Metode elemen batas untuk menyelesaikan masalah perpindahan panas

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Metode elemen batas untuk menyelesaikan masalah perpindahan panas"

Transkripsi

1 Metode elemen batas untuk menyelesaikan masalah perpindahan panas Imam Solekhudin 1 Jurusan Matematika FMIPA UGM Yogyakarta, Abstrak. Permasalahan perpindahan panas keadaan stasioner dimodelkan dengan menggunakan persamaan Laplace. Salah satu metode numerik untuk menyelesaikan persamaan ini, dengan diketehui syarat-syarat batasnya, adalah Metode Elemen Batas (MEB. Pada paper ini akan dibahas mengenai solusi numerik permasalahan tersebut dengan menggunakan MEB standar, dan membandingkan solusi-solusi numerik yang diperoleh dengan solusi analitiknya. Kata Kunci: Perpindahan panas, persamaan Laplace, Metode elemen batas. 1 Pendahuluan Perpindahan panas pada domain R, yang dibatasi kurva, dimodelkan dengan persaman Laplace berikut 2 T = 1 K t, (1 dengan t adalah waktu, T (t, x, y adalah temperatur (suhu, K = k/ρc adalah thermal divusiffity, k adalah konduktivitas termal, ρ adalah densitas, dan c adalah specific heat. Permasalahan yang melibatkan perpindahan panas stasioner dapat diselesaikan menggunakan metode beda hingga atau metode elemen hingga. Akan tetapi metode ini kurang fleksibel, karena titik-titik di luar grid tidak dapat ditentukan solusinya. Pada paper ini digunakan suatu metode numerik, yaitu metode elemen batas, yang merupakan alternatif selain dua metode tersebut 1,2. Dengan menggunakan metode ini, kelemahan yang ada pada dua metode tersebut dapat ditutupi. Selanjutnya, metode ini diaplikasikan untuk menyelesaikan suatu masalah perpindahan panas stasioner, dan solusi numerik yang diperoleh dibandingkan dengan solusi analitik, untuk mengobservasi keakuratan MEB. 2 Formulasi Permasalahan dan Persamaan-persamaan Dasar Perpindahan panas dalam suatu medium dua dimensi, dimodelkan dalam persamaan differensial parsial berikut 2 T + 2 T 2 y 2 = 1 K t. (2 Apabila perpindahan panas telah terjadi dalam waktu yang sangat lama, atau secara matematika dituliskan sebagai t, maka distribusi temperatur 833

2 pada medium tersebut tetap. Artinya, untuk jika diambil sebarang titik pada medium tersebut, maka suhu di titik tersebut tidak lagi mengalami perubahan. Berdasarkan fakta ini, diperoleh t Jadi Persamaan (2 dapat ditulis menjadi = 0. (3 2 T + 2 T = 0, (4 2 y2 yang merupakan persamaan Laplace dua dimensi. Persamaan (4 dapat diselesaikan secara analitik untuk syarat-syarat batas tertentu. Untuk sebarang syarat batas, metode analitik mungkin tidak dapat diaplikasikan. Oleh karena itu, diperlukan metode numerik untuk menyelesaikannya. Salah satu metode numerik yang dapat digunakan untuk menyelesaikan masalah yang memuat persamaan Laplace adalah MEB. Berikut ini akan dituliskan mengenai penurunan MEB secara singkat. Untuk detailnya, dapat dilihat di dalam 3. Jika T 1 dan solusi persamaan (4, maka akibatnya ( 2 T T 1 2 y 2 1 T 1 R ( ( 2 T y T 1 Menggunakan Teorema Divergensi diperoleh { 1 0 = T 2 1 Jadi = Jika T 1 = T, dengan 1 T 1 2 ds(x, y + = 0, 2 = 0. } 1 T 2 1 dxdy ( 1 T 2 1 ds(x, y = 0. (5 T = 1 4π ln(x x 2 + (y y 2, suatu solusi fundamental persamaan Laplace dua dimensi, dan = T solusi Persamaan (4 yang diinginkan, maka Persamaan (5 menjadi ( T T ds(x, y = 0. (6 834

