8.1 Transformasi Linier Umum. Bukan lagi transformasi R n R m, tetapi transformasi linier dari

Ukuran: px
Mulai penontonan dengan halaman:

Download "8.1 Transformasi Linier Umum. Bukan lagi transformasi R n R m, tetapi transformasi linier dari"

Transkripsi

1 8.1 Transformasi Linier Umum Bukan lagi transformasi R n R m, tetapi transformasi linier dari ruang vektor V vektor W.

2 Definisi Jika T: V W adalah suatu fungsi dari suatu ruang vektor V ke ruang vektor W, maka T disebut tranformasi linier dari V ke W jika untuk semua vektor u dan v pada V dan semua skalar c: T (u+v) = T (u) + T (v) T (cu) = ct (u)

3

4 Transformasi Linier Pada kasus khusus dimana V=W, transformasi liniert:v V disebut operator linier V.

5 Transformasi Nol Pemetaan T:V W, disebut transformasi nol jika, T (u+v) = 0 T (u) = 0, T (v) = 0 dan T (k u) = 0 Dengan demikian, T (u+v) =T (u) +T (v) dan T (k u) = kt (u)

6 Operator Identitas Pemetaan I: V V yang didefinisikan oleh I (v) = v disebut operator identitas pada V.

7 Dilation and Contraction operators Jika V sebarang vektor dan k sebarang skalar, maka fungsi T:V V yang didefinisikan oleh T (v) = k v Dilation/Pelebaran V : k > 1 operator linier pada V Contraction/ Penyempitan V: 0 < k < 1

8 Proyeksi Orthogonal Jika W adalah sub ruang berdimensi terhingga dari suatu ruang hasil kali dalam V, maka proyeksi orthogonal dari V pada W adalah transformasi yang didefinisikan oleh: T (v ) = projwv

9 Proyeksi Orthogonal T (v ) = proj w v Jika S = {w 1, w 2,, w r } sebarang basis ortonormal untuk W, maka T (v ) : T (v ) = proj w v = <v,w 1 >w 1 + <v,w 2 >w 2 + +<v,w r >w r Bukti bahwa T adalah suatu transformasi linier diperoleh dari sifatsifat hasil kali dalam, sbb : T (u+v) = <u+v, w 1 >w 1 + <u+v, w 2 >w 2 + +<u+v, w r > w r = <u, w 1 >w 1 + <u, w 2 >w <u, w r >w r + <v, w 1 >w 1 + <v, w 2 >w <v, w r >w r = T (u) + T (v) Dengan cara yang sama: T (ku) = kt (u)

10 Computing an Orthogonal Projection Anggap V = R 3 memiliki hasil kali dalam Euclidean. Vektor w 1 = (1,0,0) dan w 2 = (0,1,0) membentuk basis ortonormal bidang xy. Jika v = (x,y,z) adalah sebarang vektor R 3, proyeksi ortogonal dari R 3 pada bidang xy adalah: T (v ) = <v, w 1 >w 1 + <v, w 2 >w 2 = x (1, 0, 0) + y (0, 1, 0) = ( x, y, 0 ) Proyeksi Ortogonal R 3 pada bidang xy

11 Transformasi Linier Ruang Vektor V to R n Jika S = {w 1, w 2,, w n } adalah suatu basis untuk suatu ruang vektor V, dan (v) s = (k 1, k 2,, k n ) adalah vektor koordinat relatif terhadap S dari suatu vektor v dalam V sehingga; v = k 1 w + k 2 w k n w n Definisikan T: V R n sebagai fungsi yang memetakan v pada vektor koordinat relatif terhadap S; yaitu, T (v) = (v) s = (k 1, k 2,, k n )

12 Transformasi Linier Ruang Vektor V to R n Fungsi T adalah suatu transformasi linier, dimana: u = c 1 w 1 + c 2 w c n w n dan v = d 1 w 1 + d 2 w d n w n Jadi (u) s = (c 1, c 2,, c n ) dan (v) s = (d 1, d 2,, d n ) Tapi; u+v = (c 1 +d 1 ) w 1 + (c 2 +d 2 ) w (c n +d n ) w n k u = (kc 1 ) w 1 +(kc 2 ) w (kc n ) w n Sehingga; (u+v) s = (c 1 +d 1, c 2 +d 2, c n +d n ) (k u) s = (kc 1, kc 2,, kc n ) Dengan demikian; (u+v) s = (u) s + (v) s dan (k u) s = k (u) s

13 Transformasi Linier Ruang Vektor V to R n Dengan demikian; (u+v) s = (u) s + (v) s dan (k u) s = k (u) s Jika persamaan dalam bentuk T, maka: T (u+v) = T (u) + T (v) and T (k u) = kt (u) Yang menunjukkan bahwa T adalah suatu transformasi linier. REMARK. Penulisan dalam bentuk matriks: [u+v] = [u] s +[v] s and [k u] s = k [u] s

14 Contoh : Transformasi linier p n ke p n+1 Jika p = p(x) = C 0 X + C 1 X C n X n+1 adalah polinom dalam P n, maka fungsi T: P n P n+1 : T (p) = T (p(x)) = xp(x)= C 0 X + C 1 X C n X n+1 Fungsi T adalah suatu transformasi linier, dimana untuk skalar k dan sebarang polinom p 1 dan p 2 dalam P n T (p 1 +p 2 ) = T (p 1 (x) + p 2 (x)) = x (p 1 (x)+p 2 (x)) = x p 1 (x) + x p 2 (x) = T (p 1 ) +T (p 2 ) dan T (k p) = T (k p(x)) = x (k p(x))= k (x p(x))= k T(p)

15 Operator Linier dalam P n Jika p = p(x) = c 0 X + c 1 X c n X n+1 adalah polinom dalam P n, dan anggap a dan b sebarang skalar. Fungsi T didefinisikan sbb: T (p) = T(p(x)) = p (ax+b) = c 0 + c 1 (ax+b) + + c n (ax+b) n adalah suatu operator linier. Contoh, jika ax+b = 3x 5, maka T: P 2 P 2 akan menjadi operator linier sbb: T (c 0 + c 1 x+ c 2 x 2 ) = c 0 + c 1 (3x-5) + c 2 (3x-5) 2

16 A Linear Transformation Using an Inner Product Jika V adalah suatu hasil kali dalam dan v 0 adalah sebarang vektor tetap pada V. Anggap T:V R adalah transformasi yang memetakan suatu vektor v ke hasil kali dalamnya dengan v 0 ; yaitu, T (v) = <v, v 0 > Dari sifat-sifat suatu hasil kali dalam: T (u+v) = <u+v, v 0 >= <u, v 0 > + <v, v 0 > dan T (k u) = <k u, v 0 > = k <u, v 0 > = kt (u) Sehingga T adalah suatu transformasi linear..

17 Sifat-sifat Transformasi Linear Jika T:V W adalah suatu transformasi linear, maka untuk sebarang vektor v 1 dan v 2 dalam V dan sebarang skalars c 1 dan c 2, kita dapatkan: T (c 1 v 1 + c 2 v 2 ) = T (c 1 v 1 ) + T (c 2 v 2 ) = c 1 T (v 1 ) + c 2 T (v 2 ) Dan secara lebih umum v 1, v 2,, v n adalah vektor-vektor pada V dan c 1, c 2,, c n adalah skalar, maka: T (c 1 v 1 + c 2 v c n v n ) = c 1 T (v 1 ) + c 2 T ( v 2 ) + + c n T ( v n ) 1 ) 1 ) transformasi linear mempertahankan kombinasi linear.

