Bab 8 Teknik Pengintegralan

Ukuran: px
Mulai penontonan dengan halaman:

Download "Bab 8 Teknik Pengintegralan"

Transkripsi

1 Catata Kuliah MA3 Kalkulus Elemeter II Oki Neswa,Ph.D., Departeme Matematika-ITB Bab 8 Tekik Pegitegrala Metoda Substitusi Itegral Fugsi Trigoometrik Substitusi Merasioalka Itegral Parsial Itegral Fugsi Rasioal Catata Kuliah MA3 Kalkulus Elemeter II Pedahulua Operasi turua turua sifatya algoritmik. Apabila semua aturaya telah diketahui, maka dapat dapat disusu resep turua. Dalam bayak hal operasi turua tidak terlalu meutut keratifitas. Tidak demikia halya deag opersai itegral. Serigkali itegral yag berbeda meutut kombiasi tehik-metoda pegitegrala yag berbeda: pegitegrala lebih merupaka sei. Bayak masalah dalam egieerig yag melibatka itegral dari fugsi yag sagat rumit, sehigga kita memerluka Tabel Itegral. Beberapa metoda yag sagat esesial adalah : Metoda Substitusi Metoda Itegral Parsial Itegral Pecaha Parsial (Partial Fractio)

2 Catata Kuliah MA3 Kalkulus Elemeter II. Itegral dega Substitusi Rumus da Atura Pegitegrala yag sudah kita keal sejauh ii cukup bermafaat da petig, amu scope-ya masih terbatas. Sebagai cotoh dega Atura Pagkat kita dapat meyelesaika d. Namu tidak berdaya utuk meyelesaika itegral yag serupa yaitu + d Itegral dega mudah diselesaika dega megguaka tekik substitusi. Ide dasar metoda substitusi datag dari Atura Ratai. Tekik adalah kebalika dari Atura Ratai. 3 Catata Kuliah MA3 Kalkulus Elemeter II Pejelasa Atura Substitusi Misalka F adalah atiturua dari f. Jadi, F (u)=f (u), da () f ( u) du = F( u) + C Bila u=g() sehigga diferesial du=g ()d, diperoleh ( ) ' ( ) f g g d = f u du = F u + C = F g + C Prosedur ii disebut metoda pegitegrala dega substitusi atau metoda substitusi. Maka, jika itegrad tampak sebagai komposisi fugsi dikalika turua fugsi dalam ya, maka disaraka megguaka metoda ii. Perhatika pula bahwa metoda merupaka proses balika/iverse dari Atura Ratai. 4

3 Catata Kuliah MA3 Kalkulus Elemeter II Why It Works? Dari maakah ide metoda substitusi ii? Perhatika bahwa F(g()) adalah atirua dari f(g()) g () jika F adalah atiturua dari f. (F (u)=f (u)). Meurut Atura Ratai d F ( g ( )) = F '( g ( )) g '( ) = f ( g ( )) g '( ) d Teorema Diberika fugsi g terturuka da F adaah atiturua dari f. Jika u= g, maka ( ) ' ( ) f g g d = f u du = F u + C = F g + C 5 Catata Kuliah MA3 Kalkulus Elemeter II Megguaka Tehik Substitusi Cotoh Hituglah ( + 3) d Misalka u=(+3) dega du=d. Maka setelah disubtitusika du ( 3) d u + = = u = ( + 3) + C 44 d Cotoh Hituglah cos Igat kembali bahwa cos = sec. Misalka u = sehigga du = d atau d = du. Maka, cos d = sec u du = sec udu = ta u+ C = ta + C 6 3

4 Catata Kuliah MA3 Kalkulus Elemeter II Cotoh Hituglah: ed 3 4 a. d b. c. 5 + d 3 4 e + 4 Jawab a. Misalka u = da a = 3. Maka du = d. Jadi, du u 3 4 a u a 3 d = = si + C = si + C b. Misalka u = e da a =. Maka du = e d. Jadi, ed du u ta e + 4 u + a a a = = c. 5 d: Latiha + C ta e = + C 7 Catata Kuliah MA3 Kalkulus Elemeter II Sebelum Substitusi Serigkali sebelum substitusi diputuska, kita perlu memaipulasi fugsi itegrad agar lebih memudahka. Perhatika cotoh berikut, dimaa betuk kuadrat dilegkapka dahulu sebelum megguaka metoda substitusi. Cotoh d Tetuka 4+ 9 d d d d = = = ( ) + 5 ( ) + 5 = ta + C

5 Catata Kuliah MA3 Kalkulus Elemeter II Cotoh Tetuka d + d ( + ) = d = d = d d = ta + C 9 Catata Kuliah MA3 Kalkulus Elemeter II. Itegral Fugsi Trigoometrik Pada pasal ii kita aka melihat bagaimaa mekombiasika metoda substitusi dega kesamaa trigoometri mejadi metoda yag sagat efektif utuk meyelesaika beragam itegral trigoometri Beberapa tipe itegral yag aka dibahas: d d. si d, cos m, si cos 3. si m cos d, si msi d, cos m cos d 0 5

6 Catata Kuliah MA3 Kalkulus Elemeter II Tipe Kasus : geap Turuka pagkat dega substitusi megguaka kesamaa setegah sudut si = cos da cos = ( + cos ) Cotoh cos d = + cos d = d + cos d = + 4si + C 4 = = 4 + = 4 8 si + 4 cos 4d si d cos 4 d cos 4 cos 4 d dega megguaka hasil sebelumya kita peroleh cos 4d = 4 cos ( 4) d( 4) = si( 4) + C si d, cos d Catata Kuliah MA3 Kalkulus Elemeter II Jadi, cos d = si + + si 8 + C si 64si8 = + + C Kasus : gajil. Setelah si atau cos difaktorka, guaka kesamaa Pythagoras si +cos = Cotoh 5 4 = = ( ) = ( si+ si ) cosd cos d cos cos d si cos d = si si + si + C 3 3 6

7 Catata Kuliah MA3 Kalkulus Elemeter II Tipe si m cos d Kasus : m atau bilaga gajil positif. Setelah si atau cos difaktorka, guaka kesamaa Pythagoras si +cos = Cotoh 5 4 cos si d = cos cos si d = cos si si d = cos si d si si d = si d ( si ) d = + C si 3 Catata Kuliah MA3 Kalkulus Elemeter II Kasus : m da bilaga geap positif. Guaka kesamaa setegah sudut si cos + cos = cos = utuk meguragi pagkat dalam itegrad. Cotoh 4 cos + cos si cos d = ( si ) cos d = d = ( cos cos )( cos ) d 3 = ( cos cos cos cos cos ) d = ( cos cos + cos ) d 8 4 7

8 Catata Kuliah MA3 Kalkulus Elemeter II 3 = ( cos cos cos ) 8 + d = cos ( + cos4) + ( si ) cos d 8 cos4 si cos = d 8 cos 4 si cos = d d d 8 3 si 4 si = C Catata Kuliah MA3 Kalkulus Elemeter II Tipe 3 si m cos d, si msi d, cos m cos d Kesamaa-kesamaa yag dibutuhka:. si m cos = si m + + si m. si msi = cos m + cos m 3. cos m cos = cos m + + cos m Dega kesamaa ii perkalia fugsi dapat diubah mejadi jumlah fugsi yag jelas lebih mudah ditagai. Cotoh si 3 cos d = si 5 + si d = si 5d + si d ( ) 0 cos 5 cos C = + 6 8

9 Catata Kuliah MA3 Kalkulus Elemeter II ( ) ( m+ ) ( m+ ) si ( m ) ( m ) si msi d = cos m + cos m d si = + + C, jika m Latiha :. Hituglah si msi d utuk kasus m =. L mπ π. Hituglah cos cos d, m. -L L L 7 Catata Kuliah MA3 Kalkulus Elemeter II 3. Substitusi Merasioalka Metoda yag aka dipelajari di sii juga serig disebut substitusi trigoometrik. Itegral yag aka dibahas mempuyai itegrad memuat betuk-betuk a + b a + a a,,,, Umumya metoda ii bertujua utuk meg elimiasi tada akar. a + b Dalam hal itegrad memuat betuk a + b, maka substitusi u = a+ b dapat megelimiasi tada akar. 8 9

