BAB 6: ESTIMASI PARAMETER (2)

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 6: ESTIMASI PARAMETER (2)"

Transkripsi

1 Bab 6: Estimasi Parameter () BAB 6: ESTIMASI PARAMETER (). ESTIMASI PROPORSI POPULASI Proporsi merupaka perbadiga atara terjadiya suatu peristiwa dega semua kemugkiaa peritiwa yag bisa terjadi. Besara proporsi dalam sampel bayak dipakai dalam peelitia utuk megestimasi proporsi dalam populasi. Misalya utuk megestimasi proporsi karyawa berpedidika sarjaa, diguaka proporsi atara karyawa berpedidika sarjaa dega buka sarjaa. Utuk megetahui tigkat cacat barag dalam produksi, diguaka dalam betuk proporsi yaitu perbadiga atara barag cacat dalam setiap.000 barag yag diproksi. Estimasi parameter populasi dapat dilakuka dega megguaka proporsi sampel., dega rumus proporsi populasi adalah: X Π = N Sedagka besara proporsi sampel, dilambagka: x p = Dimaa: Π; p = Proporsi populasi (sampel) X; x = jumlah variabel yag ditayaka (jumlah sukses) N; = jumlah aggota populasi (sampel) Cotoh: Dari lima mahasiswa maajeme UNY, dimitai kometarya tetag suasaa belajar di UNY, da didapat iformasi sebagai berikut: A B C D E SUKA TIDAK SUKA SUKA TIDAK Berapa proporsi mahasiswa yag suka belajar di UNY? Apabila: = jumlah aggota sampel = 5 x = kejadia suka (sukses) = 3 x = kejadia tidak suka (gagal) = Maka, proporsi mahasiswa yag suka belajar di UNY adalah: x p = = 3/5 = 0.6 -

2 Bab 6: Estimasi Parameter () Estimasi proporsi sampel bisa dilakuka megguaka distribusi ormal apabila ukura sampel yag diguaka () cukup besar. Dalam hal ii ukura sampel diaggap cukup besar apabila.p 5 da.q 5; dimaa = besar sampel; p = proporsi sukses; q = proporsi tidak sukses (gagal) yaitu sebesar -p Logika yag diguaka dalam estimasi proporsi populasi sama dega ketika kita membagu rumus estimasi mea populasi. Secara rigkas, rumus estimasi proporsi Π adalah sebagai berikut: dimaa: Cotoh: Π = p ± Z.S p. ; Π = Proporsi kejadia sukses dari populasi yag diestimasi p = proporsi kejadia sukses dari sampel z = ilai distribusi ormal Sp = stadar deviasi samplig = stadar error = (p.q)/ Dari suatu populasi (tidak diketahui jumlahya) diambil 00 orag sebagai sampel, da diketahui bahwa 65 orag diataraya adalah perokok. Buatlah estimasi proporsi perokok dari populasi dega megguaka derajat keyakia 95%. Jawab: Diketahui: = 00 (jumlah semua observasi) x = 65 (jumlah perokok) Ditayaka : estimasi proporsi populasi perokok Jawab: p = 65 / 00 = 0.65 (proporsi sampel perokok) q = p =.65 = 0.35 (proporsi sampel buka perokok) Estimasi bisa dilakuka megguaka distribusi ormal, karea p = 65; da q = 35 yag berrti jumlahya cukup besar ( 5); Stadar error = S p. = (p.q)/ = (0.6 x 0.35) / 00 = Derajat keyakia = 95%, maka ilai z = ±.96 Estimasi proporsi populasi perokok = Π = p ± Z.S p. ; = 0.65 ±.96(0.048) = 0.65± 0.09 = 0.56 sampai dega

3 Bab 6: Estimasi Parameter () Jadi, dega derajat keyakiaa 95%, diestimasi bahwa proporsi perokok dari populasi adalah atara 0.56 sampai dega p z. ESTIMASI BEDA DUA MEAN POPULASI Dilakuka utuk meaksir beda rata-rata dari sebuah variabel pada dua buah populasi. Beberapa cotoh dalam kasus ii misalya: megestimasi beda rata-rata pedapata pekerja di perusahaa koveksi A da perusahaa koveksi B; Meestimasi beda rata-rata atara kierja pekerja shif malam dega pekerja shif siag; Beda model kepemimipia atara sebelum medapatka pelatiha ESQ dega sesudah medapatka pelatiha ESQ. Dua buah sampel yag diambil dari dua buah populasi bisa bersifatidepedet atau depedet. Dua buah populasi dikataka idepedet apabila aggota sampel pertama tidak berkaita dega aggota ampel kedua. Misalya igi diketahui beda rata-rata IPK mahasiswa pria dega mahasiswa waita. Karea (populasi) mahasiswa pria tidak mugki juga mejadi aggota (populasi) mahasiswa waita, maka dikataka kedua sampel tersebut idepedet. Sedagka sampel diambil dari populasi yag depedet, apabila aggota sampel sampel yag satu dipegaruhi atau tergatug oleh aggota sampel kedua. Misalya, igi diketahui beda rata-rata pedapata karyawa atara sebelum krisis moeter dega sesudah krisis moeter. Dalam hal ii, karea aggota sampel pertama juga aggota sampel kedua, maka dikataka bahwa sampel tersebut diambil dari populasi yag depedet. PENN BEDA DUA MEAN POPULASI YANG INDEPENDEN Dari dua sampel yag diambil dari dua populasi (idepede), kita bisa mecari ilai rata-rata sampel pertama (x ), da rata-rata sampel kedua (x ). Selai itu juga bisa dicari stadar deviasi populasi (σ ) da stadar deviasi populasi (σ ). - 3

4 Bab 6: Estimasi Parameter () I. Rumus estimasi beda dua mea populasi idepede utuk kodisi:. Sampel da sampel adalah adalah sampel besar ( 30; da 30), dega tidak mempedulika betuk populasi apakah berdistribusi ormal ataukah tidak. Deviasi populasi (σ) diketahui: (µ µ ) = (x x ) ± Z. σ x-x dimaa: (µ µ ) = beda mea popuilasi yag diestimasi (x x ) = beda rata-rata mea dua sampel (dari data sampel yag diketahui) Z = ilai probabilitas yag ditetapka peeliti = Stadar error beda dua mea populasi. σ x-x Stadar error beda mea populasi (σ x-x ) didapat dega rumus: σ x-x = σ + σ dimaa: σ = stadar deviasi populasi σ = stadar deviasi populasi = besar sampel = besar sampel II. Rumus estimasi beda dua mea populasi idepede utuk kodisi:. Sampel da sampel adalah adalah sampel besar ( 30; da 30), dega tidak mempedulika betuk populasi apakah berdistribusi ormal ataukah tidak. Deviasi populasi (σ) tidak diketahui: (µ µ ) = (x x ) ± Z. S x-x dimaa: S x-x = Stadar error beda dua mea populasi, yag didapat dari: S x-x = S + S dimaa: S = stadar deviasi sampel S = stadar deviasi sampel = besar sampel = besar sampel - 4

