Persamaan dan pertidaksamaan kuadrat BAB II

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Persamaan dan pertidaksamaan kuadrat BAB II"

Transkripsi

1 BAB II Misalkan a,b,c Є R dan a 0 maka persamaan yang berbentuk dinamakan persamaan kuadrat dalam peubah x. Dalam persamaan kuadrat ax bx c 0, a adalah koefisien dari x, b adalah koefisien dari x dan c adalah suku tetapan. Contoh: x 4, nilai a = 1, b= 0, c = -4 x + x = 0 nilai a = 1, b =, c = 0 x 5x + = 0 nilai a =, b = -5, c = x + x = 0 nilai a = 1, b =, c = - Berkaitan dengan nilai dari a, b, dan c dikenal beberapa nama persamaan kuadrat diantaranya adalah: jika a = 1 maka persamaan menjadi ax bx c 0 dan persamaan seperti ini disebut persamaan kuadrat biasa jika b = 0 maka persamaan menjadi dan persamaan seperti ini disebut persamaan kudrat sempurna jika c = 0 maka persamaan menjadi dan persamaan seperti ini disebut persamaan kuadrat tak lengkap jika a,b, dan c bilangan bilangan real, maka disebut persamaan kuadrat real jika a, b, dan c bilangan-bilangan rasional, maka disebut persamaan kuadrat rasional Dalam menyelesaikan (menentukan akar-akar) persamaan kuadrat ada beberapa cara, diantaranya adalah dengan cara : a. Memfaktorkan Melengkapkan kuadrat sempurna c. Menggunakan rumus kuadrat d. Menggambarkan sketsa grafik fungsi Kita akan mempelajari 3 cara yang pertama untuk menentukan akar-akar suatu persamaan kuadrat Matematika SMA/MA kelas X Semester I

2 Menentukan Akar-akar Persamaan Kuadrat dengan Memfaktorkan Menentukan akar-akar persamaan kuadrat dengan cara memfaktorkan menngunakansebuah sifat yang berlaku pada sistem bilangan real. Sifat iti dapat dinyatakan sebagai berikut. Jika a, b, ϵ R dan berlaku a. b = 0, maka a = 0 atau b = 0 Catatan: Pengertian a=0 atau b = 0 dapat ditafsirkan sebagai: 1. a = 0 dan b 0. a 0 dan b = 0 3. a = 0 dan b = 0 Dengan cara memfaktorkan, tentukan penyelesaian atau akar-akar dari tiap persamaan kudarat Jawab atau Jadi,penyelesaian atau akar-akarnya adalah x1 =7 dan x = -. Dalam bentuk himpunan penyelesaian ditulisakan dengan HP = {7,-} Menentukan Akar-akar Persamaan Kuadrat dengan Melengkapkan Kuadrat Sempurna Dalam menentukan akar-akar persamaan kuadrat dapat dengan proses melengakapkan kuadrat sempurna melalui langkah-langkah sebagai berikut : a) Mengubah persamaan kudrat semula kedalam bentuk (x + p) = q dengan q 0 Melalui proses melengkapkan kuadrat sempurna. b) Menentukan akar akar persamaan kuadrat sesuai dengan persamaan yang terakhir (x + p) = ± atau

3 Dengan cara melengkapkan kuadrat sempurna, tentukan akar-akar persamaan kuadrat Jawab : Jadi akar-akarnya adalah atau ditulis HP = {1-, 1+ } Menentukan Akar Akar Persamaan Kuadrat dengan Memakai Rumus kuadrat Misalkan a, b, dan c bilangan-bilangan real dan a 0 maka akar-akar persamaan kuadrat ditentukan oleh: Contoh : Dengan menggunakan rumus kuadrat, tentukan akar-akar persamaan kuadrat. Jawab :, koefisien koefisiennya adalah a = 1 b = - 6 c = 8 Jadi, akar-akarnya adalah x1 = atau x = 4

4 Jenis jenis akar persamaan kuadrat Persamaan kuadrat dengan nilai diskriminan 1. Jika D > 0 maka persamaan kuadrat mempunyai dua akar real yang berlainan a. Jika D berbentuk kuadrat sempurna, maka kedua akarnya rasioanal Jika D tidak berbentuk kuadrat sempurna, maka kedua akarnya irrasional.. Jika D=0 maka akar persamaan kuadrat mempunyai dua akar yang sama (akar kembar) real, dan rasional. 3. Jika D < 0 maka persamaan kuadrat tidak mempunyai akar real atau keduaakarnya tidak real (imajiner) Contoh : Tentukan jenis akar persamaan kuadrat Jawab : ; koefisien koefisiennya adalah a =, b = -7, dan c = 6. Nilai diskriminannya adalah : Karena D = 1 > 0 dan D = 1 = 1 berbentuk kuadrat sempurna maka persamaan kuadrat mempunyai dua akar real yang berlainan dan rasional Pada pembahasan sebelumnya, Anda dapat mencari akar-akar persamaan kuadrat dengan berbagai cara. Jika akar-akar persamaan kuadrat telah Anda peroleh maka Anda dapat mencari hasil kali dan jumlah akar-akar persamaan kuadrat tersebut. Bagaimana halnya jika akar-akar persamaan kuadratnya belum Anda peroleh, dan Anda akan mencari jumlah dan hasil kali akar-akar persamaan kuadrat? Jumlah dan hasil kali akar-akar persamaan kuadrat dapat diperoleh dengan cara berikut ini. Misalkan persamaan kuadrat memiliki akar-akar, : maka: +

5 Jadi, rumus persamaan akar-akar kuadrat adalah : + Rumus jumlah akar-akar persamaan kuadrat adalah:. ( ) ( ) Jadi,rumus persamaan akar-akar kuadrat adalah :. Bentuk bentuk simetris akar-akar persamaan kuadrat adalah : Menyusun persamaan kuadrat jika diketahui akar akarnya a. Memakai faktor Apabila suatu persamaan kuadrat dapat difaktorkan menjadi ( x - x1)( x x) = 0 maka x1 dan x merupakan akar akar persamaan kuadrat tersebut. Sebaliknya apabila x1 dan x merupakan akar akar suatu persamaan kuadrat, maka persamaan kuadrat itu dpat ditentikan dengan rumus Memakai rumus jumlah dan hasil kali akar akar Persamaan kuadrat dapat dinyatakan dalam bentuk yaitu dengan membagi kedua ruas persamaan semula dengan a. Dari rumus jumlah dan hasil kali akar akar, kita peroleh hubungan Jadi, persamaan dan dapat dinyatakan dalam bentuk

6 1) Selesaikan persamaan-persamaan berikut dengan cara memfaktorkan a. ) Selesaikan persamaan berikut dengan melengkapkan kuadrat sempurna a. 3) Susunlah persamaan kuadrat yang akar-akarnya diketahui sebagai berikut a. dan 5 c. -5 dan -6-3 dan 1 a. Bentuk Umum Pertidaksamaan Kuadrat Suatu kalimat terbuka yang memuat variabel dengan pangkat positif dan memiliki pangkat tertinggi dua dihubungkan dengan tanda disebut pertidaksamaan kuadrat. Bentuk umum pertidaksamaan kuadrat : dengan a 0 dan a,b,c ϵ R penyelesaian atau himpunan penyelesaian dari pertidaksamaan kuadrat dalam variabel x dapat ditentukan dengan dua cara yaitu dengan: 1. Sketsa grafik fungsi kuadrat. Garis bilangan Menyelesaikan Pertidaksamaan Kuadrat dengan menggunakan sketsa grafik fungsi kuadrat Fungsi kuadrat yang ditentukan dengan rumus f ( x) x 3x 4 grafiknya berbentuk parabbola dengan persamaan y x 3x 4. Sketsa grafik parabola y x 3x 4 diperlihatkan pada gambar berikut:

7 1) Parabola di atas sumbu x (y > 0) dalam selang x < -1 atau x > 4. Jadi x 3x 4 0 dalam selang x < -1 atau x > 4. ) Parabola tepat pada sumbu x (y = 0) untuk nilai x = -1 atau x = 4. Jadi x 3x 4 0 untuk nilai x = -1 atau x = 4. 3) Parabola di bawah sumbu x (y < 0) dalam selang 1 < x < 4. Jadi x 3x 4 0 dalam selang 1 < x < 4. Dengan demikian sketsa grafik fungsi kuadrat f ( x) x 3x 4 atau parabola y x 3x 4 dapat digunakan untuk menentukan penyelesaian atau himpunan penyelesaian pertidaksamaan kuadrat berikut: a) Pertidaksamaan kuadrat x 3x 4 0. Himpunan penyelesaiannya adalah: HP { x 1 x 4, x R} b) Pertidaksamaan kuadrat x 3x 4 0. Himpunan penyelesaiannya adalah: HP { x 1 x 4, x R} c) Pertidaksamaan kuadrat x 3x 4 0. Himpunan penyelesaiannya adalah: HP { x x 1 atau x 4, x R} d) Pertidaksamaan kuadrat x 3x 4 0. Himpunan penyelesaiannya adalah: HP { x x 1 atau x 4, x R}