18 Tiga Sifat Dasar Transformasi Linear Theorem Jika T:V W adalah suatu transformasi linear, maka: (a) T (0) = 0 (b) T (-v ) = -T (v ) untuk semua v dalam V (c) T (v-w ) = T (v ) - T (w) untuk semua v dan w dalam V Proof. (a) Let v be any vector in V. Since v=0, we have T (0)=T (0v)=0T (v)=0 (b) T (-v) = T ((-1)v) = (-1)T (v)=-t (v) (c) v-w=v+(-1)w; thus, T (v-w)= T (v + (-1)w) = T (v) + (-1)T (w) = T (v) -T (w)

19 Mencari Transformasi Linear dari Bayangan Vektor Basis Jika T:V W adalah suatu transformasi linear dan {v 1, v 2,, v n } adalah sebarang basis untuk V, maka bayangan T (v) dari sebarang vektor v pada V dapat dihitung dari bayangan: T (v 1 ), T (v 2 ),, T (v n ) dari vektor-vektor basis. Nyatakan v sebagai kombinasi linear dari vektor-vektor basis; v = c 1 v 1 + c 2 v c n v n Gunakan rumus (1) untuk menulis: T (v) = c 1 T (v 1 ) + c 2 T (v 2 ) + + c n T (v n ) Suatu transformasi linear secara lengkap ditentukan oleh bayangan sebarang vektor-vektor basis. T (c 1 v 1 + c 2 v c n v n ) = c 1 T (v 1 ) + c 2 T ( v 2 ) + + c n T ( v n )

20 Computing with Images of Basis Vectors Contoh: Tinjau basis S = {v 1, v 2, v 3 } untuk R 3, dimana v 1 = (1,1,1), v 2 =(1,1,0), dan v 3 = (1,0,0). Anggap T: R 3 R 2 adalah transformasi linear sedemikian sehingga: T (v 1 )=(1,0), T (v 2 )=(2,-1), T (v 3 )=(4,3) Carilah rumus untuk T (x 1, x 2, x 3 ); kemudian gunakan untuk menghitung T (2,-3,5).

21 Computing with Images of Basis Vectors Jawab: Nyatakan x = (x 1, x 2, x 3 ) sebagai kombinasi linear v 1 =(1,1,1), v 2 =(1,1,0), and v 3 = (1,0,0). (x 1, x 2, x 3 ) = c 1 (1,1,1) + c 2 (1,1,0) + c 3 (1,0,0) Dengan menyamakan komponen yang bersepadanan: c 1 + c 2 + c 3 = x 1 c 1 + c 2 = x 2 c 1 = x 3 c 1 = x 3, c 2 = x 2 - x 3, c 3 = x 1 - x 2

22 c 1 = x 3, c 2 = x 2 - x 3, c 3 = x 1 - x 2, sehingga Kombinasi Liner: (x 1, x 2, x 3 ) = x 3 (1,1,1) + (x 2 - x 3 ) (1,1,0) + (x 1 - x 2 ) (1,0,0) = x 3 v 1 + (x 2 - x 3 ) v 2 + (x 1 - x 2 ) v 3 Jadi transformasi linear: T (x 1, x 2, x 3 ) = x 3 T (v 1 ) + (x 2 - x 3 ) T (v 2 ) + (x 1 - x 2 ) T (v 3 ) = x 3 (1,0) + (x 2 - x 3 ) (2,-1) + (x 1 - x 2 ) (4,3) = (4x 1-2x 2 -x 3, 3x 1-4x 2 +x 3 ) Dari rumus ini kita dapatkan T (2, -3, 5 ) =(9,23)

23 Komposisi T 2 dengan T 1 Jika T 1 :U V dan T 2 :V W adalah transformasi linear, komposisi T 2 dan T 1, dinotasikan T 2 ot 1 (baca T 2 circle T 1 ), adalah fungsi yang didefinisikan oleh rumus (T 2 ot 1 )(u) = T 2 (T 1 (u)) (2) dimana u adalah vektor dalam U

24 Theorem Jika T 1 :U V dan T 2 :V W adalah transformasi linear maka (T 2 o T 1 ):U W juga merupakan transformasi linear. Proof. If u and v are vectors in U and c is a scalar, then it follows from (2) and the linearity of T 1 andt 2 that (T 2 ot 1 )(u+v) = T 2 (T 1 (u+v)) = T 2 (T 1 (u)+t 1 (v)) = T 2 (T 1 (u)) + T 2 (T 1 (v)) = (T 2 ot 1 )(u) + (T 2 ot 1 )(v) and (T 2 ot 1 )(c u) = T 2 (T 1 (c u)) = T 2 (ct 1 (u)) = ct 2 (T 1 (u)) = c (T 2 ot 1 )(u) Thus, T 2 ot 1 satisfies the two requirements of a linear transformation.

25 Composition with the Identify Operator Jika T:V V adalah sebarang operator linear dan jika I:V V adalah operator identitas, maka untuk semua vektor v pada V kita dapatkan: (T o I )(v) = T (I (v)) = T (v) (I ot )(v) = I (T (v)) = T (v) Kita dapatkan bahwa T o I dan I ot sama dengan T ; T o I =T and I ot = T (3)

26 Contoh

27 T 3 o T 2 ot 1 Dapat disimpulkan bahwa komposisi bisa didefinisikan untuk lebih dari dua transformasi linear. Misalnya: T 1 : U V and T 2 : V W,dan T 3 : W Y adalah transformasi linear, maka komposisi T 3 o T 2 ot 1 didefinisikan oleh: (4)

28 Contoh Anggap T 1 : P 1 P 1 dan T 2 : P 2 P 2 adalah transformasi linear yang diberikan oleh rumus T 1 (p(x)) = xp(x) dan T 2 (p(x)) = p (2x+4) Komposisi (T 2 T 1 ): P 1 P 2 diberikan oleh rumus: (T 2 T 1 )(p(x)) = (T 2 )(T 1 (p(x))) = T 2 (xp(x)) = (2x+4)p (2x+4)

29 8.2 Kernel And Range

30 Definisi ker(t ): the kernel of T Jika T:V W adalah suatu transformasi linear, maka himpunan vektor pada V yang dipetakan T ke 0 disebut kernel dari T R (T ): the range of T Jika T:V W adalah suatu transformasi linear maka himpunan semua vektor pada W yang merupakan bayangan dibawah T yang paling tidak merupakan satu vektor pada V disebut daerah hasil dari T dinyatakan R(T).

31 Kernel and Range of a Matrix Transformation Jika T A :R n R m adalah perkalian matriks A, m n, maka the kernel of T A nullspace of A the range of T A column space of A

32 Kernel and Range of the Zero Transformation Anggap T:V W adalah transformasi nol. Karena T memetakan setiap vektor pada V ke 0 ker(t ) = V. Apabila 0 adalah satu-satunya bayangan di bawah T dari vektor-vektor pada V, R (T ) = {0}.

33 Kernel and Range of the Identity Operator Jika I:V V adalah operator identitas. Dimana I (v) = v untuk semua vektor pada V, setiap vektor pada V adalah bayangan dari suatu vektor, yaitu vektor itu sendiri, R(I ) = V. Karena satu-satunya vektor yang dipetakan I ke 0 adalah 0, ker(i ) = {0}.

34 Theorem Jika T:V W adalah suatu transformasi linear, maka (a) The kernel of T is a subspace of V. (b) The range of T is a subspace of W. Proof (a). Let v 1 and v 2 be vectors in ker(t ), and let k be any scalar. Then T (v 1 + v 2 ) = T (v 1 ) + T (v 2 ) = 0+0 = 0 so that v 1 + v 2 is in ker(t ). Also, T (k v 1 ) = kt (v 1 ) = k 0 = 0 so that k v 1 is in ker(t ). Proof (b). Let w 1 and w 2 be vectors in the range of T, and let k be any scalar. There are vectors a 1 and a 2 in V such that T (a 1 ) = w 1 and T(a 2 ) = w 2. Let a = a 1 + a 2 and b = k a 1. Then T (a) = T (a 1 + a 2 ) = T (a 1 ) + T (a 2 ) = w 1 + w 2 and T (b) = T (k a 1 ) = kt (a 1 ) = k w 1

35 Peringkat dan Kekosongan Transformasi Linear rank (T): peringkat T Jika T:V W adalah suatu transformasi linear, maka dimensi daerah hasil dari T disebut peringkat dari T rank(t). nullity (T): the nullity of T Dimensi kernel disebut kekosongan dari T nullity (T).

