I. PETUNJUK: Untuk soal nomor 1 sampai dengan nomor, pilihlah salah satu jawaban yang paling tepat!

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "I. PETUNJUK: Untuk soal nomor 1 sampai dengan nomor, pilihlah salah satu jawaban yang paling tepat!"

Transkripsi

1 I. PETUNJUK: Untuk soal nomor sampai dengan nomor, pilihlah salah satu jawaban yang paling tepat!. Persamaan ( p + ) x ( p + ) x + ( p ) = 0, p, merupakan persamaan kuadrat dalam x untuk nilai p... p c. p e. p 0 p d. p. Salah satu akar persamaan kuadrat ax + 5x = 0 adalah. Nilai akar yang lain adalah... c. e. - - d.. Nilai k positif agar persamaan kuadrat 4x + 4( k ) x + 5 = 0 mempunyai akar kembar adalah... c. 5 e. 7 4 d Persamaan kuadrat x + px + p = 0, p mempunyai akar kembar. Akar kembar itu adalah... - c. 4 e. 0 atau 4 0 d. 0 atau - 5. Akar-akar persamaan kuadrat ( p ) x p x + (p ) = 0, p adalah α dan β. Jika ( α + β ) = + α β, maka nilai p sama dengan... c. atau e. atau 4 d. 4

2 6. Titik puncak dari grafik fungsi kuadrat f ( x) = x 6x + 4 adalah..., c., e., 4, d., 4 7. Tinggi h meter dari sebuah peluru yang ditembakkan vertikal ke atas setelah t detik dinyatakan dengan rumus: h( t) = 45t 5t Tinggi maksimum yang dicapai peluru itu sama dengan... 99,5 meter c. 0,5 meter e. 0,5 meter 00,5 meter d. 0,5 meter 8. Ordinat titik balik sebuah fungsi kuadrat sama dengan dicapai untuk absis x =. Fungsi kuadrat itu bernilai nol untuk x =. Persamaan grafik fungsi kuadrat itu adalah... y = ( x + x ) d. y = ( x x + ) y = ( x + x + ) e. y = ( x x + ) c. y = ( x x ) 9. Himpunan penyelesaian sistem persamaan linear di bawah ini mempunyai anggota, kecuali... x + y = x + y = x y = c. e. x y = 4x + y = 4 4x y = 6 x + y = x y = d. 4x + y = 4x y = 6 0. Himpunan penyelesaian sistem persaman linear dua variabel = x y = x y adalah...

3 {(, 5)} c. {(, 5)} e. {(, 5)} {( 5, )} d. {( 5, )}. Parabola y = ax + bx + c melalui titik-titik (, ), (, 8), dan (0, 5). Pernyataan berikut ini yang benar bagi parabola itu adalah... Titik puncaknya di (, ) Persamaan sumbu simetrinya x = c. Tidak memotong maupun menyinggung sumbu x d. Memotong sumbu x di (, 0) e. Melalui titik (, ). Jumlah dua bilangan sama dengan 6 dan jumlah kuadratnya sama dengan 78. Selisih dari kedua bilangan itu sama dengan... 6 atau -6 c. 0 atau -0 e. 4 atau -4 8 atau -8 d. atau -. Sistem persamaan kuadrat dan kuadrat y = x + x + y = x + x a tepat mempunyai satu anggota dalam himpunan penyelesaianny Himpunan penyelesaiannya itu adalah..., 4 c. {( 0,)} e. {(, ) }, d. {(, 5) } 4 4. Persamaan x (m + ) x + = 0, m mempunyai akar-akar yang berlawanan, maka nilai m adalah... - c. e. d.

4 5. Hasil kali akar-akar persamaan kuadrat 6x x + = 0 adalah... c. e. - d. 6. Persamaan kuadrat x + 4x + ( a 4) = 0, a mempunyai akar-akar x. Jika x =, maka nilai a adalah... x c. 4 e. 8 d Persamaan kuadrat yang akar-akarnya dua kali dari akar-akar persamaan kuadrat x + 8x + 0 = 0 adalah... x + 6x + 0 = 0 c. x + 6x + 80 = 0 e. x + 6x + 60 = 0 x + 6x + 40 = 0 d. x + 6x + 0 = 0 8. Akar-akar persamaan x + ax 4 = 0, a adalah x. x x x + x 8a maka nilai a =... = c. 6 e. 0 4 d. 8 Jika 9. Jika x merupakan akar-akar persamaan x 4x = 0, maka x =... + x c d. 9 e. 9 4

5 III. Untuk soal nomor 4 sampai dengan 7, kerjakan dengan singkat dan jelas! 4. Persamaan kuadrat x 4x 6 = 0 mempunyai akar-akar α dan β. Susunlah persamaan kuadrat baru yang akar-akarnya ( α +) dan ( β +). 5. Grafik fungsi kuadrat memotong sumbu x di titik-titik A (,0 ) dan B (, 0). Grafik fungsi kuadrat itu melaui titik C (, ). Susunlah persamaan grafik fungsi kuadrat itu. 6. Diketahui sistem persamaan linear dua variabel ( a b) x + ay = ax + ( a + b) y = dengan a, b dan a 0, b 0. Carilah himpunan penyelesaian sistem persamaan linear itu (nyatakan dalam a dan b). 7. Diketahui sistem persamaan linear dan kudrat y = x + a y = x x + 8 Himpunan penyelesaian sistem persamaan itu tepat mempunyai satu anggot a) Carilah nilai b) Carilah himpunan penyelesaianny Ω SELAMAT MENGERJAKAN Ω 5

β α α β SOAL MATEMATIKA UNTUK SMA istiyanto.com Mari Berbagi Ilmu Dengan Yang Lain A. Persamaan Kuadrat dan Fungsi Kuadrat

β α α β SOAL MATEMATIKA UNTUK SMA istiyanto.com Mari Berbagi Ilmu Dengan Yang Lain A. Persamaan Kuadrat dan Fungsi Kuadrat A. Persamaan Kuadrat dan Fungsi Kuadrat 1. Salah satu akar persamaan kuadrat ( a 1) x + (3a 1) x 3a = 0 adalah 1, maka akar lainnya adalah.... Nilai m yang memenuhi agar persamaan kuadrat ( m + 1) x +

Lebih terperinci

2. PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT

2. PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT 2. PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT A. Persamaan Kuadrat 1) Bentuk umum persamaan kuadrat : ax 2 + bx + c =, a 2) Nilai determinan persamaan kuadrat : D = b 2 4ac 3) Akar-akar persamaan kuadrat

