Aljabar Linier. Kuliah

Ukuran: px
Mulai penontonan dengan halaman:

Download "Aljabar Linier. Kuliah"

Transkripsi

1 Aljabar Linier Kuliah

2 Materi Kuliah Transformasi Linier dari F n ke F m Perubahan Matriks Basis Matriks dari Transformasi Linier Perubahan Basis untuk Transformasi Linier Matriks-matriks Ekivalen 2

3 Transformasi Linier dari F n ke F m Review: Misalkan τ: R n R m ditulis sebagai τ A : R n R m, sehingga τ A x = Ax Dengan A matriks standar berukuran m n. Contoh Misalkan τ: R 4 R 3 transformasi linier yang didefinisikan dengan τ x 1 x 2 x 3 x 4 = 2x 1 3x 2 + x 3 5x 4 4x 1 + x 2 2x 3 + x 4 5x 1 x 2 + 4x τ x = Maka τ dapat dibuat menjadi x 1 x 2 x 3 x 4 3

4 Teorema Jika A matriks m n atas F, maka τ A L F n, F m. 2. Jika τ L F n, F m maka τ = τ A, di mana A = τ e 1 τ e 2 τ e n Teorema 2.11 Misalkan A matriks m n atas F. 1. τ A : F n F m injektif jika dan hanya jika rk A = n. 2. τ A : F n F m surjektif jika dan hanya jika rk A = m. 4

5 Perubahan Matriks Basis Review: Koordinat matriks dari suatu vektor terhadap basis terurut. 5

6 Perubahan Operator Basis Misalkan B = b 1, b 2,, b n dan C = c 1, c 2,, c n adalah basis terurut untuk ruang vektor V. Maka dapat ditentukan v B dan v C. Perhatikan gambar berikut: Pemetaan yang membawa v B ke v C adalah φ B,C = φ C φ B 1 dan disebut perubahan operator basis atau perubahan operator koordinat. 6

7 Perhatikan bahwa φ B,C adalah suatu operator pada Fn yang mempunyai bentuk τ A, di mana Matriks A ini disimbolkan dengan M B,C matriks basis dari B ke C. dan disebut sebagai perubahan 7

8 Teorema 2.12 Misalkan B = b 1, b 2,, b n dan C basis terurut untuk V. Maka pengganti operator basis φ B,C = φ C φ B 1 adalah automorfisma dari F n (operator linier yang bijektif dari F n ke F n ) dimana matriks standarnya adalah Oleh karena itu M B,C = b 1 C b 2 C b n C v C = M B,C v B dan M C,B, = M B,C 1 8

9 Teorema 2.13 Jika diberikan dua dari pernyataan berikut: 1. Matriks invertibel A 2. Basis terurut B untuk F n 3. Basis terurut C untuk F n Maka yang ketiga secara unik ditentukan oleh persamaan A = M B,C 9

10 Matriks dari Transformasi Linier Misalkan τ: V W adalah transformasi linier, dimana dim V = n dan dim W = m dan misalkan B = b 1, b 2,, b n basis terurut untuk V dan C basis terurut untuk W. Maka pemetaan θ: v B τ(v) C adalah representasi dari τ sebagai transformasi linier dari F n ke F m, dalam arti bahwa mengetahui θ adalah ekivalen dengan mengetahui τ. Dan representasi ini bergantung pada pemilihan basis terurut B dan C. Oleh karena θ adalah transformasi linier dari F n ke F m, maka transformasi ini adalah perkalian dengan matriks m n, yaitu τ(v) C = A v B Yanita, Matematika FMIPA Unand 11/25/

11 Teorema 2.14 Misalkan τ L V, W dan B = b 1, b 2,, b n basis terurut untuk V dan C basis terurut untuk W. Maka τ dapat direpresentasikan terkait dengan B dan C sebagai perkalian matriks, yaitu τ(v) C = τ B,C v B di mana disebut sebagai matriks dari τ yang terkait dengan basis B dan C. Jika V = W dan B = C, maka τ B,C = τ B,B dan ditulis τ B,B dengan τ B, sehingga τ(v) B = τ B v B Yanita, Matematika FMIPA Unand 11/25/

12 Contoh 1 Misalkan D: P 2 P 2, operator derivatif dengan P 2 adalah ruang vektor dari semua polinomial berderajat paling besar 2. Misalkan B = C = (1, x, x 2 ). Tentukan D B dan D(5 + x + 2x 2 ) B. Penyelesaian : D B = = = D(b 1 ) B D(1) B D(b 2 ) B D(b 3 ) B D(x) B D(x 2 ) B D(5 + x + 2x 2 ) B = = Jadi D 5 + x + 2x 2 = 1 + 4x 12

13 Contoh 2 Misalkan T: R 3 R 2 dengan T B = 0 1 1, terurut di R 2. Tentukan:, a. Matriks standar untuk T. b. Matriks T B,C. x y z = x 3z y basis terurut di R 3 dan C = 1 1, 1 1 basis 13

14 Teorema 2.15 Misalkan V dan W ruang vektor berdimensi hingga atas lapangan F, dengan B = b 1, b 2,, b n basis terurut untuk V dan C = c 1, c 2,, c m basis terurut untuk W. 1. Pemetaan μ: L V, W M m,n (F) didefinisikan dengan μ τ = τ B,C adalah isomorfisma, sehingga L V, W M m,n (F). Karenanya dim L V, W = dim( M m,n (F)) = m n. 2. Jika σ L U, V dan τ L V, W dan jika B, C dan D basis terurut untuk U, V dan W berturut-turut, maka τσ B,D = τ C,D σ B,C Dengan demikian, matriks dari hasilkali (komposisi) τσ adalah hasilkali dari matriks τ dan matriks σ 14

15 Bukti Teorema 2.15 (1) Diketahui Vdan W ruang vector atas lapangan F, dim(v) < dan dim(w) <. B = b 1, b 2,, b n basis terurut untuk V C = c 1, c 2,, c m basis terurut untuk W μ: L V, W M m,n (F) didefinisikan dengan μ τ = τ B,C Akan dibuktikan μ adalah isomorfisma. 15

16 Bukti Teorema 2.15 (2) Diketahui U, V dan W ruang vector atas lapangan F,dim(U) <, dim(v) < dan dim(w) < B adalah basis untuk U, C adalah basis untuk V dan D adalah basis untuk W σ L U, V dan τ L V, W Akan dibuktikan τσ B,D = τ C,D σ B,C 16

17 Perubahan Basis untuk Transformasi Linier Teorema 2.16 Misalkan τ L V, W, (B, C) dan (B, C ) masing-masing pasangan basis terurut untuk V dan W. Maka τ B,C = M C,C τ B,C M B,B Korolari 2.17 Misalkan τ L V, B dan C basis terurut untuk V. Maka matriks τ yang terkait dengan C dapat ditulis dalam bentuk matriks τ yang terkait dengan B sebagai berikut: τ C = M B,C τ B M B,C 1 17