8 Berdasar uraian di atas dapat disimpulkan bahwa grafik fungsi kuadrat f ( x) ax bx c 0 atau parabola dapat digunakan untuk menentukan penyelesaian pertidaksamaan kuadrat ax bx c 0; ax bx c 0; ax bx c 0 ; ax bx c 0 Secara umum, penyelesaian atau himpunan penyelesaian pertidaksamaan kuadrat dengan menggunakan sketsa grafik fungsi kuadrat dapat ditentukan melalui langkah langkah sebagai berikut. Langkah 1 Gambar sketsa grafik kuadrat jika ada carilah titik-titik potong dengan sumbu X. atau parabola Langkah Berdasarkan sketsa grafik yang diperoleh dari langkah 1.kita dapat menetapkanselang atau interval yang memenuhi pertidaksamaan kuadrat, c. Menyelesaikan pertidaksamaan kuadrat dengan Menggunakan Garis Bilangan Dalam pasal ini kita akan menyekesaikan persamaan kuadrat dengan menggunakan garis bilangan. Sebabagai contoh, kita akan menentukan penyelesaian pertidaksamaan kuadrat. Langkah-langkah yangdiperlukan sebagai berikut: Langkah 1 Carilah nilai-nilai nol (jika ada) dari bagian ruas kiri pertidaksamaan x 3x 4 0 ( x 1)( x 4) 0 x 1 atau x 4 Langkah Gambarlah nilai-nilai nol yang diperoleh pada langkah 1 pada garis bilangan

9 Langkah 3 Tentukan tanda-tanda dalam interval untuk nilai-nilai x selain -1 dan 4. Misalnya: x maka nilai dari x 3x 4 ( ) 3( ) 4 6 sehingga tanda dalam interval x < -1 (+) atau >0 x 1 maka nilai dari x 3x 4 (1) 3(1) 4 6 sehingga tanda dalam interval -1 < x < 4 (1) atau < 0 x 5 maka nilai dari x 3x 4 (5) 3(5) 4 6 sehingga tanda dalam interval x > 4 (+) atau >. Langkah 4 Berdasar tanda-tanda interval, maka yang memenuhi pertidaksamaan x 3x 4 0 adalah x < -1 atau x > 4. Jadi himpunan penyelesainnya adalah HP { x x 1 atau x > 4} Secara umum penyelesaian pertidaksamaan kuadrat, dapat ditentukan dengan menggunakan diagram garis bilangan melalui langkah-langkah sebagai berikut. Langkah 1 Carilah nilai nilai nol (jika ada) bagian ruas kiri pertidaksamaan Langkah Gambarlah nilai nol itu pada diagram garis bilangan sehingga diperoleh intervalinterval. Langkah 3 Tentukan tanda tanda interval dengan cara mensubstitusikan nilai-nilai uji yang berada dalam masing-masing interval. Langkah 4 Berdasarkan tanda-tanda interval yang diperoleh dari langkah 3. Kita dapat menetapkan interval yang memenuhi. Dalam menyelesaikan pertidaksamaan kuadrat kita perlu mencermati adanya beberapa bentuk khusus dari suatu bentuk kuadrat. Ada macam bentuk khusus dari suatu bentuk kuadrat yaitu: (1) Definit positif, yaitu bentuk kuadrat berlaku untu semua x ϵ R. Bentuk disebut definit positif, jika

10 () Definit negatif, yaitu bentuk kuadrat berlaku untuk semua x ϵ R. Bentuk disebut definit negatif jika. 1. Dengan menggunakan sketsa grafik fungsi kuadrat f ( x) x x 1, carilah himpunan penyelesaian tiap pertidaksamaan berikut. a. x x 1 0 x x 1 0 c. x x 1 0 d. x x 1 0. Dengan menggunakan garis bilangan,tentukan himpunan penyelesaian dari pertidaksamaan! 3. Tentukan himpunan penyelesaian dari pertidaksamaan berikut: a.

11 Akar-akar persamaan kuadrat Dalam menyelesaikan (menentukan akar-akar) persamaan kuadrat ada beberapa cara, diantaranya adalah dengan cara : a. Memfaktorkan Melengkapkan kuadrat sempurna Mengubah persamaan kudrat semula kedalam bentuk (x + p) = q dengan q 0 Melalui proses melengkapkan kuadrat sempurna. Menentukan akar akar persamaan kuadrat sesuai dengan persamaan yang terakhir (x + p) = ± atau c. Menggunakan rumus kuadrat akar-akar persamaan kuadrat ditentukan oleh: d. Menggambarkan sketsa grafik fungsi Jenis jenis akar persamaan kuadrat Persamaan kuadrat dengan nilai diskriminan 1. Jika D > 0 maka persamaan kuadrat mempunyai dua akar real yang berlainan Jika D berbentuk kuadrat sempurna, maka kedua akarnya rasioanal Jika D tidak berbentuk kuadrat sempurna, maka kedua akarnya irrasional.. Jika D=0 maka akar persamaan kuadrat mempunyai dua akar yang sama (akar kembar) real, dan rasional. 3. Jika D < 0 maka persamaan kuadrat tidak mempunyai akar real atau keduaakarnya tidak real (imajiner) Rumus persamaan akar-akar kuadrat adalah : Menyusun persamaan kuadrat jika diketahui akar akarnya 1. Memakai faktor

12 . Memakai rumus jumlah dan hasil kali akar akar Menyelesaikan Pertidaksamaan Kuadrat dengan menggunakan sketsa grafik fungsi kuadrat Langkah 1 Gambar sketsa grafik kuadrat atau parabola jika ada carilah titik-titik potong dengan sumbu X. Langkah Berdasarkan sketsa grafik yang diperoleh dari langkah 1.kita dapat menetapkanselang atau interval yang memenuhi pertidaksamaan kuadrat, Menyelesaikan pertidaksamaan kuadrat dengan Menggunakan Garis Bilangan Langkah 1 Carilah nilai nilai nol (jika ada) bagian ruas kiri pertidaksamaan Langkah Gambarlah nilai nol itu pada diagram garis bilangan sehingga diperoleh intervalinterval. Langkah 3 Tentukan tanda tanda interval dengan cara mensubstitusikan nilai-nilai uji yang berada dalam masing-masing interval. Langkah 4 Berdasarkan tanda-tanda interval yang diperoleh dari langkah 3. Kita dapat menetapkan interval yang memenuhi.

13 BAB III EVALUASI A. Pilihlah satu jawaban yang paling tepat! 1. Diketahui akar-akar persamaan kuadrat adalah a dan nilai dari adalah... a c. -18 d. -16 e. 19. Jika α dan β akar-akar persamaan maka mencapai minimum untuk... a. -1 c. e. 3 0 d Akar-akar persamaan kx (k 4) x ( k 8) 0 adalah sama. Hasil kali kedua akar persamaan tersebut adalah. a. 1 4 c. 9 d Persamaan kuadrat yang akar-akarnya saling berlawanan tanda dari akar-akar persamaan adalah. a. c. d. e. 5. Akar-akar persamaan kuadrat x qx ( q 1) 0 adalah m dan n. Jika m n 4 maka nilai q adalah... a. -6 dan -5 dan 3 c. -4 dan 4 d. -3 dan 5 e. - dan 6 6. Nilai x yang memenuhi pertidaksamaan adalah... a. c. 7. Nilai x yang memenuhi pertidaksamaan 3x 9x x 4 adalah... a. d. c. x 8. Himpunan penyelesaian dari persamaan 0 adalah... x 5 a. HP { x 5 x } d. e. e. e.

