MA5032 ANALISIS REAL

Ukuran: px
Mulai penontonan dengan halaman:

Download "MA5032 ANALISIS REAL"

Transkripsi

1 (Semester I Tahun ) Dosen FMIPA - ITB hgunawan@math.itb.ac.id. August 16, 2011

2

3 Pada bab ini anda diasumsikan telah mengenal dengan cukup baik bilangan asli, bilangan bulat, dan bilangan rasional. Himpunan semua bilangan asli dilambangkan dengan N, yakni N := {1, 2, 3,... }. Himpunan semua bilangan bulat dilambangkan dengan Z, yakni Z := {0, ±1, ±2, ±3,... }. (Tanda... di sini menyatakan dan seterusnya, yang mengasumsikan bahwa pembaca telah mengetahui pola yang ada.)

4 Sementara itu, himpunan semua bilangan rasional dilambangkan dengan Q, yakni Q := { p q : p Z, q N, dan FPB(p, q) = 1}. (Di sini FPB(p, q) menyatakan faktor persekutuan terbesar dari p dan q. Sebagai contoh, FPB(6, 10) = 2.)

5 Selain itu, anda juga diasumsikan telah mengenal notasi bilangan dalam bentuk desimal. Sebagai contoh, 1 = = = = e = π =

6 Sebagian bilangan mempunyai bentuk desimal yang berhenti, seperti 1 2 = 0.5, dan sebagian bilangan mempunyai bentuk desimal yang berulang, seperti 1 3 = Bilangan rasional senantiasa dapat dinyatakan dalam bentuk desimal yang berhenti atau berulang.

7 Bilangan yang mempunyai bentuk desimal tak berhenti ataupun berulang merupakan bilangan irasional. Sebagai contoh, 2 yang memang bukan merupakan bilangan rasional mempunyai bentuk desimal tak berhenti ataupun berulang. Contoh lainnya, bilangan merupakan bilangan irasional

8 Himpunan semua bilangan rasional dan bilangan irasional disebut sebagai himpunan bilangan real, yang dilambangkan dengan R. Dalam hal ini, kita mempunyai N Z Q R. Pada pembahasan selanjutnya, kita akan mempelajari sifat-sifat bilangan real secara lebih mendalam.

9 Soal Latihan Daftar Isi 1 Nyatakan 1 12 dalam bentuk desimal. Apakah bentuk desimalnya berhenti atau berulang? 2 Nyatakan sebagai bentuk pecahan. 3 Buktikan bahwa tidak ada bilangan rasional x yang memenuhi persamaan x 2 = 2. (Petunjuk. Gunakan metode pembuktian tak langsung.)

10 Himpunan bilangan real R memenuhi Sifat Lapangan yang terkait dengan operasi penjumlahan dan perkalian padanya, yakni: A1. x + y = y + x untuk setiap x, y R. A2. (x + y) + z = x + (y + z) untuk setiap x, y, z R. A3. Terdapat 0 R sedemikian sehingga x + 0 = x untuk setiap x R. A4. Untuk setiap x R terdapat x R sedemikian sehingga x + ( x) = 0. A5. xy = yx untuk setiap x, y R. A6. (xy)z = x(yz) untuk setiap x, y, z R. A7. Terdapat 1 R, 1 0, sedemikian sehingga x 1 = x untuk setiap x R. A8. Untuk setiap x R, x 0, terdapat x 1 R sedemikian sehingga x(x 1 ) = 1. A9. x(y + z) = xy + xz untuk setiap x, y, z R.

11 Perlu diingat bahwa 0 tidak mempunyai unsur kebalikan, dan secara umum pembagian dengan 0 tidak didefinisikan. Sehubungan dengan itu tidak benar bahwa 1 0 =. Walaupun kelak lambang (baca: tak hingga atau tak terhingga) akan sering digunakan, ia tidak menyatakan sebuah bilangan real.

12 Teorema 1 (Hukum Pencoretan) Misalkan x, y, dan z adalah bilangan real sembarang. (a) Jika x + z = y + z, maka x = y. (b) Jika xz = yz dan z 0, maka x = y.

13 Bukti. (a) Misalkan x + z = y + z. Tambahkan kedua ruas dengan z, sehingga kita dapatkan (x + z) + ( z) = (y + z) + ( z). Dengan menggunakan sifat asosiatif dan sifat unsur lawan, kita peroleh x + 0 = y + 0, dan berdasarkan sifat unsur identitas pada penjumlahan, kita sampai pada kesimpulan bahwa x = y. (b) Serupa dengan (a); dapat dicoba sebagai latihan.

14 Soal Latihan Daftar Isi 1 Buktikan Teorema 1 bagian (b). 2 Diketahui bilangan real a sembarang. Buktikan bahwa 1 a.0 = 0. 2 ( 1)a = a. 3 ( a) = a. 4 ( 1)( 1) = 1. 3 Diketahui bilangan real a dan b. Buktikan jika ab = 0, maka a = 0 atau b = 0.

15 Selain memenuhi Sifat Lapangan, sistem bilangan real R dengan operasi penjumlahan dan perkalian juga memenuhi Sifat Urutan, yakni terdapat himpunan bagian P R yang bersifat: B1. Jika x, y P, maka x + y P. B2. Jika x, y P, maka xy P. B3. Jika x P, maka x / P. B4. Jika x R, maka: atau x P, atau x = 0, atau x P. Bilangan x P disebut sebagai bilangan positif.

16 Selanjutnya kita tuliskan x < y (y > x) apabila y x P; dan x y (y x) apabila x < y atau x = y. Notasi x < y (y > x) dibaca x lebih kecil daripada y ( y lebih besar daripada x ). Sementara itu, x y (y x) dibaca x lebih kecil daripada atau sama dengan y ( y lebih besar daripada atau sama dengan x. Catat bahwa x > 0 berarti x P, yakni x merupakan bilangan positif. Diberikan tiga bilangan real a, b, dan c, notasi a < b < c berarti a < b dan b < c. Sebagai contoh, kita mempunyai 0 < 1 2 < 1.

17 Perhatikan bahwa, menurut sifat B4, untuk sembarang bilangan real a dan b, terdapat tiga kemungkinan dan hanya satu di antara tiga kemungkinan tersebut yang benar yaitu: atau a > b, atau a = b, atau a < b. Sifat ini dikenal sebagai Hukum Trikotomi.

18 Teorema 2 Daftar Isi. (i) Jika a > b dan b > c, maka a > c. (ii) Jika a > b dan c R, maka a + c > b + c. (iii) Jika a > b dan c > 0, maka ac > bc; Jika a > b dan c < 0, maka ac < bc. Bukti. (i) Misal a > b dan b > c. Maka, a b P dan b c P. Menurut sifat B1, a c = (a b) + (b c) P. Jadi a > c. Bukti bagian (ii) dan (iii) diserahkan sebagai latihan.