18 Matriks-Matriks ekivalen Karena perubahan matriks basis adalah tepat matriks invertibel maka τ B,C = M C,C τ B,C M B,B mempunyai bentuk τ B,C = P τ B,C Q 1, di mana P dan Q adalah matriks invertibel. Definisi Dua matriks A dan B ekivalen jika terdapat matriks invertibel P dan Q, sehingga B = PAQ 1. 18

19 Teorema 2.18 Misalkan V dan W ruang vektor dengan dim V = n dan dim W = m. Maka dua matriks m n A dan B ekivalen jika dan hanya jika matriks-matriks tersebut merepresentasikan transformasi linier yang sama τ L V, W, tetapi mungkin terkait dengan basis terurut yang berbeda. Dalam kasus ini, A dan B merepresentasikan tepat himpunan transformasi linier yang sama di L V, W 19

20 Bukti Teorema 2.18 Misalkan τ L V, W, (B, C) dan (B, C ) masing-masing pasangan basis terurut untuk V dan W. Jika A dan B merepresentasikan τ, yaitu jika A = τ B,C dan B = τ B,C untuk basis terurut B, C, B dan C, maka Teorema 2.16 menunjukkan bahwa A dan B ekivalen. Selanjutnya misalkan bahwa A dan B ekivalen, katakanlah B = PAQ 1 di mana P dan Q invertibel. Misalkan juga A merepresentasikan transformasi linier τ L V, W untuk suatu basis terurut B dan C, yaitu A = τ B,C. Teorema 2.13 mengakibatkan bahwa terdapat basis terurut yang tunggal B untuk V sehingga Q = M B,B dan basis terurut C untuk Wsehingga P = M C,C. Oleh karena itu B = M C,C τ B,C M B,B = τ B,C Jadi B juga merepresentasikan τ. Dengan sifat simetri, terlihat bahwa A dan B merepresentasikan himpunan transformasi linier yang sama. Yanita, Matematika FMIPA Unand 11/25/

21 Similaritas Matriks Definisi Dua matriks A dan B similar, disimbolkan dengan A~B jika terdapat matriks invertibel P sehingga B = PAP 1. Kelas-kelas ekivalensi yang berhubungan dengan similaritas disebut dengan kelas-kelas similaritas. 21

22 Teorema 2.19 Misalkan V ruang vektor berdimensi n. Maka dua matriks n n A dan B similar jika dan hanya jika matriks-matriks ini merepresentasikan operator linier τ L V yang sama, tetapi mungkin terkait dengan basis terurut yang berbeda. Dalam kasus ini, A dan B merepresentasikan tepat himpunan transformasi linier yang sama dalam L V 22

Aljabar Linier. Kuliah

Aljabar Linier. Kuliah Aljabar Linier Kuliah 10 11 12 Materi Kuliah Transformasi Linier Kernel dan Image dari Transformasi Linier isomorfisma Teorema Rank plus Nullity 1/11/2014 Yanita FMIPA Matematika Unand 2 Transformasi Linier

Lebih terperinci

Aljabar Linier Elementer. Kuliah 27

Aljabar Linier Elementer. Kuliah 27 Aljabar Linier Elementer Kuliah 27 Materi Kuliah Transformasi Linier Invers Matriks Transformasi Linier Umum //24 Yanita, Matematika FMIPA Unand 2 Transformasi Linier Satu ke satu dan Sifat-sifatnya Definisi

Lebih terperinci

adalah isomorphik dengan im( ), 2) The rank plus nullity Theorem dim(ker ( ) )+dim(im ( )

adalah isomorphik dengan im( ), 2) The rank plus nullity Theorem dim(ker ( ) )+dim(im ( ) The Rank Plus Nullity Theorem L(V,W) 1) Sembarang komplemen dari ker () adalah isomorphik dengan im( ), 2) The rank plus nullity Theorem dim(ker () )+dim(im () ) = dim(v) Teorema 2.8. Misal atau rk() +

Lebih terperinci

Aljabar Linier Elementer

Aljabar Linier Elementer Aljabar Linier Elementer Kuliah 15 dan 16 11/11/2014 1 Materi Kuliah Kebebasan Linier Basis dan Dimensi 11/11/2014 Yanita, Matematika Unand 2 5.3 Kebebasan Linier Definisi Jika S = v 1, v 2,, v r adalah

Lebih terperinci

Aljabar Linier Elementer. Kuliah 26

Aljabar Linier Elementer. Kuliah 26 Aljabar Linier Elementer Kuliah 26 Materi Kuliah Transformasi Linier Umum Kernel dan Range 10/11/2014 Yanita, Matematika FMIPA Unand 2 Transformasi Linier Umum Definisi Misalkan V dan W adalah ruang vektor

Lebih terperinci

Aljabar Linier Elementer. Kuliah ke-9

Aljabar Linier Elementer. Kuliah ke-9 Aljabar Linier Elementer Kuliah ke-9 Materi kuliah Hasilkali Titik Proyeksi Ortogonal 7/9/2014 Yanita, FMIPA Matematika Unand 2 Hasilkali Titik dari Vektor-Vektor Definisi Jika u dan v adalah vektor-vektor

Lebih terperinci

Aljabar Linier Lanjut. Kuliah 1

Aljabar Linier Lanjut. Kuliah 1 Aljabar Linier Lanjut Kuliah 1 Materi Kuliah (Review) Multiset Matriks Polinomial Relasi Ekivalensi Kardinal Aritmatika 23/8/2014 Yanita, FMIPA Matematika Unand 2 Multiset Definisi Misalkan S himpunan

Lebih terperinci

Pengantar Teori Bilangan

Pengantar Teori Bilangan Pengantar Teori Bilangan Kuliah 2 2/2/2014 Yanita, FMIPA Matematika Unand 1 Materi Kuliah 2 Teori Pembagian dalam Bilangan Bulat Algoritma Pembagian Pembagi Persekutuan Terbesar 2/2/2014 2 Algoritma Pembagian

Lebih terperinci

Pertama, daftarkan kedua himpunan vektor: himpunan yang merentang diikuti dengan himpunan yang bergantung linear, perhatikan:

Pertama, daftarkan kedua himpunan vektor: himpunan yang merentang diikuti dengan himpunan yang bergantung linear, perhatikan: Dimensi dari Suatu Ruang Vektor Jika suatu ruang vektor V memiliki suatu himpunan S yang merentang V, maka ukuran dari sembarang himpunan di V yang bebas linier tidak akan melebihi ukuran dari S. Teorema

Lebih terperinci

Aljabar Linier Elementer. Kuliah 1 dan 2

Aljabar Linier Elementer. Kuliah 1 dan 2 Aljabar Linier Elementer Kuliah 1 dan 2 1.3 Matriks dan Operasi-operasi pada Matriks Definisi: Matriks adalah susunan bilangan dalam empat persegi panjang. Bilangan-bilangan dalam susunan tersebut disebut

