Cara Pengisian Pada File Excel

Ukuran: px
Mulai penontonan dengan halaman:

Download "Cara Pengisian Pada File Excel"

Transkripsi

1 Cara Pegisia Pada ile Excel Pada tabel realisasi da keuaga ias Pekerjaa Umum Bia Marga Propisi Jawa Timur ii terdiri dari beberapa kolom seperti dibawah ii: atker Tahu Bula Adapu cara pegisia dari masig-masig kolom adalah sebagai berikut: 1. atker Bagia ii diisi dega jeis program yag dilakuka 2. Tahu Bagia ii diisi berdasarka tahu pegerjaa dari satker 3. Bula Bagia bula ii haya dapat diisi dg format agka. Misal: Jauari ditulis 1 Pebruari ditulis 2 Maret ditulis 3 April ditulis 4 Mei ditulis 5 Jui ditulis 6 Juli ditulis 7 Agustus ditulis 8 eptember ditulis 9 Oktober ditulis 10 Nopember ditulis 11 esember ditulis 12

2 Hal tersebut dikareaka utuk meghidari kesalaha peulisa huruf kapital pada ama bula. 4. egiata olom ama ii diisi berdasarka ama yag telah ada da diurut mulai dari jeis utama kemudia diikuti dega sub. Utuk ama da kolom-kolom yag lai, atara satu dega yag lai baik itu masih dalam satu jeis atau berbeda tidak boleh baris yag kosog (tidak ada jarak atar baris). Jarak atau jeda yag ada atar baris aka meyebabka data diaggap selesai oleh sistem. 5. berupa iisialisasi dari jeis utama da sub. egiata utama diiisialisasika sebagai, da sub ya diiisialisasika sebagai. utama selalu berada di atas sub utama. olom ii diisi sesuai kategori dari masig-masig ama. Utuk ama yag termasuk dalam utama (), pegisia kolom yag lai boleh dilewati (kosog) kecuali egiata da kemajua. Namu utuk ama yag termasuk dalam sub utama (), ada beberapa kolom yag harus diisi diataraya adalah kolom, kolom Aggara, kolom euaga PerBula, kolom emajua isik (%). 6. olom merupaka iisialisasi dari jeis, yaitu berupa realisasi atau realisasi. Realisasi aa adalah semua sub yag berhubuga dega segala admiistrasi da aka masuk dalam kategori. ehigga pada kolom ii diisi. Realisasi isik adalah semua sub yag berhubuga dega segala kostruksi da aka masuk dalam kategori. ehigga pada kolom ii diisi dega.

3 7. olom sumber ii diisi sesuai dega sumber yag diperoleh utuk tersebut. 8. Aggara olom diisi dega yag diguaka. Utuk utama () kolom tidak perlu diisi karea tersebut aka mucul dari pejumlaha pada sub ya. Beberapa hal yag harus dihidari dalam pegisia data pada kolom ii utuk sub utama () yaitu : 1. semua data yag diijika utuk dapat dimasukka haya berupa agka saja 2. tidak boleh ada tulisa Rp (rupiah) 3. tidak boleh ada tada koma (,) 4. tidak boleh ada tada titik (.) 9. Target olom ii diisi sesuai dega yag dicapai pada masig-masig tersebut. 10. Pelaksaa olom Pelaksaa ii diisi dega ama, o. da taggal. 11. otrak Cara pegisia data pada ilai ii yaitu sama dega cara pegisia data pada kolom. Adapu hal-hal yag tidak diijika pada peulisa data di kolom ii diataraya yaitu, 1. semua data yag diijika utuk dapat dimasukka haya berupa agka saja 2. tidak boleh ada tulisa Rp (rupiah) 3. tidak boleh ada tada koma (,) 4. tidak boleh ada tada titik (.)

4 12. euaga perbula olom keuaga perbula ii diisi dega data utuk keuaga perbula yag diguaka pada pegerjaa satker. Bula yag dimaksudka harus sesuai dega isi pada bagia bula palig atas sediri. 13. emajua isik (%) olom emajua isik (%) ii terbagi mejadi 2 (dua) kolom lagi yaitu kolom Rec da Real. Utuk bagia rec, diisi dega per tahu yag diguaka pada satker tersebut. edagka utuk utuk bagia real diisi sesuai perubaha yag terjadi pada a satker tiap bula. 14. Permasalaha olom Permasalaha ii terbagi mejadi 2 (dua) kolom lagi yaitu kolom masalah da kolom solusi. olom masalah diisi sesuai dega permasalaha yag mucul pada setiap, da utuk kolom solusi diisi sesuai dega solusi yag diguaka utuk pemecaha atau peyelesaia dari permasalaha yag ada. 15. eteraga olom keteraga ii diisi sebagai petujuk atau keteraga dari masig-masig yag ada (jika dibutuhka).

5 Cotoh Pegisia awal: atker: Pembagua Jala Tahu: 2007 Bula: 1 Judul APBN ama APBN Cotoh Pegisia utuk bula berikutya: atker: Pembagua Jala Tahu: 2007 Bula: 2 Judul APBN ama APBN Catata Petig: 1. Tidak Boleh ada araktertada koma (,) pada semua isia field yag tersedia. 2. alam tahu yag sama tidak boleh ada ama atker yag sama pula. ega arti lai dalam satu tahu tidak boleh ada ama atker yag kembar. ecuali apabila bulaya berbeda. 3. Utuk melakuka update pada bula berikutya maka atker, Tahu, egiata da Aggaraya harus sama persis atau tidak berubah pada pegisia data bula sebelumya. 4. etelah selesai dega megisika data pada file Excel, maka ekspor file ada mejadi file CV agar dapat diproses oleh program. ega cara ave As file tersebut da gati ave as type yag semula Microsoft Office Excel Workbook mejadi CV (Comma delimited) atau CV (M O), tetapi jaga memilihi yag CV (Macitosh) karea file tersebut haya dapat dijalaka pada istem Operasi (O) Macitosh produksi Apple.