19 Contoh 3 Daftar Isi Fakta bahwa 1 > 0 dapat dibuktikan kebenarannya dengan menggunakan sifat-sifat pada Teorema 2. Ingat bahwa 1 0. Karena itu tinggal ada dua kemungkinan: atau 1 < 0 atau 1 > 0. Andaikan 1 < 0. Tambahkan kedua ruas dengan 1, kita peroleh 0 < 1 atau 1 > 0. Akibatnya [lihat Soal Latihan 0.2 No. 2(d)], kita peroleh 1 = ( 1)( 1) > 0, bertentangan dengan pengandaian semula. Dengan demikian tidak mungkin 1 < 0, dan karena itu mestilah 1 > 0.

20 Contoh 4 Daftar Isi Misalkan diketahui a < b + ɛ untuk setiap ɛ > 0. Maka dapat disimpulkan bahwa a b. (Andaikan a > b. Maka, untuk ɛ = a + ( b) := a b, berlaku a < b + (a b) = a, sesuatu yang mustahil.)

21 Soal Latihan Daftar Isi 1 Buktikan Teorema 2 bagian (ii) dan (iii). 2 Buktikan jika a > 0, maka 1 a > 0. (Di sini 1 a menyatakan kebalikan dari a.) 3 Buktikan jika a > b dan c > d, maka a + c > b + d. 4 Buktikan jika a < b dan A, B > 0, maka a A < a+b A+B < b B. 5 Diketahui x, y > 0. Buktikan x < y jika dan hanya jika x 2 < y 2. 6 Buktikan jika b ɛ < a < b + ɛ untuk setiap ɛ > 0, maka a = b.

22 Untuk n N, kita tuliskan x n = x x x (n kali). Asumsi berikutnya tentang sistem bilangan real (yang akan dibahas pada Bab 1) menjamin eksistensi akar ke-n. Persisnya, diberikan y 0, terdapat sebuah bilangan x 0 (tunggal) sedemikian sehingga y = x n.

23 Untuk y 0, nilai x 0 yang memenuhi persamaan y = x n disebut sebagai akar ke-n dari y dan dilambangkan dengan x = y 1/n. Khususnya, untuk n = 2, kita gunakan notasi y = y 1/2. Catat bahwa dalam hal ini senantiasa berlaku y 0. Jika y > 0, maka tentu saja terdapat dua buah bilangan yang kuadratnya sama dengan y, yaitu y yang bernilai positif dan y yang bernilai negatif. Notasi ± y berarti y atau y.

24 Jika r = m n definisikan adalah suatu bilangan rasional positif dan y 0, kita y r := (y 1/n ) m. Jika r adalah suatu bilangan rasional negatif, maka r merupakan bilangan rasional positif dan karenanya y r terdefinisi. Khususnya, jika y > 0, maka kita dapat mendefinisikan y r sebagai y r := 1 y r. Kita juga mendefinisikan y 0 = 1. Dengan demikian, jika y > 0, maka y r terdefinisi untuk semua bilangan rasional. (Definisi y x untuk bilangan irasional x harus menunggu hingga pembahasan berikutnya.)

25 Seperti telah disinggung di atas, untuk y > 0, persamaan x 2 = y mempunyai dua buah solusi, yaitu x = ± y. Persamaan x 2 = y di sini merupakan suatu persamaan kuadrat. Bentuk umum persamaan kuadrat (dalam x) adalah dengan a 0. ax 2 + bx + c = 0,

26 Sebagaimana telah dipelajari di sekolah menengah, persamaan kuadrat ax 2 + bx + c = 0 tidak mempunyai solusi atau akar real jika b 2 4ac < 0, mempunyai sebuah akar real (tunggal) jika b 2 4ac = 0, dan mempunyai dua buah akar real berbeda jika b 2 4ac > 0. Dalam hal b 2 4ac 0, akar persamaan kuadrat di atas diberikan oleh rumus x = b ± b 2 4ac. 2a

27 Akar persamaan kuadrat merupakan titik potong grafik persamaan y = ax 2 + bx + c (yang berbentuk parabola) dengan sumbu-x pada sistem koordinat Cartesius. (Pembaca diasumsikan telah mengenal sistem koordinat Cartesius dan grafik persamaan padanya.) Ingat bahwa grafik persamaan kuadrat terbuka ke atas jika a > 0, atau terbuka ke bawah jika a < 0.

28 Soal Latihan 1 Misalkan koefisien a, b dan c pada persamaan kuadrat ax 2 + bx + c = 0 merupakan bilangan rasional (dengan, tentu saja, a 0). Buktikan jika α = r + s 2 merupakan akar persamaan ini, dengan r dan s rasional, maka β = r s 2 juga merupakan akar. 2 Misalkan n N dan a 1,..., a n dan b 1,..., b n adalah bilangan real. Buktikan bahwa (a 1 b a n b n ) 2 (a a 2 n)(b b 2 n). (Catatan. Ketaksamaan ini dikenal sebagai ketaksamaan Cauchy-Schwarz.)

29 Jika x adalah bilangan real, maka nilai mutlak x, ditulis x, didefinisikan sebagai { x, jika x 0, x = x, jika x < 0. Sebagai contoh, 2 = 2, 0 = 0, dan 5 = ( 5) = 5. Jelas bahwa x 0 untuk setiap x. Perhatikan pula bahwa x 2 = x 2, dan karenanya x 2 = x untuk setiap x.

30 Teorema 5 Daftar Isi Untuk setiap bilangan real x berlaku x x x.

31 Teorema 6 Daftar Isi Untuk setiap bilangan real a dan b berlaku ab = a b.

32 Teorema 7 (Ketaksamaan Segitiga) Untuk setiap a, b R berlaku a + b a + b.

33 Bukti. Perhatikan bahwa untuk setiap a, b R berlaku a + b 2 = (a + b) 2 = a 2 + 2ab + b 2 a a b + b 2 = ( a + b ) 2. Karena itu (lihat Soal Latihan 0.3 No. 4), kita peroleh a + b a + b, sebagaimana kita harapkan.

34 Soal Latihan 1 Buktikan Teorema 5. 2 Buktikan Teorema 6. 3 Buktikan bahwa a < b jika dan hanya jika b < a < b. 4 Buktikan bahwa untuk setiap a, b R berlaku a b a b dan juga a b a b. 5 Buktikan jika a < x < b dan a < y < b, maka x y < b a. Berikan interpretasi geometrisnya.