36 Theorem Jika A adalah suatu matriks mxn dan T A :R n R m adalah perkalian dengan A, maka nullity (T A ) = nullity (A ) rank (T A ) = rank (A )

37 Teorema Dimensi untuk Transformasi Linear Theorem Jika T:V W adalah suatu transformasi linear dari suatu ruang vektor V berdimensi n ke suatu ruang vektor W, maka rank (T ) + nullity (T ) = n Transformasi linear peringkat ditambah kekosongan sama dengan dimensi daerah asal.

38 Contoh Jika T A :R 6 R 4 dikalikan oleh A= Cari peringkat dan kekosongan T A

39 Cari peringkat dan kekosongan dari matriks A sbb: Bentuk baris-eselon tereduksi A: Ada 2 baris tak-nol atau ada dua utama 1, maka; Ruang baris dan ruang kolom berdimensi 2, sehingga rank(a) = 2

40 Untuk mencari kekosongan dari A, cari dimensi ruang penyelesaian dari sistem liner homogen Ax = 0 Ruang Null Empat vektor membentuk suatu basis untuk ruang penyelesaian, sehingga; kekosongan(a) = 4

41 rank(a) = 2 rank(t A ) =2 kekosongan(a) = 4 kekosongan (T A ) = 4

42 rank (T): peringkat T Jika T:V W adalah suatu transformasi linear, maka dimensi daerah hasil dari T disebut peringkat dari T rank(t). nullity (T): the nullity of T Dimensi kernel disebut kekosongan dari T nullity (T). Jika A adakah suatu matriks mxn dan T A :R n R m adalah perkalian dengan A, maka nullity (T A ) = nullity (A ) Kernel T A rank (T A ) = rank (A ) rank T A

Chapter 5 GENERAL VECTOR SPACE Row Space, Column Space, Nullspace 5.6. Rank & Nullity

Chapter 5 GENERAL VECTOR SPACE Row Space, Column Space, Nullspace 5.6. Rank & Nullity Chapter 5 GENERAL VECTOR SPACE 5.5. Row Space, Column Space, Nullspace 5.6. Rank & Nullity 5.5. Row Space, Column Space, Nullspace Vektor-Vektor Baris & Kolom Vektor baris A (dalam R n ) Vektor kolom A

Lebih terperinci

Aljabar Linier Elementer. Kuliah 26

Aljabar Linier Elementer. Kuliah 26 Aljabar Linier Elementer Kuliah 26 Materi Kuliah Transformasi Linier Umum Kernel dan Range 10/11/2014 Yanita, Matematika FMIPA Unand 2 Transformasi Linier Umum Definisi Misalkan V dan W adalah ruang vektor

Lebih terperinci

8.3 Inverse Linear Transformations

8.3 Inverse Linear Transformations 8.3 Inverse Linear Transformations Definition One to One Transformasi linear T:V W dikatakan one-to-one jika T memetakan vektor-vektor berbeda pada V ke vektorvektor berbeda pada W. Jika A adalah suatu

Lebih terperinci

TRANSFORMASI LINEAR. Disusun untuk Memenuhi Tugas Mata Kuliah Aljabar Linear. Dosen Pengampu : Abdul Aziz Saefudin, M.Pd

TRANSFORMASI LINEAR. Disusun untuk Memenuhi Tugas Mata Kuliah Aljabar Linear. Dosen Pengampu : Abdul Aziz Saefudin, M.Pd TRANSFORMASI LINEAR Disusun untuk Memenuhi Tugas Mata Kuliah Aljabar Linear Dosen Pengampu : Abdul Aziz Saefudin, M.Pd Disusun oleh : Kelompok 7/ Kelas III A Endar Alviyunita 34400094 Ahmat Sehari ---------------

Lebih terperinci

Transformasi Linier. Transformasi linier memiliki beberapa fungsi yang perlu dipelajari. Fungsi-fungsi tersebut antara lain :

Transformasi Linier. Transformasi linier memiliki beberapa fungsi yang perlu dipelajari. Fungsi-fungsi tersebut antara lain : Transformasi Linier Objektif:. definisi transformasi linier umum.. definisi transformasi linier dari R n ke R m. 3. invers transformasi linier. 4. matrix transformasi 5. kernel dan jangkauan 6. keserupaan.definisi

Lebih terperinci

Ruang Vektor. Kartika Firdausy UAD blog.uad.ac.id/kartikaf. Ruang Vektor. Syarat agar V disebut sebagai ruang vektor. Aljabar Linear dan Matriks 1

Ruang Vektor. Kartika Firdausy UAD blog.uad.ac.id/kartikaf. Ruang Vektor. Syarat agar V disebut sebagai ruang vektor. Aljabar Linear dan Matriks 1 Ruang Vektor Kartika Firdausy UAD blog.uad.ac.id/kartikaf Syarat agar V disebut sebagai ruang vektor 1. Jika vektor vektor u, v V, maka vektor u + v V 2. u + v = v + u 3. u + ( v + w ) = ( u + v ) + w

Lebih terperinci

KS KALKULUS DAN ALJABAR LINEAR Ruang Baris Ruang Kolom Ruang Nol TIM KALIN

KS KALKULUS DAN ALJABAR LINEAR Ruang Baris Ruang Kolom Ruang Nol TIM KALIN KS96 KALKULUS DAN ALJABAR LINEAR Ruang Baris Ruang Kolom Ruang Nol TIM KALIN TUJUAN INSTRUKSIONAL KHUSUS Setelah menyelesaikan pertemuan ini mahasiswa diharapkan: Dapat mencari ruang baris, ruang kolom,

Lebih terperinci

TRANSFORMASI LINIER (Kajian Fungsi antar Ruang Vektor)

TRANSFORMASI LINIER (Kajian Fungsi antar Ruang Vektor) Outline TRANSFORMASI LINIER (Kajian Fungsi antar Ruang Vektor) Drs. Antonius Cahya Prihandoko, M.App.Sc PS. Pendidikan Matematika PS. Sistem Informasi University of Jember Indonesia Jember, 2009 Outline

Lebih terperinci

CHAPTER 6. Ruang Hasil Kali Dalam

CHAPTER 6. Ruang Hasil Kali Dalam CHAPTER 6. Ruang Hasil Kali Dalam Hasil Kali Dalam Sudut dan Ortogonal dalam Ruang Hasil Kali Dalam Orthonormal Bases; Gram-Schmidt Process; QR-Decomposition Best Approximation; Least Squares Orthogonal

Lebih terperinci

Latihan 5: Inner Product Space

Latihan 5: Inner Product Space Latihan 5: Inner Product Space Diketahui vektor u v w ϵ R di mana u = v = Hitunglah : a b c d e f Diketahui vektor u v ϵ R di mana u = dan v = Carilah

Lebih terperinci

Aljabar Linier Sistem koordinat, dimensi ruang vektor dan rank

Aljabar Linier Sistem koordinat, dimensi ruang vektor dan rank Aljabar Linier Sistem koordinat, dimensi ruang vektor dan rank khozin mu tamar 9 Oktober 2014 PERTEMUAN-4 : SISTEM KOORDINAT, DIMEN- SI RUANG VEKTOR DAN RANK 1. Sistem koordinat (a) Ketunggalan scalar

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer BAB I RUANG VEKTOR Pada kuliah Aljabar Matriks kita telah mendiskusikan struktur ruang R 2 dan R 3 beserta semua konsep yang terkait. Pada bab ini kita akan membicarakan struktur yang merupakan bentuk

Lebih terperinci

SUMMARY ALJABAR LINEAR

SUMMARY ALJABAR LINEAR SUMMARY ALJABAR LINEAR SUMANANG MUHTAR GOZALI KBK ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2010 2 KATA PENGANTAR Bismillahirrahmanirrahim Segala puji bagi Allah Rabb semesta alam. Shalawat serta

Lebih terperinci

ALJABAR LINEAR SUMANANG MUHTAR GOZALI KBK ANALISIS

ALJABAR LINEAR SUMANANG MUHTAR GOZALI KBK ANALISIS ALJABAR LINEAR SUMANANG MUHTAR GOZALI KBK ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2010 2 KATA PENGANTAR Bismillahirrahmanirrahim Segala puji bagi Allah Rabb semesta alam Shalawat serta salam