Lebih terperinci

Aljabar Linier. Kuliah 3. 5/9/2014 Yanita FMIPA Matematika Unand

Aljabar Linier. Kuliah 3. 5/9/2014 Yanita FMIPA Matematika Unand Aljabar Linier Kuliah 3 5/9/2014 Yanita FMIPA Matematika Unand 1 Materi Kuliah 3 Jumlah Langsung, Hasilkali Langsung Himpunan Pembangun (Spans) dan Bebas Linier 5/9/2014 Yanita FMIPA Matematika Unand 2

Lebih terperinci

TRANSFORMASI LINIER (Kajian Fungsi antar Ruang Vektor)

TRANSFORMASI LINIER (Kajian Fungsi antar Ruang Vektor) Outline TRANSFORMASI LINIER (Kajian Fungsi antar Ruang Vektor) Drs. Antonius Cahya Prihandoko, M.App.Sc PS. Pendidikan Matematika PS. Sistem Informasi University of Jember Indonesia Jember, 2009 Outline

Lebih terperinci

RING FAKTOR DAN HOMOMORFISMA

RING FAKTOR DAN HOMOMORFISMA BAB 8 RING FAKTOR DAN HOMOMORFISMA Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengenal dan mengaplikasikan sifat-sifat Ring Faktor dan Homomorfisma Ring Tujuan Instruksional

Lebih terperinci

II. LANDASAN TEORI. Dalam bab ini akan didiskusikan unsur tak terdefinisi, aksioma-aksioma, istilahistilah,

II. LANDASAN TEORI. Dalam bab ini akan didiskusikan unsur tak terdefinisi, aksioma-aksioma, istilahistilah, 3 II. LANDASAN TEORI Dalam bab ini akan didiskusikan unsur tak terdefinisi, aksioma-aksioma, istilahistilah, definisi-definisi dan teorema-teorema yang berhubungan dengan penelitian ini. 2.1 Geometri Insidensi

Lebih terperinci

Jurnal Matematika Murni dan Terapan Vol. 5 No.1 Juni 2011: TES FORMAL MODUL PROJEKTIF DAN MODUL BEBAS ATAS RING OPERATOR DIFERENSIAL

Jurnal Matematika Murni dan Terapan Vol. 5 No.1 Juni 2011: TES FORMAL MODUL PROJEKTIF DAN MODUL BEBAS ATAS RING OPERATOR DIFERENSIAL Jurnal Matematika Murni dan Terapan Vol 5 No Juni 0: 43-5 TES FORMAL MOUL PROJEKTIF AN MOUL BEBAS ATAS RING OPERATOR IFERENSIAL Na imah Hijriati Program Studi Matematika Universitas Lambung Mangkurat Jl

Lebih terperinci

BAB III REPRESENTASI GELFAND-NAIMARK-SEGAL

BAB III REPRESENTASI GELFAND-NAIMARK-SEGAL BAB III REPRESENTASI GELFAND-NAIMARK-SEGAL Pada bagian ini akan dibahas konsep yang terkait dengan representasi yaitu homomorfisma-*, representasi nondegenerate, representasi faithful, representasi siklik,

Lebih terperinci

Pengantar Teori Bilangan. Kuliah 10

Pengantar Teori Bilangan. Kuliah 10 Pengantar Teori Bilangan Kuliah 10 Materi Kuliah Chinese Remainder Theorem (Teorema Sisa Cina) 2/5/2014 Yanita, FMIPA Matematika Unand 2 Pengantar Chinese Remainder Theorem (Teorema sisa Cina) adalah hasil

Lebih terperinci

BAB I PENDAHULUAN. Ada beberapa materi yang terdapat pada aljabar abstrak, salah satu materi

BAB I PENDAHULUAN. Ada beberapa materi yang terdapat pada aljabar abstrak, salah satu materi 1 BAB I PENDAHULUAN 1.1. Latar Belakang Ada beberapa materi yang terdapat pada aljabar abstrak, salah satu materi tersebut adalah modul. Untuk membahas pengertian tentang suatu modul harus dimengerti lebih

Lebih terperinci

Bab 3 Gelanggang Polinom Miring

Bab 3 Gelanggang Polinom Miring Bab 3 Gelanggang Polinom Miring Dalam bab ini akan dibahas mengenai Gelanggang Poliom Miring mulai dengan bentuk yang sederhana (satu variabel) sampai ke bentuk yang lebih kompleks (banyak variabel) berikut

Lebih terperinci

Fungsi. Hidayati Rais, S.Pd.,M.Si. October 26, Program Studi Pendidikan Matematika STKIP YPM Bangko. Rollback Malaria :)

Fungsi. Hidayati Rais, S.Pd.,M.Si. October 26, Program Studi Pendidikan Matematika STKIP YPM Bangko. Rollback Malaria :) Program Studi Pendidikan Matematika STKIP YPM Bangko October 26, 2014 Definisi Misalkan A dan B adalah himpunan. Suatu fungsi dari A ke B adalah suatu himpunan f yang elemen-elemennya adalah pasangan terurut

Lebih terperinci

Geometri pada Bidang, Vektor

Geometri pada Bidang, Vektor Prodi Matematika FMIPA Unsyiah September 9, 2011 Melalui pendekatan aljabar, vektor u dinyatakan oleh pasangan berurutan u 1, u 2. Disini digunakan notasi u 1, u 2 bukan (u 1, u 2 ) karena notasi (u 1,

Lebih terperinci

Aljabar Linier Sistem koordinat, dimensi ruang vektor dan rank

Aljabar Linier Sistem koordinat, dimensi ruang vektor dan rank Aljabar Linier Sistem koordinat, dimensi ruang vektor dan rank khozin mu tamar 9 Oktober 2014 PERTEMUAN-4 : SISTEM KOORDINAT, DIMEN- SI RUANG VEKTOR DAN RANK 1. Sistem koordinat (a) Ketunggalan scalar

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer BAB I RUANG VEKTOR Pada kuliah Aljabar Matriks kita telah mendiskusikan struktur ruang R 2 dan R 3 beserta semua konsep yang terkait. Pada bab ini kita akan membicarakan struktur yang merupakan bentuk

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Ruang vektor adalah suatu grup abelian yang dilengkapi dengan operasi pergandaan skalar atas suatu lapangan. Suatu ruang vektor dapat dikawankan dengan ruang

Lebih terperinci

GRUP SIKLIK, GRUP PERMUTASI, HOMOMORFISMA

GRUP SIKLIK, GRUP PERMUTASI, HOMOMORFISMA GRUP SIKLIK, GRUP PERMUTASI, HOMOMORFISMA Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengenal dan mengaplikasikan sifat-sifat Grup Siklik, Grup Permutasi dan Homomorfisma

Lebih terperinci

ORDER UNSUR DARI GRUP S 4

ORDER UNSUR DARI GRUP S 4 Jurnal Matematika UNAND Vol. VI No. 1 Hal. 142 147 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND ORDER UNSUR DARI GRUP S 4 FEBYOLA, YANITA, MONIKA RIANTI HELMI Program Studi Matematika, Fakultas Matematika