MANAJEMEN RISIKO INVESTASI

MANAJEMEN RISIKO INVESTASI MANAJEMEN RISIKO INVESTASI A. PENGERTIAN RISIKO Resiko adalah peyimpaga hasil yag diperoleh dari recaa hasil yag diharapka Besarya tigkat resiko yag dimasukka dalam peilaia ivestasi aka mempegaruhi besarya

Lebih terperinci

METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc.

METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc. METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/0 SUGENG00 Copyright 996-98 Dale Caregie & Associates, Ic. Kesalaha ERROR: Selisih atara ilai perkiraa dega ilai eksakilai

Lebih terperinci

IV. METODE PENELITIAN

IV. METODE PENELITIAN IV. METODE PENELITIAN 4.1 Lokasi da Waktu peelitia Peelitia dilakuka pada budidaya jamur tiram putih yag dimiliki oleh usaha Yayasa Paguyuba Ikhlas yag berada di Jl. Thamri No 1 Desa Cibeig, Kecamata Pamijaha,

Lebih terperinci

Entity Relationship Diagram

Entity Relationship Diagram Tahap pembuata ER-Diagram Etity Relatioship Diagram Tahap pembuata ER-Diagram Awal (Prelimiary Desig) Meracag diagram basis data yag dapat megakomodasi kebutuha peyimpaa data terhadap sistem. Tahap Optimasi

Lebih terperinci

III BAHAN DAN METODE PENELITIAN

III BAHAN DAN METODE PENELITIAN 27 III BAHAN DAN METODE PENELITIAN 3.1 Baha Peelitia 3.1.1 Objek Peelitia Objek yag diguaka dalam peelitia ii adalah kuda Sumba (Sadelwood) betia da jata berjumlah 30 ekor dega umur da berat yag relatif

Lebih terperinci

IV METODE PENELITIAN 4.1 Lokasi dan waktu 4.2. Jenis dan Sumber Data 4.3 Metode Pengumpulan Data

IV METODE PENELITIAN 4.1 Lokasi dan waktu 4.2. Jenis dan Sumber Data 4.3 Metode Pengumpulan Data IV METODE PENELITIAN 4.1 Lokasi da waktu Peelitia ii dilakuka di PD Pacet Segar milik Alm Bapak H. Mastur Fuad yag beralamat di Jala Raya Ciherag o 48 Kecamata Cipaas, Kabupate Ciajur, Propisi Jawa Barat.

Lebih terperinci

BAB IV PENGUMPULAN DAN PENGOLAHAN DATA. Langkah Langkah Dalam Pengolahan Data

BAB IV PENGUMPULAN DAN PENGOLAHAN DATA. Langkah Langkah Dalam Pengolahan Data BAB IV PENGUMPULAN DAN PENGOLAHAN DATA 4.1 Metode Pegolaha Data Lagkah Lagkah Dalam Pegolaha Data Dalam melakuka pegolaha data yag diperoleh, maka diguaka alat batu statistik yag terdapat pada Statistical

Lebih terperinci

BARISAN DAN DERET. Materi ke 1

BARISAN DAN DERET. Materi ke 1 BARISAN DAN DERET Materi ke 1 Pola Bilaga adalah? Susua bilaga yag disusu meurut atura tertetu. Cotoh : 1. Pola Bilaga Gajil 1, 3, 5,... 2. Pola Bilaga Geap 2, 4, 6,... PERHATIKAN SSNAN BILANGAN DI BAWAH

Lebih terperinci

Penyelesaian Persamaan Non Linier

Penyelesaian Persamaan Non Linier Peyelesaia Persamaa No Liier Metode Iterasi Sederhaa Metode Newto Raphso Permasalaha Titik Kritis pada Newto Raphso Metode Secat Metode Numerik Iterasi/NewtoRaphso/Secat - Metode Iterasi Sederhaa- Metode

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Permasalaha peugasa atau assigmet problem adalah suatu persoala dimaa harus melakuka peugasa terhadap sekumpula orag yag kepada sekumpula job yag ada, sehigga tepat satu

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakag Dalam keadaa dimaa meghadapi persoala program liier yag besar, maka aka berusaha utuk mecari peyelesaia optimal dega megguaka algoritma komputasi, seperti algoritma

Lebih terperinci

DERET TAK HINGGA (INFITITE SERIES)

DERET TAK HINGGA (INFITITE SERIES) MATEMATIKA II DERET TAK HINGGA (INFITITE SERIES) sugegpb.lecture.ub.ac.id aada.lecture.ub.ac.id BARISAN Barisa merupaka kumpula suatu bilaga (atau betuk aljabar) yag disusu sehigga membetuk suku-suku yag

Lebih terperinci

EKSPANSI MULTINOMIAL, KOMBINASI, DAN PERMUTASI

EKSPANSI MULTINOMIAL, KOMBINASI, DAN PERMUTASI EKSPANSI MULTINOMIAL, KOMBINASI, DAN PERMUTASI Oleh: Sutopo Jurusa Fisika FMIPA UM sutopo@fisika.um.ac.id Ditulis pada sekitar bula Maret 2011. Diuggah pada 3 Desember 2011 PROBLEM Gambar di bawah ii meyataka

Lebih terperinci

BARISAN DAN DERET. Nurdinintya Athari (NDT)

BARISAN DAN DERET. Nurdinintya Athari (NDT) BARISAN DAN DERET Nurdiitya Athari (NDT) BARISAN Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) = a Fugsi tersebut dikeal sebagai barisa bilaga

Lebih terperinci

Persamaan Non-Linear

Persamaan Non-Linear Persamaa No-Liear Peyelesaia persamaa o-liear adalah meghitug akar suatu persamaa o-liear dega satu variabel,, atau secara umum dituliska : = 0 Cotoh: 2 5. 5 4 9 2 0 2 5 5 4 9 2 2. 2 0 2 5. e 0 Metode

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret Program Perkuliaha Dasar Umum Sekolah Tiggi Tekologi Telkom Barisa da Deret Barisa Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) a Fugsi tersebut

Lebih terperinci

ARTIKEL. Menentukan rumus Jumlah Suatu Deret dengan Operator Beda. Markaban Maret 2015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN