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang Pertemuan 2. BAHAN AJAR ANALISIS REAL Matematika STKIP Tuanku Tambusai Bangkinang 0. Bilangan Real 0. Bilangan Real sebagai bentuk desimal Pada pembahasan berikutnya kita diasumsikan telah mengetahui dengan

Lebih terperinci

BAGIAN PERTAMA. Bilangan Real, Barisan, Deret

BAGIAN PERTAMA. Bilangan Real, Barisan, Deret BAGIAN PERTAMA Bilangan Real, Barisan, Deret 2 Hendra Gunawan Pengantar Analisis Real 3 0. BILANGAN REAL 0. Bilangan Real sebagai Bentuk Desimal Dalam buku ini pembaca diasumsikan telah mengenal dengan

Lebih terperinci

MA3231. Pengantar Analisis Real. Hendra Gunawan, Ph.D. Semester II, Tahun

MA3231. Pengantar Analisis Real. Hendra Gunawan, Ph.D. Semester II, Tahun MA3231 Pengantar Analisis Real Semester II, Tahun 2016-2017 Hendra Gunawan, Ph.D. Tentang Mata Kuliah MA3231 Mata kuliah ini merupakan mata kuliah wajib bagi mahasiswa program studi S1 Matematika, dengan

Lebih terperinci

KALKULUS BAB I. PENDAHULUAN DEPARTEMEN TEKNIK KIMIA

KALKULUS BAB I. PENDAHULUAN DEPARTEMEN TEKNIK KIMIA KALKULUS BAB I. PENDAHULUAN DEPARTEMEN TEKNIK KIMIA BAB I Bilangan Real dan Notasi Selang Pertaksamaan Nilai Mutlak Sistem Koordinat Cartesius dan Grafik Persamaan Bilangan Real dan Notasi Selang Bilangan

Lebih terperinci

INTERVAL, PERTIDAKSAMAAN, DAN NILAI MUTLAK

INTERVAL, PERTIDAKSAMAAN, DAN NILAI MUTLAK INTERVAL, PERTIDAKSAMAAN, DAN NILAI MUTLAK Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 19 Topik Bahasan 1 Sistem Bilangan Real 2 Interval 3

Lebih terperinci

BAB 1. PENDAHULUAN KALKULUS

BAB 1. PENDAHULUAN KALKULUS BAB. PENDAHULUAN KALKULUS (Himpunan,selang, pertaksamaan, dan nilai mutlak) Pembicaraan kalkulus didasarkan pada sistem bilangan nyata. Sebagaimana kita ketahui sistem bilangan nyata dapat diklasifikasikan

Lebih terperinci

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan 2.2 Sistem Bilangan Real sebagai Lapangan Terurut Operasi Aritmetika. Sifat-sifat dasar urutan dan aritmetika dari Sistem Bilangan

Lebih terperinci

DASAR-DASAR ANALISIS MATEMATIKA

DASAR-DASAR ANALISIS MATEMATIKA (Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. December 11, 2007 Misalkan f terdefinisi pada suatu himpunan H. Kita katakan bahwa f naik pada H apabila

Lebih terperinci

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. October 10, Dosen FMIPA - ITB

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. October 10, Dosen FMIPA - ITB (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. October 10, 2011 Pemahaman yang baik tentang fungsi kontinu merupakan hal yang penting dalam analisis. Dalam optimisasi,

Lebih terperinci

y

y Menyelesaikan Persamaan Kuadrat dengan Grafik Menyesaikan persamaan ax 2 +bx+c=0. Berarti menentukan nilai-nilai x bila f(x) = 0, dimana f(x) = ax 2 +bx+c. apabila grafik fungsi f(x) telah dilukis, maka

Lebih terperinci

Bilangan Riil, Nilai Mutlak, Fungsi

Bilangan Riil, Nilai Mutlak, Fungsi Bilangan Riil, Nilai Mutlak, Fungsi Kalkulus Dasar - Kimia Mohammad Mahfuzh Shiddiq Universitas Lambung Mangkurat September 13, 2016 M.Mahfuzh S. () kalkulus dasar September 13, 2016 1 / 20 Sistem Bilangan

Lebih terperinci

MA5032 ANALISIS REAL

MA5032 ANALISIS REAL (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. August 17, 2011 Zeno, seorang filsuf dan matematikawan Yunani Kuno (490-435 SM), mengemukakan sebuah paradoks tentang suatu

Lebih terperinci

Catatan Kuliah MA1123 Kalkulus Elementer I

Catatan Kuliah MA1123 Kalkulus Elementer I Catatan Kuliah MA1123 Kalkulus Elementer I Oleh Hendra Gunawan, Ph.D. Departemen Matematika ITB Sasaran Belajar Setelah mempelajari materi Kalkulus Elementer I, mahasiswa diharapkan memiliki (terutama):

Lebih terperinci

1 SISTEM BILANGAN REAL

1 SISTEM BILANGAN REAL Bilangan real sudah dikenal dengan baik sejak masih di sekolah menengah, bahkan sejak dari sekolah dasar. Namun untuk memulai mempelajari materi pada BAB ini anggaplah diri kita belum tahu apa-apa tentang

Lebih terperinci

Silabus. 1 Sistem Bilangan Real. 2 Fungsi Real. 3 Limit dan Kekontinuan. Kalkulus 1. Arrival Rince Putri. Sistem Bilangan Real.

Silabus. 1 Sistem Bilangan Real. 2 Fungsi Real. 3 Limit dan Kekontinuan. Kalkulus 1. Arrival Rince Putri. Sistem Bilangan Real. Silabus 1 2 3 Referensi E. J. Purcell, D. Varberg, and S. E. Rigdon, Kalkulus, Jilid 1 Edisi Kedelapan, Erlangga, 2003. Penilaian 1 Ujian Tengah Semester (UTS) : 30 2 Ujian Akhir Semester (UAS) : 20 3

Lebih terperinci

Mata Pelajaran Wajib. Disusun Oleh: Ngapiningsih

Mata Pelajaran Wajib. Disusun Oleh: Ngapiningsih Mata Pelajaran Wajib Disusun Oleh: Ngapiningsih Disklaimer Daftar isi Disklaimer Powerpoint pembelajaran ini dibuat sebagai alternatif guna membantu Bapak/Ibu Guru melaksanakan pembelajaran. Materi powerpoint

Lebih terperinci

BAB IV PERTIDAKSAMAAN. 1. Pertidaksamaan Kuadrat 2. Pertidaksamaan Bentuk Pecahan 3. Pertidaksamaan Bentuk Akar 4. Pertidaksamaan Nilai Mutlak

BAB IV PERTIDAKSAMAAN. 1. Pertidaksamaan Kuadrat 2. Pertidaksamaan Bentuk Pecahan 3. Pertidaksamaan Bentuk Akar 4. Pertidaksamaan Nilai Mutlak BAB IV PERTIDAKSAMAAN 1. Pertidaksamaan Kuadrat. Pertidaksamaan Bentuk Pecahan 3. Pertidaksamaan Bentuk Akar 4. Pertidaksamaan Nilai Mutlak 86 LEMBAR KERJA SISWA 1 Mata Pelajaran : Matematika Uraian Materi

Lebih terperinci

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. August 18, Dosen FMIPA - ITB

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. August 18, Dosen FMIPA - ITB (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. August 18, 2011 Kita telah mencatat sebelumnya bahwa supremum dan infimum suatu himpunan tidak harus merupakan anggota himpunan

Lebih terperinci

Daftar Isi 5. DERET ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. Dosen FMIPA - ITB September 26, 2011

Daftar Isi 5. DERET ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. Dosen FMIPA - ITB   September 26, 2011 (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. September 26, 2011 Diberikan sejumlah terhingga bilangan a 1,..., a N, kita dapat menghitung jumlah a 1 + + a N. Namun,

Lebih terperinci

SISTEM BILANGAN REAL

SISTEM BILANGAN REAL DAFTAR ISI 1 SISTEM BILANGAN REAL 1 1.1 Sifat Aljabar Bilangan Real..................... 1 1.2 Sifat Urutan Bilangan Real..................... 6 1.3 Nilai Mutlak dan Jarak Pada Bilangan Real............