5 Bab 6: Estimasi Parameter () III. Rumus estimasi beda dua mea populasi idepede utuk kodisi:. Salah satu atau kedua sampel adalah sampel kecil ( < 30; da/atau < 30). Dalam hal ii distribusi populasi (harus) berbetuk ormal. Deviasi populasi (σ) diketahui: dimaa: σ x-x = (µ µ ) = (x x ) ± Z. σ x-x (sama dega rumus utuk kodisi a) σ + σ IV. Rumus estimasi beda dua mea populasi idepede utuk kodisi:. Salah satu atau kedua sampel adalah sampel kecil ( < 30; da/atau < 30). Dalam hal ii distribusi populasi (harus) berbetuk ormal. Deviasi populasi (σ) tidak diketahui (harus diasumsika bahwa σ da σ besarya sama: dimaa: δ x-x (µ µ ) = (x x ) ± t. δ x-x = Stadar error beda dua mea utuk distribusi t Stadar error beda dua mea utuk distribusi t didapat dega rumus: δ x-x = dimaa: ˆ σ ˆ σˆ σ + ( ) s + ( ) = + s NB: utuk mecari ilai t, diguaka derajat bebas + - CONTOH : - 5

6 Bab 6: Estimasi Parameter () Data tetag pedapata karyawa di dua perusahaa adalah sebagai berikut: Sampel dari populasi : = 80; X =.500; s = 50; Sampel dari populasi : = 75; X =.300; s = 00; Carilah estimasi utuk beda du mea populasi (estimasi µ - µ) dega derajat keyakia 95%. Jawab: = 80 da = 75, berarti sampel besar. da stadar deviasi populasi (σ) tidak diketahui, maka kita megguaka rumus II. (µ µ ) = (x x ) ± Z. S x-x Dega derajat keyakia 95%, maka ilai z =.96 S x-x = = S = 0.36 S (µ µ ) = (x x ) ± Z. S x-x + (rumus II) Esimasi µ- µ = ( ) ±.96 x 0.36 = 00 ± 40 = 60 sampai dega 40 Jadi perbedaa rata-rata atara populasi dega populasi diestimasi sekitar atara 60 sampai dega 40. CONTOH Dari dua populasi baterai lithium, diambil masig-masig sebuah sampel, da diperoleh data tetag daya taha baterai lithium (dalam jam) sebagai berikut: Sampel dari populasi : = ; X = 3.400; s = 40; Sampel dari populasi : = 8; X =.800; s = 0; Stadar deviasi populasi tidak diketahui, tetapi besarya diaggap (diasumsika) sama. Carilah estimasi utuk beda du mea populasi (estimasi µ - µ) dega derajat keyakia 90%, apabila distribusi kedua populasi berbetuk ormal da stadar deviasiya diasumsika sama besar. Jawab: - 6

7 Bab 6: Estimasi Parameter () Karea sampelya adalah sampel kecil, ( = da = 8, da stadar deviasi populasi tidak diketahui, maka kita megguaka rumus IV. Dega derajat keyakia 90%, α = = 0. maka /α = Da df (derajat bebas = + = + 8 = 8; maka ilai t 0.05;8 =.734 ˆ σ ( ) s + ( ) = = + s (40) + 7(0 ) + 8 = (µ µ ) = (x x ) ± t. δ x-x (rumus IV) Esimasi µ- µ = ( ) ±.734 x = 600 ± 8 = 49 sampai dega 78 Jadi perbedaa rata-rata atara populasi dega populasi diestimasi sekitar atara 49 sampai dega 78. ESTIMASI BEDA DUA MEAN POPULASI DEPENDEN Syarat dua sampel dikataka depede (adaya sifat tergatuga) adalah adaya kesamaa sifat atara aggota-aggota dari dua kelompok sampel tersebut. Sifat seperti ii serig disebut sebagai sifat salig berpasaga. (paired observatio atau matched pairs). Sebagai cotoh, igi diketahui bagaimaa efektivitas suatu pelatiha degamegetahui kierja karyawa atara sebelum megikuti pelatiha dega sesudah pelatiha. Utuk itu dikumpulka data kierja karyawa sebelum pelatiha dipasagka dega kierja masigmasig karyawa sesudah pelatiha. Cotoh lai misalya igi diketahui perbedaa efektifitas dua metode pelatiha karyawa, dimaa dua pelatiha tersebut diikuti oleh karyawa dalam bidag yag sama yag (diasumsika) mempuyai sifat yag seragam. Data yag dikumpulka adalah kierja karyawa sesudah pelatiha atara mereka yag megikuti pelatiha metode utuk dipasagka dega data tiapkaryawa yag megkiuti pelatha metode. Utuk megestimasi beda dua mea populasi berpasaga ii, yag kita guaka adalah estimasi beda tiap pasaga data. Utuk itu tiappasaga data kita hitug beda (selisihya) sehigga kita mempuyai ilai baru yaitu ilai distribusi beda tiap pasaga data, da kita otasika dega d. Lagkah melakuka estimasi selajutya adalah megestimasi rata-rata beda populasi (D) dega meguaka rata-rata beda sampel d. Lagkah selajutya sama persis seperti kita megestimasi mea populasi, dega perbedaa bahwa ilai yag diestimasi buka ilai x tetapi ilai d. - 7

8 Bab 6: Estimasi Parameter () CONTOH: Igi diketahui efektifitas pelatiha ketrampila kerja di perusahaa XXX, yag berupa pelatiha metode A da pelatiha metode B. Utuk masig-masig jeis pelatiha tersebut diambil sampel sebayak 0 orag, da hasilya pegukura kierja terhadap dua sampel tersebut adalah sebagai berikut: Karyawa No Metode A Metode B Dega derajat kepercayaa 90%, estimasi beda mea atara dua metode pelatiha tersebut disusu sebagai berikut: Karea = 0 da stadar deviasi populasi (σ) tidak diketahui maka kita megguaka uji t. t (df = - = 9; α = 0.05) =.6 Perhituga ilai beda dua observasi adalah sebagai berikut: No. Metode A B beda observasi = x - x = d Jumlah Σd = 9 Σd = 57 d rata-rata beda dua observasi = d = Σd/ = 9/0 = 0.9 Stadar deviasi d = S = = d d 57 (0)(0.9) 0 =.33 Stadar error d = Sd = S / =.33 / 0 = 0.74 Maka estimasi rata-rata beda dua populasi depede = µd = d ± t.sd µd = 0.9 ±.6.(0.74) = 0.9 ±

9 Bab 6: Estimasi Parameter () = sampai dega.574 Jadi beda beda dua kierja atara pelatiha metode dega pelatiha metode, adalah berkisar atara sampai dega.574. Demikia. 3. ESTIMASI BEDA DUA PROPORSI POPULASI Dalam estimasi beda dua proporsi, kita melakuka pegamata terhadap dua sampel da meghitug proporsi utuk masig-masig sampel. Dalam hal ii: da = besar sampel da besar sampel x da x = kejadia sukses yag ditayaka pada sampel da sampel p da p = peluag sukses pada sampel da sampel, yag besarya = x/ q da q = peluag gagal pada sampel da sampel, dimaa q = p Stadar deviasi utuk tiap-tiap sampel dihitug dega rumus: S p = (p.q )/ da S p = (p.q )/ Stadar error dihitug dega rumus: S p-p = (S p +S p ) Estimasi beda dua proporsi bisa dilakuka dega megguaka distribusi ormal dega syarat:.p 5, da.q 5; Dalam estimasi beda dua proporsi, maka sampel dega proporsi yag lebih besar ditempatka sebagai proporsi pertama. Rumus estimasi beda dua proporsi : Π - Π = (p p ) ± Z.S p-p dimaa: Π - Π = beda proporsi dua populasi yag diestimasi p p = beda proporsi dua sampel (igat p = x / ; p = x / ) Z = ilai probabilitas distribusi ormal = Stadar error beda dua proporsi. S p-p CONTOH: Igi diketahui bagaimaa perbedaa sikap mahasiswa UNY agkata 006 da 007 terhadap keputusa Uiversitas atas perberlakua kuliah malam. Diambil sampel sebayak 00 mahasiswa agkata 006 da sebayak 65 orag meyataka setuju. Sedagka dari 0 mahasiswa agkata 007, sebayak 40 orag yag meyataka setuju. Buatlah estimasi 95% utuk megestimasi beda siap (proporsi setuju) mahasiswa di kedua agkata tersebut. Jawab: Nilai yag diperluka: p = x / = 65/00 = 0.65; q = p = 0.65 = 0.35; S p = (p.q )/ = (0.65 x 0.35) / 00 = p = x / = 40/0 = 0,33; q = p = 0.33 = 0.67 S p = (p.q )/ = (0.33 x 0.67) / 0 =