3 Persamaan (6 tidak valid untuk (x, y R. Jika (x, y R, diperoleh λ(x, y T (x, y = ( T T ds(x, y, (7 dengan 0, (x, y / R λ(x, y 1 = 2, (x, y terletak pada bagian yang smooth dari 1, (x, y R Untuk menentukan solusi Persamaan (7 dengan menggunakan MEB, batas domain didekati dengan segmen-segmen garis yang sambung menyambung, dengan ujung-ujung segmennya berada pada batas. Katakan jumlah segmen adalah N. Segmen ke n, dinotasikan dengan (n. Pada setiap (n, n = 1, 2,, N, diambil titik kolokasi (x (n, y (n, yang merupakan titik tengah segmen (n. Nilai T dan / dianggap konstan, yaitu T (x, y T (x (n, y (n = T (n (x, y (x, y Persamaan (7 dapat didekati dengan (x,y=(x (n,y (n = τ (n N λ(x, y T (x, y = T (i i=1 (i (i ds(x, y τ y, (i atau dapat ditulis λ(x, y T (x, y = N i=1 T (i F (i 2 τ (i F (i 1, (8 Jika (x, y diganti dengan (x (k, y (k, k = 1, 2,, N, maka diperoleh suatu sistem persamaan linear (SPL 1 2 T (k = N i=1 T (i F (i 2 (x (k, y (k τ (i F (i(x(k,y (k 1, k = 1, 2,, N. (9 Dengan menyelesaikan SPL (9, dapat diperoleh solusi pada titik-titik kolokasi. Selanjutnya dengan menggunakan solusi pada titik-titik kolokasi tersebut, dapat diperoleh solusi pada sebarang titik di R dengan menggunakan Persamaan (8. 835

4 3 Ekperimen Numerik Prosiding Konferensi Nasional Matematika XVII Pada bagian ini, MEB diaplikasikan untuk menyelesaikan masalah perpindahan panas steady, pada contoh berikut. Akan dicari distribusi panas pada lempengan berbentuk persegi dengan panjang sisi 1 satuan, dengan syarat batas sebagai berikut. = x, untuk 0 x 1 dan y = 0. (10 T = y, untuk x = 1 dan 0 y 1. (11 T = x, untuk 0 x 1 dan y = 1. (12 = y, untuk x = 0 dan 0 y 1. (13 Persamaan Laplace (4 dengan Syarat-syarat batas (10 - (13 diselesaikan dengan menggunakan MEB sebagaimana diuraikan di atas. Untuk mengaplikasikan MEB, batas di dekati dengan segmen berjumlah berturut-turut 20 dan 100. Selanjutnya solusi numerik yang diperoleh dibandingkan dengan solusi analitik. Solusi analitik untuk permasalahan di atas adalah T = xy. (14 Solusi-solusi numerik beserta solusi analitiknya beserta galatnya ditampilkan dalam Tabel 1 dan 2 Tabel 1. Solusi numerik dan solusi eksak di beberapa titik. (x,y Eksak N = 20 N = 100 (0.1, (0.1, (0.1, (0.1, (0.5, (0.5, (0.5, (0.5, (0.9, (0.9, (0.9, (0.9, Tabel 1 menunjukkan solusi analitik dan solusi numerik yang diperoleh dengan menggunakan jumlah segmen 20 dan 100. Terlihat bahwa solusi-solusi numerik yang diperoleh cukup akurat. Keakuratan solusi-solusi tersebut dapat terlihat dari galat yang diperoleh dari masing-masing solusi, yang ditampilkan di dalam Tabel 2. Berdasarkan hasil yang ditampilkan dalam Tabel 2, sesuai dengan hipotesa, bahwa jumlah segmen yang lebih besar secara umum memberikan solusi yang lebih akurat dibandingkan dengan jumlah segmen yang lebih sedikit. 836

5 Tabel 2. Error yang dihasilkan untuk N = 20 dan N = 100. (x,y N = 20 N = 100 (0.1, (0.1, (0.1, (0.1, (0.5, (0.5, (0.5, (0.5, (0.9, (0.9, (0.9, (0.9, Kesimpulan Metode elemen batas (MEB dapat digunakan sebagai salah satu metode numerik untuk menyelesaikan masalah perpindahan panas stasioner. Solusi-solusi numerik yang diperoleh sangat bergantung pada jumlah segmen yang digunakan untuk mendekati batas pada masalah aslinya. Berdasarkan eksperimen numerik diperoleh jumlah segmen yang lebih banyak secara umum memberikan solusi yang lebih akurat. Daftar Pustaka 1. Brebbia,.A., Telles, J..F., Wrobel L.., Boundary Element Techniques: Theory and Applications in Engineering, Springer, Berlin, Godinho, L., Tadeu, A., Simoes, N., Study of Transient Heat onduction in 2.5D Domains using the Boundary Element Method, Engineering Analysis with Boundary Elements, 28, pp , 2 3. Ang, W.T., A Beginner s ourse in Boundary Element Methods, Universal Publishers, Boca Raton, Florida,