14 HP { x 5 x } c. HP { x x 1 atau x } d. HP { x x 5 atau x } e. HP { x x 1 atau x 1} 9. Himpunan penyelesaian adalah... a c. -13 d. -14 e Nilai terbesar x agar adalah... a c. -4 d. 1 e Himpunan penyelesaian dari pertidaksamaan adalah... a. * + * + c. { } d. { } e. { } 1. Agar persamaan mempunyai akar kembar maka nilai k =... a. d. e. c. 13. Nilai x yang memenuhi pertidaksamaan adalah... a. c. d. e. 14. Nilai yang memenuhi adalah... a. c. 15. Bentuk pertidaksamaan akan bernilai benar jika... a. c. B. Jawablah pertanyaan pertanyaan berikut dengan singkat dan jelas! 1. Diketahui x1 dan x adalah akar-akar dari persamaan kuadrat Tentukan akar-akar persamaan kuadrat yang akar-akarnya. Tentukan himpunan penyelesaian dari pertidaksamaan kuadrat d. e. d. e. Semua bilangan real

15 3. Tentukan persamaan kuadrat yang akar-akarnya lebihnya dari akarakar persamaan! 4. Jika salah satu akar persamaan adalah empat kali akar yang lain maka tentukan nilai k dan akar-akar tersebut.

16 Latihan 1 1. a. Dengan demikian penyelesaian dari persamaan kuadrat x = 1 atau x = 3 adalah Dengan demikian penyelesaian dari persamaan kuadrat adalah. a. Dengan demikian penyelesaian persamaan kuadrat adalah

17 Dengan demikian penyelesaian dari persamaan kuadrat adalah 3. a. Jadi,persamaan kuadrat yang diminta adalah ( ) Jadi, persamaan kuadrat yang diminta adalah e. ( )( ) Jadi, persamaan kuadrat yang diminta adalah Latihan 1. Sketsa grafik fungsi kuadrat f ( x) x x 1, atau parabola y x x 1, diperlihatkan pada gambar berikut:

18 . a. Himpunan penyelesaian pertidaksamaan kuadrat x x 1 0 adalah Himpunan kosong ditulis Himpunan penyelesaian pertidaksamaan kuadrat x x 1 0 adalah HP { x x 1} c. Himpunan penyelesaian pertidaksamaan kuadrat x x 1 0 adalah HP { x x R dan x 1} d. Himpunan penyelesaian pertidaksamaan kuadrat x x 1 0 adalah HP { x x 1 atu x 1, x R } dapat juga ditulis HP { x x R} 3. a. Harga nol pembilang Harga nol penyebut Jadi, himpunan penyelesaianya adalah Ambil (negatif) Jadi, himpunan penyelesaian adalah * + Uji kompetensi A. 1. a.d 3.d 4.c 5.e B. Uraian Ambil (negatif) Jadi, himpunan penyelesaian adalah * + 6.d 7.a 8.e 9.c 10.c 1. Dari persamaan diperoleh 11.d 1.c 13.a 14.e 15.b

19 Misalkan akar-akar persamaan kuadrat yang akan dicari adalah a dan b, dimana Jadi, persamaan kuadrat yang akr-akarnya adalah:. 3. Nilai-nilai nol dan tanda-tanda intervalnya diperlihatkan pada gambar.4 Jadi, himpunan penyelesaian adalah { } Misalkan persamaan kuadrat baru memiliki akar a Substitusikan kedalam persamaan kuadrat semula sehingga diperoleh: Jadi persamaan kuadrat barunya adalah 4. Dengan nilai a=1, b = -10, c = k- dan salah satu akar = empat kali akar yang lain. + =4.=8 Jadi, nilai k =18

Persamaan dan Pertidaksamaan Linear

Persamaan dan Pertidaksamaan Linear MATERI POKOK Persamaan dan Pertidaksamaan Linear MATERI BAHASAN : A. Persamaan Linear B. Pertidaksamaan Linear Modul.MTK X 0 Kalimat terbuka adalah kalimat matematika yang belum dapat ditentukan nilai

Lebih terperinci

PERSAMAAN KUADRAT. Persamaan. Sistem Persamaan Linear

PERSAMAAN KUADRAT. Persamaan. Sistem Persamaan Linear Persamaan Sistem Persamaan Linear PENGERTIAN Definisi Persamaan kuadrat adalah kalimat matematika terbuka yang memuat hubungan sama dengan yang pangkat tertinggi dari variabelnya adalah 2. Bentuk umum

Lebih terperinci

PERTIDAKSAMAAN

PERTIDAKSAMAAN PERTIDAKSAMAAN A. Pengertian 1. Notasi Pertidaksamaan Misalnya ada dua bilangan riil a dan b. Ada beberapa notasi yang bisa dibuat yaitu: a. a dikatakan kurang dari b, ditulis a b jika dan hanya jika a

Lebih terperinci

β α α β SOAL MATEMATIKA UNTUK SMA istiyanto.com Mari Berbagi Ilmu Dengan Yang Lain A. Persamaan Kuadrat dan Fungsi Kuadrat

β α α β SOAL MATEMATIKA UNTUK SMA istiyanto.com Mari Berbagi Ilmu Dengan Yang Lain A. Persamaan Kuadrat dan Fungsi Kuadrat A. Persamaan Kuadrat dan Fungsi Kuadrat 1. Salah satu akar persamaan kuadrat ( a 1) x + (3a 1) x 3a = 0 adalah 1, maka akar lainnya adalah.... Nilai m yang memenuhi agar persamaan kuadrat ( m + 1) x +

Lebih terperinci

1. Akar-akar persamaan kuadrat 5x 2 3x + 1 = 0 adalah

1. Akar-akar persamaan kuadrat 5x 2 3x + 1 = 0 adalah 1. Akar-akar persamaan kuadrat 5x 3x + 1 0 adalah A. imajiner B. kompleks C. nyata, rasional dan sama D. nyata dan rasional E. nyata, rasional dan berlainan. NOTE : D > 0, memiliki akar-akar riil dan berbeda

Lebih terperinci

BAB IV PERTIDAKSAMAAN. 1. Pertidaksamaan Kuadrat 2. Pertidaksamaan Bentuk Pecahan 3. Pertidaksamaan Bentuk Akar 4. Pertidaksamaan Nilai Mutlak

BAB IV PERTIDAKSAMAAN. 1. Pertidaksamaan Kuadrat 2. Pertidaksamaan Bentuk Pecahan 3. Pertidaksamaan Bentuk Akar 4. Pertidaksamaan Nilai Mutlak BAB IV PERTIDAKSAMAAN 1. Pertidaksamaan Kuadrat. Pertidaksamaan Bentuk Pecahan 3. Pertidaksamaan Bentuk Akar 4. Pertidaksamaan Nilai Mutlak 86 LEMBAR KERJA SISWA 1 Mata Pelajaran : Matematika Uraian Materi

Lebih terperinci

Mata Pelajaran Wajib. Disusun Oleh: Ngapiningsih

Mata Pelajaran Wajib. Disusun Oleh: Ngapiningsih Mata Pelajaran Wajib Disusun Oleh: Ngapiningsih Disklaimer Daftar isi Disklaimer Powerpoint pembelajaran ini dibuat sebagai alternatif guna membantu Bapak/Ibu Guru melaksanakan pembelajaran. Materi powerpoint

Lebih terperinci

PERSAMAAN DAN PERTIDAKSAMAAN PERSAMAAN LINEAR

PERSAMAAN DAN PERTIDAKSAMAAN PERSAMAAN LINEAR PERSAMAAN DAN PERTIDAKSAMAAN PERSAMAAN LINEAR Persamaan linear Bentuk umun persamaan linear satu vareabel Ax + b = 0 dengan a,b R ; a 0, x adalah vareabel Contoh: Tentukan penyelesaian dari 4x-8 = 0 Penyelesaian.

Lebih terperinci

BAB II PERSAMAAN KUADRAT DAN FUNGSI KUADRAT

BAB II PERSAMAAN KUADRAT DAN FUNGSI KUADRAT BAB II PERSAMAAN KUADRAT DAN FUNGSI KUADRAT 1. Menentukan koefisien persamaan kuadrat 2. Jenis-jenis akar persamaan kuadrat 3. Menyusun persamaan kuadrat yang akarnya diketahui 4. Fungsi kuadrat dan grafiknya

Lebih terperinci

MADRASAH ALIYAH AL-MU AWANAH BEKASI SELATAN 2012

MADRASAH ALIYAH AL-MU AWANAH BEKASI SELATAN 2012 MODUL MATEMATIKA PERSIAPAN UJIAN NASIONAL 0 TAHUN AJARAN 0/0 MATERI PERSAMAAN KUADRAT DAN PERTIDAKSAMAAN KUADRAT UNTUK KALANGAN MA AL-MU AWANAH MADRASAH ALIYAH AL-MU AWANAH BEKASI SELATAN 0 Jalan RH. Umar

Lebih terperinci

Materi Matematika Persamaan dan Pertidaksamaan kuadrat Persamaan Linear Persamaan Kuadrat Contoh : Persamaan Derajat Tinggi

Materi Matematika Persamaan dan Pertidaksamaan kuadrat Persamaan Linear Persamaan Kuadrat Contoh : Persamaan Derajat Tinggi Materi Matematika Persamaan dan Pertidaksamaan kuadrat Persamaan Linear Persamaan linear dengan n peubah adalah persamaan dengan bentuk : dengan adalah bilangan- bilangan real, dan adalah peubah. Secara

Lebih terperinci

PERTIDAKSAMAAN PECAHAN

PERTIDAKSAMAAN PECAHAN PERTIDAKSAMAAN PECAHAN LESSON Pada topik sebelumnya, kalian telah mempelajari topik tentang konsep pertidaksamaan dan nilai mutlak. Dalam topik ini, kalian akan belajar tentang masalah pertidaksamaan pecahan.