10 Bab 6: Estimasi Parameter () Stadar error beda dua proporsi: S p-p = (S p +S p ) = (0.048) + (0.043) = Dega derajat kepercayaa 95%, maka Z =.96 Estimasi Beda dua Proporsi: Π - Π = (p p ) ± Z.S p-p = ( ) ± (.96).(0.064) = 0.3 ± 0.3 = 0.9 sampai dega 0.45 Jadi, diestimasi bahwa beda sikap yag meyataka setuju atara mahasiswa agkata 006 da agkata 007 sebesar sekitar 0.9 sampai dega

Statistika Inferensial

Statistika Inferensial Cofidece Iterval Ara Fariza Statistika Iferesial Populasi Sampel Simpulka (estimasi) tetag parameter Medapatka statistik Estimasi: estimasi titik, estimasi iterval, uji hipotesa 2 1 Proses Estimasi Populasi

Lebih terperinci

DISTRIBUSI SAMPLING. Oleh : Dewi Rachmatin

DISTRIBUSI SAMPLING. Oleh : Dewi Rachmatin DISTRIBUSI SAMPLING Oleh : Dewi Rachmati Distribusi Rata-rata Misalka sebuah populasi berukura higga N dega parameter rata-rata µ da simpaga baku. Dari populasi ii diambil sampel acak berukura, jika tapa

Lebih terperinci

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL BAB VIII MASAAH ESTIMASI SAT DAN DA SAMPE 8.1 Statistik iferesial Statistik iferesial suatu metode megambil kesimpula dari suatu populasi. Ada dua pedekata yag diguaka dalam statistik iferesial. Pertama,

Lebih terperinci

JENIS PENDUGAAN STATISTIK

JENIS PENDUGAAN STATISTIK ENDUGAAN STATISTIK ENDAHULUAN Kosep pedugaa statistik diperluka utuk membuat dugaa dari gambara populasi. ada pedugaa statistik dibutuhka pegambila sampel utuk diaalisis (statistik sampel) yag ati diguaka

Lebih terperinci

Pendugaan Parameter. Debrina Puspita Andriani /

Pendugaan Parameter. Debrina Puspita Andriani    / Pedugaa Parameter 7 Debria Puspita Adriai E-mail : debria.ub@gmail.com / debria@ub.ac.id Outlie Pedahulua Pedugaa Titik Pedugaa Iterval Pedugaa Parameter: Kasus Sampel Rataa Populasi Pedugaa Parameter:

Lebih terperinci

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika Wed 6/0/3 ETIMAI (PENDUGAAN TATITIK) Ir. Tito Adi Dewato tatistika Deskriptif Iferesi Estimasi Uji Hipotesis Titik Retag Estimasi da Uji Hipotesis Dilakuka setelah peelitia dalam tahap pegambila suatu

Lebih terperinci

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X Pedugaa Selag: Metode Pivotal Lagkah-lagkahya 1. Adaika X1, X,..., X adalah cotoh acak dari populasi dega fugsi kepekata f( x; ), da parameter yag tidak diketahui ilaiya. Adaika T adalah peduga titik bagi..

Lebih terperinci

A. Pengertian Hipotesis

A. Pengertian Hipotesis PENGUJIAN HIPOTESIS A. Pegertia Hipotesis Hipotesis statistik adalah suatu peryataa atau dugaa megeai satu atau lebih populasi Ada macam hipotesis:. Hipotesis ol (H 0 ), adalah suatu hipotesis dega harapa

Lebih terperinci

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi.

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi. Distribusi Samplig (Distribusi Pearika Sampel). Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

STATISTIK PERTEMUAN VIII

STATISTIK PERTEMUAN VIII STATISTIK PERTEMUAN VIII Pegertia Estimasi Merupaka bagia dari statistik iferesi Estimasi = pedugaa, atau meaksir harga parameter populasi dega harga-harga statistik sampelya. Misal : suatu populasi yag

Lebih terperinci

BAB VII RANDOM VARIATE DISTRIBUSI DISKRET

BAB VII RANDOM VARIATE DISTRIBUSI DISKRET BAB VII RANDOM VARIATE DISTRIBUSI DISKRET Diskret radom variabel dapat diguaka utuk berbagai radom umber yag diambil dalam betuk iteger. Pola kebutuha ivetori (persediaa) merupaka cotoh yag serig diguaka

Lebih terperinci

Statistika Inferensia: Pendugaan Parameter. Dr. Kusman Sadik, M.Si Dept. Statistika IPB, 2015

Statistika Inferensia: Pendugaan Parameter. Dr. Kusman Sadik, M.Si Dept. Statistika IPB, 2015 Statistika Iferesia: Pedugaa Parameter Dr. Kusma Sadik, M.Si Dept. Statistika IPB, 05 Populasi : Parameter Sampel : Statistik Statistik merupaka PENDUGA bagi parameter populasi Pegetahua megeai distribusi

Lebih terperinci

Pengertian Estimasi Titik. Estimasi (Pendugaan) Estimasi (Pendugaan) Estimasi (Pendugaan) Populasi dan Sampel. Mean Proporsi

Pengertian Estimasi Titik. Estimasi (Pendugaan) Estimasi (Pendugaan) Estimasi (Pendugaan) Populasi dan Sampel. Mean Proporsi Chapter 6 Studet Lecture Notes 6-1 Hal-1 Hal-2 Estimasi (Pedugaa) Estimasi (Pedugaa) TOPIK Pegertia Estimasi Estimasi titik Nilai rata-rata populasi Nilai proporsi populasi Estimasi Iterval Estimasi iterval

Lebih terperinci

Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai

Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai PENGUJIAN HIPOTESIS Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai ilai-ilai parameter populasi,

Lebih terperinci

Pertemuan Ke-11. Teknik Analisis Komparasi (t-test)_m. Jainuri, M.Pd

Pertemuan Ke-11. Teknik Analisis Komparasi (t-test)_m. Jainuri, M.Pd Pertemua Ke- Komparasi berasal dari kata compariso (Eg) yag mempuyai arti perbadiga atau pembadiga. Tekik aalisis komparasi yaitu salah satu tekik aalisis kuatitatif yag diguaka utuk meguji hipotesis tetag

Lebih terperinci

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak:

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak: PENGUJIAN HIPOTESIS A. Lagkah-lagkah pegujia hipotesis Hipotesis adalah asumsi atau dugaa megeai sesuatu. Jika hipotesis tersebut tetag ilai-ilai parameter maka hipotesis itu disebut hipotesis statistik.