Lebih terperinci

Sistem Bilangan Ri l

Sistem Bilangan Ri l Sistem Bilangan Riil Sistem bilangan N : bilangan asli Z : bilangan bulat Q : bilangan rasional R : bilangan real N : 1,,,. Z :,-,-1,0,1,,.. Q : a q =, a, b Z, b 0 b R = Q Irasional Contoh Bil Irasional,,π

Lebih terperinci

Daftar Isi 3. BARISAN ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. Dosen FMIPA - ITB

Daftar Isi 3. BARISAN ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. Dosen FMIPA - ITB (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. August 29, 2011 Dalam kisah Zeno tentang perlombaan lari antara Achilles dan seekor kura-kura, ketika Achilles mencapai

Lebih terperinci

Bilangan Real. Modul 1 PENDAHULUAN

Bilangan Real. Modul 1 PENDAHULUAN Modul 1 Bilangan Real S PENDAHULUAN Drs. Soemoenar emesta pembicaraan Kalkulus adalah himpunan bilangan real. Jadi jika akan belajar kalkulus harus paham terlebih dahulu tentang bilangan real. Bagaimanakah

Lebih terperinci

PEMBINAAN TAHAP I CALON SISWA INVITATIONAL WORLD YOUTH MATHEMATICS INTERCITY COMPETITION (IWYMIC) 2010 MODUL ALJABAR

PEMBINAAN TAHAP I CALON SISWA INVITATIONAL WORLD YOUTH MATHEMATICS INTERCITY COMPETITION (IWYMIC) 2010 MODUL ALJABAR PEMBINAAN TAHAP I CALON SISWA INVITATIONAL WORLD YOUTH MATHEMATICS INTERCITY COMPETITION (IWYMIC) 2010 MODUL ALJABAR DIREKTORAT JENDERAL MANAJEMEN PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT PEMBINAAN SMP

Lebih terperinci

Sedangkan bilangan real yang tidak dapat dinyatakan sebagai pembagian dua bilangan bulat adalah bilangan irasional, contohnya

Sedangkan bilangan real yang tidak dapat dinyatakan sebagai pembagian dua bilangan bulat adalah bilangan irasional, contohnya BAB I A. SISTEM BILANGAN REAL Sistem bilangan real dan berbagai sifatnya merupakan basis dari kalkulus. Sistem bilangan real terdiri dari himpunan unsur yang dinamakan Bilangan Real yang sering dinyatakan

Lebih terperinci

PERSAMAAN KUADRAT. Persamaan. Sistem Persamaan Linear

PERSAMAAN KUADRAT. Persamaan. Sistem Persamaan Linear Persamaan Sistem Persamaan Linear PENGERTIAN Definisi Persamaan kuadrat adalah kalimat matematika terbuka yang memuat hubungan sama dengan yang pangkat tertinggi dari variabelnya adalah 2. Bentuk umum

Lebih terperinci

1 SISTEM BILANGAN REAL

1 SISTEM BILANGAN REAL Bilangan real sudah dikenal dengan baik sejak masih di sekolah menengah, bahkan sejak dari sekolah dasar. Namun untuk memulai mempelajari materi pada BAB ini anggaplah diri kita belum tahu apa-apa tentang

Lebih terperinci

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. September 12, Dosen FMIPA - ITB

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. September 12, Dosen FMIPA - ITB (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. September 12, 2011 Teorema 11 pada Bab 3 memberi kita cara untuk menyelidiki kekonvergenan sebuah barisan tanpa harus mengetahui

Lebih terperinci

KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia

KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN DEPARTEMEN TEKNIK KIMIA Universitas Indonesia BAB II. FUNGSI, LIMIT, DAN KEKONTINUAN Fungsi dan Operasi pada Fungsi Beberapa Fungsi Khusus Limit dan Limit

Lebih terperinci

Jikax (2 x) = 57, maka jumlah semua bilangan bulat x yang memenuhi adalah A. -5 B. -1 C. 0 D. 1 E. 5

Jikax (2 x) = 57, maka jumlah semua bilangan bulat x yang memenuhi adalah A. -5 B. -1 C. 0 D. 1 E. 5 Soal Babak Penyisihan OMITS 011 BAGIAN I. PILIHAN GANDA 1. Hasil kali sebarang bilangan rasional dengan sebarang bilangan irasional selalu merupakan anggota dari himpunan bilangan A. Bulat B. Asli C. Rasional

Lebih terperinci

BAB VI BILANGAN REAL

BAB VI BILANGAN REAL BAB VI BILANGAN REAL PENDAHULUAN Perluasan dari bilangan cacah ke bilangan bulat telah dibicarakan. Dalam himpunan bilangan bulat, pembagian tidak selalu mempunyai penyelesaian, misalkan 3 : 11. Timbul

Lebih terperinci

Sistem Bilangan Riil

Sistem Bilangan Riil Sistem Bilangan Riil Sistem bilangan N : 1,,,. Z :,-,-1,0,1,,.. N : bilangan asli Z : bilangan bulat Q : bilangan rasional R : bilangan real Q : q R a b, a, b Z, b Q Irasional Contoh Bil Irasional,, 0

Lebih terperinci

β α α β SOAL MATEMATIKA UNTUK SMA istiyanto.com Mari Berbagi Ilmu Dengan Yang Lain A. Persamaan Kuadrat dan Fungsi Kuadrat

β α α β SOAL MATEMATIKA UNTUK SMA istiyanto.com Mari Berbagi Ilmu Dengan Yang Lain A. Persamaan Kuadrat dan Fungsi Kuadrat A. Persamaan Kuadrat dan Fungsi Kuadrat 1. Salah satu akar persamaan kuadrat ( a 1) x + (3a 1) x 3a = 0 adalah 1, maka akar lainnya adalah.... Nilai m yang memenuhi agar persamaan kuadrat ( m + 1) x +

Lebih terperinci

Sistem Bilangan Real. Pendahuluan

Sistem Bilangan Real. Pendahuluan Sistem Bilangan Real Pendahuluan Kalkulus didasarkan pada sistem bilangan real dan sifat-sifatnya. Sistem bilangan real adalah himpunan bilangan real yang disertai operasi penjumlahan dan perkalian sehingga

Lebih terperinci

MAT 602 DASAR MATEMATIKA II

MAT 602 DASAR MATEMATIKA II MAT 60 DASAR MATEMATIKA II Disusun Oleh: Dr. St. Budi Waluya, M. Sc Jurusan Pendidikan Matematika Program Pascasarjana Unnes 1 HIMPUNAN 1. Notasi Himpunan. Relasi Himpunan 3. Operasi Himpunan A B : A B

Lebih terperinci

03/08/2015. Sistem Bilangan Riil. Simbol-Simbol dalam Matematikaa

03/08/2015. Sistem Bilangan Riil. Simbol-Simbol dalam Matematikaa 0/08/015 Sistem Bilangan Riil Simbol-Simbol dalam Matematikaa 1 0/08/015 Simbol-Simbol dalam Matematikaa Simbol-Simbol dalam Matematikaa 4 0/08/015 Simbol-Simbol dalam Matematikaa 5 Sistem bilangan N :

Lebih terperinci

Relasi, Fungsi, dan Transformasi

Relasi, Fungsi, dan Transformasi Modul 1 Relasi, Fungsi, dan Transformasi Drs. Ame Rasmedi S. Dr. Darhim, M.Si. M PENDAHULUAN odul ini merupakan modul pertama pada mata kuliah Geometri Transformasi. Modul ini akan membahas pengertian

Lebih terperinci

LOGO MAM 4121 KALKULUS 1. Dr. Wuryansari Muharini K.