Lebih terperinci

http://meetabied.wordpress.com Matematika X Semester SMAN Bone-Bone Jika ingin mengenai sasaran, kita harus membidik sedikit di atas sasaran tersebut karena setiap panah yang meluncur akan merasakan gaya

Lebih terperinci

PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT

PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT LA - WB (Lembar Aktivitas Warga Belajar) PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X Created By Ita Yuliana

Lebih terperinci

6 FUNGSI LINEAR DAN FUNGSI

6 FUNGSI LINEAR DAN FUNGSI 6 FUNGSI LINEAR DAN FUNGSI KUADRAT 5.1. Fungsi Linear Pada Bab 5 telah dijelaskan bahwa fungsi linear merupakan fungsi yang variabel bebasnya paling tinggi berpangkat satu. Bentuk umum fungsi linear adalah

Lebih terperinci

BAB 1 PERSAMAAN. a) 2x + 3 = 9 a) 5 = b) x 2 9 = 0 b) = 12 c) x = 0 c) 2 adalah bilangan prima genap d) 3x 2 = 3x + 5

BAB 1 PERSAMAAN. a) 2x + 3 = 9 a) 5 = b) x 2 9 = 0 b) = 12 c) x = 0 c) 2 adalah bilangan prima genap d) 3x 2 = 3x + 5 BAB PERSAMAAN Sifat Sifat Persamaan Persamaan adalah kalimat matematika terbuka yang menyatakan hubungan sama dengan. Sedangkan kesamaan adalah kalimat matematika tertutup yang menyatakan hubungan sama

Lebih terperinci

2. PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT

2. PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT 2. PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT A. Persamaan Kuadrat 1) Bentuk umum persamaan kuadrat : ax 2 + bx + c =, a 2) Nilai determinan persamaan kuadrat : D = b 2 4ac 3) Akar-akar persamaan kuadrat

Lebih terperinci

y

y Menyelesaikan Persamaan Kuadrat dengan Grafik Menyesaikan persamaan ax 2 +bx+c=0. Berarti menentukan nilai-nilai x bila f(x) = 0, dimana f(x) = ax 2 +bx+c. apabila grafik fungsi f(x) telah dilukis, maka

Lebih terperinci

matematika PEMINATAN Kelas X PERSAMAAN KUADRAT K-13 A. BENTUK UMUM PERSAMAAN KUADRAT

matematika PEMINATAN Kelas X PERSAMAAN KUADRAT K-13 A. BENTUK UMUM PERSAMAAN KUADRAT K-13 Kelas X matematika PEMINATAN PERSAMAAN KUADRAT TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi dan bentuk umum persamaan kuadrat..

Lebih terperinci

Untuk mencari akar-akar dari persamaan kuadrat, dapat menggunakan rumus :

Untuk mencari akar-akar dari persamaan kuadrat, dapat menggunakan rumus : RUMUS-RUMUS PERSAMAAN KUADRAT Bentuk umum: ax 2 + bx + c = 0, a 0 AKAR-AKAR PERSAMAAN KUADRAT Untuk mencari akar-akar dari persamaan kuadrat, dapat menggunakan rumus : X 1.2 = Dengan : D = b 2 4ac, dan

Lebih terperinci

fungsi Dan Grafik fungsi

fungsi Dan Grafik fungsi fungsi Dan Grafik fungsi Suatu fungsi adalah pemadanan dua himpunan tidak kosong dengan pasangan terurut (x, y) dimana tidak terdapat elemen kedua yang berbeda. Fungsi (pemetaan) himpunan A ke himpunan

Lebih terperinci

2. FUNGSI KUADRAT. , D = b 2 4ac

2. FUNGSI KUADRAT. , D = b 2 4ac . FUNGSI KUADRAT A. Persamaan Kuadrat 1) Bentuk umum persamaan kuadrat : ax + bx + c =, a ) Akar akar persamaan kuadrat dapat dicari dengan memfaktorkan ataupun dengan rumus: x 1, b D, D = b 4ac a 3) Jumlah,

Lebih terperinci

A. MENYELESAIKAN PERSAMAAN KUADRAT

A. MENYELESAIKAN PERSAMAAN KUADRAT A. MENYELESAIKAN PERSAMAAN KUADRAT STANDAR KOMPETENSI Memecahkan masalah yang berkaitan dengan fungsi, persamaan dan fungsi kuadrat serta pertidaksamaan kuadrat KOMPETENSI DASAR Menggunakan sifat dan aturan

Lebih terperinci

I. PETUNJUK: Untuk soal nomor 1 sampai dengan nomor, pilihlah salah satu jawaban yang paling tepat!

I. PETUNJUK: Untuk soal nomor 1 sampai dengan nomor, pilihlah salah satu jawaban yang paling tepat! I. PETUNJUK: Untuk soal nomor sampai dengan nomor, pilihlah salah satu jawaban yang paling tepat!. Persamaan ( p + ) x ( p + ) x + ( p ) = 0, p, merupakan persamaan kuadrat dalam x untuk nilai p... p c.

Lebih terperinci

MAKALAH FUNGSI KUADRAT GRAFIK FUNGSI,&SISTEM PERSAMAAN KUADRAT

MAKALAH FUNGSI KUADRAT GRAFIK FUNGSI,&SISTEM PERSAMAAN KUADRAT MAKALAH FUNGSI KUADRAT GRAFIK FUNGSI,&SISTEM PERSAMAAN KUADRAT Kelompok 3 : 1.Suci rachmawati (ekonomi akuntansi) 2.Fitri rachmad (ekonomi akuntansi) 3.Elif (ekonomi akuntansi) 4.Dewi shanty (ekonomi management)

Lebih terperinci

MATERI PRASYARAT. ke y= f(x) =ax2 + bx +c

MATERI PRASYARAT. ke y= f(x) =ax2 + bx +c 1 MATERI PRASYARAT A. Fungsi Kuadrat Bentuk umum : y= f(x) = ax 2 + bx +c dengan a 0. Langkah-langkah dalam menggambar grafik fungsi kuadrat y= f(x) = ax 2 + bx +c 1. Tentukan titik potong dengan sumbu

Lebih terperinci

PERSAMAAN DAN PERTIDAKSAMAAN KUADRAT

PERSAMAAN DAN PERTIDAKSAMAAN KUADRAT PERSAMAAN DAN PERTIDAKSAMAAN KUADRAT Jenis-jenis soal persamaan kuadrat yang sering diujikan adalah soal-soal tentang :. Menentukan akar-akar. Jenis-jenis akar 3. Jumlah dan hasil kali akar-akar 4. Tanda-tanda

Lebih terperinci

TEOREMA SISA 1. Nilai Sukubanyak Tugas 1

TEOREMA SISA 1. Nilai Sukubanyak Tugas 1 TEOREMA SISA 1. Nilai Sukubanyak Apa yang dimaksud sukubanyak (polinom)? Ingat kembali bentuk linear seperti 2x + 1 atau bentuk kuadrat 2x 2-3x + 5 dan juga bentuk pangkat tiga 2x 3 x 2 + x 7. Bentuk-bentuk

Lebih terperinci

Mata Pelajaran MATEMATIKA Kelas X

Mata Pelajaran MATEMATIKA Kelas X Mata Pelajaran MATEMATIKA Kelas X SEKOLAH MENENGAH ATAS dan MADRASAH ALIYAH PG Matematika Kelas X 37 Bab 1 Bentuk Pangkat, Akar, dan Logaritma Nama Sekolah : SMA dan MA Mata Pelajaran : Matematika Kelas

Lebih terperinci

K13 Revisi Antiremed Kelas 10 Matematika

K13 Revisi Antiremed Kelas 10 Matematika K Revisi Antiremed Kelas Matematika Persamaan Kuadrat - Latihan Soal Essay Do Name: RKARMATWJB5 Version : 6- halaman. Nyatakan persamaan-persamaan berikut ke dalam bentuk baku kemudian tentukan nilai b