Lebih terperinci

TINJAUAN PUSTAKA Pengertian

TINJAUAN PUSTAKA Pengertian TINJAUAN PUSTAKA Pegertia Racaga peelitia kasus-kotrol di bidag epidemiologi didefiisika sebagai racaga epidemiologi yag mempelajari hubuga atara faktor peelitia dega peyakit, dega cara membadigka kelompok

Lebih terperinci

BAB III METODE PENELITIAN. penelitian yaitu PT. Sinar Gorontalo Berlian Motor, Jl. H. B Yassin no 28

BAB III METODE PENELITIAN. penelitian yaitu PT. Sinar Gorontalo Berlian Motor, Jl. H. B Yassin no 28 5 BAB III METODE PENELITIAN 3.1 Lokasi Peelitia da Waktu Peelitia Sehubuga dega peelitia ii, lokasi yag dijadika tempat peelitia yaitu PT. Siar Gorotalo Berlia Motor, Jl. H. B Yassi o 8 Kota Gorotalo.

Lebih terperinci

BAB III METODE PENELITIAN Penelitian ini dilakukan di kelas X SMA Muhammadiyah 1 Pekanbaru. semester ganjil tahun ajaran 2013/2014.

BAB III METODE PENELITIAN Penelitian ini dilakukan di kelas X SMA Muhammadiyah 1 Pekanbaru. semester ganjil tahun ajaran 2013/2014. BAB III METODE PENELITIAN A. Waktu da Tempat Peelitia Peelitia dilaksaaka dari bula Agustus-September 03.Peelitia ii dilakuka di kelas X SMA Muhammadiyah Pekabaru semester gajil tahu ajara 03/04. B. Subjek

Lebih terperinci

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya 5 BAB II LANDASAN TEORI Dalam tugas akhir ii aka dibahas megeai peaksira besarya koefisie korelasi atara dua variabel radom kotiu jika data yag teramati berupa data kategorik yag terbetuk dari kedua variabel

Lebih terperinci

DISTRIBUSI SAMPLING (Distribusi Penarikan Sampel)

DISTRIBUSI SAMPLING (Distribusi Penarikan Sampel) DISTRIBUSI SAMPLING (Distribusi Pearika Sampel) I. PENDAHULUAN Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

9 Departemen Statistika FMIPA IPB

9 Departemen Statistika FMIPA IPB Supleme Resposi Pertemua ANALISIS DATA KATEGORIK (STK351 9 Departeme Statistika FMIPA IPB Pokok Bahasa Sub Pokok Bahasa Referesi Waktu Pegatar Aalisis utuk Data Respo Kategorik Data respo kategorik Sebara

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Didalam melakuka kegiata suatu alat atau mesi yag bekerja, kita megeal adaya waktu hidup atau life time. Waktu hidup adalah lamaya waktu hidup suatu kompoe atau uit pada

Lebih terperinci

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI Utuk lebih memahami megeai etropi, pada bab ii aka diberika perhituga etropi utuk beberapa distribusi diskrit da kotiu. 3. Distribusi Diskrit Pada sub bab ii dibahas

Lebih terperinci

ESTIMASI TITIK DAN INTERVAL KEPERCAYAAN

ESTIMASI TITIK DAN INTERVAL KEPERCAYAAN 8/8/0 IE 305 tatistika Idustri LOGO ETIMAI TITIK DAN INTERVAL KEPERCAYAAN Elty arvia, T.,MT. Fakultas Tekik Jurusa Tekik Idustri Uiversitas Kriste Maraatha Badug LT arvia/esi Tujua 3 4 5 6 Medefiisika

Lebih terperinci

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan REGRESI LINIER DAN KORELASI Variabel dibedaka dalam dua jeis dalam aalisis regresi: Variabel bebas atau variabel prediktor -> variabel yag mudah didapat atau tersedia. Dapat diyataka dega X 1, X,, X k

Lebih terperinci

BAB V ANALISA PEMECAHAN MASALAH

BAB V ANALISA PEMECAHAN MASALAH 89 BAB V ANALISA PEMECAHAN MASALAH Dalam upaya mearik kesimpula da megambil keputusa, diperluka asumsi-asumsi da perkiraa-perkiraa. Secara umum hipotesis statistik merupaka peryataa megeai distribusi probabilitas

Lebih terperinci

BAB IV. METODE PENELITlAN. Rancangan atau desain dalam penelitian ini adalah analisis komparasi, dua

BAB IV. METODE PENELITlAN. Rancangan atau desain dalam penelitian ini adalah analisis komparasi, dua BAB IV METODE PENELITlAN 4.1 Racaga Peelitia Racaga atau desai dalam peelitia ii adalah aalisis komparasi, dua mea depede (paired sample) yaitu utuk meguji perbedaa mea atara 2 kelompok data. 4.2 Populasi

Lebih terperinci

Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya PENS. Probability and Random Process. Topik 10. Regresi

Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya PENS. Probability and Random Process. Topik 10. Regresi Program Pasca Sarjaa Terapa Politekik Elektroika Negeri Surabaya Probability ad Radom Process Topik 10. Regresi Prima Kristalia Jui 015 1 Outlie 1. Kosep Regresi Sederhaa. Persamaa Regresi Sederhaa 3.

Lebih terperinci

Distribusi Sampling (Distribusi Penarikan Sampel)

Distribusi Sampling (Distribusi Penarikan Sampel) Distribusi Samplig (Distribusi Pearika Sampel) 1. Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Unand

Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Unand TEKIK SAMPLIG PCA SEDERHAA Hazmira Yozza Izzati Rahmi HG Jurusa Matematika FMIPA Uad Defiisi : Jika suatu cotoh berukura diambil dari suatu populasi berukura sedemikia rupa sehigga setiap kemugkia cotoh

Lebih terperinci

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP STATISTICS Haug N. Prasetyo Week 11 PENDAHULUAN Regresi da korelasi diguaka utuk megetahui hubuga dua atau lebih kejadia (variabel) yag dapat diukur secara matematis. Ada dua hal yag diukur atau diaalisis,

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Statistika iferesi merupaka salah satu cabag statistika yag bergua utuk meaksir parameter. Peaksira dapat diartika sebagai dugaa atau perkiraa atas sesuatu yag aka terjadi

Lebih terperinci

STATISTIKA NON PARAMETRIK

STATISTIKA NON PARAMETRIK . PENDAHULUAN STATISTIKA NON PARAMETRIK Kelebiha Uji No Parametrik: - Perhituga sederhaa da cepat - Data dapat berupa data kualitatif (Nomial atau Ordial) - Distribusi data tidak harus Normal Kelemaha

Lebih terperinci

BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL)

BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) Setiap peelitia selalu berkeaa dega sekelompok data. Yag dimaksud kelompok disii adalah: Satu orag mempuyai sekelompok data, atau sekelompok orag mempuyai satu

Lebih terperinci

BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan

BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan BAB III METODE PENELITAN. Tempat Da Waktu Peelitia Peelitia dilakuka di SMP Negeri Batudaa Kab. Gorotalo dega subject Peelitia adalah siswa kelas VIII. Pemiliha SMP Negeri Batudaa Kab. Gorotalo. Adapu