Lebih terperinci

PERSAMAAN DAN FUNGSI KUADRAT

PERSAMAAN DAN FUNGSI KUADRAT Materi W2e PERSAMAAN DAN FUNGSI KUADRAT Kelas X, Semester 1 E. Grafik Fungsi Kuadrat www.yudarwi.com E. Grafik Fungsi Kuadrat Grafik fungsi kuadrat f(x) = ax 2 + bx + c dapat dilukis dengan langkah-langkah

Lebih terperinci

2. FUNGSI KUADRAT. , D = b 2 4ac

2. FUNGSI KUADRAT. , D = b 2 4ac . FUNGSI KUADRAT A. Persamaan Kuadrat 1) Bentuk umum persamaan kuadrat : ax + bx + c =, a ) Akar akar persamaan kuadrat dapat dicari dengan memfaktorkan ataupun dengan rumus: x 1, b D, D = b 4ac a 3) Jumlah,

Lebih terperinci

A. MENYELESAIKAN PERSAMAAN KUADRAT

A. MENYELESAIKAN PERSAMAAN KUADRAT A. MENYELESAIKAN PERSAMAAN KUADRAT STANDAR KOMPETENSI Memecahkan masalah yang berkaitan dengan fungsi, persamaan dan fungsi kuadrat serta pertidaksamaan kuadrat KOMPETENSI DASAR Menggunakan sifat dan aturan

Lebih terperinci

MATERI PRASYARAT. ke y= f(x) =ax2 + bx +c

MATERI PRASYARAT. ke y= f(x) =ax2 + bx +c 1 MATERI PRASYARAT A. Fungsi Kuadrat Bentuk umum : y= f(x) = ax 2 + bx +c dengan a 0. Langkah-langkah dalam menggambar grafik fungsi kuadrat y= f(x) = ax 2 + bx +c 1. Tentukan titik potong dengan sumbu

Lebih terperinci

1. Akar-akar persamaan kuadrat 5x 2 3x + 1 = 0 adalah

1. Akar-akar persamaan kuadrat 5x 2 3x + 1 = 0 adalah 1. Akar-akar persamaan kuadrat 5x 3x + 1 0 adalah A. imajiner B. kompleks C. nyata, rasional dan sama D. nyata dan rasional E. nyata, rasional dan berlainan. NOTE : D > 0, memiliki akar-akar riil dan berbeda

Lebih terperinci

Kita mungkin akan kecewa jika gagal, tapi kita telah gagal bila kita tidak mencoba. (Beverly Sills)

Kita mungkin akan kecewa jika gagal, tapi kita telah gagal bila kita tidak mencoba. (Beverly Sills) http://meetabied.wordpress.com Matematika X Semester SMAN Bone-Bone Kita mungkin akan kecewa jika gagal, tapi kita telah gagal bila kita tidak mencoba. (Beverly Sills) [BAB 2 PERSAMAAN, PERTIDAKSAMAAN

Lebih terperinci

King s Learning Be Smart Without Limits. (4) Grafik Fungsi kuadrat: (3) Titik lain (jika diperlukan) X Y. (4) Grafik Fungsi kuadrat:

King s Learning Be Smart Without Limits. (4) Grafik Fungsi kuadrat: (3) Titik lain (jika diperlukan) X Y. (4) Grafik Fungsi kuadrat: Nama Siswa : LEMBAR AKTIVITAS SISWA FUNGSI KUADRAT - Hubungkan titik-titik tersebut sehingga terbentuk kurva atau grafik yang mulus. Kelas : A. FUNGSI KUADRAT Bentuk umum fungsi kuadrat adalah: y = f(x)

Lebih terperinci

A. Persamaan Kuadrat dan Fungsi Kuadrat. Salah satu akar persamaan kuadrat ( a ) (3a ) 3a 0 adalah, maka akar lainna adalah. Nilai m ang memenuhi agar persamaan kuadrat ( m ) (m ) ( m ) 0 mempunai dua

Lebih terperinci

PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT

PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT LA - WB (Lembar Aktivitas Warga Belajar) PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X Created By Ita Yuliana

Lebih terperinci

fungsi Dan Grafik fungsi

fungsi Dan Grafik fungsi fungsi Dan Grafik fungsi Suatu fungsi adalah pemadanan dua himpunan tidak kosong dengan pasangan terurut (x, y) dimana tidak terdapat elemen kedua yang berbeda. Fungsi (pemetaan) himpunan A ke himpunan

Lebih terperinci

BAB II PERSAMAAN KUADRAT DAN FUNGSI KUADRAT

BAB II PERSAMAAN KUADRAT DAN FUNGSI KUADRAT BAB II PERSAMAAN KUADRAT DAN FUNGSI KUADRAT 1. Menentukan koefisien persamaan kuadrat 2. Jenis-jenis akar persamaan kuadrat 3. Menyusun persamaan kuadrat yang akarnya diketahui 4. Fungsi kuadrat dan grafiknya

Lebih terperinci

SOAL-SOAL LATIHAN FUNGSI KUADRAT UJIAN NASIONAL

SOAL-SOAL LATIHAN FUNGSI KUADRAT UJIAN NASIONAL SAL-SAL LATIHAN FUNGSI KUADRAT UJIAN NASINAL Peserta didik memiliki kemampuan memahami konsep pada topik fungsi kuadrat. Peserta didik memilki kemampuan mengaplikan konsep kalkulus dalam masalah kontekstual

Lebih terperinci

MATEMATIKA DASAR TAHUN 1987

MATEMATIKA DASAR TAHUN 1987 MATEMATIKA DASAR TAHUN 987 MD-87-0 Garis singgung pada kurva y di titik potong nya dengan sumbu yang absisnya positif mempunyai gradien 0 MD-87-0 Titik potong garis y + dengan parabola y + ialah P (5,

Lebih terperinci

Persamaan dan Pertidaksamaan Linear

Persamaan dan Pertidaksamaan Linear MATERI POKOK Persamaan dan Pertidaksamaan Linear MATERI BAHASAN : A. Persamaan Linear B. Pertidaksamaan Linear Modul.MTK X 0 Kalimat terbuka adalah kalimat matematika yang belum dapat ditentukan nilai

Lebih terperinci

UJIAN SARINGAN MASUK PERGURUAN TINGGI NEGERI MATEMATIKA DASAR FUNGSI KUADRAT. A. 1 B. 2 C. 3 D. 5 E. 7 Solusi: [D]

UJIAN SARINGAN MASUK PERGURUAN TINGGI NEGERI MATEMATIKA DASAR FUNGSI KUADRAT. A. 1 B. 2 C. 3 D. 5 E. 7 Solusi: [D] UJIAN SARINGAN MASUK PERGURUAN TINGGI NEGERI MATEMATIKA DASAR FUNGSI KUADRAT. SBMPTN MADAS 4 Jika fungsi f x a x x c menyinggung sumbu x di x, maka a A. B. C. D. 5 E. 7 Solusi: [D] 6 f x a x x c f ' x

Lebih terperinci

FUNGSI. Riri Irawati, M.Kom 3 sks

FUNGSI. Riri Irawati, M.Kom 3 sks FUNGSI Riri Irawati, M.Kom 3 sks Agenda 1. Sistem Koordinat Kartesius. Garis Lurus 3. Grafik persamaan Tujuan Agar mahasiswa dapat : Menggunakan sistem koordinat untuk menentukan titik-titik dan kurva-kurva.