Lebih terperinci

matematika PEMINATAN Kelas X PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN K13 A. PERSAMAAN EKSPONEN BERBASIS KONSTANTA

matematika PEMINATAN Kelas X PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN K13 A. PERSAMAAN EKSPONEN BERBASIS KONSTANTA K1 Kelas X matematika PEMINATAN PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami bentuk-bentuk persamaan

Lebih terperinci

Menyelesaikan Persamaan Kuadrat. 3. Rumus ABC ax² + bx + c = 0 X1,2 = ( [-b ± (b²-4ac)]/2a. Kemungkinan Jenis Akar Ditinjau Dari Nilai Diskriminan

Menyelesaikan Persamaan Kuadrat. 3. Rumus ABC ax² + bx + c = 0 X1,2 = ( [-b ± (b²-4ac)]/2a. Kemungkinan Jenis Akar Ditinjau Dari Nilai Diskriminan Menyelesaikan Persamaan Kuadrat Bentuk umum : ax² + bx + c = 0 x variabel; a,b,c konstanta ; a 0 Menyelesaikan persamaan kuadrat berarti mencari harga x yang memenuhi persamaan kudrat (PK) tersebut (disebut

Lebih terperinci

Sistem Bilangan Real. Pendahuluan

Sistem Bilangan Real. Pendahuluan Sistem Bilangan Real Pendahuluan Kalkulus didasarkan pada sistem bilangan real dan sifat-sifatnya. Sistem bilangan real adalah himpunan bilangan real yang disertai operasi penjumlahan dan perkalian sehingga

Lebih terperinci

BAB 5 TEOREMA SISA. Menggunakan aturan sukubanyak dalam penyelesaian masalah. Kompetensi Dasar

BAB 5 TEOREMA SISA. Menggunakan aturan sukubanyak dalam penyelesaian masalah. Kompetensi Dasar Standar Kompetensi BAB 5 TEOREMA SISA Menggunakan aturan sukubanyak dalam penyelesaian masalah. Kompetensi Dasar Menggunakan algoritma pembagian sukubanyak untuk menentukan hasil bagi dan sisa pembagian

Lebih terperinci

SISTEM PERSAMAAN LINEAR, KUADRAT DAN PERTIDAKSAMAAN SATU VARIABEL

SISTEM PERSAMAAN LINEAR, KUADRAT DAN PERTIDAKSAMAAN SATU VARIABEL LA - WB (Lembar Aktivitas Warga Belajar) SISTEM PERSAMAAN LINEAR, KUADRAT DAN PERTIDAKSAMAAN SATU VARIABEL Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X

Lebih terperinci

PERSAMAAN DAN FUNGSI KUADRAT

PERSAMAAN DAN FUNGSI KUADRAT Materi W2e PERSAMAAN DAN FUNGSI KUADRAT Kelas X, Semester 1 E. Grafik Fungsi Kuadrat www.yudarwi.com E. Grafik Fungsi Kuadrat Grafik fungsi kuadrat f(x) = ax 2 + bx + c dapat dilukis dengan langkah-langkah

Lebih terperinci

SISTEM PERTIDAKSAMAAN KUADRAT DUA VARIABEL SPtKDV

SISTEM PERTIDAKSAMAAN KUADRAT DUA VARIABEL SPtKDV SISTEM PERTIDAKSAMAAN KUADRAT DUA VARIABEL SPtKDV A. Pertidaksamaan Kuadrat Dua Variabel Pertidaksamaan kuadrat dua variabel adalah kalimat terbuka matematika yang memuat dua variabel dengan setidaknya

Lebih terperinci

FUNGSI. A. Relasi dan Fungsi Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii)

FUNGSI. A. Relasi dan Fungsi Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) FUNGSI A. Relasi dan Fungsi Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) Relasi himpunan A ke himpunan B adalah relasi yang memasangkan/mengkawankan/mengkorepodensikan

Lebih terperinci

Antiremed Kelas 10 Matematika

Antiremed Kelas 10 Matematika Antiremed Kelas Matematika Persamaan Kuadrat - Latihan Soal Essay Do Name: KARMATWJB8 Version : 4-9 halaman. Nyatakan persamaan-persamaan berikut ke dalam bentuk baku kemudian tentukan nilai b c dan a

Lebih terperinci

Sistem Bilangan Riil

Sistem Bilangan Riil Sistem Bilangan Riil Sistem bilangan N : 1,,,. Z :,-,-1,0,1,,.. N : bilangan asli Z : bilangan bulat Q : bilangan rasional R : bilangan real Q : q R a b, a, b Z, b Q Irasional Contoh Bil Irasional,, 0

Lebih terperinci

PERSAMAAN KUADRAT. AC 0 P DAN Q SAMA TANDA. 2. DG. MELENGKAPKAN BENTUK KUADRAT ( KUADRAT SEMPURNA ) :

PERSAMAAN KUADRAT. AC 0 P DAN Q SAMA TANDA. 2. DG. MELENGKAPKAN BENTUK KUADRAT ( KUADRAT SEMPURNA ) : PERSAMAAN KUADRAT. AC 0 P DAN Q SAMA TANDA.. DG. MELENGKAPKAN BENTUK KUADRAT ( KUADRAT SEMPURNA ) : Bab 3 PERSAMAAN KUADRAT 1. Bentuk Umum : ax bx c 0, a 0, a, b, c Re al Menyelesaikan persamaan kuadrat

Lebih terperinci

MA5032 ANALISIS REAL

MA5032 ANALISIS REAL (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. August 16, 2011 Pada bab ini anda diasumsikan telah mengenal dengan cukup baik bilangan asli, bilangan bulat, dan bilangan

Lebih terperinci

Sistem Bilangan Ri l

Sistem Bilangan Ri l Sistem Bilangan Riil Sistem bilangan N : bilangan asli Z : bilangan bulat Q : bilangan rasional R : bilangan real N : 1,,,. Z :,-,-1,0,1,,.. Q : a q =, a, b Z, b 0 b R = Q Irasional Contoh Bil Irasional,,π

Lebih terperinci

Hand out_x_fungsi kuadrat

Hand out_x_fungsi kuadrat STANDAR KOMPETENSI: Memecahkan masalah yang berkaitan dengan fungsi, persamaan dan fungsi kuadrat serta pertidaksamaan kuadrat. KOMPETENSI DASAR: Menggambar grafik fungsi aljabar sederhana dan fungsi kuadrat

Lebih terperinci

MATEMATIKA DASAR 16. Jika maka Jawab : E 17. Diketahui premis-premis sebagai berikut : 1) Jika maka 2) atau Jika adalah peubah pada himpunan bilangan real, nilai yang memenuhi agar kesimpulan dari kedua

Lebih terperinci

Silabus. Nama Sekolah : SMA Mata Pelajaran : MATEMATIKA Kelas / Program : X / UMUM Semester : GANJIL

Silabus. Nama Sekolah : SMA Mata Pelajaran : MATEMATIKA Kelas / Program : X / UMUM Semester : GANJIL Silabus Nama Sekolah : SMA Mata Pelajaran : MATEMATIKA Kelas / Program : X / UMUM Semester : GANJIL Sandar Kompetensi:. Memecahkan masalah yang berkaitan dengan bentuk pangkat, akar, dan logaritma Kompetensi

Lebih terperinci

Materi Fungsi Linear Fungsi Variabel, koefisien, dan konstanta Variabel variabel bebas Koefisien Konstanta 1). Pengertian fungsi linier

Materi Fungsi Linear Fungsi Variabel, koefisien, dan konstanta Variabel variabel bebas Koefisien Konstanta 1). Pengertian fungsi linier Materi Fungsi Linear Admin 8:32:00 PM Duhh akhirnya nongol lagi... kali ini saya akan bahas mengenai pelajaran yang paling disukai oleh hampir seluruh warga dunia :v... MATEMATIKA, ya itu namanya. materi

Lebih terperinci

Modul 04 Pertidaksamaan

Modul 04 Pertidaksamaan Modul 04 Pertidaksamaan 4.1. Pengertian Pertidaksamaan Pertidaksamaan adalah kalimat terbuka yang menggunakan tanda ketidaksamaan () dan mengandung variabel. Menyelesaikan suatu pertidaksamaan

Lebih terperinci

KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia

KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN DEPARTEMEN TEKNIK KIMIA Universitas Indonesia BAB II. FUNGSI, LIMIT, DAN KEKONTINUAN Fungsi dan Operasi pada Fungsi Beberapa Fungsi Khusus Limit dan Limit

Lebih terperinci

Sistem Bilangan Riil. Pendahuluan

Sistem Bilangan Riil. Pendahuluan Sistem Bilangan Riil Pendahuluan Kalkulus didasarkan pada sistem bilangan riil dan sifat-sifatnya. Sistem bilangan riil adalah himpunan bilangan riil yang disertai operasi penjumlahan dan perkalian sehingga

Lebih terperinci

BIMBINGAN BELAJAR & KONSULTASI PENDIDIKAN SERI : MATEMATIKA SMA EKSPONEN. MARZAN NURJANAH, S.Pd.