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 4 BAB II TINJAUAN PUSTAKA Untuk mencapai tujuan penulisan penelitian diperlukan beberapa pengertian dan teori yang berkaitan dengan pembahasan. Dalam subbab ini akan diberikan beberapa teori berupa definisi,

Lebih terperinci

BAB III PEMBAHASAN. Dalam tesis ini akan dibahas definisi alajabar klasik dan definisi aljabar

BAB III PEMBAHASAN. Dalam tesis ini akan dibahas definisi alajabar klasik dan definisi aljabar 4 BAB III PEMBAHASAN 3. Aljabar atas Lapangan Dalam tesis ini akan dibahas definisi alajabar klasik dan definisi aljabar melalui karakterisasi hasilkali tensor. Berikutnya akan ditunjukkan bahwa setiap

Lebih terperinci

BAB 2 RUANG HILBERT. 2.1 Definisi Ruang Hilbert

BAB 2 RUANG HILBERT. 2.1 Definisi Ruang Hilbert BAB 2 RUANG HILBERT Pokok pembicaraan kita dalam tugas akhir ini berpangkal pada teori ruang Hilbert. Untuk itu di bab ini akan diberikan definisi ruang Hilbert dan ciri-cirinya, separabilitas ruang Hilbert,

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PEMBELAJARAN

GARIS-GARIS BESAR PROGRAM PEMBELAJARAN GARIS-GARIS BESAR PROGRAM PEMBELAJARAN Mata Kuliah : Aljabar Linear Kode / SKS : TIF-5xxx / 3 SKS Dosen : - Deskripsi Singkat : Mata kuliah ini berisi Sistem persamaan Linier dan Matriks, Determinan, Vektor

Lebih terperinci

Analisis Matriks. Ahmad Muchlis

Analisis Matriks. Ahmad Muchlis Analisis Matriks Ahmad Muchlis January 22, 2014 2 Notasi Pada umumnya matriks yang kita bicarakan dalam naskah ini adalah matriks kompleks. Himpunan semua matriks kompleks [real] berukuran m n dinyatakan

Lebih terperinci

Aljabar Atas Suatu Lapangan dan Dualitasnya

Aljabar Atas Suatu Lapangan dan Dualitasnya Vol. 12, No. 2, 105-110, Januari 2016 Aljabar Atas Suatu Lapangan dan Dualitasnya Edi Kurniadi dan Irawati Abstrak Suatu aljabar (A,.,+;k) atas suatu lapangan k adalah suatu gelanggang (A,.,+) yang dilengkapi

Lebih terperinci

RENCANA KEGIATAN PERKULIAHAN Kode Mata Kuliah : MAA 526 Nama Mata Kuliah : Analisis Fungsional

RENCANA KEGIATAN PERKULIAHAN Kode Mata Kuliah : MAA 526 Nama Mata Kuliah : Analisis Fungsional Ming gu ke RENCANA KEGIATAN PERKULIAHAN Kode Mata Kuliah : MAA 56 Nama Mata Kuliah : Analisis Fungsional T o p i k S u b T o p i k 1. Ruang Banach - Ruang metrik - Ruang vektor bernorm - Barisan di ruang

Lebih terperinci

KATEGORI TEORI SELEKSI TINGKAT PROVINSI OSN PERTAMINA 2014 BIDANG MATEMATIKA

KATEGORI TEORI SELEKSI TINGKAT PROVINSI OSN PERTAMINA 2014 BIDANG MATEMATIKA KATEGORI TEORI SELEKSI TINGKAT PROVINSI OSN PERTAMINA 04 BIDANG MATEMATIKA PETUNJUK PENGERJAAN. Tuliskan secara lengkap identitas Anda di Lembar Jawab Komputer (LJK): Nama Lengkap, Nomor Ujian, dan Data

Lebih terperinci

PENGANTAR PADA TEORI GRUP DAN RING

PENGANTAR PADA TEORI GRUP DAN RING Handout MK Aljabar Abstract PENGANTAR PADA TEORI GRUP DAN RING Disusun oleh : Drs. Antonius Cahya Prihandoko, M.App.Sc, Ph.D e-mail: antoniuscp.ilkom@unej.ac.id Staf Pengajar Pada Program Studi Sistem

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini diberikan beberapa definisi mengenai teori grup yang mendukung. ke. Untuk setiap, dinotasikan sebagai di

II. TINJAUAN PUSTAKA. Pada bab ini diberikan beberapa definisi mengenai teori grup yang mendukung. ke. Untuk setiap, dinotasikan sebagai di II. TINJAUAN PUSTAKA Pada bab ini diberikan beberapa definisi mengenai teori grup yang mendukung proses penelitian. 2.1 Teori Grup Definisi 2.1.1 Operasi Biner Suatu operasi biner pada suatu himpunan adalah

Lebih terperinci

UNIVERSITAS GADJAH MADA. Bahan Ajar:

UNIVERSITAS GADJAH MADA. Bahan Ajar: UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Gedung Jurusan Matematika, Yogyakarta - 55281 Bahan Ajar: BAB POKOK BAHASAN

Lebih terperinci

BAB 1 OPERASI PADA HIMPUNAN BAHAN AJAR STRUKTUR ALJABAR, BY FADLI

BAB 1 OPERASI PADA HIMPUNAN BAHAN AJAR STRUKTUR ALJABAR, BY FADLI BAB 1 OPERASI PADA HIMPUNAN Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat menggunakan operasi pada himpunan untuk memecahkan masalah dan mengidentifikasi suatu himpunan

Lebih terperinci

BAB 2 KONSEP DASAR 2.1 HIMPUNAN DAN FUNGSI

BAB 2 KONSEP DASAR 2.1 HIMPUNAN DAN FUNGSI BAB 2 KONSEP DASAR Pada bab 2 ini, penulis akan memperkenalkan himpunan, fungsi dan sejumlah konsep awal yang terkait dengan semigrup, dimana sebagian besar akan sangat diperlukan hingga bagian akhir dari

Lebih terperinci

Candi Gebang Permai Blok R/6 Yogyakarta Telp. : ; Fax. :

Candi Gebang Permai Blok R/6 Yogyakarta Telp. : ; Fax. : ii Aljabar Linear Kata Pengantar iii iv Aljabar Linear ALJABAR LINEAR Oleh : Setiadji Edisi Pertama Cetakan Pertama, 2008 Hak Cipta 2008 pada penulis, Hak Cipta dilindungi undang-undang. Dilarang memperbanyak

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Pada abad ke-19, Teori Representasi secara umum dipelajari sebagai bagian dari Teori Grup. Himpunan semua endomorfisma invertibel dari ruang vektor V atas

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 3 BAB II TINJAUAN PUSTAKA 2.1 Gelanggang, Lapangan, dan Ruang Vektor Suatu himpunan tak kosong R disebut gelanggang jika di dalam R didefinisikan dua operasi, masing-masing dinotasikan dengan + dan., sedemikian