Lebih terperinci

KELAS XI PROGRAM KEAHLIAN : BISNIS DAN MANAJEMEN & PARIWISATA SMK NEGERI 1 SURABAYA. BY : Drs. Abd. Salam, MM

KELAS XI PROGRAM KEAHLIAN : BISNIS DAN MANAJEMEN & PARIWISATA SMK NEGERI 1 SURABAYA. BY : Drs. Abd. Salam, MM KELAS XI PROGRAM KEAHLIAN : BISNIS DAN MANAJEMEN & PARIWISATA SMK NEGERI 1 SURABAYA BAHAN AJAR FUNGSI LINIER & KUADRAT SMK NEGERI 1 SURABAYA Halaman 1 BAB FUNGSI A. FUNGSI DAN RELASI Topik penting yang

Lebih terperinci

K13 Revisi Antiremed Kelas 10 Matematika Wajib

K13 Revisi Antiremed Kelas 10 Matematika Wajib K Revisi Antiremed Kelas 0 Matematika Wajib Fungsi Kuadrat - Latihan Soal Doc. Name: RKAR0MATWJB050 Version : 06-0 halaman 0. Ordinat titik balik grafik fungsi arabola y x x (5 9) adalah 5, > 0. Absis

Lebih terperinci

Persamaan dan pertidaksamaan kuadrat BAB II

Persamaan dan pertidaksamaan kuadrat BAB II BAB II Misalkan a,b,c Є R dan a 0 maka persamaan yang berbentuk dinamakan persamaan kuadrat dalam peubah x. Dalam persamaan kuadrat ax bx c 0, a adalah koefisien dari x, b adalah koefisien dari x dan c

Lebih terperinci

FUNGSI. A. Relasi dan Fungsi Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii)

FUNGSI. A. Relasi dan Fungsi Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) FUNGSI A. Relasi dan Fungsi Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) Relasi himpunan A ke himpunan B adalah relasi yang memasangkan/mengkawankan/mengkorepodensikan

Lebih terperinci

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a Soal - Soal UM UGM. Soal Matematika Dasar UM UGM 00. Jika x = 3 maka + 3 log 4 x =... a. b. c. d. e.. Jika x+y log = a dan x y log 8 = b dengan 0 < y < x maka 4 log (x y ) =... a. a + 3b ab b. a + b ab

Lebih terperinci

http://meetabied.wordpress.com Matematika X Semester SMAN Bone-Bone Jika ingin mengenai sasaran, kita harus membidik sedikit di atas sasaran tersebut karena setiap panah yang meluncur akan merasakan gaya

Lebih terperinci

Sistem PERSAMAAN dan PERTIDAKSAMAAN linier

Sistem PERSAMAAN dan PERTIDAKSAMAAN linier Materi W4a Sistem PERSAMAAN dan PERTIDAKSAMAAN linier Kelas X, Semester 1 A. Sistem Persamaan Linier dengan Dua Variabel www.yudarwi.com A. Sistem Persamaan Linier dengan dua Variabel Bentuk umum : ax

Lebih terperinci

Hand out_x_fungsi kuadrat

Hand out_x_fungsi kuadrat STANDAR KOMPETENSI: Memecahkan masalah yang berkaitan dengan fungsi, persamaan dan fungsi kuadrat serta pertidaksamaan kuadrat. KOMPETENSI DASAR: Menggambar grafik fungsi aljabar sederhana dan fungsi kuadrat

Lebih terperinci

Modul Matrikulasi, SMA Labschool Kebayoran 2017 Page 1

Modul Matrikulasi, SMA Labschool Kebayoran 2017 Page 1 Modul : Grafik Fungsi Kuadrat Teori: Bagian bagian grafik fungsi kuadrat = a + b + c, a 0 Grafik fungsi kuadrat Titik ekstrim fungsi kuadrat = f () = a + b + c D = 0 Memiliki dua akar kembar Grafik fungsi

Lebih terperinci

Matematika Ekonomi KUADRAT DAN FUNGSI RASIONAL (FUNGSI PECAH) GRAFIK FUNGSI KUADRAT BERUPA PARABOLA GRAFIK FUNGSI RASIONAL BERUPA HIPERBOLA

Matematika Ekonomi KUADRAT DAN FUNGSI RASIONAL (FUNGSI PECAH) GRAFIK FUNGSI KUADRAT BERUPA PARABOLA GRAFIK FUNGSI RASIONAL BERUPA HIPERBOLA Fungsi Non Linier Diskripsi materi: -Harga ekstrim pada fungsi kuadrat 1 Fungsi non linier FUNGSI LINIER DAPT BERUPA FUNGSI KUADRAT DAN FUNGSI RASIONAL (FUNGSI PECAH) GRAFIK FUNGSI KUADRAT BERUPA PARABOLA

Lebih terperinci

PERSAMAAN KUADRAT. Persamaan. Sistem Persamaan Linear

PERSAMAAN KUADRAT. Persamaan. Sistem Persamaan Linear Persamaan Sistem Persamaan Linear PENGERTIAN Definisi Persamaan kuadrat adalah kalimat matematika terbuka yang memuat hubungan sama dengan yang pangkat tertinggi dari variabelnya adalah 2. Bentuk umum

Lebih terperinci

[BAB 3 SISTEM PERSAMAAN LINEAR]

[BAB 3 SISTEM PERSAMAAN LINEAR] http://meetabied.wordpress.com Matematika X Semester SMAN Bone-Bone Salah satu hadiah indah dari kehidupan adalah tidak ada seorang pun yang bisa dengan tulus berupaya menolong orang lain tanpa menolong

Lebih terperinci

A. DEFINISI DAN BENTUK UMUM SISTEM PERSAMAAN LINEAR KUADRAT

A. DEFINISI DAN BENTUK UMUM SISTEM PERSAMAAN LINEAR KUADRAT K-13 Kelas X matematika PEMINATAN SISTEM PERSAMAAN LINEAR KUADRAT TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi dan bentuk umum sistem