LOGO MAM 4121 KALKULUS 1. Dr. Wuryansari Muharini K. LOGO MAM 4121 KALKULUS 1 Dr. Wuryansari Muharini K. BAB I. PENDAHULUAN SISTEM BILANGAN REAL, NOTASI SELANG, dan NILAI MUTLAK PERTAKSAMAAN SISTEM KOORDINAT GRAFIK PERSAMAAN SEDERHANA www.themegallery.com

Lebih terperinci

2. PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT

2. PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT 2. PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT A. Persamaan Kuadrat 1) Bentuk umum persamaan kuadrat : ax 2 + bx + c =, a 2) Nilai determinan persamaan kuadrat : D = b 2 4ac 3) Akar-akar persamaan kuadrat

Lebih terperinci

II. SISTEM BILANGAN RIIL. Handout Analisis Riil I (PAM 351)

II. SISTEM BILANGAN RIIL. Handout Analisis Riil I (PAM 351) II. SISTEM BILANGAN RIIL Handout Analisis Riil I (PAM 351) Sifat Aljabar (Aksioma Lapangan) dari Bilangan Riil Bagian ini akan membicarakan struktur aljabar bilangan riil dengan terlebih dahulu memberikan

Lebih terperinci

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan (Semester I Tahun 2011-2012) Analysis and Geometry Group, FMIPA-ITB E-mail: hgunawan@math.itb.ac.id. http://personal.fmipa.itb.ac.id/hgunawan August 8, 2011 Di sekolah menengah telah dipelajari apa yang

Lebih terperinci

11. FUNGSI MONOTON (DAN FUNGSI KONVEKS)

11. FUNGSI MONOTON (DAN FUNGSI KONVEKS) 11. FUNGSI MONOTON (DAN FUNGSI KONVEKS) 11.1 Definisi dan Limit Fungsi Monoton Misalkan f terdefinisi pada suatu himpunan H. Kita katakan bahwa f naik pada H apabila untuk setiap x, y H dengan x < y berlaku

Lebih terperinci

GLOSSARIUM. A Akar kuadrat

GLOSSARIUM. A Akar kuadrat A Akar kuadrat GLOSSARIUM Akar kuadrat adalah salah satu dari dua faktor yang sama dari suatu bilangan. Contoh: 9 = 3 karena 3 2 = 9 Anggota Himpunan Suatu objek dalam suatu himpunan B Belahketupat Bentuk

Lebih terperinci

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a Soal - Soal UM UGM. Soal Matematika Dasar UM UGM 00. Jika x = 3 maka + 3 log 4 x =... a. b. c. d. e.. Jika x+y log = a dan x y log 8 = b dengan 0 < y < x maka 4 log (x y ) =... a. a + 3b ab b. a + b ab

Lebih terperinci

Persamaan dan pertidaksamaan kuadrat BAB II

Persamaan dan pertidaksamaan kuadrat BAB II BAB II Misalkan a,b,c Є R dan a 0 maka persamaan yang berbentuk dinamakan persamaan kuadrat dalam peubah x. Dalam persamaan kuadrat ax bx c 0, a adalah koefisien dari x, b adalah koefisien dari x dan c

Lebih terperinci

SISTEM BILANGAN REAL

SISTEM BILANGAN REAL SISTEM BILANGAN REAL Materi : 1.1 Pendahuluan Sistem Bilangan Real adalah himpunan bilangan real yang disertai dengan operasi penjumlahan dan perkalian sehingga memenuhi aksioma tertentu, ini merupakan

Lebih terperinci

TUJUAN INSTRUKSIONAL KHUSUS

TUJUAN INSTRUKSIONAL KHUSUS PREVIEW KALKULUS TUJUAN INSTRUKSIONAL KHUSUS Mahasiswa mampu: menyebutkan konsep-konsep utama dalam kalkulus dan contoh masalah-masalah yang memotivasi konsep tersebut; menjelaskan menyebutkan konsep-konsep

Lebih terperinci

Bagian 1 Sistem Bilangan

Bagian 1 Sistem Bilangan Bagian 1 Sistem Bilangan Dalam bagian 1 Sistem Bilangan kita akan mempelajari berbagai jenis bilangan, pemakaian tanda persamaan dan pertidaksamaan, menggambarkan himpunan penyelesaian pada selang bilangan,

Lebih terperinci

SISTEM PERTIDAKSAMAAN KUADRAT DUA VARIABEL SPtKDV

SISTEM PERTIDAKSAMAAN KUADRAT DUA VARIABEL SPtKDV SISTEM PERTIDAKSAMAAN KUADRAT DUA VARIABEL SPtKDV A. Pertidaksamaan Kuadrat Dua Variabel Pertidaksamaan kuadrat dua variabel adalah kalimat terbuka matematika yang memuat dua variabel dengan setidaknya

Lebih terperinci

1 SISTEM BILANGAN REAL

1 SISTEM BILANGAN REAL 1 SISTEM BILANGAN REAL Bilangan real sudah dikenal dengan baik sejak masih di sekolah menengah, bahkan sejak dari sekolah dasar. Namun untuk memulai mempelajari materi pada BAB ini anggaplah diri kita

Lebih terperinci

Sistem Bilangan Riil. Pendahuluan

Sistem Bilangan Riil. Pendahuluan Sistem Bilangan Riil Pendahuluan Kalkulus didasarkan pada sistem bilangan riil dan sifat-sifatnya. Sistem bilangan riil adalah himpunan bilangan riil yang disertai operasi penjumlahan dan perkalian sehingga

Lebih terperinci

SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2014 TINGKAT PROVINSI

SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2014 TINGKAT PROVINSI HAK CIPTA DILINDUNGI UNDANG-UNDANG SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2014 TINGKAT PROVINSI BIDANG MATEMATIKA Waktu : 210 menit KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL

Lebih terperinci

Untuk mencari akar-akar dari persamaan kuadrat, dapat menggunakan rumus :

Untuk mencari akar-akar dari persamaan kuadrat, dapat menggunakan rumus : RUMUS-RUMUS PERSAMAAN KUADRAT Bentuk umum: ax 2 + bx + c = 0, a 0 AKAR-AKAR PERSAMAAN KUADRAT Untuk mencari akar-akar dari persamaan kuadrat, dapat menggunakan rumus : X 1.2 = Dengan : D = b 2 4ac, dan

Lebih terperinci

BAB II PERSAMAAN KUADRAT DAN FUNGSI KUADRAT

BAB II PERSAMAAN KUADRAT DAN FUNGSI KUADRAT BAB II PERSAMAAN KUADRAT DAN FUNGSI KUADRAT 1. Menentukan koefisien persamaan kuadrat 2. Jenis-jenis akar persamaan kuadrat 3. Menyusun persamaan kuadrat yang akarnya diketahui 4. Fungsi kuadrat dan grafiknya