Lebih terperinci

Pengantar Teori Bilangan. Kuliah 4

Pengantar Teori Bilangan. Kuliah 4 Pengantar Teori Bilangan Kuliah 4 Materi Kuliah Bilangan Prima dan Distribusinya Teorema Fundamental Aritmatika Saringan Eratosthenes 22/2/2014 Yanita, FMIPA Matematika Unand 2 Bilangan Prima dan Komposit

Lebih terperinci

BASIS DAN DIMENSI. dengan mengurangkan persamaan kedua dengan persamaan menghasilkan

BASIS DAN DIMENSI. dengan mengurangkan persamaan kedua dengan persamaan menghasilkan BASIS DAN DIMENSI Representasi Basis Jika S={v 1,v,...,v n ) adalah suatu basis dari ruang vektor V, maka tiap vektor v pada V dapat dinyatakan dalam bentuk v= c 1 v 1 + c v +... c n v n dengan cepat satu

Lebih terperinci

Aljabar Linier. Kuliah 2 30/8/2014 2

Aljabar Linier. Kuliah 2 30/8/2014 2 30/8/2014 1 Aljabar Linier Kuliah 2 30/8/2014 2 Bab 1 Subpokok Bahasan Ruang Vektor Subruang Subruang Lattice Jumlah Langsung Himpunan Pembangun dan Bebas Linier Dimensi Ruang Vektor Basis Terurut dan

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER JURUSAN : TEKNIK KOMPUTER JUMLAH SKS : Definisi, Notasi, dan Operasi Vektor 2.

SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER JURUSAN : TEKNIK KOMPUTER JUMLAH SKS : Definisi, Notasi, dan Operasi Vektor 2. SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER JURUSAN : TEKNIK KOMPUTER JUMLAH SKS : 3 Minggu Ke Pokok Bahasan dan TIU Sub Pokok Bahasan Sasaran Belajar Cara Pengajaran Media Tugas Referens i 1

Lebih terperinci

Bab I PENDAHULUAN 1.1 Latar Belakang Masalah

Bab I PENDAHULUAN 1.1 Latar Belakang Masalah Bab I PENDAHULUAN 1.1 Latar Belakang Masalah Salah satu struktur aljabar yang harus dikuasai oleh seorang matematikawan adalah grup yaitu suatu himpunan tak kosong G yang dilengkapi dengan satu operasi

Lebih terperinci

Diketahui : A = {1,2,3,4,5,6,7} B = {1,2,3,5,6,12} C = {2,4,8,12,20} (A B) C = {1,3,5,6} {x x ϵ A dan x ϵ B} (B C) = {2,12}

Diketahui : A = {1,2,3,4,5,6,7} B = {1,2,3,5,6,12} C = {2,4,8,12,20} (A B) C = {1,3,5,6} {x x ϵ A dan x ϵ B} (B C) = {2,12} KELAS A =========================================================================== 1. Diketahui A = {1,2,3,4,5,6,7}, B = {1,2,3,5,6,12}, dan C = {2,4,8,12,20}. Tentukan hasil dari operasi himpunan berikut

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini akan diuraikan mengenai konsep teori grup, teorema lagrange dan

II. TINJAUAN PUSTAKA. Pada bab ini akan diuraikan mengenai konsep teori grup, teorema lagrange dan II. TINJAUAN PUSTAKA Pada bab ini akan diuraikan mengenai konsep teori grup, teorema lagrange dan autokomutator yang akan digunakan dalam penelitian. Pada bagian pertama ini akan dibahas tentang teori

Lebih terperinci

1. PENDAHULUAN 2. METODE PENELITIAN 3. HASIL DAN PEMBAHASAN. Abstrak

1. PENDAHULUAN 2. METODE PENELITIAN 3. HASIL DAN PEMBAHASAN. Abstrak Kajian mengenai Konstruksi Aljabar Simetris Kiri Menggunakan Fungsi Linier Sofwah Ahmad Departemen Matematika FMIPA UI Kampus UI Depok 16424 sofwahahmad@sciuiacid Abstrak Aljabar merupakan suatu ruang

Lebih terperinci

8.3 Inverse Linear Transformations

8.3 Inverse Linear Transformations 8.3 Inverse Linear Transformations Definition One to One Transformasi linear T:V W dikatakan one-to-one jika T memetakan vektor-vektor berbeda pada V ke vektorvektor berbeda pada W. Jika A adalah suatu

Lebih terperinci

Kata Pengantar. Puji syukur kehadirat Yang Maha Kuasa yang telah memberikan pertolongan hingga modul ajar ini dapat terselesaikan.

Kata Pengantar. Puji syukur kehadirat Yang Maha Kuasa yang telah memberikan pertolongan hingga modul ajar ini dapat terselesaikan. i Kata Pengantar Puji syukur kehadirat Yang Maha Kuasa yang telah memberikan pertolongan hingga modul ajar ini dapat terselesaikan. Modul ajar ini dimaksudkan untuk membantu penyelenggaraan kuliah jarak

Lebih terperinci

HUBUNGAN ANTARA HIMPUNAN KUBIK ASIKLIK DENGAN RECTANGLE

HUBUNGAN ANTARA HIMPUNAN KUBIK ASIKLIK DENGAN RECTANGLE Jurnal Matematika UNAND Vol. 3 No. 1 Hal. 58 62 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND HUBUNGAN ANTARA HIMPUNAN KUBIK ASIKLIK DENGAN RECTANGLE SISKA NURMALA SARI Program Studi Matematika, Fakultas

Lebih terperinci

Materi Aljabar Linear Lanjut

Materi Aljabar Linear Lanjut Materi Aljabar Linear Lanjut TRANSFORMASI LINIER DARI R n KE R m ; GEOMETRI TRANSFORMASI LINIER DARI R 2 KE R 2 Disusun oleh: Dwi Lestari, M.Sc email: dwilestari@uny.ac.id JURUSAN PENDIDIKAN MATEMATIKA

Lebih terperinci

BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT. Operator merupakan salah satu materi yang akan dibahas dalam fungsi

BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT. Operator merupakan salah satu materi yang akan dibahas dalam fungsi BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT 3.1 Operator linear Operator merupakan salah satu materi yang akan dibahas dalam fungsi real yaitu suatu fungsi dari ruang vektor ke ruang vektor. Ruang

Lebih terperinci

Matematika EBTANAS Tahun 1991

Matematika EBTANAS Tahun 1991 Matematika EBTANAS Tahun 99 EBT-SMA-9-0 Persamaan sumbu simetri dari parabola y = 8 x x x = 4 x = x = x = x = EBT-SMA-9-0 Salah satu akar persamaan kuadrat mx 3x + = 0 dua kali akar yang lain, maka nilai

Lebih terperinci

1 P E N D A H U L U A N

1 P E N D A H U L U A N 1 P E N D A H U L U A N Pemetaan (fungsi) f dari himpunan A ke himpunan B adalah suatu hubuungan yang memasangkan setiap unsur di A dengan tepat satu unsur di B. Jika a A dan pasangannya b B, maka ditulis