Lebih terperinci

IV. METODE PENELITIAN

IV. METODE PENELITIAN IV. METODE PENELITIAN 4.1 Lokasi da Waktu peelitia Peelitia dilakuka pada budidaya jamur tiram putih yag dimiliki oleh usaha Yayasa Paguyuba Ikhlas yag berada di Jl. Thamri No 1 Desa Cibeig, Kecamata Pamijaha,

Lebih terperinci

1 n MODUL 5. Peubah Acak Diskret Khusus

1 n MODUL 5. Peubah Acak Diskret Khusus ODUL 5 Peubah Acak Diskret Khusus Terdapat beberapa peubah acak diskret khusus yag serig mucul dalam aplikasi. Peubah Acak Seragam ( Uiform) Bila X suatu peubah acak diskret dimaa setiap eleme dari X mempuyai

Lebih terperinci

REGRESI LINIER SEDERHANA

REGRESI LINIER SEDERHANA REGRESI LINIER SEDERHANA REGRESI, KAUSALITAS DAN KORELASI DALAM EKONOMETRIKA Regresi adalah salah satu metode aalisis statistik yag diguaka utuk melihat pegaruh atara dua atau lebih variabel Kausalitas

Lebih terperinci

MINGGU KE-12 TEOREMA LIMIT PUSAT DAN TERAPANNYA

MINGGU KE-12 TEOREMA LIMIT PUSAT DAN TERAPANNYA MINGGU KE-12 TEOREMA LIMIT PUSAT DAN TERAPANNYA TEOREMA LIMIT PUSAT DAN TERAPANNYA Telah dikeal bahwa X 1, X 2...X sampel radom dari distribusi ormal dega mea µ da variasi σ 2, maka x µ σ/ atau xi µ σ

Lebih terperinci

IV METODE PENELITIAN 4.1 Lokasi dan waktu 4.2. Jenis dan Sumber Data 4.3 Metode Pengumpulan Data

IV METODE PENELITIAN 4.1 Lokasi dan waktu 4.2. Jenis dan Sumber Data 4.3 Metode Pengumpulan Data IV METODE PENELITIAN 4.1 Lokasi da waktu Peelitia ii dilakuka di PD Pacet Segar milik Alm Bapak H. Mastur Fuad yag beralamat di Jala Raya Ciherag o 48 Kecamata Cipaas, Kabupate Ciajur, Propisi Jawa Barat.

Lebih terperinci

x = μ...? 2 2 s = σ...? x x s = σ...?

x = μ...? 2 2 s = σ...? x x s = σ...? Pedugaa Parameter x 2 sx s = μ...? 2 = σ x...? = σ...? Peduga Parameter Peduga titik yaitu parameter populasi p diduga dega suatu besara statistik, misal: rata-rata, proporsi, ragam, dll Peduga Selag (Iterval)

Lebih terperinci

TEORI PENAKSIRAN. Bab 8. A. Pendahuluan. Kompetensi Mampu menjelaskan dan menganalisis teori penaksiran

TEORI PENAKSIRAN. Bab 8. A. Pendahuluan. Kompetensi Mampu menjelaskan dan menganalisis teori penaksiran Bab 8 TEORI PENAKSIRAN Kompetesi Mampu mejelaska da megaalisis teori peaksira Idikator 1. Mejelaska da megaalisis data dega megguaka peaksira titik 2. Mejelaska da megaalisis data dega megguaka peaksira

Lebih terperinci

b. Penyajian data kelompok Contoh: Berat badan 30 orang siswa tercatat sebagai berikut:

b. Penyajian data kelompok Contoh: Berat badan 30 orang siswa tercatat sebagai berikut: Statistik da Peluag A. Statistik Statistik adalah metode ilmiah yag mempelajari cara pegumpula, peyusua, pegolaha, da aalisis data, serta cara pegambila kesimpula berdasarka data-data tersebut. Data ialah

Lebih terperinci

Statistika Inferensia: Pengujian Hipotesis. Dr. Kusman Sadik, M.Si Dept. Statistika IPB, 2015

Statistika Inferensia: Pengujian Hipotesis. Dr. Kusman Sadik, M.Si Dept. Statistika IPB, 2015 Statistika Iferesia: Pegujia Hipotesis Dr. Kusma Sadik, M.Si Dept. Statistika IPB, 05 Populasi : = 0 Butuh pembuktia berdasarka cotoh!!! Apa yag diperluka? > 0? Maa yag bear? Sampel : x 5 Hal itu merupaka

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN A. Subjek Peelitia Peelitia ii dilaksaaka di kawasa huta magrove, yag berada pada muara sugai Opak di Dusu Baros, Kecamata Kretek, Kabupate Batul. Populasi dalam peelitia ii adalah

Lebih terperinci

Proses Pendugaan. 95% yakin bahwa diantara 40 & 60. Mean X = 50. Mean,, tdk diketahui. Contoh Prentice-Hall, Inc. Chap. 7-1

Proses Pendugaan. 95% yakin bahwa diantara 40 & 60. Mean X = 50. Mean,, tdk diketahui. Contoh Prentice-Hall, Inc. Chap. 7-1 Proses Pedugaa Populasi Mea,, tdk diketahui Cotoh Acak Mea = 50 95% yaki bahwa diatara 40 & 60. Cotoh 1999 Pretice-Hall, Ic. Chap. 7-1 Pedugaa Parameter Populasi Meduga Parameter Populasi... Mea dg Statistik

Lebih terperinci

PETA KONSEP RETURN dan RISIKO PORTOFOLIO

PETA KONSEP RETURN dan RISIKO PORTOFOLIO PETA KONSEP RETURN da RISIKO PORTOFOLIO RETURN PORTOFOLIO RISIKO PORTOFOLIO RISIKO TOTAL DIVERSIFIKASI PORTOFOLIO DENGAN DUA AKTIVA PORTOFOLIO DENGAN BANYAK AKTIVA DEVERSIFIKASI DENGAN BANYAK AKTIVA DEVERSIFIKASI

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di SMA Negeri 1 Way Jepara Kabupaten Lampung Timur

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di SMA Negeri 1 Way Jepara Kabupaten Lampung Timur III. METODOLOGI PENELITIAN A. Lokasi da Waktu Peelitia Peelitia ii dilakuka di SMA Negeri Way Jepara Kabupate Lampug Timur pada bula Desember 0 sampai dega Mei 03. B. Populasi da Sampel Populasi dalam

Lebih terperinci

Chapter 7 Student Lecture Notes 7-1

Chapter 7 Student Lecture Notes 7-1 Chapter 7 Studet Lecture Notes 7-1 DASAR-DASAR UJI Hipotesis: Hipo (di bawah) da Tesis (peryataa yag telah diuji) Hipotesis Statistik:suatu proposisi atau aggapa megeai parameter populasi yag dapat diuji

Lebih terperinci

mempunyai sebaran yang mendekati sebaran normal. Dalam hal ini adalah PKM (penduga kemungkinan maksimum) bagi, ˆ ˆ adalah simpangan baku dari.

mempunyai sebaran yang mendekati sebaran normal. Dalam hal ini adalah PKM (penduga kemungkinan maksimum) bagi, ˆ ˆ adalah simpangan baku dari. Selag Kepercayaa Cotoh Besar Jika ukura cotoh (sample size) besar, maka meurut Teorema Limit Pusat, bayak statistik megikuti/mempuyai sebara yag medekati ormal (dapat diaggap ormal). Artiya jika adalah

Lebih terperinci

BAB III METODOLOGI 3.1 Tempat dan Waktu Penelitian 3.2 Bahan dan Alat 3.3 Metode Pengumpulan Data Pembuatan plot contoh