Lebih terperinci

DIKTAT PERKULIAHAN. EDISI 1 Aljabar Linear dan Matriks

DIKTAT PERKULIAHAN. EDISI 1 Aljabar Linear dan Matriks DIKTAT PERKULIAHAN EDISI 1 Aljabar Linear dan Matriks Penulis : Ednawati Rainarli, M.Si. Kania Evita Dewi, M.Si. JURUSAN TEKNIK INFORMATIKA UNIVERSITAS KOMPUTER INDONESIA BANDUNG 011 IF/011 1 DAFTAR ISI

Lebih terperinci

Chapter 5 GENERAL VECTOR SPACE 5.1. REAL VECTOR SPACES 5.2. SUB SPACES

Chapter 5 GENERAL VECTOR SPACE 5.1. REAL VECTOR SPACES 5.2. SUB SPACES Chapter 5 GENERAL VECTOR SPACE 5.1. REAL VECTOR SPACES 5.2. SUB SPACES Definisi : VECTOR SPACE Jika V adalah ruang vektor dimana u,v,w merupakan objek dalam V sebagai vektor, dan terdapat skalar k dan

Lebih terperinci

erkalian Silang, Garis & Bidang dalam Dimensi 3

erkalian Silang, Garis & Bidang dalam Dimensi 3 erkalian Silang, Garis & Bidang dalam Dimensi 3 TUJUAN INSTRUKSIONAL KHUSUS Setelah menyelesaikan pertemuan ini mahasiswa diharapkan : Dapat menghitung perkalian silang dari suatu vektor dan mengetahui

Lebih terperinci

RUANG VEKTOR. Nurdinintya Athari (NDT)

RUANG VEKTOR. Nurdinintya Athari (NDT) 1 RUANG VEKTOR Nurdinintya Athari (NDT) RUANG VEKTOR Sub Pokok Bahasan Ruang Vektor Umum Subruang Basis dan Dimensi Basis Subruang Beberapa Aplikasi Ruang Vektor Beberapa metode optimasi Sistem kontrol

Lebih terperinci

RUANG VEKTOR UMUM AKSIOMA RUANG VEKTOR

RUANG VEKTOR UMUM AKSIOMA RUANG VEKTOR 7//5 RUANG VEKTOR UMUM Yang dibahas.. Ruang vektor umum. Subruang. Hubungan dependensi linier 4. Basis dan dimensi 5. Ruang baris, ruang kolom, ruang nul, rank dan nulitas AKSIOMA RUANG VEKTOR V disebut

Lebih terperinci

KS KALKULUS DAN ALJABAR LINEAR Ruang Vektor TIM KALIN

KS KALKULUS DAN ALJABAR LINEAR Ruang Vektor TIM KALIN KS091206 KALKULUS DAN ALJABAR LINEAR Ruang Vektor TIM KALIN TUJUAN INSTRUKSIONAL KHUSUS Setelah menyelesaikan pertemuan ini mahasiswa diharapkan: Dapat mengetahui definisi dan sifat-sifat dari ruang vektor

Lebih terperinci

MUH1G3/ MATRIKS DAN RUANG VEKTOR

MUH1G3/ MATRIKS DAN RUANG VEKTOR MUH1G3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN 5 Ruang Vektor Ruang Vektor Sub Pokok Bahasan Ruang Vektor Umum Subruang Basis dan Dimensi Beberapa Aplikasi Ruang Vektor Beberapa metode optimasi Sistem Kontrol

Lebih terperinci

Aljabar Linier & Matriks

Aljabar Linier & Matriks Aljabar Linier & Matriks 1 Pendahuluan Ruang vektor tidak hanya terbatas maksimal 3 dimensi saja 4 dimensi, 5 dimensi, dst ruang n-dimensi Jika n adalah bilangan bulat positif, maka sekuens sebanyak n

Lebih terperinci

Vektor-Vektor. Ruang Berdimensi-2. Ruang Berdimensi-3

Vektor-Vektor. Ruang Berdimensi-2. Ruang Berdimensi-3 Vektor-Vektor dalam Ruang Berdimensi-2 dan Ruang Berdimensi-3 Disusun oleh: Achmad Fachrurozi Albert Martin Sulistio Iffatul Mardhiyah Rifki Kosasih Departemen Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

II. LANDASAN TEORI. Pada bab ini akan dijelaskan mengenai teori-teori yang berhubungan dengan

II. LANDASAN TEORI. Pada bab ini akan dijelaskan mengenai teori-teori yang berhubungan dengan II. LANDASAN TEORI Pada bab ini akan dijelaskan mengenai teori-teori yang berhubungan dengan penelitian ini sehingga dapat dijadikan sebagai landasan berfikir dalam melakukan penelitian dan akan mempermudah

Lebih terperinci

Operasi perkalian skalar merupakan suatu aturan yang mengasosiasikan setiap skalar k dan setiap objek u pada v dengan suatu objek ku, yang disebut

Operasi perkalian skalar merupakan suatu aturan yang mengasosiasikan setiap skalar k dan setiap objek u pada v dengan suatu objek ku, yang disebut RUANG VEKTOR REAL Aksioma ruang vektor, dinyatakan dlam definisi beikut, dimana aksiona merupakan aturan permainan dalam ruang vektor. Definisi : Jika V merupakan suatu himpunan tidak kosong dari objek

Lebih terperinci

PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS VETERAN BANGUN NUSANTARA SUKOHARJO

PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS VETERAN BANGUN NUSANTARA SUKOHARJO PERANGKAT PEMBELAJARAN MATA KULIAH : ALJABAR LINIER 2 KODE : MKK414515 DOSEN PENGAMPU : Annisa Prima Exacta, M.Pd. PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS

Lebih terperinci

Aljabar Linear. & Matriks. Evangs Mailoa. Pert. 7-8

Aljabar Linear. & Matriks. Evangs Mailoa. Pert. 7-8 Aljabar Linear & Matriks Pert. 7-8 Evangs Mailoa Yang dipelajari hari ini: Aritmatika Vektor Konsep Geometrik Titik, Garis dan Bidang Perkalian Titik Euclidean Vector Spaces I There are two major topics

Lebih terperinci

PERTEMUAN 11 RUANG VEKTOR 1

PERTEMUAN 11 RUANG VEKTOR 1 PERTEMUAN 11 RUANG VEKTOR 1 TUJUAN INSTRUKSIONAL KHUSUS Setelah menyelesaikan pertemuan ini mahasiswa diharapkan : Dapat mengetahui definisi dan sifat-sifat dari ruang vektor Dapat mengetahui definisi

Lebih terperinci

KS KALKULUS DAN ALJABAR LINEAR Vektor di Ruang N TIM KALIN

KS KALKULUS DAN ALJABAR LINEAR Vektor di Ruang N TIM KALIN KS091206 KALKULUS DAN ALJABAR LINEAR Vektor di Ruang N TIM KALIN TUJUAN INSTRUKSIONAL KHUSUS Setelah menyelesaikan pertemuan ini mahasiswa diharapkan: Dapat mengetahui definisi dan dapat menghitung perkalian

Lebih terperinci

Pengantar Vektor. Besaran. Vektor (Mempunyai Arah) Skalar (Tidak mempunyai arah)

Pengantar Vektor. Besaran. Vektor (Mempunyai Arah) Skalar (Tidak mempunyai arah) Pengantar Vektor Besaran Skalar (Tidak mempunyai arah) Vektor (Mempunyai Arah) Vektor Geometris Skalar (Luas, Panjang, Massa, Waktu dan lain - lain), merupakan suatu besaran yang mempunyai nilai mutlak

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PEMBELAJARAN

GARIS-GARIS BESAR PROGRAM PEMBELAJARAN GARIS-GARIS BESAR PROGRAM PEMBELAJARAN Mata Kuliah : Aljabar Linear Kode / SKS : TIF-5xxx / 3 SKS Dosen : - Deskripsi Singkat : Mata kuliah ini berisi Sistem persamaan Linier dan Matriks, Determinan, Vektor