10 Catata Kuliah MA3 Kalkulus Elemeter II Cotoh tdt Hituglah 3t + 4 Misalka u = 3t + 4 sehigga du = 3 dt da t = 3 ( u 4) tdt 3( u 4) 3du u 4 4 = = du u du 3t 4 u 9 = + u 9 u = u 8u + C = ( 3t + 4) ( 3t+ 4) + C Hituglah 3 + π d Misalka u = + π sehigga du = 3 d da = u π πd = u π udu = u du π u du π = ( + π) 3 ( + π) 3 + C Catata Kuliah MA3 Kalkulus Elemeter II a +, a, a Di sii kita aka meyelesaika itegral-itgeral yag memuat betuk-betuk a +, a, da a dega asumsi a > 0. Jika memuat a, maka coba = asi θ, π θ π Jika memuat a +, maka coba = ataθ π < θ < π Jika memuat a, maka coba = asecθ 0 θ π, θ π 0 0

11 Catata Kuliah MA3 Kalkulus Elemeter II Megapa pembatasa ilai θ perlu dilakuka? Pada itegral tetu kita setelah substitusi, da kemudia meyelesaika itegral, kita perlu kembali ke variabel semula. Oleh karea itu, ilai θ perlu dibatasi agar substitusi si θ, ta θ, da sec θ mempuyai iverse. Setelah melakuka subtitusi, beberapa peyederhaaa dapat dilakuka, dega tujua megelimiasi tada akar. a = a a si = a cos = acos = acos θ θ θ θ a + = a + a ta = a sec = asec = asec θ θ θ θ a = a a = a = a = ± a sec θ ta θ taθ secθ Catata: Karea π θ π maka cosθ 0. Jadi, acosθ = acos θ. Berika justifikasi utuk hasil laiya. Catata Kuliah MA3 Kalkulus Elemeter II Cotoh 4- Hituglah d Pilih substitusi u = si t, sehigga du = cos tdt. Maka ( t) 4 4 4si t 4 si d = costdt = si t si t costdt cos ( t)( cost) si t = dt = 4 dt 4 si t = si t csc dt si tdt = 4l csct cotu + cost + C Selajutya, karea = si t maka si t =. cos si t = t = = 4 4 cost 4 csct = = cot t = = 4 = si t si t

12 Catata Kuliah MA3 Kalkulus Elemeter II Dega demikia, d = 4l + + C π π Cotoh: Hituglah d 0 + π Agar lebih memudahka, itegral dipecah mejadi dua bagia π π d d = d + π + π + π π π π Utuk itegral pertama, pilih substitusi, sehigga. Maka π π d π = du d = = = π u + π + π u π π π 0 0 = 0 = 0 u = + π du = d ( ) ( ) π 0 = π = π + π = π π π = π 3 Catata Kuliah MA3 Kalkulus Elemeter II Utuk itegral kedua pilih substitusi ta sehigga sec = π v d = π vdv d π sec vdv = = secvdv = l secv + ta v + π π secv π = π = π = π 0 = 0 = 0 π - π Jadi, d = π l + 0 π 0 = 0 = l + + = l + l + 0 = l + π π + π 4

13 Catata Kuliah MA3 Kalkulus Elemeter II Melegkapka Kuadrat Bila betuk kuadratik dibawah tada akar masih dalam betuk a +b+c maka perlu dilakuka melegkapka kuadrat sebelum megguaka metoda substitusi trigoometrik d Cotoh Tetuka = ( ) = ( + ) = ( ) d d Jadi, =. Misalka 3. Maka, v = ( 3) d dv = v Selajutya, substitusi v = 5si w, sehigga dv = 5cos wdw. Maka Catata Kuliah MA3 Kalkulus Elemeter II dv 5coswdw 5coswdw v = si = = dw C 5 v 5 5 si w 5cosw = = si + C 5 Cotoh Tetuka volume beda putar yag dibagkitka dega memutar daerah yag dibatasi y=4/( +4), sb-, da garis =0 da =. Latiha: Selesaika 3d

14 Catata Kuliah MA3 Kalkulus Elemeter II 4. Itegral Parsial Bila metoda substitusika sebearya adalah balika dari Atura Ratai, maka metoda itegral parsial didasarka pada atura turua utuk perkalia: Diberika u=u() da v=v() mempuyai turua D (u () v ())=u () v () +u () v () atau u () v ()=D (u () v ()) u () v () Apabila kedua ruas diitegralka ( u v ' ) d = d ( u v ) d v u ' d = uv v u ' d d Catata : Diferesial dv = v ' d da du = u ' d 7 Catata Kuliah MA3 Kalkulus Elemeter II Teorema Itegral Parsial Jika fugsi-fugsi u = u da v = v mempuyai turua, maka udv = uv vdu Sedagka itegral parsial utuk itegral tetu adalah = b = [ ] = = a = b = b = b udv uv vdu u b v b u a v a vdu = a = a = a Misalka u = u a, u = u b, v = v a, v = v b, sehigga [ ] v u udv = u v u v vdu v u Catata: pilihlah u da dv sehigga vdu mudah dihitug. 8 4

15 Catata Kuliah MA3 Kalkulus Elemeter II Cotoh Hituglah e cos d Misalka u = e, dv = cos d, sehigga du = e d da v = si Maka e cos d = e si e si d Utuk itegral ke dua, misalka w= e, dv = si d. Maka dw = e d da v = cos. Diperoleh Dega demikia e si d = e cos + e cos d e cos d = e si e cos + e cos d Pidahka e cos d pada ruas kiri. Akhirya diperoleh e si e cos e cos d = 9 Catata Kuliah MA3 Kalkulus Elemeter II Pada cotoh di atas, perhatika bahwa kita dapat meyelesaika e cos d karea itegral tersebut kembali mucul pada ruas kaa. Cotoh Hituglah l d Misalka u = l, dv = d, sehigga du = d, v = Maka l d = [ l ] d l d l = = Rumus Reduksi Formula atau rumus berbetuk k f d = g + f d, k < disebut rumus reduksi, karea ilai pagkat f megalami peurua. Formula semacam ii biasa ditemuka dalam itegral parsial 30 5

16 Catata Kuliah MA3 Kalkulus Elemeter II Cotoh Tetuka rumus reduksi utuk si Misalka u si, dv si d. = = Maka du si cos d da v cos. Jadi, = = si d = si cos + si cos d d = si cos + si si si cos si si Apabila si d pada ruas kaa dipidahka ke ruas kiri si = si cos + si d d da bila diselesaika, diperoleh d = + d d si si cos d = + ( ) si d 3 Catata Kuliah MA3 Kalkulus Elemeter II 5. Itegral Fugsi Rasioal Metoda Pecaha Parsial Metoda pecaha parsial adalah tehik utuk megitegralka fugsi-fugsi rasioal, yaitu fugsi-fugsi berbetuk p R =, p da q adalah poliomial q Ide dasar adalah metoda ii adalah meuliska fugsi rasioal sebagai jumlah dari fugsi pecaha yag lebih sederhaa. 5 Cotoh Tetuka d 5 5 A B Perhatika bahwa = =

17 Catata Kuliah MA3 Kalkulus Elemeter II Lagkah berikutya adalah meetuka koefisie A da B. Ii dilakuka ( )( + ) dega megalika kedua ruas dega sehigga 5 = A + + B = A+ B + A B Maka haruslah A+ B = 5 da A B =. Dega meyelesaika sistem persamaa ii diperoleh A= da B = d d d d + + d( ) d( + 3) = d + 3 = l + 3l + + = + = + 3 = l + + C 33 Catata Kuliah MA3 Kalkulus Elemeter II + Cotoh Selesaika d A B C = = = ( 4+ 4) ( ) ( ) ( ) Kalika kedua ruas dega, sehigga ( + ) = A( ) + B( ) + C + = ( A+ B) + 4A B+ C + 4A Maka koefisie kedua poliomial haruslah sama. Ii memberika sebuah sistem persamaa A+ B = 0, 4A B+ C =, 4A= yag peyelesaiaya adalah A= 4, B = 4, C = 3. Maka, + d d 3 d d = ( ) 34 7