BIMBINGAN BELAJAR & KONSULTASI PENDIDIKAN SERI : MATEMATIKA SMA EKSPONEN. MARZAN NURJANAH, S.Pd. BIMBINGAN BELAJAR & KONSULTASI PENDIDIKAN SERI : MATEMATIKA SMA EKSPONEN MARZAN NURJANAH, S.Pd. Agenda Pengertian dan Sifat Eksponen Persamaan Eksponen Pertidaksamaan Eksponen Latihan Soal Agenda Pengertian

Lebih terperinci

A. DEFINISI DAN BENTUK UMUM SISTEM PERSAMAAN LINEAR KUADRAT

A. DEFINISI DAN BENTUK UMUM SISTEM PERSAMAAN LINEAR KUADRAT K-13 Kelas X matematika PEMINATAN SISTEM PERSAMAAN LINEAR KUADRAT TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi dan bentuk umum sistem

Lebih terperinci

Matematika: Persamaan Kuadrat 11/22/2011 PERSAMAAN KUADRAT. Oleh Syawaludin A. Harahap, MSc

Matematika: Persamaan Kuadrat 11/22/2011 PERSAMAAN KUADRAT. Oleh Syawaludin A. Harahap, MSc Matematika: Persamaan Kuadrat //0 MATA KULIAH : MATEMATIKA KODE MATA KULIAH : UNM0.0 SKS : (-) ) PERSAMAAN KUADRAT Oleh Syawaludin A. Harahap, MSc UNIVERSITAS PADJADJARAN FAKULTAS PERIKANAN DAN ILMU KELAUTAN

Lebih terperinci

Kita mungkin akan kecewa jika gagal, tapi kita telah gagal bila kita tidak mencoba. (Beverly Sills)

Kita mungkin akan kecewa jika gagal, tapi kita telah gagal bila kita tidak mencoba. (Beverly Sills) http://meetabied.wordpress.com Matematika X Semester SMAN Bone-Bone Kita mungkin akan kecewa jika gagal, tapi kita telah gagal bila kita tidak mencoba. (Beverly Sills) [BAB 2 PERSAMAAN, PERTIDAKSAMAAN

Lebih terperinci

Bagian 1 Sistem Bilangan

Bagian 1 Sistem Bilangan Bagian 1 Sistem Bilangan Dalam bagian 1 Sistem Bilangan kita akan mempelajari berbagai jenis bilangan, pemakaian tanda persamaan dan pertidaksamaan, menggambarkan himpunan penyelesaian pada selang bilangan,

Lebih terperinci

Catatan Kuliah MA1123 Kalkulus Elementer I

Catatan Kuliah MA1123 Kalkulus Elementer I Catatan Kuliah MA1123 Kalkulus Elementer I Oleh Hendra Gunawan, Ph.D. Departemen Matematika ITB Sasaran Belajar Setelah mempelajari materi Kalkulus Elementer I, mahasiswa diharapkan memiliki (terutama):

Lebih terperinci

LOGO MAM 4121 KALKULUS 1. Dr. Wuryansari Muharini K.

LOGO MAM 4121 KALKULUS 1. Dr. Wuryansari Muharini K. LOGO MAM 4121 KALKULUS 1 Dr. Wuryansari Muharini K. BAB I. PENDAHULUAN SISTEM BILANGAN REAL, NOTASI SELANG, dan NILAI MUTLAK PERTAKSAMAAN SISTEM KOORDINAT GRAFIK PERSAMAAN SEDERHANA www.themegallery.com

Lebih terperinci

Modul Matematika 2012

Modul Matematika 2012 Modul Matematika MINGGU V Pokok Bahasan : Fungsi Non Linier Sub Pokok Bahasan :. Pendahuluan. Fungsi kuadrat 3. Fungsi pangkat tiga. Fungsi Rasional 5. Lingkaran 6. Ellips Tujuan Instruksional Umum : Agar

Lebih terperinci

PERSAMAAN & PERTIDAKSAMAAN

PERSAMAAN & PERTIDAKSAMAAN PERSAMAAN & PERTIDAKSAMAAN PERTEMUAN III Nur Edy, PhD. Tujuan Mengaplikasikan konsep persamaan dan pertidaksamaan Pokok Bahasan: Persamaan (Minggu 3 dan 4) Pertidaksamaan (Minggu 3 dan 4) Harga mutlak

Lebih terperinci

03/08/2015. Sistem Bilangan Riil. Simbol-Simbol dalam Matematikaa

03/08/2015. Sistem Bilangan Riil. Simbol-Simbol dalam Matematikaa 0/08/015 Sistem Bilangan Riil Simbol-Simbol dalam Matematikaa 1 0/08/015 Simbol-Simbol dalam Matematikaa Simbol-Simbol dalam Matematikaa 4 0/08/015 Simbol-Simbol dalam Matematikaa 5 Sistem bilangan N :

Lebih terperinci

BAHAN AJAR MATEMATIKA WAJIB KELAS X MATERI POKOK: PERTIDAKSAMAAN RASIONAL DAN IRASIONAL

BAHAN AJAR MATEMATIKA WAJIB KELAS X MATERI POKOK: PERTIDAKSAMAAN RASIONAL DAN IRASIONAL BAHAN AJAR MATEMATIKA WAJIB KELAS X MATERI POKOK: PERTIDAKSAMAAN RASIONAL DAN IRASIONAL A. Pertidaksamaan Rasional Pada sistem bilangan, terdapat dua jenis bilangan yaitu bilangan real dan imajiner. Jika

Lebih terperinci

LEMBAR AKTIVITAS SISWA PERSAMAAN DAN PERTIDAKSAMAAN NILAI MUTLAK

LEMBAR AKTIVITAS SISWA PERSAMAAN DAN PERTIDAKSAMAAN NILAI MUTLAK Nama Siswa LEMBAR AKTIVITAS SISWA PERSAMAAN DAN PERTIDAKSAMAAN NILAI MUTLAK : Kelas : KOMPETENSI DASAR: 3.2 Mendeskripsikan dan menganalisis konsep nilai mutlak dalam persamaan dan pertidaksamaan serta

Lebih terperinci

PERTIDAKSAMAAN RASIONAL. Tujuan Pembelajaran

PERTIDAKSAMAAN RASIONAL. Tujuan Pembelajaran Kurikulum 1 Kelas matematika PEMINATAN PERTIDAKSAMAAN RASIONAL Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi pertidaksamaan rasional..

Lebih terperinci

Aljabar 1. Modul 1 PENDAHULUAN

Aljabar 1. Modul 1 PENDAHULUAN Modul 1 Aljabar 1 Drs. H. Karso, M.Pd. PENDAHULUAN M odul yang sekarang Anda pelajari adalah modul yang pertama dari mata kuliah Materi Kurikuler Matematika SMA. Materi-materi yang disajikan dalam modul

Lebih terperinci

MATEMATIKA EKONOMI 1 HIMPUNAN BILANGAN. Dosen : Fitri Yulianti, SP. MSi

MATEMATIKA EKONOMI 1 HIMPUNAN BILANGAN. Dosen : Fitri Yulianti, SP. MSi MATEMATIKA EKONOMI 1 HIMPUNAN BILANGAN Dosen : Fitri Yulianti, SP. MSi Skema Himpunan Kompleks Real Rasional Bulat Cacah Asli Genap Ganjil Prima Komposit Nol Bulat Negatif Pecahan Irasional Imajiner Pengertian

Lebih terperinci

http://meetabied.wordpress.com Matematika X Semester 1 SMAN 1 Bone-Bone Kita dibentuk oleh sesuatu yang kita lakukan berulang kali. Keunggulan, bukan hasil dari satu tindakan, melainkan dari kebiasaan.