ARTIKEL. Menentukan rumus Jumlah Suatu Deret dengan Operator Beda. Markaban Maret 2015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN ARTIKEL Meetuka rumus Jumlah Suatu Deret dega Operator Beda Markaba 191115198801005 Maret 015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN PUSAT PENGEMBANGAN DAN PEMBERDAYAAN PENDIDIK DAN TENAGA KEPENDIDIKAN

Lebih terperinci

i adalah indeks penjumlahan, 1 adalah batas bawah, dan n adalah batas atas.

i adalah indeks penjumlahan, 1 adalah batas bawah, dan n adalah batas atas. 4 D E R E T Kosep deret merupaka kosep matematika yag cukup populer da aplikatif khusuya dalam kasus-kasus yag meyagkut perkembaga da pertumbuha suatu gejala tertetu. Apabila perkembaga atau pertumbuha

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Lokasi da Waktu Peelitia Peelitia ii dilakuka di lokasi huta taama idustri yag terdapat di PT. Wirakarya Sakti Provisi Jambi. Waktu pelaksaaa peelitia ii adalah bula April

Lebih terperinci

BAB V. INTEGRAL. Lambang anti-turunan (integral tak-tentu) oleh Leibniz adalah... dx, sehingga

BAB V. INTEGRAL. Lambang anti-turunan (integral tak-tentu) oleh Leibniz adalah... dx, sehingga BAB V. INTEGRAL 5.. Ati Turua (Itegral Tak-tetu) Defiisi: F suatu ati-turua f pada selag I jika da haya jika D F() = f() pada I, yaki F () = f() utuk semua dalam I. (Jika suatu titik ujug I, F () haya

Lebih terperinci

MENENTUKAN PENYELESAIAN PERTIDAKSAMAAN DENGAN METODE TITIK PEMECAH. Warsito. Program Studi Matematika FMIPA Universitas Terbuka.

MENENTUKAN PENYELESAIAN PERTIDAKSAMAAN DENGAN METODE TITIK PEMECAH. Warsito. Program Studi Matematika FMIPA Universitas Terbuka. MENENTUKAN PENYELESAIAN PERTIDAKSAMAAN DENGAN METODE TITIK PEMECAH Warsito Progra Studi Mateatika FMIPA Uiversitas Terbuka warsito@ut.ac.id Abstrak Peyelesaia pertidaksaaa ( x- a, a Î R adalah x a (egguaka

Lebih terperinci

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3 BAB XII. SUKU BANYAK A = a Pegertia: f(x) = a x + a x + a x + + a x +a adalah suku bayak (poliom) dega : - a, a, a,.,a, a, a 0 adalah koefisiekoefisie suku bayak yag merupaka kostata real dega a 0 - a

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 6 BAB III METODE PENELITIAN 3.1 Desai Peelitia Meurut Kucoro (003:3): Peelitia ilmiah merupaka usaha utuk megugkapka feomea alami fisik secara sistematik, empirik da rasioal. Sistematik artiya proses yag

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakag Dalam duia iformatika, assigmet Problem yag biasa dibetuk dega matriks berbobot merupaka salah satu masalah terbesar, dimaa masalah ii merupaka masalah yag metode peyelesaiaya

Lebih terperinci

BAB IV PEMECAHAN MASALAH

BAB IV PEMECAHAN MASALAH BAB IV PEMECAHAN MASALAH 4.1 Metodologi Pemecaha Masalah Dalam ragka peigkata keakurata rekomedasi yag aka diberika kepada ivestor, maka dicoba diguaka Movig Average Mometum Oscillator (MAMO). MAMO ii

Lebih terperinci

1 n MODUL 5. Peubah Acak Diskret Khusus

1 n MODUL 5. Peubah Acak Diskret Khusus ODUL 5 Peubah Acak Diskret Khusus Terdapat beberapa peubah acak diskret khusus yag serig mucul dalam aplikasi. Peubah Acak Seragam ( Uiform) Bila X suatu peubah acak diskret dimaa setiap eleme dari X mempuyai

Lebih terperinci

= Keterkaitan langsung ke belakang sektor j = Unsur matriks koefisien teknik

= Keterkaitan langsung ke belakang sektor j = Unsur matriks koefisien teknik Aalisis Sektor Kuci Dimaa : KLBj aij = Keterkaita lagsug ke belakag sektor j = Usur matriks koefisie tekik (b). Keterkaita Ke Depa (Forward Ligkage) Forward ligkage meujukka peraa suatu sektor tertetu

Lebih terperinci

PERTEMUAN 13. VEKTOR dalam R 3

PERTEMUAN 13. VEKTOR dalam R 3 PERTEMUAN VEKTOR dalam R Pegertia Ruag Vektor Defiisi R Jika adalah sebuah bilaga bulat positif, maka tupel - - terorde (ordered--tuple) adalah sebuah uruta bilaga riil ( a ),a,..., a. Semua tupel - -terorde

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini merupakan penelitian tindakan kelas yang dilaksanakan pada siswa

III. METODE PENELITIAN. Penelitian ini merupakan penelitian tindakan kelas yang dilaksanakan pada siswa III. METODE PENELITIAN A. Settig Peelitia Peelitia ii merupaka peelitia tidaka kelas yag dilaksaaka pada siswa kelas VIIIB SMP Muhammadiyah 1 Sidomulyo Kabupate Lampug Selata semester geap tahu pelajara

Lebih terperinci

BAB 1 PENDAHULUAN. Analisis regresi menjadi salah satu bagian statistika yang paling banyak aplikasinya.