18 Catata Kuliah MA3 Kalkulus Elemeter II ( ) d( ) ( ) d 3 = l = l l 4 4 ( ) Dua itegral terakhir diselesaika dega substitusi u =. + 3 Cotoh Tetukalah d A B+ C = = ( + 4) + 4 Setelah kedua ruas dikalika dega peyebut. maka diperoleh + = A( + 4) + ( B+ C) = ( A+ B) + C+ 4 A. Kesamaa kedua poliomial berarti koefisie-koefisie harus sama. Maka = A+ B, = C, = 4 A. Peyelesaia sistem persamaa ii adalah 35 Catata Kuliah MA3 Kalkulus Elemeter II A= 4, B = 9 4, C = Apabila diguaka pada itegral di atas, kita peroleh + d + d = + d d = l d d = l + + ta Utuk itegral kedua, guaka substitusi 4 sehigga Jadi, d d dw = = = w = w d = l l 4 l l 4 ta 4 8 w= + dw= d + C 36 8

19 Catata Kuliah MA3 Kalkulus Elemeter II Cotoh Selesaika d ( )( + ) A B + C D+ E = + +, ( )( + + ) ( + ) Kalika kedua ruas dega ( )( + ) ( ) ( )( ) ( ) ( A E C) 4 3 A B B C A B C D B sehigga = ( ) irreducible = A + + B+ C + + D+ E ( + ) C D E Maka koefisie kedua poliomial haruslah sama. Ii memberika sebuah sistem persamaa A B = 0, B C = 0, A B+ C D = 0, B C + D E =, A+ C+ E = 0 37 Catata Kuliah MA3 Kalkulus Elemeter II Peyelesaiaya adalah A= B = C = 4, D =, E =. Maka, ( + ) ( ) d d d d = ( + ) u = v = + du = d dv = d Substitusi da, maka,. ( ) d + = + + d + du dv d u 4 v + = l + l + + ta ( ) d d d dv d = = v + d = 4 + ( + ). 38 9

20 Catata Kuliah MA3 Kalkulus Elemeter II Utuk meyelesaika itegral terakhir, misalka = ta θ, d = sec θdθ, da + = ta θ + = sec θ. d sec θdθ θ si θ = = cos θ θ = ( + cos θ) dθ = + 4 d ( + ) ( sec θ ) ( + )( + ) ta siθcosθ ta = + = ta = Catata Kuliah MA3 Kalkulus Elemeter II Jadi, ( )( + ) d = l + l + + ta ta + + C 4( + ) ( ) + + = l + l + + C ( + ) 40 0

21 Catata Kuliah MA3 Kalkulus Elemeter II ALGORITMA DEKOMPOSISI PECAHAN PARSIAL Lagkah : Lakuka pembagia sehigga diperoleh poliom P da r sehigga p r R = = P + q q Jika derajat ( p ) < derajat ( q ) maka P = 0 da r = p L agkah : Faktorka q dega suku perkalia dari betuk yaitu atau dega irreducible a + b a + b + c a + b + c a b c + + = 0 tidak mempuyai akar. r Lagkah 3: Tulis sebagai jumlah dari fugsi pecaha yag lebih q sederhaa, disebut pecaha parsial, sebagai berikut 4 Catata Kuliah MA3 Kalkulus Elemeter II ( + α ) a. Utuk tiap faktor diperoleh A A Ak α + α + α ( a + b + c) b. Utuk tiap faktor diperoleh ( ) ( ) Lagkah 4: Kalika kedua ruas dega q k B + C B + C B k + Ck a + b + c a + b + c a + b + c k k sehigga diperoleh R q = poliom dega koefisie memuat A, B da C Dari kesamaa di atas, semua kostata A, B da C dapat ditetuka. i i i k i i i 4

22 Catata Kuliah MA3 Kalkulus Elemeter II Soal PR Bab 8 8. : 4, 6,, 6, 9, 33, 34, 48, 5, 59, 64, : 4, 6, 9, 3,,, 3, 6, : 3, 6,, 0, 3, 7-9, 3, :, 6, 7,, 3, 39, 44, 47, 55, 6, 69, 74, 8, : 5, 6, 9,,, 9,, 3, 5, 39,

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3 SUKU BANYAK A Pegertia: f(x) x + a 1 x 1 + a 2 x 2 + + a 2 +a 1 adalah suku bayak (poliom) dega : - a, a 1, a 2,.,a 2, a 1, a 0 adalah koefisiekoefisie suku bayak yag merupaka kostata real dega a 0 - a

Lebih terperinci

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3 BAB XII. SUKU BANYAK A = a Pegertia: f(x) = a x + a x + a x + + a x +a adalah suku bayak (poliom) dega : - a, a, a,.,a, a, a 0 adalah koefisiekoefisie suku bayak yag merupaka kostata real dega a 0 - a

Lebih terperinci

Himpunan/Selang Kekonvergenan

Himpunan/Selang Kekonvergenan oki eswa (fmipa-itb) Deret Pagkat Kita aka mempelajari beberapa tehik utuk meyajika suatu fugsi f (x) dalam betuk deret pagkat (power series), yaitu meetuka derat pagkat c (x a) sehigga f (x) = c (x a)

Lebih terperinci

1 Persamaan rekursif linier non homogen koefisien konstan tingkat satu

1 Persamaan rekursif linier non homogen koefisien konstan tingkat satu Secara umum persamaa rekursif liier tigkat-k bisa dituliska dalam betuk: dega C 0 0. C 0 x + C 1 x 1 + C 2 x 2 + + C k x k = b, Jika b = 0 maka persamaa rekursif tersebut diamaka persamaa rekursif liier

Lebih terperinci

TURUNAN FUNGSI. Definisi. 3.1 Pengertian Turunan Fungsi. Turunan fungsi f adalah fungsi f yang nilainya di c adalah. asalkan limit ini ada.

TURUNAN FUNGSI. Definisi. 3.1 Pengertian Turunan Fungsi. Turunan fungsi f adalah fungsi f yang nilainya di c adalah. asalkan limit ini ada. 3 TURUNAN FUNGSI 3. Pegertia Turua Fugsi Defiisi Turua fugsi f adala fugsi f yag ilaiya di c adala f c f c f c 0 asalka it ii ada. Coto Jika f 3 + +4, maka turua f di adala f f f 0 3 4 3.. 4 0 34 4 4 4

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret Program Perkuliaha Dasar Umum Sekolah Tiggi Tekologi Telkom Barisa da Deret Barisa Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) a Fugsi tersebut

Lebih terperinci

BAB V. INTEGRAL. Lambang anti-turunan (integral tak-tentu) oleh Leibniz adalah... dx, sehingga

BAB V. INTEGRAL. Lambang anti-turunan (integral tak-tentu) oleh Leibniz adalah... dx, sehingga BAB V. INTEGRAL 5.. Ati Turua (Itegral Tak-tetu) Defiisi: F suatu ati-turua f pada selag I jika da haya jika D F() = f() pada I, yaki F () = f() utuk semua dalam I. (Jika suatu titik ujug I, F () haya

Lebih terperinci

BARISAN DAN DERET. Nurdinintya Athari (NDT)

BARISAN DAN DERET. Nurdinintya Athari (NDT) BARISAN DAN DERET Nurdiitya Athari (NDT) BARISAN Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) = a Fugsi tersebut dikeal sebagai barisa bilaga

Lebih terperinci

KALKULUS 4. Dra. D. L. Crispina Pardede, DEA. SARMAG TEKNIK MESIN

KALKULUS 4. Dra. D. L. Crispina Pardede, DEA. SARMAG TEKNIK MESIN KALKULUS Dra. D. L. Crispia Pardede DEA. SARMAG TEKNIK MESIN KALKULUS - SILABUS. Deret Fourier.. Fugsi Periodik.2. Fugsi Geap da Gajil.3. Deret Trigoometri.. Betuk umum Deret Fourier.. Kodisi Dirichlet.6.