Lebih terperinci

Matematika Proyek Perintis I Tahun 1979

Matematika Proyek Perintis I Tahun 1979 Matematika Proyek Perintis I Tahun 979 MA-79-0 Irisan himpunan : A = { x x < } dan himpunan B = { x < x < 8 } ialah himpunan A. { x x < 8 } { x x < } { x < x < 8 } { x < x < } { x < x } MA-79-0 Apabila

Lebih terperinci

A. Kajian ulang tentang fungsi Pada gambar di bawah ini diberikan diagram panah suatu relasi dari himpunan

A. Kajian ulang tentang fungsi Pada gambar di bawah ini diberikan diagram panah suatu relasi dari himpunan MODUL MATEMATIKA UNTUK SMA istiyanto.com Mari Berbagi Ilmu Dengan Yang Lain Pesan soal-soal matematika untuk SD, SMP dan SMA? Soal ulangan harian, ulangan mid, ulangan semester, soal-soal UAN dll. Tulis

Lebih terperinci

Fungsi kuadrat. Hafidh munawir

Fungsi kuadrat. Hafidh munawir Fungsi kuadrat Hafidh munawir Bentuk Umum Persamaan Kuadrat Bentuk umum atau Bentuk Baku persamaan kuadrat adalah: a + b + c = Dengan a,b,c R dan a serta adalah peubah (variabel) a merupakan koefisien

Lebih terperinci

BAB 2 PERSAMAAN DAN PERTIDAKSAMAAN LINEAR

BAB 2 PERSAMAAN DAN PERTIDAKSAMAAN LINEAR BAB 2 PERSAMAAN DAN PERTIDAKSAMAAN LINEAR MATERI A. Persamaan dan Pertidaksamaan Nilai Mutlak A. PERSAMAAN DAN PERTIDAKSAMAAN YANG MEMUAT NILAI MUTLAK Dalam matematika, sesuatu yang nilainya selalu positif

Lebih terperinci

PERSAMAAN & SISTEM PERSAMAAN LINEAR

PERSAMAAN & SISTEM PERSAMAAN LINEAR PERSAMAAN & SISTEM PERSAMAAN LINEAR Persamaan Sistem Persamaan Linear DEFINISI PERSAMAAN Persamaan adalah kalimat matematika terbuka yang memuat hubungan sama dengan. Sedangkan kalimat matematika tertutup

Lebih terperinci

KELAS XI PROGRAM KEAHLIAN : BISNIS DAN MANAJEMEN & PARIWISATA SMK NEGERI 1 SURABAYA. BY : Drs. Abd. Salam, MM

KELAS XI PROGRAM KEAHLIAN : BISNIS DAN MANAJEMEN & PARIWISATA SMK NEGERI 1 SURABAYA. BY : Drs. Abd. Salam, MM KELAS XI PROGRAM KEAHLIAN : BISNIS DAN MANAJEMEN & PARIWISATA SMK NEGERI 1 SURABAYA BAHAN AJAR FUNGSI LINIER & KUADRAT SMK NEGERI 1 SURABAYA Halaman 1 BAB FUNGSI A. FUNGSI DAN RELASI Topik penting yang

Lebih terperinci

Sistem Bilangan Riil

Sistem Bilangan Riil Sistem Bilangan Riil Pendahuluan Kalkulus didasarkan pada sistem bilangan riil dan sifat-sifatnya. Sistem bilangan riil adalah himpunan bilangan riil yang disertai operasi penjumlahan dan perkalian sehingga

Lebih terperinci

1 Sistem Bilangan Real

1 Sistem Bilangan Real Learning Outcome Rencana Pembelajaran Setelah mengikuti proses pembelajaran ini, diharapkan mahasiswa dapat ) Menentukan solusi pertidaksamaan aljabar ) Menyelesaikan pertidaksamaan dengan nilai mutlak

Lebih terperinci

MAT 602 DASAR MATEMATIKA II

MAT 602 DASAR MATEMATIKA II MAT 60 DASAR MATEMATIKA II Disusun Oleh: Dr. St. Budi Waluya, M. Sc Jurusan Pendidikan Matematika Program Pascasarjana Unnes 1 HIMPUNAN 1. Notasi Himpunan. Relasi Himpunan 3. Operasi Himpunan A B : A B

Lebih terperinci

fungsi rasional adalah rasio dari dua polinomial. Secara umum,

fungsi rasional adalah rasio dari dua polinomial. Secara umum, fungsi rasional adalah rasio dari dua polinomial. Secara umum, Fungsi Rasional Fungsi rasional adalah fungsi yang memiliki bentuk Dengan p dan d merupakan polinomial dan d(x) 0. Domain dari V(x) adalah

Lebih terperinci

MBS - DTA. Sucipto UNTUK KALANGAN SENDIRI. SMK Muhammadiyah 3 Singosari

MBS - DTA. Sucipto UNTUK KALANGAN SENDIRI. SMK Muhammadiyah 3 Singosari MBS - DTA Sucipto UNTUK KALANGAN SENDIRI SMK Muhammadiyah Singosari SERI : MBS-DTA FUNGSI STANDAR KOMPETENSI Siswa mampu memecahkan masalah yang berkaitan dengan fungsi, persamaan fungsi linear dan fungsi

Lebih terperinci

SISTEM BILANGAN REAL. 1. Sistem Bilangan Real. Terlebih dahulu perhatikan diagram berikut: Bilangan. Bilangan Rasional. Bilangan Irasional

SISTEM BILANGAN REAL. 1. Sistem Bilangan Real. Terlebih dahulu perhatikan diagram berikut: Bilangan. Bilangan Rasional. Bilangan Irasional SISTEM BILANGAN REAL Sebelum membahas tentag konsep sistem bilangan real, terlebih dahulu ingat kembali tentang konsep himpunan. Konsep dasar dalam matematika adalah berkaitan dengan himpunan atau kelas

Lebih terperinci

Sistem PERSAMAAN dan PERTIDAKSAMAAN linier

Sistem PERSAMAAN dan PERTIDAKSAMAAN linier Materi W4a Sistem PERSAMAAN dan PERTIDAKSAMAAN linier Kelas X, Semester 1 A. Sistem Persamaan Linier dengan Dua Variabel www.yudarwi.com A. Sistem Persamaan Linier dengan dua Variabel Bentuk umum : ax

Lebih terperinci

KALKULUS BAB I. PENDAHULUAN DEPARTEMEN TEKNIK KIMIA

KALKULUS BAB I. PENDAHULUAN DEPARTEMEN TEKNIK KIMIA KALKULUS BAB I. PENDAHULUAN DEPARTEMEN TEKNIK KIMIA BAB I Bilangan Real dan Notasi Selang Pertaksamaan Nilai Mutlak Sistem Koordinat Cartesius dan Grafik Persamaan Bilangan Real dan Notasi Selang Bilangan

Lebih terperinci

BAB I PERTIDAKSAMAAN RASIONAL, IRASIONAL & MUTLAK

BAB I PERTIDAKSAMAAN RASIONAL, IRASIONAL & MUTLAK Matematika Peminatan SMA kelas X Kurikulum 2013 BAB I PERTIDAKSAMAAN RASIONAL, IRASIONAL & MUTLAK I. Pertidaksamaan Rasional (Bentuk Pecahan) A. Pengertian Secara umum, terdapat empat macam bentuk umum

Lebih terperinci

PERSAMAAN KUADRAT. . rumus 1. Ada beberapa bentuk khusus persamaan kuadrat yaitu : : persamaan kuadrat murni

PERSAMAAN KUADRAT. . rumus 1. Ada beberapa bentuk khusus persamaan kuadrat yaitu : : persamaan kuadrat murni A. Persamaan Kuadrat PERSAMAAN KUARAT Persamaan kuadrat adalah suatu persamaan yang variabelnya mempunyai pangkat tertinggi sama dengan. Bentuk baku persamaan kuadrat adalah dalam adalah : a + b + c 0.

Lebih terperinci

BAB VI FUNGSI KUADRAT (PARABOLA) a < 0 dan D = 0 a < 0 dan D < 0. a < 0 0 x 0 x

BAB VI FUNGSI KUADRAT (PARABOLA) a < 0 dan D = 0 a < 0 dan D < 0. a < 0 0 x 0 x BAB VI FUNGSI KUADRAT (PARABOLA) Secara umum, persamaan kuadrat dituliskan sebagai ax 2 + bx + c = 0 atau dalam bentuk fungsi dituliskan sebagai f(x) = ax 2 + bx + c. Sifat matematis dari persamaan kuadrat

Lebih terperinci

SILABUS. Kegiatan Pembelajaran Teknik. Tugas individu.