BAB III METODOLOGI 3.1 Tempat dan Waktu Penelitian 3.2 Bahan dan Alat 3.3 Metode Pengumpulan Data Pembuatan plot contoh BAB III METODOLOGI 3.1 Tempat da Waktu Peelitia Pegambila data peelitia dilakuka di areal revegetasi laha pasca tambag Blok Q 3 East elevasi 60 Site Lati PT Berau Coal Kalimata Timur. Kegiata ii dilakuka

Lebih terperinci

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi Distribusi Samplig (Distribusi Pearika Sampel) 1. Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

BAHAN AJAR STATISTIKA MATEMATIKA 2 Matematika STKIP Tuanku Tambusai Bangkinang. 7. PENAKSIRAN ( Taksiran Interval untuk rataan, varian dan proporsi)

BAHAN AJAR STATISTIKA MATEMATIKA 2 Matematika STKIP Tuanku Tambusai Bangkinang. 7. PENAKSIRAN ( Taksiran Interval untuk rataan, varian dan proporsi) Pertemua0 BAHAN AJAR STATISTIKA MATEMATIKA 2 Matematika STKIP Tuaku Tambusai Bagkiag 7. PENAKSIRAN ( Taksira Iterval utuk rataa, varia da proporsi) 7.1 Pedahulua Pada pembahasa sebelumya adalah meletakka

Lebih terperinci

MANAJEMEN RISIKO INVESTASI

MANAJEMEN RISIKO INVESTASI MANAJEMEN RISIKO INVESTASI A. PENGERTIAN RISIKO Resiko adalah peyimpaga hasil yag diperoleh dari recaa hasil yag diharapka Besarya tigkat resiko yag dimasukka dalam peilaia ivestasi aka mempegaruhi besarya

Lebih terperinci

Analisa Data Statistik. Ratih Setyaningrum, MT

Analisa Data Statistik. Ratih Setyaningrum, MT Aalisa Data tatistik Ratih etyaigrum, MT Referesi Agoes oehiaie, Ph.D Daftar Isi Iferesi tatistik Hipotesa tatistik : Kosep Umum Hipotesa statistik adalah sebuah klaim/peryataa atau cojecture tetag populasi.

Lebih terperinci

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI MIA SMA Negeri 5

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI MIA SMA Negeri 5 III. METODOLOGI PENELITIAN A. Populasi da Sampel Peelitia Populasi dalam peelitia ii adalah semua siswa kelas I MIA SMA Negeri 5 Badar Lampug Tahu Pelajara 04-05 yag berjumlah 48 siswa. Siswa tersebut

Lebih terperinci

Distribusi Sampling merupakan distribusi teoritis (distribusi kemungkinan) dari semua hasil sampel yang mungkin, dengan ukuran sampel yang tetap N,

Distribusi Sampling merupakan distribusi teoritis (distribusi kemungkinan) dari semua hasil sampel yang mungkin, dengan ukuran sampel yang tetap N, DISTRIBUSI SAMLING opulasi da Sampel opulasi : totalitas dari semua objek/ idividu yg memiliki karakteristik tertetu, jelas da legkap yag aka diteliti Sampel : bagia dari populasi yag diambil melalui cara-cara

Lebih terperinci

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu BAB 4 UKURAN PENYEBARAN DATA Pada Bab sebelumya kita telah mempelajari beberapa ukura pemusata data, yaitu ukura yag memberika iformasi tetag bagaimaa data-data ii megumpul atau memusat Pada bagia Bab

Lebih terperinci

MATERI 14 EVALUASI KINERJA PORTOFOLIO

MATERI 14 EVALUASI KINERJA PORTOFOLIO MATERI 14 EVALUASI KINERJA PORTOFOLIO KERANGKA PIKIR EVALUASI KINERjA PORTOFOLIO (EKP) MENGUKUR TINGKAT RETURN PORTOFOLIO RISK-ADJUSTED PERFORMANCE - INDEKS SHARPE - INDEKS TREYNOR - INDEKS JENSEN dede08m.com

Lebih terperinci

Yang biasa dinamakan test komposit lawan komposit. c. Hipotesis mengandung pengertian minimum. Perumusan H 0 dan H 1 berbentuk :

Yang biasa dinamakan test komposit lawan komposit. c. Hipotesis mengandung pengertian minimum. Perumusan H 0 dan H 1 berbentuk : PARAMETER PENGJIAN HIPOTESIS MODL PARAMETER PENGJIAN HIPOTESIS. Pedahulua Kalau yag sedag ditest atau diuji itu parameter θ dalam hal ii pegguaaya ati bias rata-rata µ prprsi p, simpaga baku σ da lai-lai,

Lebih terperinci

SEBARAN t dan SEBARAN F

SEBARAN t dan SEBARAN F SEBARAN t da SEBARAN F 1 Tabel uji t disebut juga tabel t studet. Sebara t pertama kali diperkealka oleh W.S. Gosset pada tahu 1908. Saat itu, Gosset bekerja pada perusahaa bir Irladia yag melarag peerbita

Lebih terperinci

Bab 6 PENAKSIRAN PARAMETER

Bab 6 PENAKSIRAN PARAMETER Bab 6 PENAKSIRAN PARAMETER Stadar Kompetesi : Setelah megikuti kuliah ii, mahasiswa dapat memahami hubuga ilai sampel da populasi da meetuka distribusi samplig yag tepat utuk diguaka Kompetesi Dasar :

Lebih terperinci

BAB VIII KONSEP DASAR PROBABILITAS

BAB VIII KONSEP DASAR PROBABILITAS BAB VIII KONSEP DASAR PROBABILITAS 1.1. Pedahulua Dalam pertemua ii Ada aka mempelajari beberapa padaga tetag permutasi da kombiasi, fugsi da metode perhituga probabilitas, da meghitug probabilitas. Pada

Lebih terperinci

UKURAN PEMUSATAN DATA

UKURAN PEMUSATAN DATA Malim Muhammad, M.Sc. UKURAN PEMUSATAN DATA J U R U S A N A G R O T E K N O L O G I F A K U L T A S P E R T A N I A N U N I V E R S I T A S M U H A M M A D I Y A H P U R W O K E R T O DEFINISI UKURAN PEMUSATAN

Lebih terperinci

PROSIDING ISBN:

PROSIDING ISBN: S-6 Perlukah Cross Validatio dilakuka? Perbadiga atara Mea Square Predictio Error da Mea Square Error sebagai Peaksir Harapa Kuadrat Kekelirua Model Yusep Suparma (yusep.suparma@ upad.ac.id) Uiversitas

Lebih terperinci

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI IPA SMA Negeri I

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI IPA SMA Negeri I 7 III. METODOLOGI PENELITIAN A. Populasi da Sampel Peelitia Populasi dalam peelitia ii adalah semua siswa kelas XI IPA SMA Negeri I Kotaagug Tahu Ajara 0-03 yag berjumlah 98 siswa yag tersebar dalam 3

Lebih terperinci

BAB II LANDASAN TEORI. Pada bagian ini akan dibahas tentang teori-teori dasar yang. digunakan untuk dalam mengestimasi parameter model.