Lebih terperinci

PERSAMAAN GARIS SINGGUNG PARABOLA

PERSAMAAN GARIS SINGGUNG PARABOLA 1 KEGIATAN BELAJAR 11 PERSAMAAN GARIS SINGGUNG PARABOLA Setelah mempelajari kegiatan belajar 11 ini, mahasiswa diharapkan mampu Menentukan Persamaan Garis Singgung Parabola, Titik dan Garis Polar Pada

Lebih terperinci

Bilangan Real. Modul 1 PENDAHULUAN

Bilangan Real. Modul 1 PENDAHULUAN Modul 1 Bilangan Real S PENDAHULUAN Drs. Soemoenar emesta pembicaraan Kalkulus adalah himpunan bilangan real. Jadi jika akan belajar kalkulus harus paham terlebih dahulu tentang bilangan real. Bagaimanakah

Lebih terperinci

MBS - DTA. Sucipto UNTUK KALANGAN SENDIRI. SMK Muhammadiyah 3 Singosari

MBS - DTA. Sucipto UNTUK KALANGAN SENDIRI. SMK Muhammadiyah 3 Singosari MBS - DTA Sucipto UNTUK KALANGAN SENDIRI SMK Muhammadiyah Singosari SERI : MBS-DTA FUNGSI STANDAR KOMPETENSI Siswa mampu memecahkan masalah yang berkaitan dengan fungsi, persamaan fungsi linear dan fungsi

Lebih terperinci

Antiremed Kelas 10 Matematika

Antiremed Kelas 10 Matematika Antiremed Kelas 0 Matematika Persamaan dan Fungsi Kuadrat - Fungsi Kuadrat - Pilihan Ganda Doc. Name: AR0MAT00 Version : 0-07 halaman 0. Ordinat titik balik grafik fungsi arabola y x x (5 9) adalah 5,

Lebih terperinci

SOAL PM MATEMATIKA SMA NEGERI 29 JAKARTA

SOAL PM MATEMATIKA SMA NEGERI 29 JAKARTA SOAL PM MATEMATIKA SMA NEGERI 9 JAKARTA. Dengan merasionalkan penyebut, bentuk sederhana dari 5 5 + 5 4 5 5 e. + 5 6 + 5 adalah. Persamaan x (m + ) x = 0 mempunyai akar-akar yang berlawanan, maka nilai

Lebih terperinci

Materi Fungsi Linear Fungsi Variabel, koefisien, dan konstanta Variabel variabel bebas Koefisien Konstanta 1). Pengertian fungsi linier

Materi Fungsi Linear Fungsi Variabel, koefisien, dan konstanta Variabel variabel bebas Koefisien Konstanta 1). Pengertian fungsi linier Materi Fungsi Linear Admin 8:32:00 PM Duhh akhirnya nongol lagi... kali ini saya akan bahas mengenai pelajaran yang paling disukai oleh hampir seluruh warga dunia :v... MATEMATIKA, ya itu namanya. materi

Lebih terperinci

Soal dan Pembahasan UN Matematika Program IPS tahun 2008

Soal dan Pembahasan UN Matematika Program IPS tahun 2008 Soal dan Pembahasan UN Matematika Program IPS tahun 008. Negasi dari pernyataan Matematika tidak mengasyikan atau membosankan adalah A. Matematika mengasyikan atau membosankan. B. Matematika mengasyikan

Lebih terperinci

Untuk mencari akar-akar dari persamaan kuadrat, dapat menggunakan rumus :

Untuk mencari akar-akar dari persamaan kuadrat, dapat menggunakan rumus : RUMUS-RUMUS PERSAMAAN KUADRAT Bentuk umum: ax 2 + bx + c = 0, a 0 AKAR-AKAR PERSAMAAN KUADRAT Untuk mencari akar-akar dari persamaan kuadrat, dapat menggunakan rumus : X 1.2 = Dengan : D = b 2 4ac, dan

Lebih terperinci

Revisi K13 Antiremed Kelas 10 Matematika Wajib

Revisi K13 Antiremed Kelas 10 Matematika Wajib Revisi K Antiremed Kelas 0 Matematika Wajib Persamaan Kuadrat - Latihan Soal Pilihan Ganda Doc. Name: RKAR0MATWJB00 Version : 06-0 halaman 0. Bentuk faktor persamaan - - = 0 ( + )( - ) = 0 ( - )( + ) =

Lebih terperinci

6 FUNGSI LINEAR DAN FUNGSI

6 FUNGSI LINEAR DAN FUNGSI 6 FUNGSI LINEAR DAN FUNGSI KUADRAT 5.1. Fungsi Linear Pada Bab 5 telah dijelaskan bahwa fungsi linear merupakan fungsi yang variabel bebasnya paling tinggi berpangkat satu. Bentuk umum fungsi linear adalah

Lebih terperinci

FUNGSI KUADRAT. SOAL DAN PEMBAHASAN 3.1 Soal dan pembahasan titik potong Soal titik potong dapat diselesaikan dengan menggunakan konsep 3.

FUNGSI KUADRAT. SOAL DAN PEMBAHASAN 3.1 Soal dan pembahasan titik potong Soal titik potong dapat diselesaikan dengan menggunakan konsep 3. FUNGSI KUADRAT Jenis-jenis soal fungsi kuadrat yang sering diujikan adalah soal-soal tentang : 1. Titik potong 2. Titik puncak 3. Menggambar grafik 4. Menentukan tanda a, b, c dan D 5. Menentukan persamaan

Lebih terperinci

KINEMATIKA. A. Teori Dasar. Besaran besaran dalam kinematika

KINEMATIKA. A. Teori Dasar. Besaran besaran dalam kinematika KINEMATIKA A. Teori Dasar Besaran besaran dalam kinematika Vektor Posisi : adalah vektor yang menyatakan posisi suatu titik dalam koordinat. Pangkalnya di titik pusat koordinat, sedangkan ujungnya pada

Lebih terperinci

sama dengan p q. Perhatikan tabel berikut. p q B B S S B S S B S S B B S S S B B S B S S S S B B S B B

sama dengan p q. Perhatikan tabel berikut. p q B B S S B S S B S S B B S S S B B S B S S S S B B S B B Soal nomor 1, dengan soal sebagai berikut: Jawab : D Pernyataan majemuk pada soal ini adalah suatu disjungsi. Misalkan p: Petani panen beras. q: Harga beras murah., pernyataan di atas dapat dinotasikan

Lebih terperinci

Soal Latihan Matematika

Soal Latihan Matematika Soal Latihan Matematika www.oke.or.id Soal berikut terdiri dari 6 soal Yang merupakan rangkuman dari berbagai latihan, isi dari soal berikut meliputi : Pernyerderhanaan Persamaan grafis akar kuadrat fungsi