SILABUS. Kegiatan Pembelajaran Teknik. Tugas individu. SILABUS NAMA SEKOLAH : MATA PELAJARAN : Matematika KELAS : X STANDAR KOMPETENSI : Memecahkan masalah berkaitan dengan konsep operasi bilangan real. KODE KOMPETENSI : ALOKASI WAKTU : 57 x 45 Kompetensi

Lebih terperinci

PEMBINAAN TAHAP I CALON SISWA INVITATIONAL WORLD YOUTH MATHEMATICS INTERCITY COMPETITION (IWYMIC) 2010 MODUL ALJABAR

PEMBINAAN TAHAP I CALON SISWA INVITATIONAL WORLD YOUTH MATHEMATICS INTERCITY COMPETITION (IWYMIC) 2010 MODUL ALJABAR PEMBINAAN TAHAP I CALON SISWA INVITATIONAL WORLD YOUTH MATHEMATICS INTERCITY COMPETITION (IWYMIC) 2010 MODUL ALJABAR DIREKTORAT JENDERAL MANAJEMEN PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT PEMBINAAN SMP

Lebih terperinci

sama dengan p q. Perhatikan tabel berikut. p q B B S S B S S B S S B B S S S B B S B S S S S B B S B B

sama dengan p q. Perhatikan tabel berikut. p q B B S S B S S B S S B B S S S B B S B S S S S B B S B B Soal nomor 1, dengan soal sebagai berikut: Jawab : D Pernyataan majemuk pada soal ini adalah suatu disjungsi. Misalkan p: Petani panen beras. q: Harga beras murah., pernyataan di atas dapat dinotasikan

Lebih terperinci

BAB IV PENYAJIAN DATA DAN ANALISIS DATA. A. Deskripsi Buku Ajar Matematika SMA/MA Kelas X yang digunakan di

BAB IV PENYAJIAN DATA DAN ANALISIS DATA. A. Deskripsi Buku Ajar Matematika SMA/MA Kelas X yang digunakan di BAB IV PENYAJIAN DATA DAN ANALISIS DATA A. Deskripsi Buku Ajar Matematika SMA/MA Kelas X yang digunakan di SMA/MA Kecamatan Anjir Muara Berdasarkan BAB III telah diuraikan bahwa penelitian ini bertujuan

Lebih terperinci

B I L A N G A N 1.1 SKEMA DARI HIMPUNAN BILANGAN. Bilangan Kompleks. Bilangan Nyata (Riil) Bilangan Khayal (Imajiner)

B I L A N G A N 1.1 SKEMA DARI HIMPUNAN BILANGAN. Bilangan Kompleks. Bilangan Nyata (Riil) Bilangan Khayal (Imajiner) 1 B I L A N G A N 1.1 SKEMA DARI HIMPUNAN BILANGAN Bilangan Kompleks Bilangan Nyata (Riil) Bilangan Khayal (Imajiner) Bilangan Rasional Bilangan Irrasional Bilangan Pecahan Bilangan Bulat Bilangan Bulat

Lebih terperinci

matematika PEMINATAN Kelas X SISTEM PERTIDAKSAMAAN LINEAR DAN KUADRAT K13 A. Pertidaksamaan Linear B. Daerah Pertidaksamaan Linear

matematika PEMINATAN Kelas X SISTEM PERTIDAKSAMAAN LINEAR DAN KUADRAT K13 A. Pertidaksamaan Linear B. Daerah Pertidaksamaan Linear K13 Kelas matematika PEMINATAN SISTEM PERTIDAKSAMAAN LINEAR DAN KUADRAT Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi pertidaksamaan

Lebih terperinci

BILANGAN MODUL PERKULIAHAN

BILANGAN MODUL PERKULIAHAN MODUL PERKULIAHAN BILANGAN Sistem bilangan real Operasi pada bilangan bulat Operasi pada bilangan pecahan Sifat-sifat bilangan berpangkat Operasi bilangan berpangkat Fakultas Program Studi Tatap Muka Kode

Lebih terperinci

SOAL DAN JAWABAN TENTANG NILAI MUTLAK. Tentukan himpunan penyelesaian dari persamaan nilai Mutlak di bawah ini.

SOAL DAN JAWABAN TENTANG NILAI MUTLAK. Tentukan himpunan penyelesaian dari persamaan nilai Mutlak di bawah ini. SOAL DAN JAWABAN TENTANG NILAI MUTLAK Tentukan himpunan penyelesaian dari persamaan nilai Mutlak di bawah ini. Jawaban: Bentuk-Bentuk persamaan nilai mutlak di atas dapat diselesaikan sebagai berikut.

Lebih terperinci

Silabus. 1 Sistem Bilangan Real. 2 Fungsi Real. 3 Limit dan Kekontinuan. Kalkulus 1. Arrival Rince Putri. Sistem Bilangan Real.

Silabus. 1 Sistem Bilangan Real. 2 Fungsi Real. 3 Limit dan Kekontinuan. Kalkulus 1. Arrival Rince Putri. Sistem Bilangan Real. Silabus 1 2 3 Referensi E. J. Purcell, D. Varberg, and S. E. Rigdon, Kalkulus, Jilid 1 Edisi Kedelapan, Erlangga, 2003. Penilaian 1 Ujian Tengah Semester (UTS) : 30 2 Ujian Akhir Semester (UAS) : 20 3

Lebih terperinci

Revisi K13 Antiremed Kelas 10 Matematika Wajib

Revisi K13 Antiremed Kelas 10 Matematika Wajib Revisi K Antiremed Kelas 0 Matematika Wajib Persamaan Kuadrat - Latihan Soal Pilihan Ganda Doc. Name: RKAR0MATWJB00 Version : 06-0 halaman 0. Bentuk faktor persamaan - - = 0 ( + )( - ) = 0 ( - )( + ) =

Lebih terperinci

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a Soal - Soal UM UGM. Soal Matematika Dasar UM UGM 00. Jika x = 3 maka + 3 log 4 x =... a. b. c. d. e.. Jika x+y log = a dan x y log 8 = b dengan 0 < y < x maka 4 log (x y ) =... a. a + 3b ab b. a + b ab

Lebih terperinci

Modul Matrikulasi, SMA Labschool Kebayoran 2017 Page 1

Modul Matrikulasi, SMA Labschool Kebayoran 2017 Page 1 Modul : Grafik Fungsi Kuadrat Teori: Bagian bagian grafik fungsi kuadrat = a + b + c, a 0 Grafik fungsi kuadrat Titik ekstrim fungsi kuadrat = f () = a + b + c D = 0 Memiliki dua akar kembar Grafik fungsi

Lebih terperinci

SISTEM BILANGAN RIIL DAN FUNGSI

SISTEM BILANGAN RIIL DAN FUNGSI SISTEM BILANGAN RIIL DAN FUNGSI Matematika Juni 2016 Dosen : Dadang Amir Hamzah MATEMATIKA Juni 2016 1 / 67 Outline 1 Sistem Bilangan Riil Dosen : Dadang Amir Hamzah MATEMATIKA Juni 2016 2 / 67 Outline

Lebih terperinci

Pembahasan Matematika IPA SIMAK UI 2012 Kode 521. Oleh Tutur Widodo. 1. Misalkan x dan y bilangan bulat yang memenuhi sistem persamaan berikut :

Pembahasan Matematika IPA SIMAK UI 2012 Kode 521. Oleh Tutur Widodo. 1. Misalkan x dan y bilangan bulat yang memenuhi sistem persamaan berikut : Tutur Widodo Pembahasan Matematika IPA SIMAK UI 0 Pembahasan Matematika IPA SIMAK UI 0 Kode 5 Oleh Tutur Widodo. Misalkan x dan y bilangan bulat yang memenuhi sistem persamaan berikut : maka nilai x y

Lebih terperinci

matematika Wajib Kelas X PERSAMAAN LINEAR SATU VARIABEL K-13 A. DEFINISI PERSAMAAN LINEAR SATU VARIABEL

matematika Wajib Kelas X PERSAMAAN LINEAR SATU VARIABEL K-13 A. DEFINISI PERSAMAAN LINEAR SATU VARIABEL K-3 Kelas X matematika Wajib PERSAMAAN LINEAR SATU VARIABEL TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Memahami definisi dan solusi persamaan linear

Lebih terperinci

Soal-Soal dan Pembahasan SBMPTN - SNMPTN Matematika Dasar Tahun Pelajaran 2010/2011

Soal-Soal dan Pembahasan SBMPTN - SNMPTN Matematika Dasar Tahun Pelajaran 2010/2011 Soal-Soal dan Pembahasan SBMPTN - SNMPTN Matematika Dasar Tahun Pelajaran 2010/2011 Tanggal Ujian: 31 Mei 2011 1. Jika 6(3 40 ) ( 2 log a) + 3 41 ( 2 log a) = 3 43, maka nilai a adalah... A. B. C. 4 D.

Lebih terperinci

A. Persamaan Kuadrat dan Fungsi Kuadrat. Salah satu akar persamaan kuadrat ( a ) (3a ) 3a 0 adalah, maka akar lainna adalah. Nilai m ang memenuhi agar persamaan kuadrat ( m ) (m ) ( m ) 0 mempunai dua

Lebih terperinci