan Kubus Tabung rusuk kubus = a volume = a³ panjang diagonal bidang = a 2 luas = 6a² panjang diagonal ruang = a 3 r = jari-jari t = tinggi volume = π r² t luas = 2πrt Prisma

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 15 BAB II LANDASAN TEORI A. Matematika 1. Pengertian Matematika Matematika adalah salah satu ilmu yang sangat penting dalam dan untuk hidup kita. Banyak hal di sekitar kita yang selalu berhubungan dengan

Lebih terperinci

Unit 3 KONSEP DASAR GEOMETRI DAN PENGUKURAN. Edy Ambar Roostanto. Pendahuluan

Unit 3 KONSEP DASAR GEOMETRI DAN PENGUKURAN. Edy Ambar Roostanto. Pendahuluan Unit 3 KONSEP DASAR GEOMETRI DAN PENGUKURAN Edy Ambar Roostanto Pendahuluan P ada unit ini kita akan mempelajari beberapa konsep dasar dalam Geometri dan Pengukuran yang terdiri dari bangun datar geometri

Lebih terperinci

SOAL UN DAN PENYELESAIANNYA 2005

SOAL UN DAN PENYELESAIANNYA 2005 1. Keliling segitiga ABC pada gambar adalah 8 cm. Panjang sisi AB =... 4 D. (8-2 ) cm (4 - ) cm E. (8-4 ) cm (4-2 ) cm Diketahui segitiga sama kaki = AB = AC Misalkan : AB = AC = a BC² = a² + a² = 2 a²

Lebih terperinci

ISTIYANTO.COM. memenuhi persamaan itu adalah B. 4 4 C. 4 1 PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPA

ISTIYANTO.COM. memenuhi persamaan itu adalah B. 4 4 C. 4 1 PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPA PERBANDINGAN KISI-KISI UN 009 DAN 00 SMA IPA Materi Logika Matematika Kemampuan yang diuji UN 009 UN 00 Menentukan negasi pernyataan yang diperoleh dari penarikan kesimpulan Menentukan negasi pernyataan

Lebih terperinci

, maka nilai dari a b c

, maka nilai dari a b c Nama : Ximple Education No. Peserta : 08-6600-747. Jika a =, b =, dan c = 3, maka nilai dari a b c 8 4 5 3 6 6 =. a b c A. 3 B. 6 C. 4 D. E. 4. Bentuk sederhana dari (3 6 )( 6 + 3 ) =. A. 30 + 4 3 B. 30

Lebih terperinci

MENINGKATKAN PEMAHAMAN KONSEP & PENALARAN MATEMATIS SISWA SEKOLAH MENENGAH ATAS MELALUI PEMBELAJARAN MENGGUNAKAN TEKNIK SOLO/SUPERITEM

MENINGKATKAN PEMAHAMAN KONSEP & PENALARAN MATEMATIS SISWA SEKOLAH MENENGAH ATAS MELALUI PEMBELAJARAN MENGGUNAKAN TEKNIK SOLO/SUPERITEM MENINGKATKAN PEMAHAMAN KONSEP & PENALARAN MATEMATIS SISWA SEKOLAH MENENGAH ATAS MELALUI PEMBELAJARAN MENGGUNAKAN TEKNIK SOLO/SUPERITEM (Penelitian Eksperimen pada Siswa Kelas X Salah Satu SMA di Bandung)

Lebih terperinci

Keliling segitiga ABC pada gambar adalah 8 cm. Panjang sisi AB =... A. 4

Keliling segitiga ABC pada gambar adalah 8 cm. Panjang sisi AB =... A. 4 1. Keliling segitiga ABC pada gambar adalah 8 cm. Panjang sisi AB =... A. 4 D. (8-2 ) cm B. (4 - ) cm E. (8-4 ) cm C. (4-2 ) cm Jawaban : E Diketahui segitiga sama kaki = AB = AC Misalkan : AB = AC = a

Lebih terperinci

Soal UN 2009 Materi KISI UN 2010 Prediksi UN 2010

Soal UN 2009 Materi KISI UN 2010 Prediksi UN 2010 PREDIKSI UN 00 SMA IPA BAG. (Berdasar buku terbitan Istiyanto: Bank Soal Matematika-Gagas Media) Logika Matematika Soal UN 009 Materi KISI UN 00 Prediksi UN 00 Menentukan negasi pernyataan yang diperoleh