BAB 1 PENDAHULUAN. Analisis regresi menjadi salah satu bagian statistika yang paling banyak aplikasinya. BAB 1 PENDAHULUAN 1.1 Latar Belakag Aalisis regresi mejadi salah satu bagia statistika yag palig bayak aplikasiya. Aalisis regresi memberika keleluasaa kepada peeliti utuk meyusu model hubuga atau pegaruh

Lebih terperinci

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3 SUKU BANYAK A Pegertia: f(x) x + a 1 x 1 + a 2 x 2 + + a 2 +a 1 adalah suku bayak (poliom) dega : - a, a 1, a 2,.,a 2, a 1, a 0 adalah koefisiekoefisie suku bayak yag merupaka kostata real dega a 0 - a

Lebih terperinci

STATISTIKA SMA (Bag.1)

STATISTIKA SMA (Bag.1) SMA - STATISTIKA SMA (Bag. A. DATA TUNGGAL. Ukura Pemusata : Terdapat ilai statistika yag dapat dimiliki oleh sekumpula data yag diperoleh yaitu : a. Rata-rata Rata-rata jumlah seluruh data bayakya data

Lebih terperinci

b. Penyajian data kelompok Contoh: Berat badan 30 orang siswa tercatat sebagai berikut:

b. Penyajian data kelompok Contoh: Berat badan 30 orang siswa tercatat sebagai berikut: Statistik da Peluag A. Statistik Statistik adalah metode ilmiah yag mempelajari cara pegumpula, peyusua, pegolaha, da aalisis data, serta cara pegambila kesimpula berdasarka data-data tersebut. Data ialah

Lebih terperinci

Lampiran 1 Bukti Kas Masuk

Lampiran 1 Bukti Kas Masuk Lampira 1 Bukti Kas Masuk Lampira 2 Bukti Kas Keluar Lampira 3 Struktur Orgaisasi Lampira 3 Tabel Jawaba Respode Lampira 4 Tabel Hasil Pegujia Data dega SPSS N A1 N A2 N A3 N A4 N A5 N A6 N A7 Pearso TOTAL

Lebih terperinci

UKURAN TENDENSI SENTRAL

UKURAN TENDENSI SENTRAL BAB 3 UKURAN TENDENSI SENTRAL Kompetesi Mampu mejelaska da megaalisis kosep dasar ukura tedesi setral. Idikator 1. Mejelaska da megaalisis mea.. Mejelaska da megaalisis media. 3. Mejelaska da megaalisis

Lebih terperinci

Himpunan. Himpunan 3/28/2012. Semesta Pembicaraan Semua mobil di Indonesia

Himpunan. Himpunan 3/28/2012. Semesta Pembicaraan Semua mobil di Indonesia Himpua Suatu himpua atau gugus adalah merupaka sekumpula obyek. Pada umumya aggota dari gugus tersebut memiliki suatu sifat yag sama. Suatu himpua bagia atau aak gugus merupaka sekumpula obyek yag aggotaya

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah BAB ENDAHULUAN. Latar Belakag Masalah Dalam kehidupa yata, hampir seluruh feomea alam megadug ketidak pastia atau bersifat probabilistik, misalya pergeraka lempega bumi yag meyebabka gempa, aik turuya

Lebih terperinci

Bab 7 Penyelesaian Persamaan Differensial

Bab 7 Penyelesaian Persamaan Differensial Bab 7 Peelesaia Persamaa Differesial Persamaa differesial merupaka persamaa ag meghubugka suatu besara dega perubahaa. Persamaa differesial diataka sebagai persamaa ag megadug suatu besara da differesiala

Lebih terperinci

CONTOH FORMULIR PENILAIAN KUALIFIKASI PEKERJAAN JASA PEMBORONGAN, PEMASOKAN BARANG/JASA LAINNYA

CONTOH FORMULIR PENILAIAN KUALIFIKASI PEKERJAAN JASA PEMBORONGAN, PEMASOKAN BARANG/JASA LAINNYA INDONESIA LAMPIRAN II KEPUTUSAN PRESIDEN REPUBLIK NOMOR 80 TAHUN 2003 TANGGAL 3 NOPEMBER 2003 FORMULIR 1 CONTOH FORMULIR PENILAIAN KUALIFIKASI PEKERJAAN JASA PEMBORONGAN, PEMASOKAN BARANG/JASA LAINNYA

Lebih terperinci

BAB 3 DATA DAN METODOLOGI PENELITIAN

BAB 3 DATA DAN METODOLOGI PENELITIAN BAB 3 DATA DAN METODOLOGI PENELITIAN Pada Bab ii aka memberika iformasi hal yag berkaita dega lagkah-lagkah sistematis yag aka diguaka dalam mejawab pertayaa peelitia.utuk itu diperluka beberapa hal sebagai

Lebih terperinci

Barisan Dan Deret Arimatika

Barisan Dan Deret Arimatika Barisa Da Deret Arimatika A. Barisa Aritmatika Niko etera memiliki sebuah peggaris ukura 0 cm. Ia megamati bilaga-bilaga pada peggarisya ii. Bilaga-bilaga tersebut beruruta 0, 1,, 3,, 0. etiap bilaga beruruta

Lebih terperinci

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP STATISTICS Haug N. Prasetyo Week 11 PENDAHULUAN Regresi da korelasi diguaka utuk megetahui hubuga dua atau lebih kejadia (variabel) yag dapat diukur secara matematis. Ada dua hal yag diukur atau diaalisis,

Lebih terperinci

TINJAUAN PUSTAKA Pengertian

TINJAUAN PUSTAKA Pengertian TINJAUAN PUSTAKA Pegertia Racaga peelitia kasus-kotrol di bidag epidemiologi didefiisika sebagai racaga epidemiologi yag mempelajari hubuga atara faktor peelitia dega peyakit, dega cara membadigka kelompok

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Variabel-variabel yang digunakan pada penelitian ini adalah:

BAB III METODOLOGI PENELITIAN. Variabel-variabel yang digunakan pada penelitian ini adalah: BAB III METODOLOGI PENELITIAN 3. Variabel da Defiisi Operasioal Variabel-variabel yag diguaka pada peelitia ii adalah: a. Teaga kerja, yaitu kotribusi terhadap aktivitas produksi yag diberika oleh para

Lebih terperinci

theresiaveni.wordpress.com NAMA : KELAS :

theresiaveni.wordpress.com NAMA : KELAS : theresiaveiwordpresscom NAMA : KELAS : 1 theresiaveiwordpresscom BARISAN DAN DERET Barisa da deret dapat diguaka utuk memudahka peyelesaia perhituga, misalya buga bak, keaika produksi, da laba/rugi suatu

Lebih terperinci

RENCANA PROGRAM PEMBELAJARAN KE - 1. : 6 jam pelajaran

RENCANA PROGRAM PEMBELAJARAN KE - 1. : 6 jam pelajaran RENCANA PROGRAM PEMBELAJARAN KE - 1 Satua Pedidika Mata Pelajara Kelas/Semester Materi Pokok Waktu : SMA N 6 YOGYAKARTA : Matematika : XII IPS/ : Barisa da Deret : 6 jam pelajara 1. Stadar Kompetesi 4.