Lebih terperinci

III. FUNGSI POLINOMIAL

III. FUNGSI POLINOMIAL III. FUNGSI POLINOMIAL 3. Pendahuluan A. Tujuan Setelah mempelajari bagian ini diharapkan mahasiswa dapat:. menuliskan bentuk umum fungsi polinomial;. menghitung nilai fungsi polinomial; 3. menuliskan

Lebih terperinci

A. Sistem Persamaan Linier dengan dua Variabel

A. Sistem Persamaan Linier dengan dua Variabel Jurnal Materi Umum Peta Konsep Peta Konsep Daftar Hadir MateriA SISTEM PERSAMAAN DAN PERTIDAKSAMAAN LINIER Kelas X, Semester 1 Sistem Persamaan Linier Dua Variabel Tiga Variabel Sistem Pertidaksamaan linier

Lebih terperinci

5 F U N G S I. 1 Matematika Ekonomi

5 F U N G S I. 1 Matematika Ekonomi 5 F U N G S I Pemahaman tentang konsep fungsi sangat penting dalam mempelajari ilmu ekonomi, mengingat kajian ekonomi banyak bekerja dengan fungsi. Fungsi dalam matematika menyatakan suatu hubungan formal

Lebih terperinci

1. Jika f ( x ) = sin² ( 2x + ), maka nilai f ( 0 ) =. a. 2 b. 2 c. 2. Diketahui f(x) = sin³ (3 2x). Turunan pertama fungsi f adalah f (x) =.

1. Jika f ( x ) = sin² ( 2x + ), maka nilai f ( 0 ) =. a. 2 b. 2 c. 2. Diketahui f(x) = sin³ (3 2x). Turunan pertama fungsi f adalah f (x) =. 1. Jika f ( x ) sin² ( 2x + ), maka nilai f ( 0 ). a. 2 b. 2 c. d. e. 2. Diketahui f(x) sin³ (3 2x). Turunan pertama fungsi f adalah f (x). a. 6 sin² (3 2x) cos (3 2x) b. 3 sin² (3 2x) cos (3 2x) c. 2

Lebih terperinci

PERSAMAAN DAN PERTIDAKSAMAAN PERSAMAAN LINEAR

PERSAMAAN DAN PERTIDAKSAMAAN PERSAMAAN LINEAR PERSAMAAN DAN PERTIDAKSAMAAN PERSAMAAN LINEAR Persamaan linear Bentuk umun persamaan linear satu vareabel Ax + b = 0 dengan a,b R ; a 0, x adalah vareabel Contoh: Tentukan penyelesaian dari 4x-8 = 0 Penyelesaian.

Lebih terperinci

Antiremed Kelas 10 Matematika

Antiremed Kelas 10 Matematika Antiremed Kelas 0 Matematika Persamaan Kuadrat - Latihan Soal Pilihan Ganda Doc. Name: KAR0MATWJB080 Version : 0-09 halaman 0. Bentuk faktor persamaan - - = 0 ( + )( - ) = 0 ( - )( + ) = 0 ( - )( + ) =

Lebih terperinci

TEOREMA SISA 1. Nilai Sukubanyak Tugas 1

TEOREMA SISA 1. Nilai Sukubanyak Tugas 1 TEOREMA SISA 1. Nilai Sukubanyak Apa yang dimaksud sukubanyak (polinom)? Ingat kembali bentuk linear seperti 2x + 1 atau bentuk kuadrat 2x 2-3x + 5 dan juga bentuk pangkat tiga 2x 3 x 2 + x 7. Bentuk-bentuk

Lebih terperinci

fungsi rasional adalah rasio dari dua polinomial. Secara umum,

fungsi rasional adalah rasio dari dua polinomial. Secara umum, fungsi rasional adalah rasio dari dua polinomial. Secara umum, Fungsi Rasional Fungsi rasional adalah fungsi yang memiliki bentuk Dengan p dan d merupakan polinomial dan d(x) 0. Domain dari V(x) adalah

Lebih terperinci

Matematika Proyek Perintis I Tahun 1979

Matematika Proyek Perintis I Tahun 1979 Matematika Proyek Perintis I Tahun 979 MA-79-0 Irisan himpunan : A = { x x < } dan himpunan B = { x < x < 8 } ialah himpunan A. { x x < 8 } { x x < } { x < x < 8 } { x < x < } { x < x } MA-79-0 Apabila

Lebih terperinci

K13 Revisi Antiremed Kelas 10 Matematika

K13 Revisi Antiremed Kelas 10 Matematika K Revisi Antiremed Kelas Matematika Persamaan Kuadrat - Latihan Soal Essay Do Name: RKARMATWJB5 Version : 6- halaman. Nyatakan persamaan-persamaan berikut ke dalam bentuk baku kemudian tentukan nilai b

Lebih terperinci

Fungsi kuadrat. Hafidh munawir

Fungsi kuadrat. Hafidh munawir Fungsi kuadrat Hafidh munawir Bentuk Umum Persamaan Kuadrat Bentuk umum atau Bentuk Baku persamaan kuadrat adalah: a + b + c = Dengan a,b,c R dan a serta adalah peubah (variabel) a merupakan koefisien

Lebih terperinci

BAHAN AJAR PERSAMAAN GARIS SINGGUNG PADA KURVA

BAHAN AJAR PERSAMAAN GARIS SINGGUNG PADA KURVA 142 LAMPIRAN III BAHAN AJAR PERSAMAAN GARIS SINGGUNG PADA KURVA Pernahkan kamu melempar sebuah bola tenis atau bola voli ke atas? Apa lintasan yang terbuat dari lemparan bola tersebut ketika bola itu jatuh

Lebih terperinci

Matematika Semester IV

Matematika Semester IV F U N G S I KOMPETENSI DASAR Mendeskripsikan perbedaan konsep relasi dan fungsi Menerapkan konsep fungsi linear Menggambar fungsi kuadrat Menerapkan konsep fungsi kuadrat Menerapkan konsep fungsi trigonometri

Lebih terperinci

BEBERAPA MACAM FUNGSI DALAM ALJABAR

BEBERAPA MACAM FUNGSI DALAM ALJABAR BEBEAA MACAM FUNGI DALAM ALJABA 1. Fungsi Komposisi Dari dua jenis fungsi f dan g kita dapat membentuk sebuah fungsi baru dengan menggunakan sistem operasi komposisi. operasi komposisi biasa dilambangkan

Lebih terperinci

http://meetabied.wordpress.com Matematika X Semester 1 SMAN 1 Bone-Bone Kita dibentuk oleh sesuatu yang kita lakukan berulang kali. Keunggulan, bukan hasil dari satu tindakan, melainkan dari kebiasaan.