Lebih terperinci

BAB 4 LIMIT FUNGSI Standar Kompetensi Menggunakan konsep limit fungsi dan turunan fungsi dalam pemecahan masalah

BAB 4 LIMIT FUNGSI Standar Kompetensi Menggunakan konsep limit fungsi dan turunan fungsi dalam pemecahan masalah BAB LIMIT FUNGSI Stadar Kompetesi Megguaka kosep it ugsi da turua ugsi dalam pemecaha masalah Kompetesi Dasar. Meghitug it ugsi aljabar sederhaa di suatu titik. Megguaka siat it ugsi utuk meghitug betuk

Lebih terperinci

Teorema Nilai Rata-rata

Teorema Nilai Rata-rata Nilai Kus Prihatoso April 27, 2012 Yogyakarta Nilai Suatu Fugsi Masih igatkah ada tetag ilai rata-rata dari sekmpula bilaga? Berapakah ilai rata-rata dari sebayak bilaga y 1, y 2,..., y? Nilai Suatu Fugsi

Lebih terperinci

Deret Fourier. Modul 1 PENDAHULUAN

Deret Fourier. Modul 1 PENDAHULUAN Modul Deret Fourier Prof. Dr. Bambag Soedijoo P PENDAHULUAN ada modul ii dibahas masalah ekspasi deret Fourier Sius osius utuk suatu fugsi periodik ataupu yag diaggap periodik, da dibahas pula trasformasi

Lebih terperinci

Gambar 1. Partisi P dari empat persegi panjang R = [a, b] x [c, d] adalah dua himpunan i i

Gambar 1. Partisi P dari empat persegi panjang R = [a, b] x [c, d] adalah dua himpunan i i INTEGAL LIPAT. Itegral Lipat Dua dalam Koordiat Kartesius Pada bagia ii, dipelajari itegral lipat dua dalam. Misalka diketahui dua iterval tertutup [a, b] da [c, d]. Hasil kali kartesius dari kedua iterval

Lebih terperinci

C (z m) = C + C (z m) + C (z m) +...

C (z m) = C + C (z m) + C (z m) +... 4.. DERET PANGKAT Deret pagkat dari (x-m) merupaka deret tak higga yag betuk umumya adalah : i= i i C (z m) = C + C (z m) + C (z m) +... ( 4- ) C, C,... = kostata disebut koefisie deret m = kostata disebut

Lebih terperinci

Dasar Sistem Pengaturan - Transformasi Laplace. Transformasi Laplace bilateral atau dua sisi dari sinyal bernilai riil x(t) didefinisikan sebagai :

Dasar Sistem Pengaturan - Transformasi Laplace. Transformasi Laplace bilateral atau dua sisi dari sinyal bernilai riil x(t) didefinisikan sebagai : Defiisi Trasformasi Laplace Trasformasi Laplace Bilateral Trasformasi Laplace bilateral atau dua sisi dari siyal berilai riil x(t) didefiisika sebagai : X B x(t)e Operasi trasformasi Laplace bilateral

Lebih terperinci

EMPAT CARA UNTUK MENENTUKAN NILAI INTEGRAL POISSON., Sri Gemawati 2, Agusni 2. Mahasiswa Program Studi S1 Matematika 2

EMPAT CARA UNTUK MENENTUKAN NILAI INTEGRAL POISSON., Sri Gemawati 2, Agusni 2. Mahasiswa Program Studi S1 Matematika 2 EMPAT CARA UNTUK MENENTUKAN NLA NTEGRAL POSSON Novrialma *, Sri Gemawati, Agusi Mahasiswa Program Studi S Matematika Dose Jurusa Matematika Fakultas Matematika da lmu Pegetahua Alam Uiversitas Riau Kampus

Lebih terperinci

Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1

Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1 Barisa Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 9/0/06 Matematika Barisa Tak Higga Secara sederhaa, barisa merupaka susua dari bilaga bilaga yag urutaya berdasarka bilaga

Lebih terperinci

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL Defiisi Persamaa diferesial adalah persamaa yag melibatka variabelvariabel tak bebas da derivatif-derivatifya terhadap variabel-variabel bebas. Berikut ii adalah

Lebih terperinci

Bab 7 Penyelesaian Persamaan Differensial

Bab 7 Penyelesaian Persamaan Differensial Bab 7 Peelesaia Persamaa Differesial Persamaa differesial merupaka persamaa ag meghubugka suatu besara dega perubahaa. Persamaa differesial diataka sebagai persamaa ag megadug suatu besara da differesiala

Lebih terperinci

METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc.

METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc. METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/0 SUGENG00 Copyright 996-98 Dale Caregie & Associates, Ic. Kesalaha ERROR: Selisih atara ilai perkiraa dega ilai eksakilai

Lebih terperinci

Distribusi Pendekatan (Limiting Distributions)

Distribusi Pendekatan (Limiting Distributions) Distribusi Pedekata (Limitig Distributios) Ada 3 tekik utuk meetuka distribusi pedekata: 1. Tekik Fugsi Distribusi Cotoh 2. Tekik Fugsi Pembagkit Mome Cotoh 3. Tekik Teorema Limit Pusat Cotoh Fitriai Agustia,

Lebih terperinci

Bab IV. Penderetan Fungsi Kompleks

Bab IV. Penderetan Fungsi Kompleks Bab IV Pedereta Fugsi Kompleks Sebagaimaa pada fugsi real, fugsi kompleks juga dapat dideretka pada daerah kovergesiya. Semua watak kajia kovergesi pada fugsi real berlaku pula pada fugsi kompleks. Secara

Lebih terperinci

BARISAN DAN DERET. 05/12/2016 Matematika Teknik 1 1

BARISAN DAN DERET. 05/12/2016 Matematika Teknik 1 1 BARISAN DAN DERET 05//06 Matematika Tekik BARISAN Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 05//06 Matematika Tekik Barisa Tak Higga Secara sederhaa, barisa merupaka

Lebih terperinci

II LANDASAN TEORI. Sebuah bilangan kompleks dapat dinyatakan dalam bentuk. z = x jy. (2.4)

II LANDASAN TEORI. Sebuah bilangan kompleks dapat dinyatakan dalam bentuk. z = x jy. (2.4) 3 II LANDASAN TEORI 2.1 Peubah Kompleks da Fugsi Kompleks Sebuah bilaga kompleks dapat diyataka dalam betuk z = x + jy, (2.1) dega x da y adalah bilaga-bilaga real da j = 1. Bilaga x disebut bagia real

Lebih terperinci

Persamaan Non-Linear

Persamaan Non-Linear Persamaa No-Liear Peyelesaia persamaa o-liear adalah meghitug akar suatu persamaa o-liear dega satu variabel,, atau secara umum dituliska : = 0 Cotoh: 2 5. 5 4 9 2 0 2 5 5 4 9 2 2. 2 0 2 5. e 0 Metode

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 010 TIM OLIMPIADE MATEMATIKA INDONESIA 0 Prestasi itu diraih buka didapat!!! SOLUSI SOAL Bidag Matematika Disusu oleh : Eddy Hermato, ST Olimpiade Matematika Tk

Lebih terperinci

Penyelesaian Persamaan Non Linier

Penyelesaian Persamaan Non Linier Peyelesaia Persamaa No Liier Metode Iterasi Sederhaa Metode Newto Raphso Permasalaha Titik Kritis pada Newto Raphso Metode Secat Metode Numerik Iterasi/NewtoRaphso/Secat - Metode Iterasi Sederhaa- Metode

Lebih terperinci

theresiaveni.wordpress.com NAMA : KELAS :

theresiaveni.wordpress.com NAMA : KELAS : theresiaveiwordpresscom NAMA : KELAS : 1 theresiaveiwordpresscom BARISAN DAN DERET Barisa da deret dapat diguaka utuk memudahka peyelesaia perhituga, misalya buga bak, keaika produksi, da laba/rugi suatu

Lebih terperinci

PENYELESAIAN PERSAMAAN GELOMBANG DENGAN METODE D ALEMBERT

PENYELESAIAN PERSAMAAN GELOMBANG DENGAN METODE D ALEMBERT Buleti Ilmiah Math. Stat. da Terapaya (Bimaster) Volume 02, No. 1(2013), hal 1-6. PENYELESAIAN PERSAMAAN GELOMBANG DENGAN METODE D ALEMBERT Demag, Helmi, Evi Noviai INTISARI Permasalaha di bidag tekik