Lebih terperinci

SMA NEGERI 5 BEKASI UJIAN SEKOLAH

SMA NEGERI 5 BEKASI UJIAN SEKOLAH PEMERINTAH KOTA BEKASI DINAS PENDIDIKAN SMA NEGERI BEKASI Jl. Gamprit Jatiwarigi Asri Podok Gede -88 UJIAN SEKOLAH TAHUN PELAJARAN / L E M B A R S O A L Mata Pelajara : Matematika Kelas/Program : IPA Hari/Taggal

Lebih terperinci

Himpunan/Selang Kekonvergenan

Himpunan/Selang Kekonvergenan oki eswa (fmipa-itb) Deret Pagkat Kita aka mempelajari beberapa tehik utuk meyajika suatu fugsi f (x) dalam betuk deret pagkat (power series), yaitu meetuka derat pagkat c (x a) sehigga f (x) = c (x a)

Lebih terperinci

IV. METODE PENELITIAN. berdasarkan tujuan penelitian (purposive) dengan pertimbangan bahwa Kota

IV. METODE PENELITIAN. berdasarkan tujuan penelitian (purposive) dengan pertimbangan bahwa Kota IV. METODE PENELITIAN 4.1. Lokasi da Waktu Peelitia ii dilaksaaka di Kota Bogor Pemiliha lokasi peelitia berdasarka tujua peelitia (purposive) dega pertimbaga bahwa Kota Bogor memiliki jumlah peduduk yag

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Jenis data yang digunakan berupa data sekunder yang menggunakan Tabel

BAB III METODOLOGI PENELITIAN. Jenis data yang digunakan berupa data sekunder yang menggunakan Tabel 49 BAB III METODOLOGI PENELITIAN 3.1 Jeis da Sumber Data Jeis data yag diguaka berupa data sekuder yag megguaka Tabel Iput Output Idoesia Tau 2005 dega klasifikasi 9 sektor. Data tersebut berasal dari

Lebih terperinci

BARISAN FIBONACCI DAN BILANGAN PHI

BARISAN FIBONACCI DAN BILANGAN PHI BARISAN FIBONACCI DAN BILANGAN PHI Fiboacci Matematikawa terbesar pada abad pertegaha adalah Leoardo dari Pisa, Italia (80 0). Ia lebih dikeal dega ama Fibo-acci. Artiya, aak Boaccio. Meara Pisa yag terkeal

Lebih terperinci

BAB V ANALISA PEMECAHAN MASALAH

BAB V ANALISA PEMECAHAN MASALAH 89 BAB V ANALISA PEMECAHAN MASALAH Dalam upaya mearik kesimpula da megambil keputusa, diperluka asumsi-asumsi da perkiraa-perkiraa. Secara umum hipotesis statistik merupaka peryataa megeai distribusi probabilitas

Lebih terperinci

REGRESI DAN KORELASI SEDERHANA

REGRESI DAN KORELASI SEDERHANA REGRESI DAN KORELASI SEDERHANA Apa yag disebut Regresi? Korelasi? Aalisa regresi da korelasi sederhaa membahas tetag keterkaita atara sebuah variabel (variabel terikat/depede) dega (sebuah) variabel lai

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 010 TIM OLIMPIADE MATEMATIKA INDONESIA 0 Prestasi itu diraih buka didapat!!! SOLUSI SOAL Bidag Matematika Disusu oleh : Eddy Hermato, ST Olimpiade Matematika Tk

Lebih terperinci

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL Defiisi Persamaa diferesial adalah persamaa yag melibatka variabelvariabel tak bebas da derivatif-derivatifya terhadap variabel-variabel bebas. Berikut ii adalah

Lebih terperinci

Chapter 7 Student Lecture Notes 7-1

Chapter 7 Student Lecture Notes 7-1 Chapter 7 Studet Lecture Notes 7-1 DASAR-DASAR UJI Hipotesis: Hipo (di bawah) da Tesis (peryataa yag telah diuji) Hipotesis Statistik:suatu proposisi atau aggapa megeai parameter populasi yag dapat diuji

Lebih terperinci

MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR. Dosen Pengampu : Darmadi, S.Si, M.Pd

MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR. Dosen Pengampu : Darmadi, S.Si, M.Pd MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR Dose Pegampu : Darmadi, S.Si, M.Pd Disusu : Kelas 5A / Kelompok 5 : Dia Dwi Rahayu (084. 06) Hefetamala (084. 4) Khoiril Haafi (084. 70) Liaatul Nihayah (084. 74)

Lebih terperinci

MATEMATIKA EKONOMI 1 Deret. DOSEN Fitri Yulianti, SP, MSi.

MATEMATIKA EKONOMI 1 Deret. DOSEN Fitri Yulianti, SP, MSi. MATEMATIKA EKONOMI 1 Deret DOSEN Fitri Yuliati, SP, MSi. Deret Deret ialah ragkaia bilaga yag tersusu secara teratur da memeuhi kaidah-kaidah tertetu. Bilaga-bilaga yag merupaka usur da pembetuk sebuah

Lebih terperinci

III. MATERI DAN METODE. a. Penelitian ini menggunakan 68 ekor kambing peranakan etawa ( PE) (31. ukur, tongkat ukur dan timbangan.