Lebih terperinci

BAB IV TRANSFORMASI LINEAR. sebuah vektor yang unik di dalam W dengan sebuah vektor di dalam V, maka kita mengatakan F

BAB IV TRANSFORMASI LINEAR. sebuah vektor yang unik di dalam W dengan sebuah vektor di dalam V, maka kita mengatakan F BAB IV TRANSFORMASI LINEAR 4.. Transformasi Linear Jika V dan W adalah ruang vektor dan F adalah sebuah fungsi yang mengasosiasikan sebuah vektor yang unik di dalam W dengan sebuah vektor di dalam V, maka

Lebih terperinci

BAB 5 RUANG VEKTOR A. PENDAHULUAN

BAB 5 RUANG VEKTOR A. PENDAHULUAN BAB 5 RUANG VEKTOR A. PENDAHULUAN 1. Definisi-1. Suatu ruang vektor adalah suatu himpunan objek yang dapat dijumlahkan satu sama lain dan dikalikan dengan suatu bilangan, yang masing-masing menghasilkan

Lebih terperinci

Euclidean n & Vector Spaces. Matrices & Vector Spaces

Euclidean n & Vector Spaces. Matrices & Vector Spaces Lecture 9 Euclidean n & Vector Spaces Delivered by: Filson Maratur Sidjabat fmsidjabat@president.ac.id Matrices & Vector Spaces #4 th June 05 (90%*score / 0% extra points for HW-Q) Retake Quiz. Compute

Lebih terperinci

04-Ruang Vektor dan Subruang

04-Ruang Vektor dan Subruang 04-Ruang Vektor dan Subruang Vektor (1) Dosen: Anny Yuniarti, M.Comp.Sc Gasal 2011-2012 Anny2011 1 Agenda Bagian 1: Ruang Vektor Bagian 2: Nullspace of A: Solusi Ax = 0 Bagian 3: Rank dan Row-reduced-form

Lebih terperinci

DIKTAT MATA KULIAH ALJABAR LINEAR ELEMENTER (BAGIAN II) DISUSUN OLEH ABDUL JABAR, M.Pd

DIKTAT MATA KULIAH ALJABAR LINEAR ELEMENTER (BAGIAN II) DISUSUN OLEH ABDUL JABAR, M.Pd DIKTAT MATA KULIAH ALJABAR LINEAR ELEMENTER (BAGIAN II) DISUSUN OLEH ABDUL JABAR, M.Pd JURUSAN/PROGRAM STUDI PENDIDIKAN MATEMATIKA STKIP PGRI BANJARMASIN MARET MUQADIMAH Alhamdulillah penyusun ucapkan

Lebih terperinci

Kumpulan Soal,,,,,!!!

Kumpulan Soal,,,,,!!! Kumpulan Soal,,,,,!!! Materi: Matriks & Ruang Vektor 1. BEBAS LINEAR S 3. BASIS DAN DIMENSI O A L 2. KOMBINASI LINEAR NeXt FITRIYANTI NAKUL Page 1 1. BEBAS LINEAR Cakupan materi ini mengkaji tentang himpunan

Lebih terperinci

Kata Pengantar. Puji syukur kehadirat Yang Maha Kuasa yang telah memberikan pertolongan hingga modul ajar ini dapat terselesaikan.

Kata Pengantar. Puji syukur kehadirat Yang Maha Kuasa yang telah memberikan pertolongan hingga modul ajar ini dapat terselesaikan. i Kata Pengantar Puji syukur kehadirat Yang Maha Kuasa yang telah memberikan pertolongan hingga modul ajar ini dapat terselesaikan. Modul ajar ini dimaksudkan untuk membantu penyelenggaraan kuliah jarak

Lebih terperinci

Aljabar Linier Elementer. Kuliah ke-9

Aljabar Linier Elementer. Kuliah ke-9 Aljabar Linier Elementer Kuliah ke-9 Materi kuliah Hasilkali Titik Proyeksi Ortogonal 7/9/2014 Yanita, FMIPA Matematika Unand 2 Hasilkali Titik dari Vektor-Vektor Definisi Jika u dan v adalah vektor-vektor

Lebih terperinci

Yang dibahas : Ortogonal Basis ortogonal Ortonormal Matrik ortogonal Komplemen ortogonal Proyeksi ortogonal Faktorisasi QR

Yang dibahas : Ortogonal Basis ortogonal Ortonormal Matrik ortogonal Komplemen ortogonal Proyeksi ortogonal Faktorisasi QR Ortogonal Yang dibahas : Ortogonal Basis ortogonal Ortonormal Matrik ortogonal Komplemen ortogonal Proyeksi ortogonal Faktorisasi QR Ortogonal Himpunan vektor {v, v,.., v k } dalam R n disebut himpunan

Lebih terperinci

Aljabar Linier. Kuliah

Aljabar Linier. Kuliah Aljabar Linier Kuliah 10 11 12 Materi Kuliah Transformasi Linier Kernel dan Image dari Transformasi Linier isomorfisma Teorema Rank plus Nullity 1/11/2014 Yanita FMIPA Matematika Unand 2 Transformasi Linier

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Sebagai acuan penulisan penelitian ini diperlukan beberapa pengertian dan teori yang berkaitan dengan pembahasan. Dalam sub bab ini akan diberikan beberapa landasan teori berupa pengertian,

Lebih terperinci

Aljabar Linier & Matriks

Aljabar Linier & Matriks Aljabar Linier & Matriks 1 Vektor Orthogonal Vektor-vektor yang saling tegak lurus juga sering disebut vektor orthogonal. Dua vektor disebut saling tegak lurus jika dan hanya jika hasil perkalian titik-nya

Lebih terperinci

SUBRUANG VEKTOR. Disusun Untuk Memenuhi Mata Kuliah Aljabar Linier. Dosen Pembimbing: Abdul Aziz Saefudin, M.Pd

SUBRUANG VEKTOR. Disusun Untuk Memenuhi Mata Kuliah Aljabar Linier. Dosen Pembimbing: Abdul Aziz Saefudin, M.Pd SUBRUANG VEKTOR Disusun Untuk Memenuhi Mata Kuliah Aljabar Linier Dosen Pembimbing: Abdul Aziz Saefudin, M.Pd Disusun Oleh : Kelompok 6/ III A4 1. Nina Octaviani Nugraheni 14144100115 2. Emi Suryani 14144100126

Lebih terperinci

MUH1G3/ MATRIKS DAN RUANG VEKTOR

MUH1G3/ MATRIKS DAN RUANG VEKTOR MUHG3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN 7 Transformasi Linear Sub Pokok Bahasan Definisi Transformasi Linear Matriks Transformasi Kernel dan Jangkauan Aplikasi Transformasi Linear Grafika Komputer Penyederhanaan

Lebih terperinci

ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I)

ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) 1 MATERI ALJABAR LINIER VEKTOR DALAM R1, R2 DAN R3 ALJABAR VEKTOR SISTEM PERSAMAAN LINIER MATRIKS, DETERMINAN DAN ALJABAR MATRIKS, INVERS MATRIKS

Lebih terperinci

7. NILAI-NILAI VEKTOR EIGEN. Nilai Eigen dan Vektor Eigen Diagonalisasi Diagonalisasi Ortogonal

7. NILAI-NILAI VEKTOR EIGEN. Nilai Eigen dan Vektor Eigen Diagonalisasi Diagonalisasi Ortogonal 7. NILAI-NILAI VEKTOR EIGEN Nilai Eigen dan Vektor Eigen Diagonalisasi Diagonalisasi Ortogonal Nilai Eigen, Vektor Eigen Diketahui A matriks nxn dan x adalah suatu vektor pada R n, maka biasanya tdk ada

Lebih terperinci

Aljabar Linier Elementer. Kuliah 27

Aljabar Linier Elementer. Kuliah 27 Aljabar Linier Elementer Kuliah 27 Materi Kuliah Transformasi Linier Invers Matriks Transformasi Linier Umum //24 Yanita, Matematika FMIPA Unand 2 Transformasi Linier Satu ke satu dan Sifat-sifatnya Definisi