6 838

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan suatu ilmu pengetahuan yang sering disebut sebagai induk dari ilmu-ilmu pengetahuan yang lain. Hal ini karena, matematika banyak diterapkan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan salah satu ilmu pengetahuan yang sudah lama dipelajari dan berkembang pesat. Perkembangan ilmu matematika tidak terlepas dari perkembangan

Lebih terperinci

METODE ELEMEN BATAS UNTUK MASALAH TRANSPORT

METODE ELEMEN BATAS UNTUK MASALAH TRANSPORT METODE ELEMEN BATAS UNTUK MASALAH TRANSPORT Agusman Sahari. 1 1 Jurusan Matematika FMIPA UNTAD Kampus Bumi Tadulako Tondo Palu Abstrak Dalam paper ini mendeskripsikan tentang solusi masalah transport polutan

Lebih terperinci

Metode Elemen Batas (MEB) untuk Model Konduksi-Konveksi dalam Media Anisotropik

Metode Elemen Batas (MEB) untuk Model Konduksi-Konveksi dalam Media Anisotropik Metode Elemen Batas (MEB) untuk Model Konduksi-Konveksi dalam Media Anisotropik Moh. Ivan Azis September 13, 2011 Daftar Isi 1 Pendahuluan 1 2 Masalah nilai batas 1 3 Persamaan integral batas 2 4 Hasil

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan suatu ilmu pengetahuan yang sering disebut sebagai induk dari ilmu-ilmu pengetahuan yang lain. Hal ini karena, matematika banyak diterapkan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Air merupakan kebutuhan penting bagi pertumbuhan tanaman. Namun, pada saat musim kemarau tiba atau di daerah dengan intensitas hujan rendah, ketersediaan air

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan suatu ilmu pengetahuan yang sering disebut sebagai induk dari ilmu-ilmu pengetahuan yang lain. Di antara beberapa disiplin ilmu, fisika

Lebih terperinci

BOUNDARY ELEMENT METHOD UNTUK MENYELESAIKAN MASALAH SYARAT BATAS PERSAMAAN LAPLACE DIMENSI DUA

BOUNDARY ELEMENT METHOD UNTUK MENYELESAIKAN MASALAH SYARAT BATAS PERSAMAAN LAPLACE DIMENSI DUA Jurnal LOG!K@, Jilid 7, o., 07, Hal. - 36 ISS 978 8568 BOUDARY ELEMET METHOD UTUK MEYELESAIKA MASALAH SYARAT BATAS PERSAMAA LAPLAE DIMESI DUA Muhammad Manaqib Program Studi Matematika, Fakultas Sains dan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Dalam kehidupan sehari-hari banyak permasalahan yang muncul di lingkungan sekitar. Hal tersebut yang memicu kreatifitas berpikir manusia untuk menyelesaikan

Lebih terperinci

Pemodelan Distribusi Suhu pada Tanur Carbolite STF 15/180/301 dengan Metode Elemen Hingga

Pemodelan Distribusi Suhu pada Tanur Carbolite STF 15/180/301 dengan Metode Elemen Hingga Pemodelan Distribusi Suhu pada Tanur Carbolite STF 15/180/301 dengan Metode Elemen Hingga Wafha Fardiah 1), Joko Sampurno 1), Irfana Diah Faryuni 1), Apriansyah 1) 1) Program Studi Fisika Fakultas Matematika

Lebih terperinci

Metode Elemen Batas (MEB) untuk Model Perambatan Gelombang

Metode Elemen Batas (MEB) untuk Model Perambatan Gelombang Metode Elemen Batas (MEB) untuk Model Perambatan Gelombang Moh. Ivan Azis September 13, 2011 Abstrak Metode Elemen Batas untuk masalah perambatan gelombang akustik (harmonis) berhasil diturunkan pada tulisan

Lebih terperinci

Model Perpindahan dan Penyebaran Pollutan

Model Perpindahan dan Penyebaran Pollutan Model Perpindahan dan Penyebaran Pollutan Moh. Ivan Azis Abstrak Metode Elemen Batas diturunkan untuk penentuan solusi masalah nilai batas yang membangun model Model Perpindahan dan Penyebaran Pollutan.