III. MATERI DAN METODE. a. Penelitian ini menggunakan 68 ekor kambing peranakan etawa ( PE) (31. ukur, tongkat ukur dan timbangan. III. MATERI DAN METODE 3.1. Waktu da Tempat Peelitia Peelitia ii telah dilaksaaka pada Bula Oktober sampai November 013 di peteraka yag ada di Kota Pekabaru. 3.. Materi Peelitia a. Peelitia ii megguaka

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN JURAL MATEMATKA DA KOMPUTER Vol. 6. o., 77-85, Agustus 003, SS : 40-858 DSTRBUS WAKTU BERHET PADA PROSES PEMBAHARUA Sudaro Jurusa Matematika FMPA UDP Abstrak Dalam proses stokhastik yag maa kejadia dapat

Lebih terperinci

PENDAHULUAN. (ingat : STATISTIKA STATISTIK!!! )

PENDAHULUAN. (ingat : STATISTIKA STATISTIK!!! ) Hal dari 7 PENDAHULUAN. PENGERTIAN STATISTIKA Statistika metode yag berhubuga dega peyajia da peafsira kejadia yag bersifat peluag dalam suatu peyelidika terecaa atau peelitia ilmiah (igat : STATISTIKA

Lebih terperinci

PENYELESAIAN PERSAMAAN GELOMBANG DENGAN METODE D ALEMBERT

PENYELESAIAN PERSAMAAN GELOMBANG DENGAN METODE D ALEMBERT Buleti Ilmiah Math. Stat. da Terapaya (Bimaster) Volume 02, No. 1(2013), hal 1-6. PENYELESAIAN PERSAMAAN GELOMBANG DENGAN METODE D ALEMBERT Demag, Helmi, Evi Noviai INTISARI Permasalaha di bidag tekik

Lebih terperinci

UJIAN TENGAH SEMESTER STATISTIKA

UJIAN TENGAH SEMESTER STATISTIKA UJIAN TENGAH SEMESTER STATISTIKA Sei, 5 Jui 9 Ope Book meit ATATAN Dr. Ir. Istiarto, M.Eg. Soal ujia ii utuk dikerjaka sediri tapa kerjasama dega orag lai. Tidak ada pegawasa oleh petugas jaga selama ujia

Lebih terperinci

Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1

Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1 Barisa Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 9/0/06 Matematika Barisa Tak Higga Secara sederhaa, barisa merupaka susua dari bilaga bilaga yag urutaya berdasarka bilaga

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN 26 BAB III METODOLOGI PENELITIAN A. Tempat da Waktu Kegiata dilakuka di Divisi Tresuri Bak XYZ dari bula Jauari - April 2011. Pegambila data dilakuka di beberapa wilayah pemasara yaitu di wilayah Jakarta,

Lebih terperinci

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n LIMIT 4.. FUNGSI LIMIT Defiisi 4.. A R Titik c R adalah titik limit dari A, jika utuk setiap δ > 0 ada palig sedikit satu titik di A, c sedemikia sehigga c < δ. Defiisi diatas dapat disimpulka dega cara

Lebih terperinci

METODE PENELITIAN. Subyek dalam penelitian ini adalah siswa kelas XI IPA 1 SMA Wijaya Bandar

METODE PENELITIAN. Subyek dalam penelitian ini adalah siswa kelas XI IPA 1 SMA Wijaya Bandar III. METODE PENELITIAN A. Settig Peelitia Subyek dalam peelitia ii adalah siswa kelas XI IPA 1 SMA Wijaya Badar Lampug, semester gajil Tahu Pelajara 2009-2010, yag berjumlah 19 orag terdiri dari 10 siswa

Lebih terperinci

PENDAHULUAN. Statistika penyajian DATA untuk memperoleh INFORMASI penafsiran DATA. Data (bentuk tunggal : Datum ) : ukuran suatu nilai

PENDAHULUAN. Statistika penyajian DATA untuk memperoleh INFORMASI penafsiran DATA. Data (bentuk tunggal : Datum ) : ukuran suatu nilai 1. Pegertia Statistika PENDAHULUAN Statistika berhubuga dega peyajia da peafsira kejadia yag bersifat peluag dalam suatu peyelidika terecaa atau peelitia ilmiah. Statistika peyajia DATA utuk memperoleh

Lebih terperinci

Barisan Aritmetika dan deret aritmetika

Barisan Aritmetika dan deret aritmetika BARISAN DAN DERET BILANGAN Peyusu: Atmii Dhoruri, MS Kode: Jejag: SMP T/P: / A. Kompetesi yag diharapka. Meetuka suku ke- barisa aritmatika da barisa geometri. Meetuka jumlah suku pertama deret aritmatika

Lebih terperinci

PENGARUH INFLASI TERHADAP KEMISKINAN DI PROPINSI JAMBI

PENGARUH INFLASI TERHADAP KEMISKINAN DI PROPINSI JAMBI Halama Tulisa Jural (Judul da Abstraksi) Jural Paradigma Ekoomika Vol.1, No.5 April 2012 PENGARUH INFLASI TERHADAP KEMISKINAN DI PROPINSI JAMBI Oleh : Imelia.,SE.MSi Dose Jurusa Ilmu Ekoomi da Studi Pembagua,

Lebih terperinci

RESPONSI 2 STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 2015

RESPONSI 2 STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 2015 RESPONSI STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 015 A. PENYAJIAN DAN PERINGKASAN DATA 1. PENYAJIAN DATA a. Sebutka tekik peyajia data utuk data kualitatif! Diagram kueh, diagram batag, distribusi

Lebih terperinci

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika Wed 6/0/3 ETIMAI (PENDUGAAN TATITIK) Ir. Tito Adi Dewato tatistika Deskriptif Iferesi Estimasi Uji Hipotesis Titik Retag Estimasi da Uji Hipotesis Dilakuka setelah peelitia dalam tahap pegambila suatu

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini dilaksanakan pada bulan September sampai dengan

III. METODE PENELITIAN. Penelitian ini dilaksanakan pada bulan September sampai dengan III. METODE PENELITIAN 3.1. Waktu da Tempat Peelitia Peelitia ii dilaksaaka pada bula September sampai dega November 2014 di Fasilitas Karatia Marie Research Ceter (MRC), PT. Cetral Pertiwi Bahari (CPB)

Lebih terperinci

HALAMAN Dengan definisi limit barisan buktikan limit berikut ini : = 0. a. lim PENYELESAIAN : jadi terbukti bahwa lim = 0 = 5. b.