Lebih terperinci

BEBERAPA FUNGSI KHUSUS

BEBERAPA FUNGSI KHUSUS BEBERAPA FUNGSI KHUSUS ). Fungsi Konstan ). Fungsi Identitas 3). Fungsi Modulus 4). Fungsi Genap dan Fungsi Ganjil Fungsi genap jika f(x) = f(x), dan Fungsi ganjil jika f(x) = f(x) 5). Fungsi Tangga dan

Lebih terperinci

Perhatikan skema sistem bilangan berikut. Bilangan. Bilangan Rasional. Bilangan pecahan adalah bilangan yang berbentuk a b

Perhatikan skema sistem bilangan berikut. Bilangan. Bilangan Rasional. Bilangan pecahan adalah bilangan yang berbentuk a b 2 SISTEM BILANGAN Perhatikan skema sistem bilangan berikut Bilangan Bilangan Kompleks Bilangan Real Bilangan Rasional Bilangan Irasional Bilangan Bulat Bilangan Pecahan Bilangan bulat adalah bilangan yang

Lebih terperinci

a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Pengantar Kalkulus Pertemuan - 1

a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Pengantar Kalkulus Pertemuan - 1 Mata Kuliah : Kalkulus Kode : TSP 102 SKS : 3 SKS Pengantar Kalkulus Pertemuan - 1 TIU : Mahasiswa dapat memahami dasar-dasar Kalkulus TIK : Mahasiswa mampu menjelaskan sistem bilangan real Mahasiswa mampu

Lebih terperinci

MBS - DTA. Sucipto UNTUK KALANGAN SENDIRI. SMK Muhammadiyah 3 Singosari

MBS - DTA. Sucipto UNTUK KALANGAN SENDIRI. SMK Muhammadiyah 3 Singosari MBS - DTA Sucipto UNTUK KALANGAN SENDIRI SMK Muhammadiyah Singosari SERI : MBS-DTA FUNGSI STANDAR KOMPETENSI Siswa mampu memecahkan masalah yang berkaitan dengan fungsi, persamaan fungsi linear dan fungsi

Lebih terperinci

SISTEM BILANGAN BULAT

SISTEM BILANGAN BULAT SISTEM BILANGAN BULAT A. Bilangan bulat Pengertian Bilangan bulat adalah bilangan yang tidak mempunyai pecahan desimal, misalnya 8, 21, 8765, -34, 0. Berlawanan dengan bilangan bulat adalah bilangan riil

Lebih terperinci

MATEMATIKA 3 TPP: Disusun oleh Dr. Ir. Dwiyati Pujimulyani,MP. Program Studi Teknologi Hasil Pertanian Fakultas Agroindustri

MATEMATIKA 3 TPP: Disusun oleh Dr. Ir. Dwiyati Pujimulyani,MP. Program Studi Teknologi Hasil Pertanian Fakultas Agroindustri MATEMATIKA 3 TPP: 1202 Disusun oleh Dr. Ir. Dwiyati Pujimulyani,MP Program Studi Teknologi Hasil Pertanian Fakultas Agroindustri Universitas Mercu Buana Yogyakarta 2013 BILANGAN REAL/ RIIL Sistem bilangan

Lebih terperinci

Hand-Out Geometri Transformasi. Bab I. Pendahuluan

Hand-Out Geometri Transformasi. Bab I. Pendahuluan Hand-Out Geometri Transformasi Bab I. Pendahuluan 1.1 Vektor dalam R 2 Misalkan u = (x 1,y 1 ), v = (x 2,y 2 ) dan w = (x 3,y 3 ) serta k skalar (bilangan real) Definisi 1. : Penjumlahan vektor u + v =

Lebih terperinci

LEMBAR AKTIVITAS SISWA PERSAMAAN DAN PERTIDAKSAMAAN NILAI MUTLAK

LEMBAR AKTIVITAS SISWA PERSAMAAN DAN PERTIDAKSAMAAN NILAI MUTLAK Nama Siswa LEMBAR AKTIVITAS SISWA PERSAMAAN DAN PERTIDAKSAMAAN NILAI MUTLAK : Kelas : KOMPETENSI DASAR: 3.2 Mendeskripsikan dan menganalisis konsep nilai mutlak dalam persamaan dan pertidaksamaan serta

Lebih terperinci

SISTEM BILANGAN RIIL DAN FUNGSI

SISTEM BILANGAN RIIL DAN FUNGSI SISTEM BILANGAN RIIL DAN FUNGSI Matematika Juni 2016 Dosen : Dadang Amir Hamzah MATEMATIKA Juni 2016 1 / 67 Outline 1 Sistem Bilangan Riil Dosen : Dadang Amir Hamzah MATEMATIKA Juni 2016 2 / 67 Outline

Lebih terperinci

Hendra Gunawan. 28 Agustus 2013

Hendra Gunawan. 28 Agustus 2013 MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 28 Agustus 2013 Siapakah Ini? 2 Hendra Gunawan Gedung Labtek III, Lt. 2, R. 208 Tel. 2502545 Pes. 208 E mail hgunawan@math.itb.ac.id Website http://personal.fmipa.itb.ac.id/hgunawan/

Lebih terperinci

SISTEM BILANGAN REAL. 1. Sistem Bilangan Real. Terlebih dahulu perhatikan diagram berikut: Bilangan. Bilangan Rasional. Bilangan Irasional

SISTEM BILANGAN REAL. 1. Sistem Bilangan Real. Terlebih dahulu perhatikan diagram berikut: Bilangan. Bilangan Rasional. Bilangan Irasional SISTEM BILANGAN REAL Sebelum membahas tentag konsep sistem bilangan real, terlebih dahulu ingat kembali tentang konsep himpunan. Konsep dasar dalam matematika adalah berkaitan dengan himpunan atau kelas

Lebih terperinci

PERTIDAKSAMAAN

PERTIDAKSAMAAN PERTIDAKSAMAAN A. Pengertian 1. Notasi Pertidaksamaan Misalnya ada dua bilangan riil a dan b. Ada beberapa notasi yang bisa dibuat yaitu: a. a dikatakan kurang dari b, ditulis a b jika dan hanya jika a

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

PENERAPAN FAKTOR PRIMA DALAM MENYELESAIKAN BENTUK ALJABAR (Andi Syamsuddin*)

PENERAPAN FAKTOR PRIMA DALAM MENYELESAIKAN BENTUK ALJABAR (Andi Syamsuddin*) PENERAPAN FAKTOR PRIMA DALAM MENYELESAIKAN BENTUK ALJABAR (Andi Syamsuddin*) A. Faktor Prima Dalam tulisan ini yang dimaksud dengan faktor prima sebuah bilangan adalah pembagi habis dari sebuah bilangan

Lebih terperinci

I. PETUNJUK: Untuk soal nomor 1 sampai dengan nomor, pilihlah salah satu jawaban yang paling tepat!

I. PETUNJUK: Untuk soal nomor 1 sampai dengan nomor, pilihlah salah satu jawaban yang paling tepat! I. PETUNJUK: Untuk soal nomor sampai dengan nomor, pilihlah salah satu jawaban yang paling tepat!. Persamaan ( p + ) x ( p + ) x + ( p ) = 0, p, merupakan persamaan kuadrat dalam x untuk nilai p... p c.