Lebih terperinci

Solusi Penyelesaian Persamaan Laplace dengan Menggunakan Metode Random Walk Gapar 1), Yudha Arman 1), Apriansyah 2)

Solusi Penyelesaian Persamaan Laplace dengan Menggunakan Metode Random Walk Gapar 1), Yudha Arman 1), Apriansyah 2) Solusi Penyelesaian Persamaan Laplace dengan Menggunakan Metode Random Walk Gapar 1), Yudha Arman 1), Apriansyah 2) 1) Program Studi Fisika Jurusan Fisika Universitas Tanjungpura 2)Program Studi Ilmu Kelautan

Lebih terperinci

Metode Elemen Batas (MEB) untuk Model Konduksi Panas

Metode Elemen Batas (MEB) untuk Model Konduksi Panas Metode Elemen Batas MEB) untuk Model Konduksi Panas Moh. Ivan Azis October 14, 011 Abstrak Metode Elemen Batas untuk masalah konduksi panas pada media ortotropik berhasil ditemukan pada tulisan ini. Solusi

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Umum Perpindahan panas adalah perpindahan energi yang terjadi pada benda atau material yang bersuhu tinggi ke benda atau material yang bersuhu rendah, hingga tercapainya kesetimbangan

Lebih terperinci

SOLUSI ANALITIK DAN SOLUSI NUMERIK KONDUKSI PANAS PADA ARAH RADIAL DARI PEMBANGKIT ENERGI BERBENTUK SILINDER

SOLUSI ANALITIK DAN SOLUSI NUMERIK KONDUKSI PANAS PADA ARAH RADIAL DARI PEMBANGKIT ENERGI BERBENTUK SILINDER SOLUSI ANALITIK DAN SOLUSI NUMERIK KONDUKSI PANAS PADA ARAH RADIAL DARI PEMBANGKIT ENERGI BERBENTUK SILINDER ABSTRAK Telah dilakukan perhitungan secara analitik dan numerik dengan pendekatan finite difference

Lebih terperinci

Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga

Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga JURNAL SAINS DAN SENI ITS Vol. 4, No.2, (2015) 2337-3520 (2301-928X Print) A-13 Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga Vimala Rachmawati dan Kamiran Jurusan

Lebih terperinci

Solusi Persamaan Laplace Menggunakan Metode Crank-Nicholson. (The Solution of Laplace Equation Using Crank-Nicholson Method)

Solusi Persamaan Laplace Menggunakan Metode Crank-Nicholson. (The Solution of Laplace Equation Using Crank-Nicholson Method) Prosiding Seminar Nasional Matematika, Universitas Jember, 19 November 2014 320 Persamaan Laplace Menggunakan Metode Crank-Nicholson (The Solution of Laplace Equation Using Crank-Nicholson Method) Titis

Lebih terperinci

Sidang Tugas Akhir - Juli 2013

Sidang Tugas Akhir - Juli 2013 Sidang Tugas Akhir - Juli 2013 STUDI PERBANDINGAN PERPINDAHAN PANAS MENGGUNAKAN METODE BEDA HINGGA DAN CRANK-NICHOLSON COMPARATIVE STUDY OF HEAT TRANSFER USING FINITE DIFFERENCE AND CRANK-NICHOLSON METHOD

Lebih terperinci

METODE ELEMEN HINGGA DAN PENERAPANNYA DALAM TEKNIK KIMIA: ARTIKEL REVIEW. Ummi Habibah *) Abstrak

METODE ELEMEN HINGGA DAN PENERAPANNYA DALAM TEKNIK KIMIA: ARTIKEL REVIEW. Ummi Habibah *) Abstrak METODE ELEMEN HINGGA DAN PENERAPANNYA DALAM TEKNIK KIMIA: ARTIKEL REVIEW Ummi Habibah *) Abstrak Problem rekayasa dan teknik kimia khususnya yang memiliki model matematika banyak yang berbentuk persamaan

Lebih terperinci

BAB 3 METODOLOGI PENELITIAN

BAB 3 METODOLOGI PENELITIAN BAB 3 METODOLOGI PENELITIAN 3.1 Diagram Alir Penelitian Berikut adalah diagram alir penelitian konduksi pada arah radial dari pembangkit energy berbentuk silinder. Gambar 3.1 diagram alir penelitian konduksi

Lebih terperinci

APLIKASI METODE CELLULAR AUTOMATA UNTUK MENENTUKAN DISTRIBUSI TEMPERATUR KONDISI TUNAK

APLIKASI METODE CELLULAR AUTOMATA UNTUK MENENTUKAN DISTRIBUSI TEMPERATUR KONDISI TUNAK APLIKASI METODE CELLULAR AUTOMATA UNTUK MENENTUKAN DISTRIBUSI TEMPERATUR KONDISI TUNAK APPLICATION OF CELLULAR AUTOMATA METHOD TO DETERMINATION OF STEADY STATE TEMPERATURE DISTRIBUTION Apriansyah 1* 1*

Lebih terperinci

1.1 Latar Belakang dan Identifikasi Masalah

1.1 Latar Belakang dan Identifikasi Masalah BAB I PENDAHULUAN Seiring dengan pertumbuhan kebutuhan dan intensifikasi penggunaan air, masalah kualitas air menjadi faktor yang penting dalam pengembangan sumberdaya air di berbagai belahan bumi. Walaupun

Lebih terperinci

I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai.