Lebih terperinci

M. PRAHASTOMI M. S. SISTEM PERSAMAAN LINEAR. A. a = 2 dan b = 4 B. a = 2 dan b = 4 C. a = 2 dan b = 4 D. E. a = 2

M. PRAHASTOMI M. S. SISTEM PERSAMAAN LINEAR. A. a = 2 dan b = 4 B. a = 2 dan b = 4 C. a = 2 dan b = 4 D. E. a = 2 SISTEM PERSAMAAN LINEAR M. PRAHASTOMI M. S. 0. MD-8-8 B C G E F A D H 6 7 8 6 Jika gradien garis AB = m, gradien garis CD = m, gradien garis EF = m dan gradien garis GH = m, maka... () m = () m = 0 ()

Lebih terperinci

MADRASAH ALIYAH AL-MU AWANAH BEKASI SELATAN 2012

MADRASAH ALIYAH AL-MU AWANAH BEKASI SELATAN 2012 MODUL MATEMATIKA PERSIAPAN UJIAN NASIONAL 0 TAHUN AJARAN 0/0 MATERI PERSAMAAN KUADRAT DAN PERTIDAKSAMAAN KUADRAT UNTUK KALANGAN MA AL-MU AWANAH MADRASAH ALIYAH AL-MU AWANAH BEKASI SELATAN 0 Jalan RH. Umar

Lebih terperinci

atau y= f(x) = ax 2 + bx + c (3.17) y= f(x) = a 2 x + a 0 x 2 + a 1

atau y= f(x) = ax 2 + bx + c (3.17) y= f(x) = a 2 x + a 0 x 2 + a 1 i. Fungsi kuadrat - Penyelesaian fungsi kuadrat dengan pemfaktoran Fungsi kuadrat adalah fungsi polinomial yang mempunyai derajad dua dan mempunyai bentuk umum : y= f(x) = a 2 x 2 + a 1 x + a 0 atau y=

Lebih terperinci

Materi Matematika Persamaan dan Pertidaksamaan kuadrat Persamaan Linear Persamaan Kuadrat Contoh : Persamaan Derajat Tinggi

Materi Matematika Persamaan dan Pertidaksamaan kuadrat Persamaan Linear Persamaan Kuadrat Contoh : Persamaan Derajat Tinggi Materi Matematika Persamaan dan Pertidaksamaan kuadrat Persamaan Linear Persamaan linear dengan n peubah adalah persamaan dengan bentuk : dengan adalah bilangan- bilangan real, dan adalah peubah. Secara

Lebih terperinci

Fungsi Linear dan Fungsi Kuadrat

Fungsi Linear dan Fungsi Kuadrat Modul 1 Fungsi Linear dan Fungsi Kuadrat Drs. Susiswo, M.Si. K PENDAHULUAN ompetensi umum yang diharapkan, setelah mempelajari modul ini, adalah Anda dapat memahami konsep tentang persamaan linear dan

Lebih terperinci

SISTEM PERTIDAKSAMAAN KUADRAT DUA VARIABEL SPtKDV

SISTEM PERTIDAKSAMAAN KUADRAT DUA VARIABEL SPtKDV SISTEM PERTIDAKSAMAAN KUADRAT DUA VARIABEL SPtKDV A. Pertidaksamaan Kuadrat Dua Variabel Pertidaksamaan kuadrat dua variabel adalah kalimat terbuka matematika yang memuat dua variabel dengan setidaknya

Lebih terperinci

matematika PEMINATAN Kelas X SISTEM PERTIDAKSAMAAN LINEAR DAN KUADRAT K13 A. Pertidaksamaan Linear B. Daerah Pertidaksamaan Linear

matematika PEMINATAN Kelas X SISTEM PERTIDAKSAMAAN LINEAR DAN KUADRAT K13 A. Pertidaksamaan Linear B. Daerah Pertidaksamaan Linear K13 Kelas matematika PEMINATAN SISTEM PERTIDAKSAMAAN LINEAR DAN KUADRAT Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi pertidaksamaan

Lebih terperinci

PERSAMAAN DAN FUNGSI KUADRAT

PERSAMAAN DAN FUNGSI KUADRAT Materi W2a PERSAMAAN DAN FUNGSI KUADRAT Kelas X, Semester 1 A. Menyelesaikan Persamaan Kuadrat www.yudarwi.com A. Menyelesaikan Persamaan Kuadrat Diketahui suatu persamaan kuadrat : ax 2 + bx + c = 0,

Lebih terperinci

MA5032 ANALISIS REAL

MA5032 ANALISIS REAL (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. August 16, 2011 Pada bab ini anda diasumsikan telah mengenal dengan cukup baik bilangan asli, bilangan bulat, dan bilangan

Lebih terperinci

BAB KINEMATIKA GERAK LURUS

BAB KINEMATIKA GERAK LURUS BAB KINEMATIKA GERAK LURUS Contoh. Bakri berlari mengitari sebuah lapangan yang berbentuk lingkaran dengan radius 35 m. Ia berangkat dr titik A. Karena capai, akhirnya ia berhenti di titik B. Sementara

Lebih terperinci

BAB 1 PERSAMAAN. a) 2x + 3 = 9 a) 5 = b) x 2 9 = 0 b) = 12 c) x = 0 c) 2 adalah bilangan prima genap d) 3x 2 = 3x + 5

BAB 1 PERSAMAAN. a) 2x + 3 = 9 a) 5 = b) x 2 9 = 0 b) = 12 c) x = 0 c) 2 adalah bilangan prima genap d) 3x 2 = 3x + 5 BAB PERSAMAAN Sifat Sifat Persamaan Persamaan adalah kalimat matematika terbuka yang menyatakan hubungan sama dengan. Sedangkan kesamaan adalah kalimat matematika tertutup yang menyatakan hubungan sama

Lebih terperinci

PERSAMAAN GARIS SINGGUNG ELLIPS

PERSAMAAN GARIS SINGGUNG ELLIPS 1 KEGIATAN BELAJAR 13 PERSAMAAN GARIS SINGGUNG ELLIPS Setelah mempelajari kegiatan belajar 13 ini, mahasiswa diharapkan mampu Menentukan Persamaan Garis Singgung Elips, Titik Singung dan Garis Pada kegiatan

Lebih terperinci

[BAB 3 SISTEM PERSAMAAN LINEAR]

[BAB 3 SISTEM PERSAMAAN LINEAR] http://meetabied.wordpress.com Hal terburuk yang bisa menimpa manusia adalah jika ia berpikir buruk tentang dirinya sendiri. (Goethe) [BAB 3 SISTEM PERSAMAAN LINEAR] [Menyelesaikan Sistem Persamaan Linear