Lebih terperinci

oleh hasil kali Jika dan keduanya fungsi yang dapat didiferensialkan, maka

oleh hasil kali Jika dan keduanya fungsi yang dapat didiferensialkan, maka Itegral etu Jika fugsi kotiu yag didefiisika utuk, kita bagi selag mejadi selag bagia berlebar sama Misalka berupa titik ujug selag bagia ii da pilih titik sampel di dalam selag bagia ii, sehigga terletak

Lebih terperinci

Solusi Numerik PDP. ( Metode Beda Hingga ) December 9, 2013. Solusi Numerik PDP

Solusi Numerik PDP. ( Metode Beda Hingga ) December 9, 2013. Solusi Numerik PDP ( Metode Beda Higga ) December 9, 2013 Sebuah persamaa differesial apabila didiskritisasi dega metode beda higga aka mejadi sebuah persamaa beda. Jika persamaa differesial parsial mempuyai solusi eksak

Lebih terperinci

2 BARISAN BILANGAN REAL

2 BARISAN BILANGAN REAL 2 BARISAN BILANGAN REAL Di sekolah meegah barisa diperkealka sebagai kumpula bilaga yag disusu meurut "pola" tertetu, misalya barisa aritmatika da barisa geometri. Biasaya barisa da deret merupaka satu

Lebih terperinci

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n LIMIT 4.. FUNGSI LIMIT Defiisi 4.. A R Titik c R adalah titik limit dari A, jika utuk setiap δ > 0 ada palig sedikit satu titik di A, c sedemikia sehigga c < δ. Defiisi diatas dapat disimpulka dega cara

Lebih terperinci

BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP. Permasalahan dalam tugas akhir ini dibatasi hanya pada penaksiran

BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP. Permasalahan dalam tugas akhir ini dibatasi hanya pada penaksiran BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP Permasalaha dalam tugas akhir ii dibatasi haya pada peaksira besarya koefisie korelasi polychoric da tidak dilakuka peguia terhadap koefisie korelasi

Lebih terperinci

Definisi Integral Tentu

Definisi Integral Tentu Defiisi Itegral Tetu Bila kita megedarai kedaraa bermotor (sepeda motor atau mobil) selama 4 jam dega kecepata 50 km / jam, berapa jarak yag ditempuh? Tetu saja jawabya sagat mudah yaitu 50 x 4 = 200 km.

Lebih terperinci

BAB I INDUKSI MATEMATIK. Beberapa Prinsip Induksi Matematik (PIM) yang perlu diketahui: 1. Sederhana 2. Yang dirampatkan (generalized) 3.

BAB I INDUKSI MATEMATIK. Beberapa Prinsip Induksi Matematik (PIM) yang perlu diketahui: 1. Sederhana 2. Yang dirampatkan (generalized) 3. BAB I INDUKSI MATEMATIK Iduksi matematik merupaka salah satu metode pembuktia yag baku di dalam matematika, yag meyataka kebeara dari suatu peryataa tetag semua bilaga asli atau kadag-kadag semua bilaga

Lebih terperinci

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian BAB I PENDAHULUAN A. Latar Belakag Masalah Matematika merupaka suatu ilmu yag mempuyai obyek kajia abstrak, uiversal, medasari perkembaga tekologi moder, da mempuyai pera petig dalam berbagai disipli,

Lebih terperinci

MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR. Dosen Pengampu : Darmadi, S.Si, M.Pd

MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR. Dosen Pengampu : Darmadi, S.Si, M.Pd MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR Dose Pegampu : Darmadi, S.Si, M.Pd Disusu : Kelas 5A / Kelompok 5 : Dia Dwi Rahayu (084. 06) Hefetamala (084. 4) Khoiril Haafi (084. 70) Liaatul Nihayah (084. 74)

Lebih terperinci

1. Ubahlah bentuk kuadrat di bawah ini menjadi bentuk

1. Ubahlah bentuk kuadrat di bawah ini menjadi bentuk OPERASI ALJABAR. Ubahlah betuk kuadrat di bawah ii mejadi betuk ( a b) c 4 8 4 4 0 4. Uraika betuk di bawah ii ( 5)( ) [ ]( )( )( ) [ ]( ) ( ) ( ). Tetuka ilai a, b, da c, jika ( )( 4 )( ) = a b c 6 (

Lebih terperinci

BARISAN FIBONACCI DAN BILANGAN PHI

BARISAN FIBONACCI DAN BILANGAN PHI BARISAN FIBONACCI DAN BILANGAN PHI Fiboacci Matematikawa terbesar pada abad pertegaha adalah Leoardo dari Pisa, Italia (80 0). Ia lebih dikeal dega ama Fibo-acci. Artiya, aak Boaccio. Meara Pisa yag terkeal

Lebih terperinci

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu BAB 4 UKURAN PENYEBARAN DATA Pada Bab sebelumya kita telah mempelajari beberapa ukura pemusata data, yaitu ukura yag memberika iformasi tetag bagaimaa data-data ii megumpul atau memusat Pada bagia Bab

Lebih terperinci

PENGANTAR MATEMATIKA DISKRIT

PENGANTAR MATEMATIKA DISKRIT PENGANTAR MATEMATIKA DISKRIT DIKTAT Oleh: Rippi Maya Eliva Sukma Cipta PROGRAM STUDI PENDIDIKAN MATEMATIKA UNIVERSITAS ISLAM NEGERI SUNAN GUNUNG DJATI BANDUNG 016 Kata Pegatar Diktat ii disusu sebagai

Lebih terperinci

Kekeliruan dalam Perhitungan Numerik dan Selisih Terhingga Biasa

Kekeliruan dalam Perhitungan Numerik dan Selisih Terhingga Biasa Modul 1 Kekelirua dalam Perhituga Numerik da Selisih Terhigga Biasa D PENDAHULUAN Dr. Wahyudi, M.Pd. i dalam pemakaia praktis, peyelesaia akhir yag diigika dari solusi suatu permasalaha (soal) dalam matematika

Lebih terperinci

METODE NUMERIK TKM4104. Kuliah ke-2 DERET TAYLOR DAN ANALISIS GALAT

METODE NUMERIK TKM4104. Kuliah ke-2 DERET TAYLOR DAN ANALISIS GALAT METODE NUMERIK TKM4104 Kuliah ke- DERET TAYLOR DAN ANALISIS GALAT DERET TAYLOR o Deret Taylor adalah alat yag utama utuk meuruka suatu metode umerik. o Deret Taylor bergua utuk meghampiri ugsi ke dalam

Lebih terperinci

ARTIKEL. Menentukan rumus Jumlah Suatu Deret dengan Operator Beda. Markaban Maret 2015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN

ARTIKEL. Menentukan rumus Jumlah Suatu Deret dengan Operator Beda. Markaban Maret 2015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN ARTIKEL Meetuka rumus Jumlah Suatu Deret dega Operator Beda Markaba 191115198801005 Maret 015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN PUSAT PENGEMBANGAN DAN PEMBERDAYAAN PENDIDIK DAN TENAGA KEPENDIDIKAN

Lebih terperinci

Metode Beda Hingga dan Teorema Newton untuk Menentukan Jumlah Deret. Finite Difference Method and Newton's Theorem to Determine the Sum of Series

Metode Beda Hingga dan Teorema Newton untuk Menentukan Jumlah Deret. Finite Difference Method and Newton's Theorem to Determine the Sum of Series Jural ILM DASAR, Vol, No, Juli : 9-98 9 Metode Beda Higga da Teorema Newto utuk Meetuka Jumlah Deret Fiite Differece Method ad Newto's Theorem to Determie the Sum of Series Tri Mulyai,*), Moh Hasa ), Slami

Lebih terperinci

Barisan Aritmetika dan deret aritmetika

Barisan Aritmetika dan deret aritmetika BARISAN DAN DERET BILANGAN Peyusu: Atmii Dhoruri, MS Kode: Jejag: SMP T/P: / A. Kompetesi yag diharapka. Meetuka suku ke- barisa aritmatika da barisa geometri. Meetuka jumlah suku pertama deret aritmatika

Lebih terperinci

Dalam kehidupan sehari-hari terdapat banyak benda yang bergetar.