I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai. I. PENDAHULUAN 1.1 Latar Belakang dan Masalah Dalam kehidupan, polusi yang ada di sungai disebabkan oleh limbah dari pabrikpabrik dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk

Lebih terperinci

Fungsi Analitik (Bagian Keempat)

Fungsi Analitik (Bagian Keempat) Fungsi Analitik (Bagian Keempat) Supama Jurusan Matematika, FMIPA UGM Yogyakarta 55281, INDONESIA Email:maspomo@yahoo.com, supama@ugm.ac.id (Pertemuan Minggu VII) Outline 1 Fungsi Analitik 2 Fungsi Analitik

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Transformasi Laplace Salah satu cara untuk menganalisis gejala peralihan (transien) adalah menggunakan transformasi Laplace, yaitu pengubahan suatu fungsi waktu f(t) menjadi

Lebih terperinci

ANALISIS DISTRIBUSI SUHU PADA PELAT DUA DIMENSI DENGAN MENGGUNAKAN METODA BEDA HINGGA

ANALISIS DISTRIBUSI SUHU PADA PELAT DUA DIMENSI DENGAN MENGGUNAKAN METODA BEDA HINGGA Jurnal Penelitian Fisika dan Aplikasinya (JPFA) Vol No., esember 0 ISSN: 087-9946 ANALISIS ISTRIBUSI SUHU PAA PELAT UA IMENSI ENGAN MENGGUNAKAN METOA BEA HINGGA Supardiyono Jurusan Fisika FMIPA UNESA Kampus

Lebih terperinci

Penentuan Distribusi Suhu pada Permukaan Geometri Tak Tentu Menggunakan Metode Random Walk Balduyanus Yosep Godja a), Andi Ihwan a)*, Apriansyah b)

Penentuan Distribusi Suhu pada Permukaan Geometri Tak Tentu Menggunakan Metode Random Walk Balduyanus Yosep Godja a), Andi Ihwan a)*, Apriansyah b) POSITRON, Vol. VI, No. 1 (1), Hal. 17 - ISSN : 1-9 Penentuan Distribusi Suhu pada Permukaan Geometri Tak Tentu Menggunakan Metode Random Walk Balduanus Yosep Godja a), Andi Ihwan a)*, Apriansah b) a Jurusan

Lebih terperinci

PEMODELAN PEREMBESAN AIR DALAM TANAH

PEMODELAN PEREMBESAN AIR DALAM TANAH PEMODELAN PEREMBESAN AIR DALAM TANAH Muhammad Hamzah, S. 1,3, Djoko, S. 1, Wahyudi, W.P. 1, Budi, S. 2 1. Department Geophysics Engineering ITB 2. Department Mining Engineering ITB 3. Physics Department,

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Sekitar 70% dari permukaan bumi adalah air, tetapi bukan berarti persediaan air untuk kebutuhan manusia berlimpah, karena 97,5% air tersebut adalah air laut

Lebih terperinci

PENERAPAN METODE ELEMEN HINGGA UNTUK SOLUSI PERSAMAAN STURM-LIOUVILLE

PENERAPAN METODE ELEMEN HINGGA UNTUK SOLUSI PERSAMAAN STURM-LIOUVILLE PENERAPAN METODE ELEMEN HINGGA UNTUK SOLUSI PERSAMAAN STURM-LIOUVILLE Viska Noviantri Mathematics & Statistics Department, School of Computer Science, Binus University Jln. K.H. Syahdan No. 9, Palmerah,

Lebih terperinci

BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan

BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan BAB II KAJIAN TEORI Pada bab ini akan dibahas beberapa hal yang digunakan sebagai landasan pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan beberapa kajian matematika,

Lebih terperinci

BAB III PEMODELAN DENGAN METODE VOLUME HINGGA

BAB III PEMODELAN DENGAN METODE VOLUME HINGGA A III PEMODELAN DENGAN METODE VOLUME HINGGA 3.1 Teori Dasar Metode Volume Hingga Computational fluid dnamic atau CFD merupakan ilmu ang mempelajari tentang analisa aliran fluida, perpindahan panas dan