Lebih terperinci

LEMBAR SOAL National Math Olympiad 3 RD PDIM UB 2014

LEMBAR SOAL National Math Olympiad 3 RD PDIM UB 2014 PETUNJUK UNTUK PESERTA 1. Tuliskan nama lengkap, kelas, asal sekolah, alamat sekolah lengkap dengan nomor telepon, faximile, email sekolah dan nama guru Matematika di tempat yang telah disediakan.. Tes

Lebih terperinci

y

y Menyelesaikan Persamaan Kuadrat dengan Grafik Menyesaikan persamaan ax 2 +bx+c=0. Berarti menentukan nilai-nilai x bila f(x) = 0, dimana f(x) = ax 2 +bx+c. apabila grafik fungsi f(x) telah dilukis, maka

Lebih terperinci

Antiremed Kelas 10 Matematika

Antiremed Kelas 10 Matematika Antiremed Kelas Matematika Persamaan Kuadrat - Latihan Soal Essay Do Name: KARMATWJB8 Version : 4-9 halaman. Nyatakan persamaan-persamaan berikut ke dalam bentuk baku kemudian tentukan nilai b c dan a

Lebih terperinci

RINGKASAN IRISAN KERUCUT (PARABOLA, ELIPS, DAN HIPERBOLA)

RINGKASAN IRISAN KERUCUT (PARABOLA, ELIPS, DAN HIPERBOLA) RINGKASAN IRISAN KERUCUT (PARABOLA, ELIPS, DAN HIPERBOLA) Matematika15.wordpress.com NAMA: KELAS: RINGKASAN IRISAN KERUCUT (PARABOLA, ELIPS, DAN HIPERBOLA) PENGERTIAN IRISAN KERUCUT Bangun Ruang Kerucut

Lebih terperinci

APLIKASI TURUNAN ALJABAR. Tujuan Pembelajaran. ) kemudian menyentuh bukit kedua pada titik B(x 2

APLIKASI TURUNAN ALJABAR. Tujuan Pembelajaran. ) kemudian menyentuh bukit kedua pada titik B(x 2 Kurikulum 3/6 matematika K e l a s XI APLIKASI TURUNAN ALJABAR Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Dapat menerapkan aturan turunan aljabar untuk

Lebih terperinci

Matematik Ekonom Fungsi nonlinear

Matematik Ekonom Fungsi nonlinear 1 FUNGSI Fungsi adalah hubungan antara 2 buah variabel atau lebih, dimana masing-masing dari dua variabel atau lebih tersebut saling pengaruh mempengaruhi. Variabel merupakan suatu besaran yang sifatnya

Lebih terperinci

RINGKASAN IRISAN KERUCUT (PARABOLA, ELIPS, DAN HIPERBOLA)

RINGKASAN IRISAN KERUCUT (PARABOLA, ELIPS, DAN HIPERBOLA) NAMA: KELAS: PENGERTIAN IRISAN KERUCUT Bangun Ruang Kerucut yang dipotong oleh sebuah bidang datar. RINGKASAN IRISAN KERUCUT (PARABOLA, ELIPS, DAN HIPERBOLA) Macam-macam Irisan Kerucut: 1. Parabola 2.

Lebih terperinci

Soal Soal Latihan UKK

Soal Soal Latihan UKK Sal Sal Latihan UKK. Jika p q 6 ; p dan q bilangan bulat, maka nilai p + q A. E.. Himpunan penyelesaian dari persamaan () A. E.. Diketahui bahwa. Maka nilai... A. E. 7 6. Diketahui bahwa dan merupakan

Lebih terperinci

E. Grafik Fungsi Kuadrat

E. Grafik Fungsi Kuadrat /9/05 Jurnal Materi Umum Persamaan Kuadrat Peta Konsep Fungsi Kuadrat Peta Konsep Daftar Hadir MateriE SoalLatihan5 PERSAMAAN DAN FUNGSI KUADRAT Kelas X, Semester E. Grafik Fungsi Kuadrat Menelesaikan

Lebih terperinci

TRY OUT MATEMATIKA PAKET 3B TAHUN 2010

TRY OUT MATEMATIKA PAKET 3B TAHUN 2010 . Perhatikan argumen berikut ini. p q. q r. r ~ s TRY OUT MATEMATIKA PAKET B TAHUN 00 Negasi kesimpulan yang sah dari argumen di atas adalah... A. p ~s B. p s C. p ~s D. p ~s E. p s. Diketahui npersamaan

Lebih terperinci

Matematika EBTANAS Tahun 2003

Matematika EBTANAS Tahun 2003 Matematika EBTANAS Tahun EBT-SMA-- Persamaan kuadrat (k + )x (k ) x + k = mempunyai akar-akar nyata dan sama. Jumlah kedua akar persamaan tersebut adalah EBT-SMA-- Jika akar-akar persamaan kuadrat x +

Lebih terperinci

PERTIDAKSAMAAN

PERTIDAKSAMAAN PERTIDAKSAMAAN A. Pengertian 1. Notasi Pertidaksamaan Misalnya ada dua bilangan riil a dan b. Ada beberapa notasi yang bisa dibuat yaitu: a. a dikatakan kurang dari b, ditulis a b jika dan hanya jika a

Lebih terperinci

PERSAMAAN DAN PERTIDAKSAMAAN KUADRAT

PERSAMAAN DAN PERTIDAKSAMAAN KUADRAT PERSAMAAN DAN PERTIDAKSAMAAN KUADRAT Jenis-jenis soal persamaan kuadrat yang sering diujikan adalah soal-soal tentang :. Menentukan akar-akar. Jenis-jenis akar 3. Jumlah dan hasil kali akar-akar 4. Tanda-tanda

Lebih terperinci

BEBERAPA FUNGSI KHUSUS

BEBERAPA FUNGSI KHUSUS BEBERAPA FUNGSI KHUSUS ). Fungsi Konstan ). Fungsi Identitas 3). Fungsi Modulus 4). Fungsi Genap dan Fungsi Ganjil Fungsi genap jika f(x) = f(x), dan Fungsi ganjil jika f(x) = f(x) 5). Fungsi Tangga dan

Lebih terperinci

A. Kajian ulang tentang fungsi Pada gambar di bawah ini diberikan diagram panah suatu relasi dari himpunan

A. Kajian ulang tentang fungsi Pada gambar di bawah ini diberikan diagram panah suatu relasi dari himpunan MODUL MATEMATIKA UNTUK SMA istiyanto.com Mari Berbagi Ilmu Dengan Yang Lain Pesan soal-soal matematika untuk SD, SMP dan SMA? Soal ulangan harian, ulangan mid, ulangan semester, soal-soal UAN dll. Tulis