Dalam kehidupan sehari-hari terdapat banyak benda yang bergetar. Getara (Vibratio) Dalam kehidupa sehari-hari terdapat bayak beda yag bergetar. Sear gitar yag serig ada maika, Soud system, Garpu tala, Demikia juga rumah ada yag bergetar dasyat higga rusak ketika terjadi

Lebih terperinci

i adalah indeks penjumlahan, 1 adalah batas bawah, dan n adalah batas atas.

i adalah indeks penjumlahan, 1 adalah batas bawah, dan n adalah batas atas. 4 D E R E T Kosep deret merupaka kosep matematika yag cukup populer da aplikatif khusuya dalam kasus-kasus yag meyagkut perkembaga da pertumbuha suatu gejala tertetu. Apabila perkembaga atau pertumbuha

Lebih terperinci

3. Rangkaian Logika Kombinasional dan Sequensial 3.1. Rangkaian Logika Kombinasional Enkoder

3. Rangkaian Logika Kombinasional dan Sequensial 3.1. Rangkaian Logika Kombinasional Enkoder 3. Ragkaia Logika Kombiasioal da Sequesial Ragkaia Logika secara garis besar dibagi mejadi dua, yaitu ragkaia logika Kombiasioal da ragkaia logika Sequesial. Ragkaia logika Kombiasioal adalah ragkaia yag

Lebih terperinci

PERTEMUAN 13. VEKTOR dalam R 3

PERTEMUAN 13. VEKTOR dalam R 3 PERTEMUAN VEKTOR dalam R Pegertia Ruag Vektor Defiisi R Jika adalah sebuah bilaga bulat positif, maka tupel - - terorde (ordered--tuple) adalah sebuah uruta bilaga riil ( a ),a,..., a. Semua tupel - -terorde

Lebih terperinci

METODE BEDA HINGGA DAN TEOREMA NEWTON UNTUK MENENTUKAN JUMLAH DERET (Finite Difference Method and Newton's Theorem to Determine the Sum of Series)

METODE BEDA HINGGA DAN TEOREMA NEWTON UNTUK MENENTUKAN JUMLAH DERET (Finite Difference Method and Newton's Theorem to Determine the Sum of Series) Prosidig emiar Nasioal Matematika, Uiversitas Jember, 9 November 8 METODE BEDA HINGGA DAN TEOREMA NEWTON UNTUK MENENTUKAN JUMLAH DERET (Fiite Differece Method ad Newto's Theorem to Determie the um of eries)

Lebih terperinci

Barisan Dan Deret Arimatika

Barisan Dan Deret Arimatika Barisa Da Deret Arimatika A. Barisa Aritmatika Niko etera memiliki sebuah peggaris ukura 0 cm. Ia megamati bilaga-bilaga pada peggarisya ii. Bilaga-bilaga tersebut beruruta 0, 1,, 3,, 0. etiap bilaga beruruta

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Permasalaha peugasa atau assigmet problem adalah suatu persoala dimaa harus melakuka peugasa terhadap sekumpula orag yag kepada sekumpula job yag ada, sehigga tepat satu

Lebih terperinci

mempunyai sebaran yang mendekati sebaran normal. Dalam hal ini adalah PKM (penduga kemungkinan maksimum) bagi, ˆ ˆ adalah simpangan baku dari.

mempunyai sebaran yang mendekati sebaran normal. Dalam hal ini adalah PKM (penduga kemungkinan maksimum) bagi, ˆ ˆ adalah simpangan baku dari. Selag Kepercayaa Cotoh Besar Jika ukura cotoh (sample size) besar, maka meurut Teorema Limit Pusat, bayak statistik megikuti/mempuyai sebara yag medekati ormal (dapat diaggap ormal). Artiya jika adalah

Lebih terperinci

Pendiferensialan. Modul 1 PENDAHULUAN

Pendiferensialan. Modul 1 PENDAHULUAN Modul Pediferesiala Prof R Soematri D PENDAHULUAN alam modul ii dibahas fugsi berilai real yag didefiisika pada suatu iterval Defiisi derivatif suatu fugsi dimulai dega derivatif di suatu titik, kemudia

Lebih terperinci

TINJAUAN PUSTAKA Pengertian

TINJAUAN PUSTAKA Pengertian TINJAUAN PUSTAKA Pegertia Racaga peelitia kasus-kotrol di bidag epidemiologi didefiisika sebagai racaga epidemiologi yag mempelajari hubuga atara faktor peelitia dega peyakit, dega cara membadigka kelompok

Lebih terperinci

,n N. Jelas barisan ini terbatas pada dengan batas M =: 1, dan. barisan ini kovergen ke 0.

,n N. Jelas barisan ini terbatas pada dengan batas M =: 1, dan. barisan ini kovergen ke 0. PROGRAM STUDI PENDIDIKAN MATEMATIKA FKIP UNMUH PONOROGO SOAL UJIAN TENGAH SEMESTER GENAP TA 03/04 Mata Ujia : Aalisis Real Tipe Soal : REGULER Dose : Dr. Jula HERNADI Waktu : 90 meit Hari, Taggal : Selasa,

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Distribusi Ekspoesial Fugsi ekspoesial adalah salah satu fugsi yag palig petig dalam matematika. Biasaya, fugsi ii ditulis dega otasi exp(x) atau e x, di maa e adalah basis logaritma

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Optimasi 2.1.1. Pegertia Optimasi Optimasi (Optimizatio) adalah aktivitas utuk medapatka hasil terbaik di bawah keadaa yag diberika. Tujua akhir dari semua aktivitas tersebut

Lebih terperinci

RENCANA PROGRAM PEMBELAJARAN KE - 1. : 6 jam pelajaran

RENCANA PROGRAM PEMBELAJARAN KE - 1. : 6 jam pelajaran RENCANA PROGRAM PEMBELAJARAN KE - 1 Satua Pedidika Mata Pelajara Kelas/Semester Materi Pokok Waktu : SMA N 6 YOGYAKARTA : Matematika : XII IPS/ : Barisa da Deret : 6 jam pelajara 1. Stadar Kompetesi 4.

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, , Agustus 2003, ISSN : METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, , Agustus 2003, ISSN : METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT Vol. 6. No., 97-09, Agustus 003, ISSN : 40-858 METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT Robertus Heri Jurusa Matematika FMIPA UNDIP Abstrak Tulisa ii membahas peetua persamaa ruag

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 31-41, April 2004, ISSN :

JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 31-41, April 2004, ISSN : Vol. 7. No. 1, 31-41, April 24, ISSN : 141-8518 Peetua Kestabila Sistem Kotrol Lup Tertutup Waktu Kotiu dega Metode Trasformasi ke Betuk Kaoik Terkotrol Robertus Heri Jurusa Matematika FMIPA UNDIP Abstrak

Lebih terperinci

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI Utuk lebih memahami megeai etropi, pada bab ii aka diberika perhituga etropi utuk beberapa distribusi diskrit da kotiu. 3. Distribusi Diskrit Pada sub bab ii dibahas

Lebih terperinci

Institut Teknologi Sepuluh Nopember Surabaya. Model Sistem dalam Persamaan Keadaan

Institut Teknologi Sepuluh Nopember Surabaya. Model Sistem dalam Persamaan Keadaan Istitut Tekologi Sepuluh Nopember Surabaya Model Sistem dalam Persamaa Keadaa Pegatar Materi Cotoh Soal Rigkasa Latiha Pegatar Materi Cotoh Soal Rigkasa Istilah-istilah Dalam Persamaa Keadaa Aalisis Sistem

Lebih terperinci

Kestabilan Rangkaian Tertutup Waktu Kontinu Menggunakan Metode Transformasi Ke Bentuk Kanonik Terkendali