Lebih terperinci

CHAPTER 6. INNER PRODUCT SPACE

CHAPTER 6. INNER PRODUCT SPACE CHAPTER 6. INNER PRODUCT SPACE Inner Prodcts Angle and Orthogonality in Inner Prodct Spaces Orthonormal Bases; Gram-Schmidt Process; QR-Decomposition Best Approximation; Least Sqares Orthogonal Matrices;

Lebih terperinci

MAKALAH BASIS RUANG SOLUSI

MAKALAH BASIS RUANG SOLUSI MAKALAH BASIS RUANG SOLUSI Untuk Memenuhi Tugas Mata Kuliah Aljabar Linier Dosen pengampu : Darmadi,S.Si,M.pd Di susun Oleh : Kelompok 6/ VF 1. Fitria Wahyuningsih ( 08411.135 ) 2. Pradipta Annurwanda

Lebih terperinci

BAB 7 TRANSFORMASI LINEAR PADA RUANG VEKTOR

BAB 7 TRANSFORMASI LINEAR PADA RUANG VEKTOR BAB 7 TRANSFORMASI LINEAR PADA RUANG VEKTOR A. DEFINISI DASAR 1. Definisi-1 Suatu pemetaan f dari ruang vektor V ke ruang vektor W adalah aturan perkawanan sedemikian sehingga setiap vektor v V dikawankan

Lebih terperinci

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA Mata Kuliah : Matematika Diskrit 2 Kode / SKS : IT02 / 3 SKS Program Studi : Sistem Komputer Fakultas : Ilmu Komputer & Teknologi Informasi. Pendahuluan 2. Vektor.. Pengantar mata kuliah aljabar linier.

Lebih terperinci

01-Pengenalan Vektor. Dosen: Anny Yuniarti, M.Comp.Sc Gasal Anny2011 1

01-Pengenalan Vektor. Dosen: Anny Yuniarti, M.Comp.Sc Gasal Anny2011 1 01-Pengenalan Vektor Dosen: Anny Yuniarti, M.Comp.Sc Gasal 2011-2012 Anny2011 1 Agenda Bagian 1: Vektor dan Kombinasi Linier Bagian 2: Panjang Vektor dan Perkalian Titik (Dot Products) Bagian 3: Matriks

Lebih terperinci

Hand-Out Geometri Transformasi. Bab I. Pendahuluan

Hand-Out Geometri Transformasi. Bab I. Pendahuluan Hand-Out Geometri Transformasi Bab I. Pendahuluan 1.1 Vektor dalam R 2 Misalkan u = (x 1,y 1 ), v = (x 2,y 2 ) dan w = (x 3,y 3 ) serta k skalar (bilangan real) Definisi 1. : Penjumlahan vektor u + v =

Lebih terperinci

DIKTAT ALJABAR LINIER DAN MATRIKS VEKTOR. Penyusun Ir. S. Waniwatining Astuti, M.T.I.

DIKTAT ALJABAR LINIER DAN MATRIKS VEKTOR. Penyusun Ir. S. Waniwatining Astuti, M.T.I. DIKTAT ALJABAR LINIER DAN MATRIKS VEKTOR Penyusun Ir. S. Waniwatining Astuti, M.T.I. SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER GLOBAL INFORMATIKA MDP 24 KATA PENGANTAR Pertama-tama penulis mengucapkan

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER JURUSAN : TEKNIK KOMPUTER JUMLAH SKS : Definisi, Notasi, dan Operasi Vektor 2.

SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER JURUSAN : TEKNIK KOMPUTER JUMLAH SKS : Definisi, Notasi, dan Operasi Vektor 2. SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER JURUSAN : TEKNIK KOMPUTER JUMLAH SKS : 3 Minggu Ke Pokok Bahasan dan TIU Sub Pokok Bahasan Sasaran Belajar Cara Pengajaran Media Tugas Referens i 1

Lebih terperinci

TINJAUAN PUSTAKA. Dalam bab ini akan dibahas beberapa konsep mendasar meliputi ruang vektor,

TINJAUAN PUSTAKA. Dalam bab ini akan dibahas beberapa konsep mendasar meliputi ruang vektor, II. TINJAUAN PUSTAKA Dalam bab ini akan dibahas beberapa konsep mendasar meliputi ruang vektor, ruang Bernorm dan ruang Banach, ruang barisan, operator linear (transformasi linear) serta teorema-teorema

Lebih terperinci

Ruang Baris, Ruang Kolom, dan Ruang Null (Kernel)

Ruang Baris, Ruang Kolom, dan Ruang Null (Kernel) Ruang Baris, Ruang Kolom, dan Ruang Null (Kernel) Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U November 2015 MZI (FIF Tel-U) Ruang Baris, Kolom,

Lebih terperinci

adalah isomorphik dengan im( ), 2) The rank plus nullity Theorem dim(ker ( ) )+dim(im ( )

adalah isomorphik dengan im( ), 2) The rank plus nullity Theorem dim(ker ( ) )+dim(im ( ) The Rank Plus Nullity Theorem L(V,W) 1) Sembarang komplemen dari ker () adalah isomorphik dengan im( ), 2) The rank plus nullity Theorem dim(ker () )+dim(im () ) = dim(v) Teorema 2.8. Misal atau rk() +

Lebih terperinci

BAB III RUANG VEKTOR R 2 DAN R 3. Bab ini membahas pengertian dan operasi vektor-vektor. Selain

BAB III RUANG VEKTOR R 2 DAN R 3. Bab ini membahas pengertian dan operasi vektor-vektor. Selain BAB III RUANG VEKTOR R DAN R 3 Bab ini membahas pengertian dan operasi ektor-ektor. Selain operasi aljabar dibahas pula operasi hasil kali titik dan hasil kali silang dari ektor-ektor. Tujuan Instruksional

Lebih terperinci

Bab 4 RUANG VEKTOR. 4.1 Ruang Vektor

Bab 4 RUANG VEKTOR. 4.1 Ruang Vektor Bab RUANG VEKTOR. Ruang Vektor DEFINISI.. Suatu ruang vektor (V, +,, F) atas field (F, +), ditulis singkat V(F), adalah suatu himpunan tak kosong V dengan elemenelemennya disebut vektor, yang dilengkapi

Lebih terperinci

BAB 4 RUANG VEKTOR EUCLID. Dr. Ir. Abdul Wahid Surhim, MT.

BAB 4 RUANG VEKTOR EUCLID. Dr. Ir. Abdul Wahid Surhim, MT. BAB 4 RUANG VEKTOR EUCLID Dr. Ir. Abdul Wahid Surhim, MT. KERANGKA PEMBAHASAN 1. Ruang n Euclid 2. Transformasi Linier dari R n dan R m 3. Sifat-sifat Transformasi Linier 4.1 RUANG N EUCLID Jika di bab

Lebih terperinci

BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT. Operator merupakan salah satu materi yang akan dibahas dalam fungsi

BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT. Operator merupakan salah satu materi yang akan dibahas dalam fungsi BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT 3.1 Operator linear Operator merupakan salah satu materi yang akan dibahas dalam fungsi real yaitu suatu fungsi dari ruang vektor ke ruang vektor. Ruang

Lebih terperinci

BAB II LANDASAN TEORI. yang biasanya dinyatakan dalam bentuk sebagai berikut: =

BAB II LANDASAN TEORI. yang biasanya dinyatakan dalam bentuk sebagai berikut: = BAB II LANDASAN TEORI 2.1 Matriks Definisi 2.1 (Lipschutz, 2006): Matriks adalah susunan segiempat dari skalarskalar yang biasanya dinyatakan dalam bentuk sebagai berikut: Setiap skalar yang terdapat dalam

Lebih terperinci

Aljabar Linier. Kuliah 2 30/8/2014 2

Aljabar Linier. Kuliah 2 30/8/2014 2 30/8/2014 1 Aljabar Linier Kuliah 2 30/8/2014 2 Bab 1 Subpokok Bahasan Ruang Vektor Subruang Subruang Lattice Jumlah Langsung Himpunan Pembangun dan Bebas Linier Dimensi Ruang Vektor Basis Terurut dan