Lebih terperinci

PREDIKSI UAN MATEMATIKA SESUAI KISI-KISI PEMERINTAH

PREDIKSI UAN MATEMATIKA SESUAI KISI-KISI PEMERINTAH PREDIKSI UAN MATEMATIKA SESUAI KISI-KISI PEMERINTAH. Apabila P dan q kalimat pernyataan, di mana ~p q kalimat bernilai salah, maka kalimat yang benar berikut ini, kecuali (d) p q (~p ~q) (~p ~q) ~ (~p

Lebih terperinci

tanya-tanya.com Turunan Pertama Turunan Fungsi Trigonometri Persamaan Garis Singgung Fungsi Naik Turun Turunan pertama dari suatu fungsi f(x) adalah:

tanya-tanya.com Turunan Pertama Turunan Fungsi Trigonometri Persamaan Garis Singgung Fungsi Naik Turun Turunan pertama dari suatu fungsi f(x) adalah: Turunan Pertama Turunan pertama dari suatu fungsi f(x) adalah: Jika f(x) = x n, maka f (x) = nx n-1, dengan n R Jika f(x) = ax n, maka f (x) = anx n-1, dengan a konstan dan n R Rumus turunan fungsi aljabar:

Lebih terperinci

Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f.

Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f. Pertemuan ke 8 GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(,y): y = f(), D f } disebut grafik fungsi f. Grafik metode yang paling umum untuk menyatakan hubungan antara dua himpunan yaitu dengan menggunakan

Lebih terperinci

PERSAMAAN GARIS BAHAN BELAJAR MANDIRI 4

PERSAMAAN GARIS BAHAN BELAJAR MANDIRI 4 BAHAN BELAJAR MANDIRI 4 PERSAMAAN GARIS PENDAHULUAN Secara umum bahan belajar mandiri ini menjelaskan tentang konsep garis, dan persamaan garis lurus yang dinyatakan ke dalam bentuk implisit maupun bentuk

Lebih terperinci

1. Diketahui persamaan x 2 + (2p 1)x + p 2 3p 4 = 0. Jika akar akar persamaan tersebut riil, maka batas batas nilai p yang memenuhi adalah

1. Diketahui persamaan x 2 + (2p 1)x + p 2 3p 4 = 0. Jika akar akar persamaan tersebut riil, maka batas batas nilai p yang memenuhi adalah . Diketahui persamaan x + (p )x + p p 4 = 0. Jika akar akar persamaan tersebut riil, maka batas batas nilai p yang memenuhi adalah. 7 7 A. p C. p E. 8 8 7 7 B. p D. p 8 8 sikat x + (p )x + p p 4 = 0 a

Lebih terperinci

Silabus. Nama Sekolah : SMA Mata Pelajaran : MATEMATIKA Kelas / Program : X / UMUM Semester : GANJIL

Silabus. Nama Sekolah : SMA Mata Pelajaran : MATEMATIKA Kelas / Program : X / UMUM Semester : GANJIL Silabus Nama Sekolah : SMA Mata Pelajaran : MATEMATIKA Kelas / Program : X / UMUM Semester : GANJIL Sandar Kompetensi:. Memecahkan masalah yang berkaitan dengan bentuk pangkat, akar, dan logaritma Kompetensi

Lebih terperinci

Matematika SMA/MA IPA. No. Peserta : Bentuk sederhana dari 1 A. 36 B. 6 C. 1 D Bentuk sederhana dari (2 2 6)( )

Matematika SMA/MA IPA. No. Peserta : Bentuk sederhana dari 1 A. 36 B. 6 C. 1 D Bentuk sederhana dari (2 2 6)( ) Nama : Ximple Education No. Peserta : 08-6600-747. Bentuk sederhana dari 6 6 3 3 5 64 7 000 3 A. 36 B. 6 C. D. 6 E. 36 =.. Bentuk sederhana dari ( 6)(6 +3 6) 3 4 A. 3 ( 3 + 4) B. 3 ( 3 + 4) C. ( 3 + 4)

Lebih terperinci

Dosen Pengampu: Prof. Dr. H. Almasdi Syahza, SE., MP. Website : HUBUNGAN NONLINEAR

Dosen Pengampu: Prof. Dr. H. Almasdi Syahza, SE., MP.   Website :  HUBUNGAN NONLINEAR Dosen Pengampu: Prof. Dr. H. Almasdi Syahza, SE., MP. Email : asyahza@yahoo.co.id Website : http://almasdi.unri,ac,id HUBUNGAN NONLINEAR a. Fungsi Kuadrat b. Fungsi Kubik c. Penerapan Ekonomi Permintaan,

Lebih terperinci

LEMBAR KEGIATAN SISWA 1 PERSAMAAN KUADRAT

LEMBAR KEGIATAN SISWA 1 PERSAMAAN KUADRAT 1 LEMBAR KEGIATAN SISWA 1 PERSAMAAN KUADRAT Masalah 1 : Pak Amat dan pak Aman masing-masing merahasiakan suatu bilangan real. Bilangan pak Aman lebih 11 daripada bilangan pak Amat. Dua kali bilangan pak

Lebih terperinci

Mata Pelajaran MATEMATIKA Kelas X

Mata Pelajaran MATEMATIKA Kelas X Mata Pelajaran MATEMATIKA Kelas X SEKOLAH MENENGAH ATAS dan MADRASAH ALIYAH PG Matematika Kelas X 37 Bab 1 Bentuk Pangkat, Akar, dan Logaritma Nama Sekolah : SMA dan MA Mata Pelajaran : Matematika Kelas

Lebih terperinci

Persamaan Garis singgung Melalui titik (x 1, y 1 ) diluar lingkaran. Pusat Lingkaran (a, b) Persamaan Garis singgung. Jari Jari r.

Persamaan Garis singgung Melalui titik (x 1, y 1 ) diluar lingkaran. Pusat Lingkaran (a, b) Persamaan Garis singgung. Jari Jari r. PERSAMAAN LINGKARAN Pusat Lingkaran (0, 0) Melalui titik (x, y ) pada lingkaran Jika diketahui gradient m xx y mx r yy r m x y r Persamaan Garis singgung Melalui titik (x, y ) diluar lingkaran Jari Jari

Lebih terperinci

BAB 5 TEOREMA SISA. Menggunakan aturan sukubanyak dalam penyelesaian masalah. Kompetensi Dasar

BAB 5 TEOREMA SISA. Menggunakan aturan sukubanyak dalam penyelesaian masalah. Kompetensi Dasar Standar Kompetensi BAB 5 TEOREMA SISA Menggunakan aturan sukubanyak dalam penyelesaian masalah. Kompetensi Dasar Menggunakan algoritma pembagian sukubanyak untuk menentukan hasil bagi dan sisa pembagian

Lebih terperinci