Lebih terperinci

PENDAHULUAN KALKULUS

PENDAHULUAN KALKULUS . BILANGAN REAL PENDAHULUAN KALKULUS Ada beberapa jenis bilangan ang telah kita kenal ketika di bangku sekolah. Bilangan-bilangan tersebut adalah bilangan asli, bulat, cacah, rasional, irrasional. Tahu

Lebih terperinci

MADRASAH ALIYAH AL-MU AWANAH BEKASI SELATAN 2012

MADRASAH ALIYAH AL-MU AWANAH BEKASI SELATAN 2012 MODUL MATEMATIKA PERSIAPAN UJIAN NASIONAL 0 TAHUN AJARAN 0/0 MATERI PERSAMAAN KUADRAT DAN PERTIDAKSAMAAN KUADRAT UNTUK KALANGAN MA AL-MU AWANAH MADRASAH ALIYAH AL-MU AWANAH BEKASI SELATAN 0 Jalan RH. Umar

Lebih terperinci

Bil Riil. Bil Irasional. Bil Bulat - Bil Bulat 0 Bil Bulat + maka bentuk umum bilangan kompleks adalah

Bil Riil. Bil Irasional. Bil Bulat - Bil Bulat 0 Bil Bulat + maka bentuk umum bilangan kompleks adalah ANALISIS KOMPLEKS Pendahuluan Bil Kompleks Bil Riil Bil Imaginer (khayal) Bil Rasional Bil Irasional Bil Pecahan Bil Bulat Sistem Bilangan Kompleks Bil Bulat - Bil Bulat 0 Bil Bulat + Untuk maka bentuk

Lebih terperinci

II. TINJAUAN PUSTAKA. bilangan riil. Bilangan riil biasanya dilambangkan dengan huruf R (Negoro dan

II. TINJAUAN PUSTAKA. bilangan riil. Bilangan riil biasanya dilambangkan dengan huruf R (Negoro dan II. TINJAUAN PUSTAKA 2.1 Sistem Bilangan Riil Definisi Bilangan Riil Gabungan himpunan bilangan rasional dan himpunan bilangan irrasional disebut bilangan riil. Bilangan riil biasanya dilambangkan dengan

Lebih terperinci

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2007 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!!

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2007 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!! SELEKSI OLIMPIADE MATEMATIKA INDONESIA 007 TINGKAT PROVINSI TAHUN 006 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Bagian Pertama Disusun oleh : Solusi Olimpiade Matematika Tk Provinsi

Lebih terperinci

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan.

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan. 2. Grup Definisi 1.3 Suatu grup < G, > adalah himpunan tak-kosong G bersama-sama dengan operasi biner pada G sehingga memenuhi aksioma- aksioma berikut: a. operasi biner bersifat asosiatif, yaitu a, b,

Lebih terperinci

2. FUNGSI KUADRAT. , D = b 2 4ac

2. FUNGSI KUADRAT. , D = b 2 4ac . FUNGSI KUADRAT A. Persamaan Kuadrat 1) Bentuk umum persamaan kuadrat : ax + bx + c =, a ) Akar akar persamaan kuadrat dapat dicari dengan memfaktorkan ataupun dengan rumus: x 1, b D, D = b 4ac a 3) Jumlah,

Lebih terperinci

Materi Matematika Persamaan dan Pertidaksamaan kuadrat Persamaan Linear Persamaan Kuadrat Contoh : Persamaan Derajat Tinggi

Materi Matematika Persamaan dan Pertidaksamaan kuadrat Persamaan Linear Persamaan Kuadrat Contoh : Persamaan Derajat Tinggi Materi Matematika Persamaan dan Pertidaksamaan kuadrat Persamaan Linear Persamaan linear dengan n peubah adalah persamaan dengan bentuk : dengan adalah bilangan- bilangan real, dan adalah peubah. Secara

Lebih terperinci

BIDANG MATEMATIKA SMA

BIDANG MATEMATIKA SMA MATERI PENGANTAR OLIMPIADE SAINS NASIONAL BIDANG MATEMATIKA SMA DISUSUN OLEH: TIM PEMBINA OLIMPIADE MATEMATIKA TIM OLIMPIADE MATEMATIKA INDONESIA Juli 009 KATA PENGANTAR Olimpiade Sains Nasional (OSN)

Lebih terperinci

6 FUNGSI LINEAR DAN FUNGSI

6 FUNGSI LINEAR DAN FUNGSI 6 FUNGSI LINEAR DAN FUNGSI KUADRAT 5.1. Fungsi Linear Pada Bab 5 telah dijelaskan bahwa fungsi linear merupakan fungsi yang variabel bebasnya paling tinggi berpangkat satu. Bentuk umum fungsi linear adalah

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT PROVINSI 2014 TIM OLIMPIADE MATEMATIKA INDONESIA Waktu : 210 Menit

SELEKSI OLIMPIADE TINGKAT PROVINSI 2014 TIM OLIMPIADE MATEMATIKA INDONESIA Waktu : 210 Menit SELEKSI OLIMPIADE TINGKAT PROVINSI 2014 TIM OLIMPIADE MATEMATIKA INDONESIA 2015 Waktu : 210 Menit KEMENTERIAN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL MANAJEMEN PENDIDIKAN DASAR DAN MENENGAH DIREKTORAT

Lebih terperinci

Pembahasan Soal SIMAK UI 2012 SELEKSI MASUK UNIVERSITAS INDONESIA. Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS. Matematika IPA

Pembahasan Soal SIMAK UI 2012 SELEKSI MASUK UNIVERSITAS INDONESIA. Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS. Matematika IPA Pembahasan Soal SIMAK UI 0 SELEKSI MASUK UNIVERSITAS INDONESIA Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS Matematika IPA Disusun Oleh : Pak Anang Kumpulan SMART SOLUTION dan TRIK SUPERKILAT Pembahasan

Lebih terperinci

MATEMATIKA EKONOMI 1 HIMPUNAN BILANGAN. Dosen : Fitri Yulianti, SP. MSi

MATEMATIKA EKONOMI 1 HIMPUNAN BILANGAN. Dosen : Fitri Yulianti, SP. MSi MATEMATIKA EKONOMI 1 HIMPUNAN BILANGAN Dosen : Fitri Yulianti, SP. MSi Skema Himpunan Kompleks Real Rasional Bulat Cacah Asli Genap Ganjil Prima Komposit Nol Bulat Negatif Pecahan Irasional Imajiner Pengertian

Lebih terperinci

II. TINJAUAN PUSTAKA. 2.1 Bilangan Bulat, Bilangan Rasional, dan Bilangan Real. dengan huruf kecil. Sebagai contoh anggota himpunan A ditulis ;