BAB II LANDASAN TEORI. Pada bagian ini akan dibahas tentang teori-teori dasar yang. digunakan untuk dalam mengestimasi parameter model. BAB II LANDASAN TEORI Pada bagia ii aka dibahas tetag teori-teori dasar yag diguaka utuk dalam megestimasi parameter model.. MATRIKS DAN VEKTOR Defiisi : Trace dari matriks bujur sagkar A a adalah pejumlaha

Lebih terperinci

Mata Kuliah: Statistik Inferensial

Mata Kuliah: Statistik Inferensial PENGUJIAN HIPOTESIS SAMPEL KECIL Prof. Dr. H. Almasdi Syahza, SE., MP Email: asyahza@yahoo.co.id DEFINISI Pegertia Sampel Kecil Sampel kecil yag jumlah sampel kurag dari 30, maka ilai stadar deviasi (s)

Lebih terperinci

BAB 4: PELUANG DAN DISTRIBUSI NORMAL.

BAB 4: PELUANG DAN DISTRIBUSI NORMAL. BAB 4: PELUANG DAN DISTRIBUSI NORMAL. PELUANG Peluag atau yag biasa juga disebut dega istilah keugkia, probablilitas, atau kas eujukka suatu tigkat keugkia terjadiya suatu kejadia yag diyataka dala betuk

Lebih terperinci

Distribusi Sampel Sampling Distribution

Distribusi Sampel Sampling Distribution Chapter 5 Studet Lecture otes 5-1 Samplig Distributio Pegatar Distribusi mea Sampel dari ilai Rata-rata Distribusi mea Sampel dari ilai Proporsi Chap 5-1 Distribusi sampel adalah f() distribusi dari ratarata

Lebih terperinci

Pengenalan Pola. Regresi Linier

Pengenalan Pola. Regresi Linier Pegeala Pola Regresi Liier PTIIK - 014 Course Cotets 1 Defiisi Regresi Liier Model Regresi Liear 3 Estimasi Regresi Liear 4 Studi Kasus da Latiha Defiisi Regresi Liier Regresi adalah membagu model utuk

Lebih terperinci

Distribusi Peluang BERBAGAI MACAM DISTRIBUSI SAMPEL. Distribusi Peluang 5/6/2012

Distribusi Peluang BERBAGAI MACAM DISTRIBUSI SAMPEL. Distribusi Peluang 5/6/2012 5/6/0 Distribusi Peluag BERBAGAI MACAM DISTRIBUSI SAMPEL Distribusi peluag, P( x), adalah kumpula pasaga ilai-ilai variabel acak Cotoh: Jika dua buah koi dilempar bersamaa. Kejadia bayakya mucul agka.

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. Sebagai hasil penelitian dalam pembuatan modul Rancang Bangun

BAB IV HASIL DAN PEMBAHASAN. Sebagai hasil penelitian dalam pembuatan modul Rancang Bangun 47 BAB IV HASIL DAN PEMBAHASAN Sebagai hasil peelitia dalam pembuata modul Racag Bagu Terapi Ifra Merah Berbasis ATMega8 dilakuka 30 kali pegukura da perbadiga yaitu pegukura timer/pewaktu da di badigka

Lebih terperinci

Pedahulua Pedugaa Parameter Pedugaa Parameter Populai dilakuka dega megguaka ilai Statitik Sampel, Mial :. x diguaka ebagai peduga bagi µ. diguaka ebagai peduga bagi σ 3. p atau p$ diguaka ebagai peduga

Lebih terperinci

REGRESI DAN KORELASI

REGRESI DAN KORELASI REGRESI DAN KORELASI Pedahulua Dalam kehidupa sehari-hari serig ditemuka masalah/kejadia yagg salig berkaita satu sama lai. Kita memerluka aalisis hubuga atara kejadia tersebut Dalam bab ii kita aka membahas

Lebih terperinci

BAB III METODOLOGI PENELITIAN. kuantitatif karena bertujuan untuk mengetahui kompetensi pedagogik mahasiswa

BAB III METODOLOGI PENELITIAN. kuantitatif karena bertujuan untuk mengetahui kompetensi pedagogik mahasiswa 54 BAB III METODOLOGI PENELITIAN A. Jeis Peelitia Peelitia ii merupaka peelitia deskriptif dega pedekata kuatitatif karea bertujua utuk megetahui kompetesi pedagogik mahasiswa setelah megikuti mata kuliah

Lebih terperinci

PENAKSIRAN. Penaksiran Titik. Selang Kepercayaan untuk VARIANSI. MA2181 ANALISIS DATA Utriweni Mukhaiyar 17 Oktober 2011

PENAKSIRAN. Penaksiran Titik. Selang Kepercayaan untuk VARIANSI. MA2181 ANALISIS DATA Utriweni Mukhaiyar 17 Oktober 2011 PENAKSIRAN Peaksira Titik Peaksira Selag Selag Kepercayaa utuk RATAAN Selag Kepercayaa utuk VARIANSI MA8 ANALISIS DATA Utriwei Mukhaiyar 7 Oktober 0 Metode Peaksira Peaksira Titik Peaksira Selag Nilai

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1.Tempat da Waktu Peelitia ii dilakuka di ligkuga Kampus Aggrek da Kampus Syahda Uiversitas Bia Nusatara Program Strata Satu Reguler. Da peelitia dilaksaaka pada semester

Lebih terperinci

Biostatistics UJI CHI-SQUARE UJI HIPOTESIS CHI-SQUARE

Biostatistics UJI CHI-SQUARE UJI HIPOTESIS CHI-SQUARE Biostatistics UJI CHI-SQUARE I N T A N Y U S U F H A B I B I E, S. G Z - Ilmu statistik tidak haya membatu kita utuk medeskripsika data secara rigkas, tapi juga dapat diguaka utuk meguji hipotesa. - Hipotesa

Lebih terperinci

METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc.

METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc. METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/0 SUGENG00 Copyright 996-98 Dale Caregie & Associates, Ic. Kesalaha ERROR: Selisih atara ilai perkiraa dega ilai eksakilai

Lebih terperinci

BAB 7 PEN P GUJ GU IAN HIPO P T O ES T A

BAB 7 PEN P GUJ GU IAN HIPO P T O ES T A BAB 7 PENGUJIAN HIPOTESA Meguji Rata-rata µ Umpamakalah kita mempuyai sebuah populasi berdistribusi ormal dega rata-rata µ da simpaga baku σ. Aka diuji megeai parameter rata-rata µ Utuk pasaga hipotesa

Lebih terperinci

INTERVAL KEPERCAYAAN

INTERVAL KEPERCAYAAN INTERVAL KEPERCAYAAN Tujua utama diambil ebuah ampel dari ebuah populai adalah utuk memperoleh iformai megeai parameter populai.. Ada cara meetuka parameter populai yaitu peakira da pegujia hipotei. Peakira

Lebih terperinci

III. METODOLOGI PENELITIAN. diinginkan. Menurut Arikunto (1991 : 3) penelitian eksperimen adalah suatu

III. METODOLOGI PENELITIAN. diinginkan. Menurut Arikunto (1991 : 3) penelitian eksperimen adalah suatu III. METODOLOGI PENELITIAN A. Metode Peelitia Metode peelitia merupaka suatu cara tertetu yag diguaka utuk meeliti suatu permasalaha sehigga medapatka hasil atau tujua yag diigika. Meurut Arikuto (99 :