Lebih terperinci

Analisis Fungsional. Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA

Analisis Fungsional. Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA Analisis Fungsional Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA Lingkup Materi Ruang Metrik dan Ruang Topologi Kelengkapan Ruang Banach Ruang Hilbert

Lebih terperinci

Prof.Dr. Budi Murtiyasa Muhammadiyah University of Surakarta

Prof.Dr. Budi Murtiyasa Muhammadiyah University of Surakarta BASIS DAN DIMENSI Prof.Dr. Budi Murtiyasa Muhammadiyah University of Surakarta Basis dan Dimensi Ruang vektor V dikatakan mempunyai dimensi terhingga n (ditulis dim V = n) jika ada vektor-vektor e, e,,

Lebih terperinci

BAB I PENDAHULUAN. Analisis fungsional merupakan salah satu cabang dari kelompok analisis

BAB I PENDAHULUAN. Analisis fungsional merupakan salah satu cabang dari kelompok analisis BAB I PENDAHULUAN 1.1 Latar Belakang Analisis fungsional merupakan salah satu cabang dari kelompok analisis yang membahas operator, operator linear dan sifat-sifatnya. Sebuah pemetaan antar ruang bernorm

Lebih terperinci

Pertemuan 1 Sistem Persamaan Linier dan Matriks

Pertemuan 1 Sistem Persamaan Linier dan Matriks Matriks & Ruang Vektor Pertemuan Sistem Persamaan Linier dan Matriks Start Matriks & Ruang Vektor Outline Materi Pengenalan Sistem Persamaan Linier (SPL) SPL & Matriks Matriks & Ruang Vektor Persamaan

Lebih terperinci

MODUL DAN KEUJUDAN BASIS PADA MODUL BEBAS

MODUL DAN KEUJUDAN BASIS PADA MODUL BEBAS MODUL DAN KEUJUDAN BASIS PADA MODUL BEBAS MODULES AND BASES OF FREE MODULES Dian Mardiani Pendidikan Matematika, STKIP Garut Garut, Indonesia Alfid51@yahoo.com Abstrak Penelitian ini membahas beberapa

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER KODE / SKS : IT / 2 SKS

SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER KODE / SKS : IT / 2 SKS SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER KODE / SKS : IT0143231 / 2 SKS Deskripsi: - Mata kuliah ini mempelajari konsep aljabar linear sebagai dasar untuk membuat algoritma dalam permasalahan

Lebih terperinci

Suatu himpunan tak kosong F dengan operasi penjumlahan dan perkalian, dikatakan sebagai field jika untuk setiap,, memenuhi sifat-sifat berikut:

Suatu himpunan tak kosong F dengan operasi penjumlahan dan perkalian, dikatakan sebagai field jika untuk setiap,, memenuhi sifat-sifat berikut: Bagian 5. RUANG VEKTOR 5.1 Lapangan (Field) Suatu himpunan tak kosong F dengan operasi penjumlahan dan perkalian, dikatakan sebagai field jika untuk setiap,, memenuhi sifat-sifat berikut: 1. dan 2., 3.,

Lebih terperinci

6. TRANSFORMASI LINIER

6. TRANSFORMASI LINIER 6. TRANSFORMASI LINIER 1. Definisi Transformasi Linier Jika F:V W adalah sebuah fungsi dari ruang vektor V ke dalam ruang vektor W, maka F disebut transformasi linier (pemetaan linier), jika: 1. F(u+v)

Lebih terperinci

1.1. Definisi, Notasi, dan Operasi Vektor 1.2. Susunan Koordinat Ruang R n 1.3. Vektor di dalam R n 1.4. Persamaan garis lurus dan bidang rata

1.1. Definisi, Notasi, dan Operasi Vektor 1.2. Susunan Koordinat Ruang R n 1.3. Vektor di dalam R n 1.4. Persamaan garis lurus dan bidang rata SATUAN ACARA PERKULIAHAN (SAP) MATA KULIAH : MATEMATIKA INFORMATIKA 2 JURUSAN : S1-TEKNIK INFORMATIKA KODE MATA KULIAH : IT-045214 Referensi : [1]. Yusuf Yahya, D. Suryadi. H.S., Agus S., Matematika untuk

Lebih terperinci

HASIL PRESENTASI ALJABAR LINIER ( SUB RUANG VEKTOR ) Disusun Untuk Memenuhi Tugas Mata Kuliah Aljabar Linier. Dosen Pengampu : Darmadi, S,Si, M.

HASIL PRESENTASI ALJABAR LINIER ( SUB RUANG VEKTOR ) Disusun Untuk Memenuhi Tugas Mata Kuliah Aljabar Linier. Dosen Pengampu : Darmadi, S,Si, M. HASIL PRESENTASI ALJABAR LINIER ( SUB RUANG VEKTOR ) Disusun Untuk Memenuhi Tugas Mata Kuliah Aljabar Linier Dosen Pengampu : Darmadi, S,Si, M.Pd Disusun oleh Matematika 5F Kelompok 5: ARLITA ROSYIDA 08411.081

Lebih terperinci

Pertama, daftarkan kedua himpunan vektor: himpunan yang merentang diikuti dengan himpunan yang bergantung linear, perhatikan:

Pertama, daftarkan kedua himpunan vektor: himpunan yang merentang diikuti dengan himpunan yang bergantung linear, perhatikan: Dimensi dari Suatu Ruang Vektor Jika suatu ruang vektor V memiliki suatu himpunan S yang merentang V, maka ukuran dari sembarang himpunan di V yang bebas linier tidak akan melebihi ukuran dari S. Teorema

Lebih terperinci

Matematika Lanjut 1. Sistem Persamaan Linier Transformasi Linier. Matriks Invers. Ruang Vektor Matriks. Determinan. Vektor

Matematika Lanjut 1. Sistem Persamaan Linier Transformasi Linier. Matriks Invers. Ruang Vektor Matriks. Determinan. Vektor Matematika Lanjut 1 Vektor Ruang Vektor Matriks Determinan Matriks Invers Sistem Persamaan Linier Transformasi Linier 1 Dra. D. L. Crispina Pardede, DE. Referensi [1]. Yusuf Yahya, D. Suryadi. H.S., gus

Lebih terperinci

Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk :

Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk : Persamaan Linear Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk : a x + a y = b Persamaan jenis ini disebut sebuah persamaan linear dalam peubah x dan y. Definisi

Lebih terperinci

BAB II TEORI KODING DAN TEORI INVARIAN

BAB II TEORI KODING DAN TEORI INVARIAN BAB II TEORI KODING DAN TEORI INVARIAN Pada bab 1 ini akan dibahas definisi kode, khususnya kode linier atas dan pencacah bobot Hammingnya. Di samping itu, akan dijelaskanan invarian, ring invarian dan

Lebih terperinci

Aljabar Linier Elementer

Aljabar Linier Elementer Aljabar Linier Elementer Kuliah 15 dan 16 11/11/2014 1 Materi Kuliah Kebebasan Linier Basis dan Dimensi 11/11/2014 Yanita, Matematika Unand 2 5.3 Kebebasan Linier Definisi Jika S = v 1, v 2,, v r adalah

Lebih terperinci

Trihastuti Agustinah

Trihastuti Agustinah TE 9467 Teknik Nmerik Sistem Linear Trihastti Agstinah Bidang Stdi Teknik Sistem Pengatran Jrsan Teknik Elektro - FTI Institt Teknologi Seplh Nopember O U T L I N E. Objektif. Teori. Contoh 4. Simplan

Lebih terperinci

MATRIKS. Definisi: Matriks adalah susunan bilangan-bilangan yang berbentuk segiempat siku-siku yang terdiri dari baris dan kolom.