II. TINJAUAN PUSTAKA. 2.1 Bilangan Bulat, Bilangan Rasional, dan Bilangan Real. dengan huruf kecil. Sebagai contoh anggota himpunan A ditulis ; 4 II. TINJAUAN PUSTAKA 2.1 Bilangan Bulat, Bilangan Rasional, dan Bilangan Real Himpunan dinyatakan dengan huruf kapital dan anggota himpunan dinyatakan dengan huruf kecil. Sebagai contoh anggota himpunan

Lebih terperinci

MODUL 1. Teori Bilangan MATERI PENYEGARAN KALKULUS

MODUL 1. Teori Bilangan MATERI PENYEGARAN KALKULUS MODUL 1 Teori Bilangan Bilangan merupakan sebuah alat bantu untuk menghitung, sehingga pengetahuan tentang bilangan, mutlak diperlukan. Pada modul pertama ini akan dibahas mengenai bilangan (terutama bilangan

Lebih terperinci

1.1 SISTEM BILANGAN Sistem bilangan Bilangan Asli, Bilangan Cacah, Bilangan Bulat dan Bilangan Rasional

1.1 SISTEM BILANGAN Sistem bilangan Bilangan Asli, Bilangan Cacah, Bilangan Bulat dan Bilangan Rasional 1.1 SISTEM BILANGAN Sistem bilangan adalah himpunan dari bilangan-bilangan beserta sifat-sifatnya. Himpunan bilangan yang teristimewa dan penting adalah himpunan bilangan real. Tetapi apakah bilangan real

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA1201 MATEMATIKA 2A Hendra Gunawan Semester II, 2016/2017 15 Maret 2017 Kuliah yang Lalu 10.1-2 Parabola, Elips, dan Hiperbola 10.4 Persamaan Parametrik Kurva di Bidang 10.5 Sistem Koordinat Polar 11.1

Lebih terperinci

fungsi Dan Grafik fungsi

fungsi Dan Grafik fungsi fungsi Dan Grafik fungsi Suatu fungsi adalah pemadanan dua himpunan tidak kosong dengan pasangan terurut (x, y) dimana tidak terdapat elemen kedua yang berbeda. Fungsi (pemetaan) himpunan A ke himpunan

Lebih terperinci

VEKTOR. 45 O x PENDAHULUAN PETA KONSEP. Vektor di R 2. Vektor di R 3. Perkalian Skalar Dua Vektor. Proyeksi Ortogonal suatu Vektor pada Vektor Lain

VEKTOR. 45 O x PENDAHULUAN PETA KONSEP. Vektor di R 2. Vektor di R 3. Perkalian Skalar Dua Vektor. Proyeksi Ortogonal suatu Vektor pada Vektor Lain VEKTOR y PENDAHULUAN PETA KONSEP a Vektor di R 2 Vektor di R 3 Perkalian Skalar Dua Vektor o 45 O x Proyeksi Ortogonal suatu Vektor pada Vektor Lain Soal-Soal PENDAHULUAN Dalam ilmu pengetahuan kita sering

Lebih terperinci

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan 3. Topologi Garis Bilangan Real 3.1 Teori Limit Limit, supremum, dan infimum Titik limit 3.2 Himpunan Buka dan Himpunan Tutup 3.3

Lebih terperinci

A. PERSAMAAN GARIS LURUS

A. PERSAMAAN GARIS LURUS A. PERSAMAAN GARIS LURUS Persamaan garis lurus adalah hubungan nilai x dan nilai y yang terletak pada garis lurus serta dapat di tulis px + qy = r dengan p, q, r bilangan real dan p, q 0. Persamaan dalam

Lebih terperinci

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. October 3, Dosen FMIPA - ITB

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. October 3, Dosen FMIPA - ITB (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. October 3, 2011 6.3 Limit Sepihak, Limit di Tak Hingga, dan Limit Tak Hingga Bila sebelumnya kita mempelajari limit barisan,

Lebih terperinci

Lembar Kerja Mahasiswa 1: Teori Bilangan

Lembar Kerja Mahasiswa 1: Teori Bilangan Lembar Kerja Mahasiswa 1: Teori Bilangan N a m a : NIM/Kelas : Waktu Kuliah : Kompetensi Dasar dan Indikator: 1. Memahami pengertian faktor dan kelipatan bilangan bulat. a) Menuliskan denisi faktor suatu

Lebih terperinci

SISTEM PERSAMAAN LINEAR, KUADRAT DAN PERTIDAKSAMAAN SATU VARIABEL

SISTEM PERSAMAAN LINEAR, KUADRAT DAN PERTIDAKSAMAAN SATU VARIABEL LA - WB (Lembar Aktivitas Warga Belajar) SISTEM PERSAMAAN LINEAR, KUADRAT DAN PERTIDAKSAMAAN SATU VARIABEL Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

PERSAMAAN GARIS. Dua garis sejajar mempunyai gradien sama, sehingga persamaan garis yang sejajar l dan melalui titik (3,4) adalah

PERSAMAAN GARIS. Dua garis sejajar mempunyai gradien sama, sehingga persamaan garis yang sejajar l dan melalui titik (3,4) adalah PERSAMAAN GARIS. SIMAK UI Matematika Dasar 9, 9 Diketahui adalah garis l yang dinyatakan oleh det( A) dimana A x y, persamaan garis yang sejajar l dan melalui titik (,4) adalah... A. x y 7 C. x y E. x

Lebih terperinci

Bab1. Sistem Bilangan

Bab1. Sistem Bilangan Modul Pra Kalkulus -0. Bab. Sistim Bilangan Bab. Sistem Bilangan. Sistim Bilangan Jenis bilangan berkembang sejalan dengan perkembangan peradaban dan ilmu pengetahuan. Jenis bilangan yang pertama kali

Lebih terperinci

Persamaan dan Pertidaksamaan Linear

Persamaan dan Pertidaksamaan Linear MATERI POKOK Persamaan dan Pertidaksamaan Linear MATERI BAHASAN : A. Persamaan Linear B. Pertidaksamaan Linear Modul.MTK X 0 Kalimat terbuka adalah kalimat matematika yang belum dapat ditentukan nilai

Lebih terperinci

Faktorisasi Suku Aljabar

Faktorisasi Suku Aljabar Bab 1 Tujuan Pembelajaran Setelah mempelajari bab ini siswa diharapkan mampu: Menjelaskan pengertian koe sien, variabel, konstanta, suku satu, suku dua, dan suku banyak; Menyelesaikan masalah operasi tambah,

Lebih terperinci

2. Suku-suku sejenis Suku-suku sejenis adalah suku-suku yang mempunyai variabel dan bilangan pangkat dari variabel tersebut sama.

2. Suku-suku sejenis Suku-suku sejenis adalah suku-suku yang mempunyai variabel dan bilangan pangkat dari variabel tersebut sama. A. OPERASI BENTUK ALJABAR 1. Pengertian suku, koefisien, variabel, dan konstanta bentuk aljabar Bentuk 8x + 17 merupakan bentuk aljabar dengan x sebagai variabel, 8 sebagai koefisien, dan 17 adalah konstant

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL "We are the first of the fastest online solution of mathematics" 009 SELEKSI OLIMPIADE TINGKAT PROVINSI 008 TIM OLIMPIADE MATEMATIKA INDONESIA 009 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang

Lebih terperinci