Kestabilan Rangkaian Tertutup Waktu Kontinu Menggunakan Metode Transformasi Ke Bentuk Kanonik Terkendali Jural Tekika ISSN : 285-859 Fakultas Tekik Uiversitas Islam Lamoga Volume No.2 Tahu 29 Kestabila Ragkaia Tertutup Waktu Kotiu Megguaka Metode Trasformasi Ke Betuk Kaoik Terkedali Suhariyato ) Dose Fakultas

Lebih terperinci

INTEGRAL TAK TENTU (pecahan rasional) Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ

INTEGRAL TAK TENTU (pecahan rasional) Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ INTEGRL TK TENTU pecaha rasioal gusia Pradjaigsih, M.Si. Jurusa Maemaika FMIP UNEJ agusia.fmipa@uej.ac.id DEFINISI Fugsi suku bayak derajad dega bula o egaif 0 dimaa, 0 a a a a a P Fugsi kosa dipadag sbg

Lebih terperinci

PENGANTAR KALKULUS. Disampaikan pada Diklat Instruktur/Pengembang Matematika SMA Jenjang Dasar Tanggal 6 s.d. 19 Agustus 2004 di PPPG Matematika

PENGANTAR KALKULUS. Disampaikan pada Diklat Instruktur/Pengembang Matematika SMA Jenjang Dasar Tanggal 6 s.d. 19 Agustus 2004 di PPPG Matematika PENGANTAR KALKULUS Disampaika pada Diklat Istruktur/Pegembag Matematika SMA Jejag Dasar Taggal 6 s.d. 19 Agustus 004 di PPPG Matematika Oleh: Drs. SETIAWAN, M. Pd. Widyaiswara PPPG Matematika Yogyakarta

Lebih terperinci

I. PENDAHULUAN II. LANDASAN TEORI

I. PENDAHULUAN II. LANDASAN TEORI I PENDAHULUAN 1 Latar belakag Model pertumbuha Solow-Swa (the Solow-Swa growth model) atau disebut juga model eoklasik (the eo-classical model) pertama kali dikembagka pada tahu 195 oleh Robert Solow da

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakag Dalam keadaa dimaa meghadapi persoala program liier yag besar, maka aka berusaha utuk mecari peyelesaia optimal dega megguaka algoritma komputasi, seperti algoritma

Lebih terperinci

RESPONSI 2 STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 2015

RESPONSI 2 STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 2015 RESPONSI STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 015 A. PENYAJIAN DAN PERINGKASAN DATA 1. PENYAJIAN DATA a. Sebutka tekik peyajia data utuk data kualitatif! Diagram kueh, diagram batag, distribusi

Lebih terperinci

Setelah mempelajari modul ini Anda diharapkan dapat: a. memeriksa apakah suatu pemetaan merupakan operasi;

Setelah mempelajari modul ini Anda diharapkan dapat: a. memeriksa apakah suatu pemetaan merupakan operasi; Modul 1 Operasi Dr. Ahmad Muchlis B PENDAHULUAN erapakah 97531 86042? Kalau Ada megguaka kalkulator, jawabaya amat bergatug pada tipe kalkulator yag Ada pakai. 9 Kalkulator ilmiah Casio fx-250 memberika

Lebih terperinci

Barisan, Deret, dan Notasi Sigma

Barisan, Deret, dan Notasi Sigma Barisa, Deret, da Notasi Sigma B A B 5 A. Barisa da Deret Aritmetika B. Barisa da Deret Geometri C. Notasi Sigma da Iduksi Matematika D. Aplikasi Barisa da Deret Sumber: http://jsa007.tripod.com Saat megedarai

Lebih terperinci

Selang Kepercayaan (Confidence Interval) Pengantar Penduga titik (point estimator) telah dibahas pada kuliah-kuliah sebelumnya. Walau statistikawan

Selang Kepercayaan (Confidence Interval) Pengantar Penduga titik (point estimator) telah dibahas pada kuliah-kuliah sebelumnya. Walau statistikawan Selag Kepercayaa (Cofidece Iterval) Pegatar Peduga titik (poit estimator) telah dibahas pada kuliah-kuliah sebelumya. Walau statistikawa telah berusaha memperoleh peduga titik yag baik, amu hampir bisa

Lebih terperinci

Statistika dibagi menjadi dua, yaitu: 1. Statistika Deskriftif 2. Statistik Inferensial Penarikan kesimpulan dapat dilakukan dengan dua cara, yaitu:

Statistika dibagi menjadi dua, yaitu: 1. Statistika Deskriftif 2. Statistik Inferensial Penarikan kesimpulan dapat dilakukan dengan dua cara, yaitu: Peaksira Parameter Statistika dibagi mejadi dua yaitu:. Statistika Deskriftif 2. Statistik Iferesial Pearika kesimpula dapat dilakuka dega dua cara yaitu:. Peaksira Parameter 2. Pegujia Hipotesis Peaksira

Lebih terperinci

BAB I BILANGAN KOMPLEKS

BAB I BILANGAN KOMPLEKS BAB I BILANGAN KOMPLEKS Di dalam bab ii, kita aka meelidiki struktur aljabar da geometri dari sistim bilaga kompleks. Kita aggap bahwa berbagai sifat ag berhubuga dega bilaga real sudah diketahui.. PENJUMLAHAN

Lebih terperinci

Induksi Matematik dan Teorema Binomial

Induksi Matematik dan Teorema Binomial Modul Iduksi Matematik da Teorema Biomial Sukirma I PENDAHULUAN duksi matematik merupaka salah satu metode pembuktia dari bayak teorema dalam Teori Bilaga maupu dalam mata kuliah matematika laiya. Sedagka

Lebih terperinci

Soal dan Pembahasan. Ujian Nasional Matematika Teknik SMK matematikamenyenangkan.com

Soal dan Pembahasan. Ujian Nasional Matematika Teknik SMK matematikamenyenangkan.com Soal da Pembahasa jia Nasioal 06 Matematika Tekik SMK matematikameyeagka.com . pqr Betuk sederhaa dari p q r A. p 8 q r adalah... B. p q 0 r 0 D. p q 0 r 0 C. p 8 q r 0 E. p 6 q r Igat rumus berikut m

Lebih terperinci

BAB II CICILAN DAN BUNGA MAJEMUK

BAB II CICILAN DAN BUNGA MAJEMUK BAB II CICILAN DAN BUNGA MAJEMUK 2.1. Buga Majemuk Ada sedikit perbedaa atara suku buga tuggal da suku buga majemuk. Pada suku buga tuggal, besarya buga B = Mp tidak perah digabugka dega modal M. Sebalikya

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Statistika iferesi merupaka salah satu cabag statistika yag bergua utuk meaksir parameter. Peaksira dapat diartika sebagai dugaa atau perkiraa atas sesuatu yag aka terjadi

Lebih terperinci

PERSAMAAN DIFERENSIAL PARSIAL (PDP) MATEMATIKA FISIKA II JURDIK FISIKA FPMIPA UPI BANDUNG

PERSAMAAN DIFERENSIAL PARSIAL (PDP) MATEMATIKA FISIKA II JURDIK FISIKA FPMIPA UPI BANDUNG PERSAMAAN DIFERENSIAL PARSIAL PDP MATEMATIKA FISIKA II JURDIK FISIKA FPMIPA UPI BANDUNG PDP: Persamaa ag pada suku-sukua megadug betuk turua diferesia parsia aitu turua terhadap ebih dari satu variabe

Lebih terperinci

MENENTUKAN PENYELESAIAN PERTIDAKSAMAAN DENGAN METODE TITIK PEMECAH. Warsito. Program Studi Matematika FMIPA Universitas Terbuka.