Lebih terperinci

STUDI PERPINDAHAN PANAS DENGAN MENGGUNAKAN SISTEM KOORDINAT SEGITIGA

STUDI PERPINDAHAN PANAS DENGAN MENGGUNAKAN SISTEM KOORDINAT SEGITIGA STUDI PERPINDAHAN PANAS DENGAN MENGGUNAKAN SISTEM KOORDINAT SEGITIGA Oleh : Farda Nur Pristiana 1208 100 059 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika merupakan salah satu cabang ilmu pengetahuan yang memiliki banyak manfaat, diantaranya sebagai salah satu ilmu bantu yang sangat penting dalam kehidupan

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN Pada bab ini akan dijelaskan mengenai latar belakang masalah, tujuan dan manfaat penelitian, tinjauan pustaka, metode penelitian dan sistematika penulisan untuk masalah infiltrasi time-dependent

Lebih terperinci

Pemodelan Matematika dan Metode Numerik

Pemodelan Matematika dan Metode Numerik Bab 3 Pemodelan Matematika dan Metode Numerik 3.1 Model Keadaan Tunak Model keadaan tunak hanya tergantung pada jarak saja. Oleh karena itu, distribusi temperatur gas sepanjang pipa sebagai fungsi dari

Lebih terperinci

Pengantar Persamaan Differensial (1)

Pengantar Persamaan Differensial (1) Program Studi Modul Mata Kuliah Kode MK Disusun Oleh Sistem Komputer 01 Persamaan Differensial MKK103 Albaar Rubhasy, S.Si, MTI Pengantar Persamaan Differensial (1) Materi Pembahasan: Deskripsi Perkuliahan

Lebih terperinci

ABSTRAK METODE ELEMEN BATAS UNTUK PENYELESAIAN MASALAH PEMBENTUKAN DROPLET PADA BENANG FLUIDA VISCOELASTIS A.WAHIDAH.AK NIM : 20105013.

ABSTRAK METODE ELEMEN BATAS UNTUK PENYELESAIAN MASALAH PEMBENTUKAN DROPLET PADA BENANG FLUIDA VISCOELASTIS A.WAHIDAH.AK NIM : 20105013. ABSTRAK METODE ELEMEN BATAS UNTUK PENYELESAIAN MASALAH PEMBENTUKAN DROPLET PADA BENANG FLUIDA VISCOELASTIS Oleh A.WAHIDAH.AK NIM : 20105013 Proses deformasi benang fluida tak Newton (Viscoelastis) menjadi

Lebih terperinci

SKEMA NUMERIK UNTUK MENYELESAIKAN PERSAMAAN BURGERS MENGGUNAKAN METODE CUBIC B-SPLINE QUASI-INTERPOLANT DAN MULTI-NODE HIGHER ORDER EXPANSIONS

SKEMA NUMERIK UNTUK MENYELESAIKAN PERSAMAAN BURGERS MENGGUNAKAN METODE CUBIC B-SPLINE QUASI-INTERPOLANT DAN MULTI-NODE HIGHER ORDER EXPANSIONS PRESENTASI TUGAS AKHIR KI091391 SKEMA NUMERIK UNTUK MENYELESAIKAN PERSAMAAN BURGERS MENGGUNAKAN METODE CUBIC B-SPLINE QUASI-INTERPOLANT DAN MULTI-NODE HIGHER ORDER EXPANSIONS (Kata kunci:persamaan burgers,

Lebih terperinci

Menentukan Solusi Numerik Model Dinamik Suhu dan Tekanan Udara di Atmosfer Dengan Metode Runge Kutta Orde Empat

Menentukan Solusi Numerik Model Dinamik Suhu dan Tekanan Udara di Atmosfer Dengan Metode Runge Kutta Orde Empat JIMT Vol. 9 No. 1 Juni 2012 (Hal. 38-46) Jurnal Ilmiah Matematika dan Terapan ISSN : 2450 766X Menentukan Solusi Numerik Model Dinamik Suhu dan Tekanan Udara di Atmosfer Dengan Metode Runge Kutta Orde

Lebih terperinci

Distribusi Medan Akustik dalam Domain Interior dengan Metode Elemen Batas (Boundary Element Method)

Distribusi Medan Akustik dalam Domain Interior dengan Metode Elemen Batas (Boundary Element Method) Distribusi Medan Akustik dalam Domain Interior dengan Metode Elemen Batas (Boundary Element Method) Tetti Novalina Manik dan Nurma Sari Abstrak: Dalam analisis akustik, kasus yang paling umum adalah menentukan

Lebih terperinci

PDP linear orde 2 Agus Yodi Gunawan

PDP linear orde 2 Agus Yodi Gunawan PDP linear orde 2 Agus Yodi Gunawan Pada bagian ini akan dipelajari tiga jenis persamaan diferensial parsial (PDP) linear orde dua yang biasa dijumpai pada masalah-masalah dunia nyata, yaitu persamaan