HALAMAN Dengan definisi limit barisan buktikan limit berikut ini : = 0. a. lim PENYELESAIAN : jadi terbukti bahwa lim = 0 = 5. b. Didowload dari ririez.blog.us.ac.id HALAMAN 36 37 5. Dega defiisi limit barisa buktika limit berikut ii : a. lim = 0 lim 1 2 + 3 = 0 > 0 h 1 = 2 + 3 0 = 1 2 + 3 1 2 1 2 1 2 < jadi terbukti bahwa lim =

Lebih terperinci

Matematika Diskret (Kombinatorial - Permutasi) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs

Matematika Diskret (Kombinatorial - Permutasi) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs Matematika Diskret (Kombiatorial - Permutasi) Istruktur : Ferry Wahyu Wibowo, S.Si., M.Cs Pedahulua Sebuah sadi-lewat (password) pajagya 6 sampai 8 karakter. Karakter boleh berupa huruf atau agka. Berapa

Lebih terperinci

Pendugaan Parameter. Debrina Puspita Andriani /

Pendugaan Parameter. Debrina Puspita Andriani    / Pedugaa Parameter 7 Debria Puspita Adriai E-mail : debria.ub@gmail.com / debria@ub.ac.id Outlie Pedahulua Pedugaa Titik Pedugaa Iterval Pedugaa Parameter: Kasus Sampel Rataa Populasi Pedugaa Parameter:

Lebih terperinci

BAB IV IMPLEMENTASI DAN PENGUJIAN

BAB IV IMPLEMENTASI DAN PENGUJIAN BAB IV IMPLEMENTASI DAN PENGUJIAN 4.1. Istalasi Software da Hardware Dalam pembuata program ii, peulis megguaka Microsoft Visual Studio 2008, utuk implemetasiya megguaka program Crystal Report 8 utuk membuat

Lebih terperinci

BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan

BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan BAB III METODE PENELITAN. Tempat Da Waktu Peelitia Peelitia dilakuka di SMP Negeri Batudaa Kab. Gorotalo dega subject Peelitia adalah siswa kelas VIII. Pemiliha SMP Negeri Batudaa Kab. Gorotalo. Adapu

Lebih terperinci

BAB II CICILAN DAN BUNGA MAJEMUK

BAB II CICILAN DAN BUNGA MAJEMUK BAB II CICILAN DAN BUNGA MAJEMUK 2.1. Buga Majemuk Ada sedikit perbedaa atara suku buga tuggal da suku buga majemuk. Pada suku buga tuggal, besarya buga B = Mp tidak perah digabugka dega modal M. Sebalikya

Lebih terperinci

: XII (Dua Belas) Semua Program Studi. : Gisoesilo Abudi, S.Pd

: XII (Dua Belas) Semua Program Studi. : Gisoesilo Abudi, S.Pd R e f r e s h Program Diklat K e l a s M a t e r i Pegajar : M A T E M A T I K A : XII (Dua Belas) Semua Program Studi : S t a t i s t i k a : Gisoesilo Abudi, S.Pd Kajia Materi Peyampaia Data Diagram

Lebih terperinci

MATERI 10 ANALISIS EKONOMI

MATERI 10 ANALISIS EKONOMI MATERI 10 ANALISIS EKONOMI TOP-DOWN APPROACH KONDISI EKONOMI DAN PASAR MODAL VARIABEL EKONOMI MAKRO MERAMAL PERUBAHAN PASAR MODAL 10-1 TOP-DOWN APPROACH Dalam melakuka aalisis peilaia saham, ivestor bisa

Lebih terperinci

Metode Statistika STK211/ 3(2-3)

Metode Statistika STK211/ 3(2-3) Metode Statistika STK211/ 3(2-3) Pertemua VI Sebara Pearika Cotoh Septia Rahardiatoro - STK IPB 1 Sebara Pearika Cotoh Megidetifikasi sebara suatu fugsi dari cotoh ketika diambil dari suatu populasi X

Lebih terperinci

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian BAB I PENDAHULUAN A. Latar Belakag Masalah Matematika merupaka suatu ilmu yag mempuyai obyek kajia abstrak, uiversal, medasari perkembaga tekologi moder, da mempuyai pera petig dalam berbagai disipli,

Lebih terperinci

METODE PENELITIAN. Penelitian tentang Potensi Ekowisata Hutan Mangrove ini dilakukan di Desa

METODE PENELITIAN. Penelitian tentang Potensi Ekowisata Hutan Mangrove ini dilakukan di Desa III. METODE PENELITIAN A. Lokasi da Waktu Peelitia Peelitia tetag Potesi Ekowisata Huta Magrove ii dilakuka di Desa Merak Belatug, Kecamata Kaliada, Kabupate Lampug Selata. Peelitia ii dilaksaaka atara

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 1, 41-48, April 2003, ISSN : MATRIKS STOKASTIK GANDA DAN SIFAT-SIFATNYA

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 1, 41-48, April 2003, ISSN : MATRIKS STOKASTIK GANDA DAN SIFAT-SIFATNYA JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No., 4-48, April 00, ISSN : 40-858 MATRIKS STOKASTIK GANDA DAN SIFAT-SIFATNYA Suryoto Jurusa Matematika F-MIPA Uiversas Dipoegoro Semarag Abstrak Suatu matriks tak

Lebih terperinci

III BAHAN DAN METODE PENELITIAN. Ternak yang digunakan dalam penelitian ini adalah kuda berjumlah 25

III BAHAN DAN METODE PENELITIAN. Ternak yang digunakan dalam penelitian ini adalah kuda berjumlah 25 18 III BAHAN DAN METODE PENELITIAN 3.1 Baha Peelitia 3.1.1 Objek Peelitia Terak yag diguaka dalam peelitia ii adalah kuda berjumlah 25 ekor terdiri dari 5 jata da 20 betia dega umur berkisar atara 10 15

Lebih terperinci

1 Persamaan rekursif linier non homogen koefisien konstan tingkat satu

1 Persamaan rekursif linier non homogen koefisien konstan tingkat satu Secara umum persamaa rekursif liier tigkat-k bisa dituliska dalam betuk: dega C 0 0. C 0 x + C 1 x 1 + C 2 x 2 + + C k x k = b, Jika b = 0 maka persamaa rekursif tersebut diamaka persamaa rekursif liier