MENENTUKAN PENYELESAIAN PERTIDAKSAMAAN DENGAN METODE TITIK PEMECAH. Warsito. Program Studi Matematika FMIPA Universitas Terbuka. MENENTUKAN PENYELESAIAN PERTIDAKSAMAAN DENGAN METODE TITIK PEMECAH Warsito Progra Studi Mateatika FMIPA Uiversitas Terbuka warsito@ut.ac.id Abstrak Peyelesaia pertidaksaaa ( x- a, a Î R adalah x a (egguaka

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT PROVINSI 2010 TIM OLIMPIADE MATEMATIKA INDONESIA Waktu : 210 Menit

SELEKSI OLIMPIADE TINGKAT PROVINSI 2010 TIM OLIMPIADE MATEMATIKA INDONESIA Waktu : 210 Menit SELEKSI OLIMPIADE TINGKAT PROVINSI 00 TIM OLIMPIADE MATEMATIKA INDONESIA 0 Waktu : 0 Meit KEMENTERIAN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL MANAJEMEN PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT PEMBINAAN

Lebih terperinci

METODE NUMERIK UNTUK SIMULASI. Pemodelan & Simulasi TM09

METODE NUMERIK UNTUK SIMULASI. Pemodelan & Simulasi TM09 METODE NUMERIK UNTUK SIMULASI Pemodela & Simulasi TM09 Metode Numerik ( Metode umerik dpt diklasiikasika mjd:. Metode satu-lagka atau sigle-step. Metode multistep Metode sigle-step Pada metode ii, utuk

Lebih terperinci

EKSPANSI MULTINOMIAL, KOMBINASI, DAN PERMUTASI

EKSPANSI MULTINOMIAL, KOMBINASI, DAN PERMUTASI EKSPANSI MULTINOMIAL, KOMBINASI, DAN PERMUTASI Oleh: Sutopo Jurusa Fisika FMIPA UM sutopo@fisika.um.ac.id Ditulis pada sekitar bula Maret 2011. Diuggah pada 3 Desember 2011 PROBLEM Gambar di bawah ii meyataka

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakag Dalam duia iformatika, assigmet Problem yag biasa dibetuk dega matriks berbobot merupaka salah satu masalah terbesar, dimaa masalah ii merupaka masalah yag metode peyelesaiaya

Lebih terperinci

PENGARUH VARIASI PELUANG CROSSOVER DAN MUTASI DALAM ALGORITMA GENETIKA UNTUK MENYELESAIKAN MASALAH KNAPSACK. Sutikno

PENGARUH VARIASI PELUANG CROSSOVER DAN MUTASI DALAM ALGORITMA GENETIKA UNTUK MENYELESAIKAN MASALAH KNAPSACK. Sutikno sutiko PENGARUH VARIASI PELUANG CROSSOVER DAN MUTASI DALAM ALGORITMA GENETIKA UNTUK MENYELESAIKAN MASALAH KNAPSACK Sutiko Program Studi Tekik Iformatika Fakultas Sais da Matematika UNDIP tik@udip.ac.id

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang Masalah

BAB I PENDAHULUAN. A. Latar Belakang Masalah BAB I PENDAHULUAN A. Latar Belakag Masalah Struktur alabar adalah suatu himpua yag di dalamya didefiisika suatu operasi bier yag memeuhi aksioma-aksioma tertetu. Gelaggag ( Rig ) merupaka suatu struktur

Lebih terperinci

BAB II PEMBAHASAN. Dalam statistik Maxwell- Boltzman, ada dua ciri- ciri yang digunakan:

BAB II PEMBAHASAN. Dalam statistik Maxwell- Boltzman, ada dua ciri- ciri yang digunakan: BAB II PEMBAHASAN A. Keadaa Makro da Keadaa Mikro Masalah utama yag dihadapi dalam mekaika statistik adalah meetuka sebara yag mugki dari partikel- partikel kedalam tigkat- tigkat eergi da keadaa- keadaa

Lebih terperinci

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL BAB VIII MASAAH ESTIMASI SAT DAN DA SAMPE 8.1 Statistik iferesial Statistik iferesial suatu metode megambil kesimpula dari suatu populasi. Ada dua pedekata yag diguaka dalam statistik iferesial. Pertama,

Lebih terperinci

BAB II KEGIATAN PEMBELAJARAN

BAB II KEGIATAN PEMBELAJARAN Page o BAB II KEGIATAN PEMBELAJARAN A. TURUNAN FUNGSI ALJABAR. Deiisi Tra Fgsi Deiisi Fgsi : ata mempai tra ag diotasika d d ata di deiisika : d d d d d d lim h 0 h h lim 0 ata Cotoh Soal :. Tetka tra

Lebih terperinci

Fungsi. Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B.

Fungsi. Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B. Fugsi Misalka A da B himpua. Relasi bier f dari A ke B merupaka suatu fugsi jika setiap eleme di dalam A dihubugka dega tepat satu eleme di dalam B. Jika f adalah fugsi dari A ke B kita meuliska f : A

Lebih terperinci

TEKNIK-TEKNIK PENGINTEGRALAN

TEKNIK-TEKNIK PENGINTEGRALAN TEKNIK-TEKNIK PENGINTEGRALAN 1. Teknik Subtitusi Teorema : Misal g fungsi yang terdiferensialkan dan F suatu anti turunan dari f, jika u = g() maka f(g())g () d = f(u) du = F(u) + c = F(g()) + c sin. 1.

Lebih terperinci

BAB 4. METODE ESTIMASI PARAMETER DARI DISTRIBUSI WAKTU KERUSAKAN

BAB 4. METODE ESTIMASI PARAMETER DARI DISTRIBUSI WAKTU KERUSAKAN BAB 4 METODE ESTIMASI PARAMETER DARI DISTRIBUSI WAKTU KERUSAKAN Estimasi reliabilitas membutuhka pegetahua distribusi waktu kerusaka yag medasari dari kompoe atau sistem yag dimodelka Utuk memprediksi

Lebih terperinci

BAB 1 PENDAHULUAN. Analisis regresi menjadi salah satu bagian statistika yang paling banyak aplikasinya.

BAB 1 PENDAHULUAN. Analisis regresi menjadi salah satu bagian statistika yang paling banyak aplikasinya. BAB 1 PENDAHULUAN 1.1 Latar Belakag Aalisis regresi mejadi salah satu bagia statistika yag palig bayak aplikasiya. Aalisis regresi memberika keleluasaa kepada peeliti utuk meyusu model hubuga atau pegaruh

Lebih terperinci

Materi 5 DATA MINING 3 SKS Semester 6 S1 Sistem Informasi UNIKOM 2016 Nizar Rabbi Radliya

Materi 5 DATA MINING 3 SKS Semester 6 S1 Sistem Informasi UNIKOM 2016 Nizar Rabbi Radliya Materi 5 DATA MINING 3 SKS Semester 6 S1 Sistem Iformasi UNIKOM 2016 Nizar Rabbi Radliya izar.radliya@yahoo.com Nama Mahasiswa NIM Kelas Kompetesi Dasar Memahami tekik data miig klasifikasi da mampu meerapka

Lebih terperinci

INTEGRAL CONTOUR. 2. Fungsi f tetap, C dipandang sebagai variabel

INTEGRAL CONTOUR. 2. Fungsi f tetap, C dipandang sebagai variabel INTEGRAL ONTOUR Tujua Perkuliaha: Mahasiswa dapat memahami kosep itegral cotour da meyelesaika masalah dalam itegral otour. Defiisi: Diberika fugsi z = z(t) utuk a t b, Mewakili sebuah litasa yag diperpajag

Lebih terperinci

Distribusi Sampling (Distribusi Penarikan Sampel)

Distribusi Sampling (Distribusi Penarikan Sampel) Distribusi Samplig (Distribusi Pearika Sampel) 1. Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

BAB VI BARISAN TAK HINGGA DAN DERET TAK HINGGA

BAB VI BARISAN TAK HINGGA DAN DERET TAK HINGGA BAB VI BARIAN TAK HINGGA DAN DERET TAK HINGGA Bajar/Barisa Tak Higga Barisa tak higga { },,,,, adalah suatu fugsi dari dimaa daerah domaiya adalah himpua bilaga bulat positif (bilaga asli). Cotoh: Bila,,,..,

Lebih terperinci

Statistika Deskriptif Ukuran Pemusatan dan Ukuran Penyebaran

Statistika Deskriptif Ukuran Pemusatan dan Ukuran Penyebaran Statistika Deskriptif Ukura Pemusata da Ukura Peyebara Ukura Pemusata Data Rata-rata Hitug Rata-rata hitug data tuggal: = x 1 + x 2 + x 3 + + x atau =. (1 : rata-rata hitug data tuggal (baca x-bar : bayakya

Lebih terperinci