Lebih terperinci

Solusi Numerik Persamaan Gelombang Dua Dimensi Menggunakan Metode Alternating Direction Implicit

Solusi Numerik Persamaan Gelombang Dua Dimensi Menggunakan Metode Alternating Direction Implicit Vol. 11, No. 2, 105-114, Januari 2015 Solusi Numerik Persamaan Gelombang Dua Dimensi Menggunakan Metode Alternating Direction Implicit Rezki Setiawan Bachrun *,Khaeruddin **,Andi Galsan Mahie *** Abstrak

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 Latar Belakang

BAB 1 PENDAHULUAN 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Suhu merupakan salah satu dimensi pengukuran. Nilai dari suhu dapat diukur pada suatu lingkungan dan suhu mengalami kenaikan dan penurunan karena adanya perambatan

Lebih terperinci

TINJAUAN KASUS PERSAMAAN PANAS DIMENSI SATU SECARA ANALITIK

TINJAUAN KASUS PERSAMAAN PANAS DIMENSI SATU SECARA ANALITIK TINJAUAN KASUS PERSAMAAN PANAS DIMENSI SATU SECARA ANALITIK ANALYTICALLY REVIEW ON ONE-DIMENSIONAL HEAT EQUATION Oleh: Ahmadi 1), Hartono 2), Nikenasih Binatari 3) Program Studi Matematika, Jurusan Pendidikan

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang dan Permasalahan

BAB I PENDAHULUAN 1.1. Latar Belakang dan Permasalahan BAB I PENDAHULUAN Pada Bab I akan dibahas latar belakang dan permasalahan penulisan tesis. Berdasarkan latar belakang, akan disusun tujuan dan manfaat dari penulisan tesis. Selain itu, literatur-literatur

Lebih terperinci

METODE FINITEDIFFERENCE INTERVAL UNTUK MENYELESAIKAN PERSAMAAN PANAS

METODE FINITEDIFFERENCE INTERVAL UNTUK MENYELESAIKAN PERSAMAAN PANAS METODE FINITEDIFFERENCE INTERVAL UNTUK MENYELESAIKAN PERSAMAAN PANAS Aziskhan, Mardhika W.A, Syamsudhuha Jurusan MatematikaFMIPA Universitas Riau Abstract. The aim of this paper is to solve a heat equation

Lebih terperinci

SOLUSI NUMERIK PERSAMAAN LAPLACE DAN HELMHOLTZ DENGAN MENGGUNAKAN METODE ELEMEN BATAS

SOLUSI NUMERIK PERSAMAAN LAPLACE DAN HELMHOLTZ DENGAN MENGGUNAKAN METODE ELEMEN BATAS SOLUSI NUMERIK PERSAMAAN LAPLACE DAN HELMHOLTZ DENGAN MENGGUNAKAN METODE ELEMEN BATAS NUMERICAL SOLUTION OF LAPLACE AND HELMHOLTZ EQUATION BY BOUNDARY ELEMENT METHOD Cicilia Tiranda Dr. Jeffry Kusuma Dr.

Lebih terperinci

ANALISA NUMERIK DISTRIBUSI PANAS TAK TUNAK PADA HEATSINK MENGGUNAKAN METODA FINITE DIFFERENT

ANALISA NUMERIK DISTRIBUSI PANAS TAK TUNAK PADA HEATSINK MENGGUNAKAN METODA FINITE DIFFERENT PILLAR OF PHYSICS, Vol. 4. November 2014, 81-88 ANALISA NUMERIK DISTRIBUSI PANAS TAK TUNAK PADA HEATSINK MENGGUNAKAN METODA FINITE DIFFERENT Fahendri *), Festiyed **), dan Hidayati **) *) Mahasiswa Fisika,

Lebih terperinci

BAB III HASIL DAN PEMBAHASAN. analitik dengan metode variabel terpisah. Selanjutnya penyelesaian analitik dari

BAB III HASIL DAN PEMBAHASAN. analitik dengan metode variabel terpisah. Selanjutnya penyelesaian analitik dari BAB III HASIL DAN PEMBAHASAN Pada bab ini akan dibahas penurunan model persamaan panas dimensi satu. Setelah itu akan ditentukan penyelesaian persamaan panas dimensi satu secara analitik dengan metode

Lebih terperinci

BAB I PENDAHULUAN. perkembangan bakteri, sedangkan dalam bidang teknik yaitu pemodelan