MATRIKS. Definisi: Matriks adalah susunan bilangan-bilangan yang berbentuk segiempat siku-siku yang terdiri dari baris dan kolom. Page- MATRIKS Definisi: Matriks adalah susunan bilangan-bilangan yang berbentuk segiempat siku-siku yang terdiri dari baris dan kolom. Notasi: Matriks dinyatakan dengan huruf besar, dan elemen elemennya

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM KOMPUTER Semester : 2

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM KOMPUTER Semester : 2 GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM KOMPUTER Semester : 2 Berlaku mulai: Genap/2011 MATA KULIAH : MATRIK DAN TRANSFORMASI LINEAR NOMOR KODE / SKS : 410202051/ 3 SKS PRASYARAT

Lebih terperinci

Definisi Jumlah Vektor Jumlah dua buah vektor u dan v diperoleh dari aturan jajaran genjang atau aturan segitiga;

Definisi Jumlah Vektor Jumlah dua buah vektor u dan v diperoleh dari aturan jajaran genjang atau aturan segitiga; BAB I VEKTOR A. DEFINISI VEKTOR 1). Pada mulanya vektor adalah objek telaah dalam ilmu fisika. Dalam ilmu fisika vektor didefinisikan sebagai sebuah besaran yang mempunyai besar dan arah seperti gaya,

Lebih terperinci

SOLUSI PENDEKATAN TERBAIK SISTEM PERSAMAAN LINEAR TAK KONSISTEN MENGGUNAKAN DEKOMPOSISI NILAI SINGULAR

SOLUSI PENDEKATAN TERBAIK SISTEM PERSAMAAN LINEAR TAK KONSISTEN MENGGUNAKAN DEKOMPOSISI NILAI SINGULAR Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster) Volume 03, No. 1 (2014), hal 91 98. SOLUSI PENDEKATAN TERBAIK SISTEM PERSAMAAN LINEAR TAK KONSISTEN MENGGUNAKAN DEKOMPOSISI NILAI SINGULAR Febrianti,

Lebih terperinci

Beberapa Sifat Operator Self Adjoint dalam Ruang Hilbert

Beberapa Sifat Operator Self Adjoint dalam Ruang Hilbert Vol 12, No 2, 153-159, Januari 2016 Beberapa Sifat Operator Self Adjoint dalam Ruang Hilbert Firman Abstrak Misalkan adalah operator linier dengan adalah ruang Hilbert Pada operator linier dikenal istilah

Lebih terperinci

BAB 6 RUANG HASIL KALI DALAM. Dr. Ir. Abdul Wahid Surhim, MT.

BAB 6 RUANG HASIL KALI DALAM. Dr. Ir. Abdul Wahid Surhim, MT. BAB 6 RUANG HASIL KALI DALAM Dr. Ir. Abdul Wahid Surhim, MT. KERANGKA PEMBAHASAN 1. Hasil Kali Dalam 2. Sudut dan Keortogonalan pada Ruang Hasil Kali Dalam 3.Basis Ortogonal, Proses Gram-Schmidt 4.Perubahan

Lebih terperinci

Pertemuan 6 Transformasi Linier

Pertemuan 6 Transformasi Linier Pertemuan 6 Transformasi Linier Objektif: 1. Praktikan memahami definisi transformasi linier umum. 2. Praktikan memahami definisi dari transformasi linier dari R n ke R m. 3. Praktikan memahami invers

Lebih terperinci

BAB II DASAR DASAR TEORI

BAB II DASAR DASAR TEORI BAB II DASA DASA TEOI.. uang ruang Vektor.. uang Vektor Umum Defenisi dan sifat sifat sederhana Defenisi : Misalkan V adalah sebarang himpunan benda yang didefenisikan dua operasi, yakni penambahan perkalian

Lebih terperinci

Ruang Vektor. Adri Priadana. ilkomadri.com

Ruang Vektor. Adri Priadana. ilkomadri.com Ruang Vektor Adri Priadana ilkomadri.com MEDAN SKLAR Misalkan diketahui bahwa K adalah himpunan, dan didefinisikan 2 buah operasi penjumlahan (+) dan perkalian (*). Maka K dikatakan medan skalar jika dipenuhi

Lebih terperinci

Institut Teknologi Sepuluh Nopember Surabaya. Keterkendalian (Controlability)

Institut Teknologi Sepuluh Nopember Surabaya. Keterkendalian (Controlability) Institut Teknologi Sepuluh Nopember Surabaya Keterkendalian (Controlability) Contoh Soal Ringkasan Latihan Contoh Soal Ringkasan Latihan Vektor Bebas Linear Keterkendalian Keadaan Secara Sempurna dari

Lebih terperinci

Eigen value & Eigen vektor

Eigen value & Eigen vektor Eigen value & Eigen vektor Hubungan antara vektor x (bukan nol) dengan vektor Ax yang berada di R n pada proses transformasi dapat terjadi dua kemungkinan : 1) 2) Tidak mudah untuk dibayangkan hubungan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA A Matriks 1 Pengertian Matriks Definisi 21 Matriks adalah kumpulan bilangan bilangan yang disusun secara khusus dalam bentuk baris kolom sehingga membentuk empat persegi panjang

Lebih terperinci

Syarat Perlu dan Cukup Struktur Himpunan Transformasi Linear Membentuk Semigrup Reguler 1

Syarat Perlu dan Cukup Struktur Himpunan Transformasi Linear Membentuk Semigrup Reguler 1 Syarat Perlu dan Cukup Struktur Himpunan Transformasi Linear Membentuk Semigrup Reguler Karyati Jurusan Pendidikan Matematika Universitas Negeri Yogyakarta E-mail: yatiuny@yahoocom Abstrak Pada kajian

Lebih terperinci

0. Diperoleh bahwa: Selanjutnya dibuktikan tertutup terhadap perkalian skalar:

0. Diperoleh bahwa: Selanjutnya dibuktikan tertutup terhadap perkalian skalar: f g) f g C atau ( f g). Diperoleh bahwa: f g) ( f g) dg f ( f dg g) g dg f g Selanjutnya dibuktikan tertutup terhadap perkalian skalar: Ambil. f ) f C, R. Ditunjukkan bahwa. f C atau (. f ).. f ). diketahui

Lebih terperinci

uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg

uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg uiopasdfghjklzxcvbnmqwertyuiopasd Qwertyuiopasdfghjklzxcvbnmqwerty cvbnmqwertyuiopasdfghjklzxcvbnmq fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI A. Matriks 1. Pengertian Matriks Definisi II.A.1 Matriks didefinisikan sebagai susunan persegi panjang dari bilangan-bilangan yang diatur dalam baris dan kolom. Contoh II.A.1: 9 5

Lebih terperinci

RENCANA KEGIATAN PERKULIAHAN Kode Mata Kuliah : MAA 526 Nama Mata Kuliah : Analisis Fungsional

RENCANA KEGIATAN PERKULIAHAN Kode Mata Kuliah : MAA 526 Nama Mata Kuliah : Analisis Fungsional Ming gu ke RENCANA KEGIATAN PERKULIAHAN Kode Mata Kuliah : MAA 56 Nama Mata Kuliah : Analisis Fungsional T o p i k S u b T o p i k 1. Ruang Banach - Ruang metrik - Ruang vektor bernorm - Barisan di ruang

Lebih terperinci

MUH1G3/ MATRIKS DAN RUANG VEKTOR

MUH1G3/ MATRIKS DAN RUANG VEKTOR MUHG3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN 6 Ruang Hasil Kali Dalam Sub Pokok Bahasan Definisi Ruang Hasilkali Dalam Himpunan ortonormal Proses Gramm Schmidt Aplikasi RHD Metode Optimasi seperti metode

Lebih terperinci

Outline Vektor dan Garis Koordinat Norma Vektor Hasil Kali Titik dan Proyeksi Hasil Kali Silang. Geometri Vektor. Kusbudiono. Jurusan Matematika

Outline Vektor dan Garis Koordinat Norma Vektor Hasil Kali Titik dan Proyeksi Hasil Kali Silang. Geometri Vektor. Kusbudiono. Jurusan Matematika Jurusan Matematika 1 Nopember 2011 1 Vektor dan Garis 2 Koordinat 3 Norma Vektor 4 Hasil Kali Titik dan Proyeksi 5 Hasil Kali Silang Definisi Vektor Definisi Jika AB dan CD ruas garis berarah, keduanya

Lebih terperinci