Lebih terperinci

Pengantar Teori Bilangan. Kuliah 6

Pengantar Teori Bilangan. Kuliah 6 Pengantar Teori Bilangan Kuliah 6 Materi Kuliah Carl Friedrich Gauss Teori Dasar Kongruen 3/14/2014 Yanita FMIPA Matematika Unand 2 Carl Friedrich Gauss Hidup pada masa 1777 1855 Mengenalkan konsep Disquisitiones

Lebih terperinci

MATERI : GESERAN (TRANSLASI) KELOMPOK 6 (VI.E)

MATERI : GESERAN (TRANSLASI) KELOMPOK 6 (VI.E) MATERI : GESERAN (TRANSLASI) KELOMPOK 6 (VI.E) Disusun Oleh: 1. ARI SUKA LESMANA 2. YULAIMA SUPRIHATIN 3. HERVI MARDIANA SEKOLAH TINGGI KEGURUAN DAN ILMUPENDIDIKAN PERSATUAN GURU REPUBLIK INDONESIA STKIP

Lebih terperinci

PENGANTAR TOPOLOGI. Dosen Pengampu: Siti Julaeha, M.Si EDISI PERTAMA UNIVERSITAS ISLAM NEGERI SUNAN GUNUNG DJATI BANDUNG 2015

PENGANTAR TOPOLOGI. Dosen Pengampu: Siti Julaeha, M.Si EDISI PERTAMA UNIVERSITAS ISLAM NEGERI SUNAN GUNUNG DJATI BANDUNG 2015 PENGANTAR TOPOLOGI EDISI PERTAMA Dosen Pengampu: Siti Julaeha, M.Si UNIVERSITAS ISLAM NEGERI SUNAN GUNUNG DJATI BANDUNG 2015 by Matematika Sains 2012 UIN SGD, Copyright 2015 BAB 0. HIMPUNAN, RELASI, FUNGSI,

Lebih terperinci

Grup USp(2n,C) 1. Definisi dan Parameterisasi Grup USp ( 2, C )

Grup USp(2n,C) 1. Definisi dan Parameterisasi Grup USp ( 2, C ) Grup USp(2n,C) Kevin Frankly Samuel Pardede 1 1 Institut Teknologi Bandung Definisi beserta pembuktian sifat grup USp(2n, C) akan diberikan. Untuk kasus n=1, pembuktian bahwa grup USp(2, C) adalah sebuah

Lebih terperinci

1.1. Definisi, Notasi, dan Operasi Vektor 1.2. Susunan Koordinat Ruang R n 1.3. Vektor di dalam R n 1.4. Persamaan garis lurus dan bidang rata

1.1. Definisi, Notasi, dan Operasi Vektor 1.2. Susunan Koordinat Ruang R n 1.3. Vektor di dalam R n 1.4. Persamaan garis lurus dan bidang rata SATUAN ACARA PERKULIAHAN (SAP) MATA KULIAH : MATEMATIKA INFORMATIKA 2 JURUSAN : S1-TEKNIK INFORMATIKA KODE MATA KULIAH : IT-045214 Referensi : [1]. Yusuf Yahya, D. Suryadi. H.S., Agus S., Matematika untuk

Lebih terperinci

DAFTAR ISI. HALAMAN JUDUL... i HALAMAN PERSETUJUAN... II HALAMAN PENGESAHAN... III KATA PENGANTAR... IV DAFTAR ISI... V BAB I PENDAHULUAN...

DAFTAR ISI. HALAMAN JUDUL... i HALAMAN PERSETUJUAN... II HALAMAN PENGESAHAN... III KATA PENGANTAR... IV DAFTAR ISI... V BAB I PENDAHULUAN... DAFTAR ISI HALAMAN JUDUL... i HALAMAN PERSETUJUAN... II HALAMAN PENGESAHAN... III KATA PENGANTAR... IV DAFTAR ISI... V BAB I PENDAHULUAN... 1 A. LATAR BELAKANG MASALAH... 1 B. PEMBATASAN MASALAH... 2 C.

Lebih terperinci

Latihan 7 : Similaritas, Pendiagonalan Matriks, Polinom Matriks

Latihan 7 : Similaritas, Pendiagonalan Matriks, Polinom Matriks Latihan 7 : Similaritas, Pendiagonalan Matriks, Polinom Matriks 6. Tentukan polinomial karakteristik dari matriks transformasi A=. Andaikan A adalah matriks persegi berdimensi x. Polinom karakteristik

Lebih terperinci

BAB III. Standard Kompetensi. 3. Mahasiswa dapat menjelaskan pengertian homomorfisma ring dan menggunakannya dalam kehidupan sehari-hari.

BAB III. Standard Kompetensi. 3. Mahasiswa dapat menjelaskan pengertian homomorfisma ring dan menggunakannya dalam kehidupan sehari-hari. BAB III Standard Kompetensi 3. Mahasiswa dapat menjelaskan pengertian homomorfisma ring menggunakannya dalam kehidupan sehari-hari. Kompetensi Dasar: Mahasiswa diharapkan dapat 3.1 Menyebutkan definisi

Lebih terperinci

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA Mata Kuliah : Matematika Diskrit 2 Kode / SKS : IT02 / 3 SKS Program Studi : Sistem Komputer Fakultas : Ilmu Komputer & Teknologi Informasi. Pendahuluan 2. Vektor.. Pengantar mata kuliah aljabar linier.

Lebih terperinci

KARAKTERISASI ALJABAR PADA GRAF BIPARTIT. Soleha, Dian W. Setyawati Institut Teknologi Sepuluh Nopember, Surabaya

KARAKTERISASI ALJABAR PADA GRAF BIPARTIT. Soleha, Dian W. Setyawati Institut Teknologi Sepuluh Nopember, Surabaya KARAKTERISASI ALJABAR PADA GRAF BIPARTIT Soleha, Dian W. Setyawati Institut Teknologi Sepuluh Nopember, Surabaya ABSTRAK. Pada artikel ini dibahas penggunaan teknik aljabar linier untuk mempelajari graf

Lebih terperinci

DASAR-DASAR TEORI RUANG HILBERT

DASAR-DASAR TEORI RUANG HILBERT DASAR-DASAR TEORI RUANG HILBERT Herry P. Suryawan 1 Geometri Ruang Hilbert Definisi 1.1 Ruang vektor kompleks V disebut ruang hasilkali dalam jika ada fungsi (.,.) : V V C sehingga untuk setiap x, y, z

Lebih terperinci

WARP PADA SEBUAH SEGITIGA

WARP PADA SEBUAH SEGITIGA Jurnal Matematika UNAND Vol. 3 No. 3 Hal. 26 33 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND WARP PADA SEBUAH SEGITIGA ABDUL ZAKY, MAHDHIVAN SYAFWAN Program Studi Matematika, Fakultas Matematika dan

Lebih terperinci

Aljabar Linier Elementer. Kuliah 7

Aljabar Linier Elementer. Kuliah 7 Aljabar Linier Elementer Kuliah 7 Materi Kuliah Ekspansi kofaktor Aturan Cramer 2 2.4 Espansi Kofaktor; Aturan Cramer Definisi: Jika A adalah matriks bujur sangkar, maka minor dari entri a ij dinyatakan

Lebih terperinci

Transformasi Linear dari R n ke R m

Transformasi Linear dari R n ke R m TE0967 Teknik Numerik Sistem Linear Transformasi Linear dari R n ke R m Trihastuti gustinah Bidang Studi Teknik Sistem Pengaturan Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember OUTLINE

Lebih terperinci

HASIL PRESENTASI ALJABAR LINIER ( SUB RUANG VEKTOR ) Disusun Untuk Memenuhi Tugas Mata Kuliah Aljabar Linier. Dosen Pengampu : Darmadi, S,Si, M.