Lebih terperinci

III. METODOLOGI PENELITIAN. Menurut Sukardi, (2003:17) Metodologi penelitian adalah cara yang

III. METODOLOGI PENELITIAN. Menurut Sukardi, (2003:17) Metodologi penelitian adalah cara yang 5 III. METODOLOGI PENELITIAN A. Metode Peelitia Meurut Sukardi, (003:7) Metodologi peelitia adalah cara yag dilakuka secara sistematis megikuti atura-atura, direcaaka oleh para peeliti utuk memecahka permasalaha

Lebih terperinci

BAB III METODE PENELITIAN. Penelitian ini merupakan jenis penelitian deskriptif-kuantitatif, karena

BAB III METODE PENELITIAN. Penelitian ini merupakan jenis penelitian deskriptif-kuantitatif, karena 7 BAB III METODE PENELITIAN A. Jeis Peelitia Peelitia ii merupaka jeis peelitia deskriptif-kuatitatif, karea melalui peelitia ii dapat dideskripsika fakta-fakta yag berupa kemampua siswa kelas VIII SMP

Lebih terperinci

BAB VII DISTRIBUSI SAMPLING DAN DESKRIPSI DATA

BAB VII DISTRIBUSI SAMPLING DAN DESKRIPSI DATA BAB VII DITRIBUI AMPLING DAN DEKRIPI DATA 7. Distribusi amplig (samplig distributio) amplig distributio adalah distribusi probabilitas dari suatu statistik. amplig distributio tergatug dari ukura populasi,

Lebih terperinci

3 METODE PENELITIAN 3.1 Kerangka Pemikiran 3.2 Lokasi dan Waktu Penelitian

3 METODE PENELITIAN 3.1 Kerangka Pemikiran 3.2 Lokasi dan Waktu Penelitian 19 3 METODE PENELITIAN 3.1 Keragka Pemikira Secara rigkas, peelitia ii dilakuka dega tiga tahap aalisis. Aalisis pertama adalah megaalisis proses keputusa yag dilakuka kosume dega megguaka aalisis deskriptif.

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang. Universitas Sumatera Utara

BAB I PENDAHULUAN. 1.1 Latar Belakang. Universitas Sumatera Utara BAB I PENDAHULUAN 1.1 Latar Belakag Salah satu pera da fugsi statistik dalam ilmu pegetahua adalah sebagai. alat aalisis da iterpretasi data kuatitatif ilmu pegetahua, sehigga didapatka suatu kesimpula

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN 9 III. METODE PENELITIAN A. Lokasi da Objek Peelitia Peelitia ii dilakuka di RPH Tejo Petak 10i, BKPH Parug Pajag KPH Bogor, Perum Perhutai Uit III Jawa Barat da Bate. Objek peelitia adalah waktu kerja

Lebih terperinci

Probabilitas dan Statistika Teorema Bayes. Adam Hendra Brata

Probabilitas dan Statistika Teorema Bayes. Adam Hendra Brata robabilitas da Statistika Teorema ayes dam Hedra rata Itroduksi - Joit robability Itroduksi Teorema ayes eluag Kejadia ersyarat Jika muculya mempegaruhi peluag muculya kejadia atau sebalikya, da adalah

Lebih terperinci

Uji apakah ada perbedaan signifikan antara mean masing-masing laboratorium. Gunakan α=0.05.

Uji apakah ada perbedaan signifikan antara mean masing-masing laboratorium. Gunakan α=0.05. MA 8 STATISTIKA DASAR SEMESTER I /3 KK STATISTIKA, FMIPA ITB UJIAN AKHIR SEMESTER (UAS) Sei, Desember, 9.3.3 WIB ( MENIT) Kelas. Pegajar: Utriwei Mukhaiyar, Kelas. Pegajar: Sumato Wiotoharjo Jawablah pertayaa

Lebih terperinci

Modul Kuliah statistika

Modul Kuliah statistika Modul Kuliah statistika Dose: Abdul Jamil, S.Kom., MM SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER MUHAMMADIYAH JAKARTA Bab 2 Populasi da Sampel 2.1 Populasi Populasi merupaka keseluruha pegamata

Lebih terperinci

PENAKSIRAN METODE PENAKSIRAN CONTOH. Kasus 1: taksiran titik IP = 3,5 Kasus 2: taksiran selang IP = [3,4]

PENAKSIRAN METODE PENAKSIRAN CONTOH. Kasus 1: taksiran titik IP = 3,5 Kasus 2: taksiran selang IP = [3,4] PENAKIRAN Peaksira Titik Peaksira elag elag Kepercayaa utuk µ elag Kepercayaa utuk σ MA 8 Aalisis Data Utriwei Mukhaiyar Oktober 00 008 by UP & UM METODE PENAKIRAN. Peaksira Titik Nilai tuggal dari suatu

Lebih terperinci

BAB 1 PENDAHULUAN. Analisis regresi menjadi salah satu bagian statistika yang paling banyak aplikasinya.

BAB 1 PENDAHULUAN. Analisis regresi menjadi salah satu bagian statistika yang paling banyak aplikasinya. BAB 1 PENDAHULUAN 1.1 Latar Belakag Aalisis regresi mejadi salah satu bagia statistika yag palig bayak aplikasiya. Aalisis regresi memberika keleluasaa kepada peeliti utuk meyusu model hubuga atau pegaruh

Lebih terperinci

Distribusi Pendekatan (Limiting Distributions)

Distribusi Pendekatan (Limiting Distributions) Distribusi Pedekata (Limitig Distributios) Ada 3 tekik utuk meetuka distribusi pedekata: 1. Tekik Fugsi Distribusi Cotoh 2. Tekik Fugsi Pembagkit Mome Cotoh 3. Tekik Teorema Limit Pusat Cotoh Fitriai Agustia,

Lebih terperinci

REGRESI DAN KORELASI SEDERHANA

REGRESI DAN KORELASI SEDERHANA REGRESI DAN KORELASI SEDERHANA Apa yag disebut Regresi? Korelasi? Aalisa regresi da korelasi sederhaa membahas tetag keterkaita atara sebuah variabel (variabel terikat/depede) dega (sebuah) variabel lai

Lebih terperinci

Penyelesaian: Variables Entered/Removed a. a. Dependent Variable: Tulang b. All requested variables entered.

Penyelesaian: Variables Entered/Removed a. a. Dependent Variable: Tulang b. All requested variables entered. 2. Pelajari data dibawah ii, tetuka depede da idepede variabel serta : a) Hitug Sum of Square for Regressio (X) b) Hitug Sum of Square for Residual c) Hitug Meas Sum of Square for Regressio (X) d) Hitug

Lebih terperinci

BAB III METODE PENELITIAN. objek penelitian yang penulis lakukan adalah Beban Operasional susu dan Profit

BAB III METODE PENELITIAN. objek penelitian yang penulis lakukan adalah Beban Operasional susu dan Profit BAB III METODE PENELITIAN 3.1 Objek Peelitia Objek peelitia merupaka sasara utuk medapatka suatu data. Jadi, objek peelitia yag peulis lakuka adalah Beba Operasioal susu da Profit Margi (margi laba usaha).

Lebih terperinci

1200 (0,535) (0,465) (1200 1).0,05 + (0,535) (0,465)

1200 (0,535) (0,465) (1200 1).0,05 + (0,535) (0,465) = DATA DAN METODE PENELITIAN Data Peelitia Data yag diguaka dalam peelitia ii adalah data primer hasil yag diperoleh melalui peyebara kuisioer da metode wawacara sebagai data pelegkap. Pegumpula data dilaksaaka

Lebih terperinci