Lebih terperinci

Assocation Rule. Data Mining

Assocation Rule. Data Mining Assocation Rule Data Mining Association Rule Analisis asosiasi atau association rule mining adalah teknik data mining untuk menemukan aturan assosiatif antara suatu kombinasi item. Aturan yang menyatakan

Lebih terperinci

KONSISTENSI PADA GEOMETRI EUCLID DAN GEOMETRI HIPERBOLIK

KONSISTENSI PADA GEOMETRI EUCLID DAN GEOMETRI HIPERBOLIK KONSISTENSI PADA GEOMETRI EUCLID DAN GEOMETRI HIPERBOLIK (Jurnal 9) Memen Permata Azmi Mahasiswa S2 Pendidikan Matematika Universitas Pendidikan Indonesia Setelah beberapa pertemuan mempelajari tentang

Lebih terperinci

Matematika Proyek Perintis I Tahun 1980

Matematika Proyek Perintis I Tahun 1980 Matematika Proyek Perintis I Tahun 980 MA-80-0 Di antara lima hubungan di bawah ini, yang benar adalah Jika B C dan B C, maka A C Jika A B dan C B, maka A C Jika B A dan C B, maka A C Jika A C dan C B,

Lebih terperinci

1. AB = 16 cm, CE = 8 cm, BD = 5 cm, CD = 3 cm. Tentukan panjang EF! 20 PEMBAHASAN : BCD : Lihat ABE : Lihat AFE : Lihat

1. AB = 16 cm, CE = 8 cm, BD = 5 cm, CD = 3 cm. Tentukan panjang EF! 20 PEMBAHASAN : BCD : Lihat ABE : Lihat AFE : Lihat 1. AB = 1, CE = 8, BD =, CD =. Tentukan panjang EF! 0 BCD : ABE : BC BC BC CD BC 4 BD 9 1 AB 1 BE 144 AE 4 8 AE 0 AE AE EF EF 0 AFE : AE AF 0 0 EF EF 400 400 800 . Keliling ABC = 4, Luas ABC = 4. Tentukan

Lebih terperinci

1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l B. 2 < p < 3 C.

1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l B. 2 < p < 3 C. 1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l 2 < p < 3 p > 3 1 < p < 2 p < 1 atau p > 2 Kunci : C Persamaan fungsi : F(x)

Lebih terperinci

18. VEKTOR. 2. Sudut antara dua vektor adalah. a = a 1 i + a 2 j + a 3 k; a = 2. Penjumlahan, pengurangan, dan perkalian vektor dengan bilangan real:

18. VEKTOR. 2. Sudut antara dua vektor adalah. a = a 1 i + a 2 j + a 3 k; a = 2. Penjumlahan, pengurangan, dan perkalian vektor dengan bilangan real: 8. VEKTOR A. Vektor Secara Geometri. Ruas garis berarah AB = b a. Sudut antara dua vektor adalah. Bila AP : PB = m : n, maka: B. Vektor Secara Aljabar a. Komponen dan panjang vektor: a = a a a = a = a

Lebih terperinci

6. Jika diketahui fungsi f ( x) 5 putaran sama dengan.. 1. Besar sudut 6. maka nilai. f adalah. a. 150 o b. 180 o c. 210 o d. 240 o e. 300 o. b.

6. Jika diketahui fungsi f ( x) 5 putaran sama dengan.. 1. Besar sudut 6. maka nilai. f adalah. a. 150 o b. 180 o c. 210 o d. 240 o e. 300 o. b. KERJAKAN SECARA JUJUR DAN MANDIRI Page of. Besar sudut putaran sama dengan.. 0 o 0 o 0 o 0 o 00 o. Jika ABC sama kaki dan siku-siku di B maka nilai cos A 0. Jika diketahui sin x = untuk π < x < π maka

Lebih terperinci

K13 Revisi Antiremed Kelas 12 Matematika

K13 Revisi Antiremed Kelas 12 Matematika K Revisi Antiremed Kelas Matematika Persiapan Penilaian Akhir Semester (PAS) Ganjil Doc. Name: RKARMATWJB0PAS Version : 0- halaman 0. Diketahui kubus ABCD.EFGH dengan panjang rusuk. Jika P titik tengah

Lebih terperinci