HASIL PRESENTASI ALJABAR LINIER ( SUB RUANG VEKTOR ) Disusun Untuk Memenuhi Tugas Mata Kuliah Aljabar Linier. Dosen Pengampu : Darmadi, S,Si, M. HASIL PRESENTASI ALJABAR LINIER ( SUB RUANG VEKTOR ) Disusun Untuk Memenuhi Tugas Mata Kuliah Aljabar Linier Dosen Pengampu : Darmadi, S,Si, M.Pd Disusun oleh Matematika 5F Kelompok 5: ARLITA ROSYIDA 08411.081

Lebih terperinci

METODE PSEUDO ARC-LENGTH DAN PENERAPANNYA PADA PENYELESAIAN SISTEM PERSAMAAN NONLINIER TERPARAMETERISASI

METODE PSEUDO ARC-LENGTH DAN PENERAPANNYA PADA PENYELESAIAN SISTEM PERSAMAAN NONLINIER TERPARAMETERISASI Jurnal Matematika UNAND Vol. 5 No. 4 Hal. 9 17 ISSN : 233 291 c Jurusan Matematika FMIPA UNAND METODE PSEUDO ARC-LENGTH DAN PENERAPANNYA PADA PENYELESAIAN SISTEM PERSAMAAN NONLINIER TERPARAMETERISASI RAHIMA

Lebih terperinci

Catatan Kuliah Aljabar Linier. Abstrak

Catatan Kuliah Aljabar Linier. Abstrak Catatan Kuliah Aljabar Linier Subiono subiono3@telkom.net 4 Agustus 9 Page of 3 Abstrak Dalam catatan kuliah ini diberikan beberapa materi dari mata kuliah Aljabar Linier untuk program Sarjana (S) jurusan

Lebih terperinci

Karakteristik Operator Positif Pada Ruang Hilbert

Karakteristik Operator Positif Pada Ruang Hilbert SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 05 A - 4 Karakteristik Operator Positif Pada Ruang Hilbert Gunawan Fakultas Keguruan dan Ilmu Pendidikan, Universitas Muhammadiyah Purwokerto gunoge@gmailcom

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 6 BAB II TINJAUAN PUSTAKA A. Fungsi Definisi A.1 Diberikan A dan B adalah dua himpunan yang tidak kosong. Suatu cara atau aturan yang memasangkan atau mengaitkan setiap elemen dari himpunan A dengan tepat

Lebih terperinci

MAKALAH ALJABAR LINIER

MAKALAH ALJABAR LINIER MAKALAH ALJABAR LINIER Transformasi Linier Makalah Ini Disusun Untuk Memenuhi Tugas Mata Kuliah Aljabar Linier Dosen Pengampu : Abdul Aziz Saefudin, S.Pd.I, M.Pd Disusun Oleh: III A4 Kelompok 12 1. Ria

Lebih terperinci

MATEMATIKA DASAR PENDIDIKAN BIOLOGI UPI 0LEH: UPI 0716

MATEMATIKA DASAR PENDIDIKAN BIOLOGI UPI 0LEH: UPI 0716 MATEMATIKA DASAR PENDIDIKAN BIOLOGI UPI 0LEH: UPI 0716 N0 TOPIK FUNGSI 2.1 DEFINISI FUNGSI 2.2 DAERAH DEFINISI DAN DAERAH HASIL 2.3 JENIS-JENIS FUNGSI 2.4 OPERASI ALJABAR FUNGSI 2.5 FUNGSI GENAP, GANJIL,

Lebih terperinci

Teori Dasar Fungsi. Julan HERNADI. December 27, Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo

Teori Dasar Fungsi. Julan HERNADI. December 27, Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo 1 Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo December 27, 2012 PENGERTIAN DASAR Denition Misalkan A dan B himpunan. Sebuah fungsi f dari A ke B ditulis f : A B adalah aturan

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER KODE / SKS : IT / 2 SKS

SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER KODE / SKS : IT / 2 SKS SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER KODE / SKS : IT0143231 / 2 SKS Deskripsi: - Mata kuliah ini mempelajari konsep aljabar linear sebagai dasar untuk membuat algoritma dalam permasalahan

Lebih terperinci

Pengantar Analisis Real

Pengantar Analisis Real Modul Pengantar Analisis Real Dr Endang Cahya, MA, MSi P PENDAHULUAN ada Modul ini disajikan beberapa topik pengantar mata kuliah Analisis Real, yang terbagi dalam beberapa kegiatan belajar yang harus

Lebih terperinci

PERKALIAN CARTESIAN DAN RELASI

PERKALIAN CARTESIAN DAN RELASI RELASI Anggota sebuah himpunan dapat dihubungkan dengan anggota himpunan lain atau dengan anggota himpunan yang sama. Hubungan tersebut dinamakan relasi. Contoh Misalkan M = {Ami, Budi, Candra, Dita} dan

Lebih terperinci

TRANSFORMASI LINEAR. Disusun untuk Memenuhi Tugas Mata Kuliah Aljabar Linear. Dosen Pengampu : Abdul Aziz Saefudin, M.Pd

TRANSFORMASI LINEAR. Disusun untuk Memenuhi Tugas Mata Kuliah Aljabar Linear. Dosen Pengampu : Abdul Aziz Saefudin, M.Pd TRANSFORMASI LINEAR Disusun untuk Memenuhi Tugas Mata Kuliah Aljabar Linear Dosen Pengampu : Abdul Aziz Saefudin, M.Pd Disusun oleh : Kelompok 7/ Kelas III A Endar Alviyunita 34400094 Ahmat Sehari ---------------

Lebih terperinci

ANALISIS REAL 1. Perkuliahan ini dimaksudkan memberikan

ANALISIS REAL 1. Perkuliahan ini dimaksudkan memberikan ANALISIS REAL 1 Perkuliahan ini dimaksudkan memberikan kemampuan pada mahasiswa agar dapat memahami pernyataan-pernyataan matematika secara baik dan benar, berpikir secara logis, kritis dan sistematis,