Lebih terperinci

CATATAN KULIAH Pertemuan I: Pengenalan Matematika Ekonomi dan Bisnis

CATATAN KULIAH Pertemuan I: Pengenalan Matematika Ekonomi dan Bisnis CATATAN KULIAH Pertemua I: Pegeala Matematika Ekoomi da Bisis A. Sifat-sifat Matematika Ekoomi 1. Perbedaa Matematika vs. Nomamatematika Ekoomi Keutuga pedekata matematika dalam ilmu ekoomi Ketepata (Precise),

Lebih terperinci

BAB III METODE PENELITIAN. penelitian yang tepat dalam sebuah penelitian ditentukan guna menjawab

BAB III METODE PENELITIAN. penelitian yang tepat dalam sebuah penelitian ditentukan guna menjawab BAB III METODE PENELITIAN Metode peelitia merupaka suatu cara atau prosedur utuk megetahui da medapatka data dega tujua tertetu yag megguaka teori da kosep yag bersifat empiris, rasioal da sistematis.

Lebih terperinci

simulasi selama 4,5 jam. Selama simulasi dijalankan, animasi akan muncul pada dijalankan, ProModel akan menyajikan hasil laporan statistik mengenai

simulasi selama 4,5 jam. Selama simulasi dijalankan, animasi akan muncul pada dijalankan, ProModel akan menyajikan hasil laporan statistik mengenai 37 Gambar 4-3. Layout Model Awal Sistem Pelayaa Kedai Jamoer F. Aalisis Model Awal Model awal yag telah disusu kemudia disimulasika dega waktu simulasi selama 4,5 jam. Selama simulasi dijalaka, aimasi

Lebih terperinci

Buku Padua Belajar Maajeme Keuaga Chapter 0 KONSEP NILAI WAKTU UANG. Pegertia. Nilai Uag meurut waktu, berarti uag hari ii lebih baik / berharga dari pada ilai uag dimasa medatag pada harga omial yag sama.

Lebih terperinci

PENGARUH VARIASI PELUANG CROSSOVER DAN MUTASI DALAM ALGORITMA GENETIKA UNTUK MENYELESAIKAN MASALAH KNAPSACK. Sutikno

PENGARUH VARIASI PELUANG CROSSOVER DAN MUTASI DALAM ALGORITMA GENETIKA UNTUK MENYELESAIKAN MASALAH KNAPSACK. Sutikno sutiko PENGARUH VARIASI PELUANG CROSSOVER DAN MUTASI DALAM ALGORITMA GENETIKA UNTUK MENYELESAIKAN MASALAH KNAPSACK Sutiko Program Studi Tekik Iformatika Fakultas Sais da Matematika UNDIP tik@udip.ac.id

Lebih terperinci

Rizqi Elmuna Hidayah, S.Si, M.Kom

Rizqi Elmuna Hidayah, S.Si, M.Kom Techologia Vol 7, No.4, Oktober Desember 06 3 IMPLEMENTASI METODE PRINCIPAL COMPONENT ANALYSIS PADA PENGENALAN WAJAH BERBASIS EIGENFACE Rizqi Elmua Hidayah, S.Si, M.Kom (rizqielmua8@gmail.com) ABSTRAK

Lebih terperinci

BAB III METODE PENELITIAN. Jenis penelitian ini adalah penelitian pengembangan (research and

BAB III METODE PENELITIAN. Jenis penelitian ini adalah penelitian pengembangan (research and BAB III METODE PENELITIAN A. Jeis Peelitia Jeis peelitia ii adalah peelitia pegembaga (research ad developmet), yaitu suatu proses peelitia utuk megembagka suatu produk. Produk yag dikembagka dalam peelitia

Lebih terperinci

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu BAB 4 UKURAN PENYEBARAN DATA Pada Bab sebelumya kita telah mempelajari beberapa ukura pemusata data, yaitu ukura yag memberika iformasi tetag bagaimaa data-data ii megumpul atau memusat Pada bagia Bab

Lebih terperinci

Batas Bilangan Ajaib Pada Graph Caterpillar

Batas Bilangan Ajaib Pada Graph Caterpillar J. Math. ad Its Appl. ISSN: 189-605X Vol. 3, No., Nov 006, 49 56 Batas Bilaga Ajaib Pada Graph Caterpillar Chairul Imro Jurusa Matematika FMIPA ITS Surabaya imro-its@matematika.its.ac.id Abstrak Jika suatu

Lebih terperinci

,n N. Jelas barisan ini terbatas pada dengan batas M =: 1, dan. barisan ini kovergen ke 0.

,n N. Jelas barisan ini terbatas pada dengan batas M =: 1, dan. barisan ini kovergen ke 0. PROGRAM STUDI PENDIDIKAN MATEMATIKA FKIP UNMUH PONOROGO SOAL UJIAN TENGAH SEMESTER GENAP TA 03/04 Mata Ujia : Aalisis Real Tipe Soal : REGULER Dose : Dr. Jula HERNADI Waktu : 90 meit Hari, Taggal : Selasa,

Lebih terperinci

Galat dan Perambatannya

Galat dan Perambatannya Modul 1 Galat da Perambataya Prof. Dr. Bambag Soedijoo P PENDHULUN ada Modul 1 ii dibahas masalah galat atau derajat kesalaha da perambataya, dega demikia para peggua modul ii diharapka telah memahami

Lebih terperinci

BAB III METODE PENELITIAN. Lokasi penelitian ini dilakukan di Puskesmas Limba B terutama masyarakat

BAB III METODE PENELITIAN. Lokasi penelitian ini dilakukan di Puskesmas Limba B terutama masyarakat 38 3.1 Lokasi da Waktu Peelitia 3.1.1 Lokasi Peelitia BAB III METODE PENELITIAN Lokasi peelitia ii dilakuka di Puskesmas Limba B terutama masyarakat yag berada di keluraha limba B Kecamata Kota Selata

Lebih terperinci