Lebih terperinci

MATRIKS SATUAN ACARA PERKULIAHAN MATA KULIAH MATEMATIKA TEKNIK 1

MATRIKS SATUAN ACARA PERKULIAHAN MATA KULIAH MATEMATIKA TEKNIK 1 Mata : MATEMATIKA TEKNIK 1 Jurusan : TEKNIK ELEKTRO SKS : 2 Sks Kode Mata : KD-041205 MATRIKS SATUAN ACARA PERKULIAHAN MATA KULIAH MATEMATIKA TEKNIK 1 Minggu Ke Pokok Bahasan dan TIU 1 Vektor tentang pengertian

Lebih terperinci

Kaitan Antara Homomorfisma Pada Graf dan Homomorfisma Pada Aljabar Graf

Kaitan Antara Homomorfisma Pada Graf dan Homomorfisma Pada Aljabar Graf Kaitan Antara Homomorfisma Pada Graf dan Homomorfisma Pada Aljabar Graf Nunung Nurhidayah, Rizky Rosjanuardi, Isnie Yusnitha Departemen Pendidikan Matematika, Universitas Pendidikan Indonesia Correspondent

Lebih terperinci

Analisis Fungsional. Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA

Analisis Fungsional. Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA Analisis Fungsional Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA Lingkup Materi Ruang Metrik dan Ruang Topologi Kelengkapan Ruang Banach Ruang Hilbert

Lebih terperinci

BAB II TEORI KODING DAN TEORI INVARIAN

BAB II TEORI KODING DAN TEORI INVARIAN BAB II TEORI KODING DAN TEORI INVARIAN Pada bab 1 ini akan dibahas definisi kode, khususnya kode linier atas dan pencacah bobot Hammingnya. Di samping itu, akan dijelaskanan invarian, ring invarian dan

Lebih terperinci

DIAGONALISASI MATRIKS KOMPLEKS

DIAGONALISASI MATRIKS KOMPLEKS Buletin Ilmiah Mat Stat dan Terapannya (Bimaster) Volume 04, No 3 (2015), hal 337-346 DIAGONALISASI MATRIKS KOMPLEKS Heronimus Hengki, Helmi, Mariatul Kiftiah INTISARI Matriks kompleks merupakan matriks

Lebih terperinci

Soal Ujian Komprehensif

Soal Ujian Komprehensif Soal Ujian Komprehensif Bahan ujian komprehensif memuat konsep-konsep penting pada bidang: Kalkulus, dan Matriks / Aljabar Linear. Logika, Soal ujian disediakan secara terbuka, dapat diperoleh setiap saat

Lebih terperinci

KORESPONDENSI KARAKTER TERRESTRIKSI DAN TERINDUKSI BESERTA TABEL KARAKTER DARI REPRESENTASI GRUP HINGGA

KORESPONDENSI KARAKTER TERRESTRIKSI DAN TERINDUKSI BESERTA TABEL KARAKTER DARI REPRESENTASI GRUP HINGGA 1 Jurnal Scientific Pinisi, Volume 3, Nomor 1, April 2017, hlm. 1-9 KORESPONDENSI KARAKTER TERRESTRIKSI DAN TERINDUKSI BESERTA TABEL KARAKTER DARI REPRESENTASI RUP HINA Restu Cahyaningsih dan Budi Surodjo

Lebih terperinci

Relasi, Fungsi, dan Transformasi

Relasi, Fungsi, dan Transformasi Modul 1 Relasi, Fungsi, dan Transformasi Drs. Ame Rasmedi S. Dr. Darhim, M.Si. M PENDAHULUAN odul ini merupakan modul pertama pada mata kuliah Geometri Transformasi. Modul ini akan membahas pengertian

Lebih terperinci

BAB 5 RUANG VEKTOR A. PENDAHULUAN

BAB 5 RUANG VEKTOR A. PENDAHULUAN BAB 5 RUANG VEKTOR A. PENDAHULUAN 1. Definisi-1. Suatu ruang vektor adalah suatu himpunan objek yang dapat dijumlahkan satu sama lain dan dikalikan dengan suatu bilangan, yang masing-masing menghasilkan

Lebih terperinci

MATRIKS & TRANSFORMASI LINIER

MATRIKS & TRANSFORMASI LINIER MATRIKS & TRANSFORMASI LINIER Oleh : SRI ESTI TRISNO SAMI, ST, MMSI 082334051324 Daftar Referensi : 1. Kreyzig Erwin, Advance Engineering Mathematic, Edisi ke-7, John wiley,1993 2. Spiegel, Murray R, Advanced

Lebih terperinci

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 2

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 2 Relasi Relasi antara himpunan A dan himpunan B didefinisikan sebagai cara pengawanan anggota himpunan A dengan anggota himpunan B. ilustrasi grafis dapat dilihat sebagai berikut: - Relasi Biner Relasi

Lebih terperinci

BAB 4 MODEL RUANG KEADAAN (STATE SPACE)

BAB 4 MODEL RUANG KEADAAN (STATE SPACE) BAB 4 MODEL RUANG KEADAAN (STATE SPACE) KOMPETENSI Kemampuan untuk menjelaskan pengertian tentang state space, menentukan nisbah alih hubungannya dengan persamaan ruang keadaan dan Mengembangkan analisis

Lebih terperinci

Keberlakuan Teorema pada Beberapa Struktur Aljabar

Keberlakuan Teorema pada Beberapa Struktur Aljabar PRISMA 1 (2018) https://journal.unnes.ac.id/sju/index.php/prisma/ Keberlakuan Teorema pada Beberapa Struktur Aljabar Mashuri, Kristina Wijayanti, Rahayu Budhiati Veronica, Isnarto Jurusan Matenmatika FMIPA

Lebih terperinci

Sistem Persamaan Linier (SPL)

Sistem Persamaan Linier (SPL) Sistem Persamaan Linier (SPL) Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U Agustus 2015 MZI (FIF Tel-U) SPL Agustus 2015 1 / 27 Acknowledgements

Lebih terperinci

1 Mengapa Perlu Belajar Geometri Daftar Pustaka... 1

1 Mengapa Perlu Belajar Geometri Daftar Pustaka... 1 Daftar Isi 1 Mengapa Perlu Belajar Geometri 1 1.1 Daftar Pustaka.................................... 1 2 Ruang Euclid 3 2.1 Geometri Euclid.................................... 8 2.2 Pencerminan dan Transformasi

Lebih terperinci

Bab II TINJAUAN PUSTAKA. Aksioma-aksioma yang membentuk geometri Affin disebut dengan aksioma playfair

Bab II TINJAUAN PUSTAKA. Aksioma-aksioma yang membentuk geometri Affin disebut dengan aksioma playfair Bab II TINJAUAN PUSTAKA 2.1 Konsep Dasar Geometri Affin ( Rawuh, 2009) Aksioma-aksioma yang membentuk geometri Affin disebut dengan aksioma playfair yaitu aksioma yang menyatakan bahwa melalui suatu titik

Lebih terperinci