BAB I PENDAHULUAN. perkembangan bakteri, sedangkan dalam bidang teknik yaitu pemodelan BAB I PENDAHULUAN A. Latar Belakang Masalah Persamaan Diferensial merupakan salah satu topik dalam matematika yang cukup menarik untuk dikaji lebih lanjut. Hal itu karena banyak permasalahan kehidupan

Lebih terperinci

Simulasi Konduktivitas Panas pada Balok dengan Metode Beda Hingga The Simulation of Thermal Conductivity on Shaped Beam with Finite Difference Method

Simulasi Konduktivitas Panas pada Balok dengan Metode Beda Hingga The Simulation of Thermal Conductivity on Shaped Beam with Finite Difference Method Prosiding Matematika ISSN: 2460-6464 Simulasi Konduktivitas Panas pada Balok dengan Metode Beda Hingga The Simulation of Thermal Conductivity on Shaped Beam with Finite Difference Method 1 Maulana Yusri

Lebih terperinci

SISTEM KENDALI PROPORSIONAL, INTEGRAL, DAN DERIVATIF (PID) PADA PERSAMAAN PANAS*

SISTEM KENDALI PROPORSIONAL, INTEGRAL, DAN DERIVATIF (PID) PADA PERSAMAAN PANAS* Jurnal Natural Vol.16, No.2, 2016 ISSN 1141-8513 SISTEM KENDALI PROPORSIONAL, INTEGRAL, DAN DERIVATIF (PID) PADA PERSAMAAN PANAS* Muhammad Ikhwan *, Said Munzir, dan Nurmaulidar Jurusan Matematika, Fakultas

Lebih terperinci

PENGARUH MODIFIKASI BOUNDARY CONDITION PADA STAMP-TYPE SENSOR TERHADAP DISTRIBUSI TEMPERATUR SKRIPSI

PENGARUH MODIFIKASI BOUNDARY CONDITION PADA STAMP-TYPE SENSOR TERHADAP DISTRIBUSI TEMPERATUR SKRIPSI PENGARUH MODIFIKASI BOUNDARY CONDITION PADA STAMP-TYPE SENSOR TERHADAP DISTRIBUSI TEMPERATUR SKRIPSI Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik Oleh: GINANJAR SYAMSUL PAMUNGKAS

Lebih terperinci

BAB I PENDAHULUAN. pedoman untuk menyelesaikan permasalahan sehari-hari dan juga untuk

BAB I PENDAHULUAN. pedoman untuk menyelesaikan permasalahan sehari-hari dan juga untuk BAB I PENDAHULUAN A. Latar Belakang Masalah Matematika merupakan salah satu ilmu pengetahuan yang sering menjadi pedoman untuk menyelesaikan permasalahan sehari-hari dan juga untuk menunjang perkembangan

Lebih terperinci

METODE BEDA HINGGA DALAM PENENTUAN DISTRIBUSI TEKANAN, ENTALPI DAN TEMPERATUR RESERVOIR PANAS BUMI FASA TUNGGAL

METODE BEDA HINGGA DALAM PENENTUAN DISTRIBUSI TEKANAN, ENTALPI DAN TEMPERATUR RESERVOIR PANAS BUMI FASA TUNGGAL METODE BEDA HINGGA DALAM PENENTUAN DISTRIBUSI TEKANAN, ENTALPI DAN TEMPERATUR RESERVOIR PANAS BUMI FASA TUNGGAL TUGAS AKHIR Diajukan untuk melengkapi persyaratan dalam menyelesaikan tahap sarjana pada

Lebih terperinci

PAM 252 Metode Numerik Bab 4 Pencocokan Kurva

PAM 252 Metode Numerik Bab 4 Pencocokan Kurva PAM 252 Metode Numerik Bab 4 Pencocokan Kurva Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2013/2014 1 Mahdhivan Syafwan Metode Numerik: Pencocokan Kurva Permasalahan dan

Lebih terperinci

ANALISIS DAN SIMULASI DISTRIBUSI TEMPERATUR RUANGAN BERDASARKAN BENTUK ATAP MENGGUNAKAN FINITE DIFFERENCE METHOD BERBASIS PYTHON

ANALISIS DAN SIMULASI DISTRIBUSI TEMPERATUR RUANGAN BERDASARKAN BENTUK ATAP MENGGUNAKAN FINITE DIFFERENCE METHOD BERBASIS PYTHON ANALISIS DAN SIMULASI DISTRIBUSI TEMPERATUR RUANGAN BERDASARKAN BENTUK ATAP MENGGUNAKAN FINITE DIFFERENCE METHOD BERBASIS PYTHON Denny Pratama, Viska Noviantri, Alexander Agung S.G. Matematika dan Teknik

Lebih terperinci

Elly Musta adah 1, Erna Apriliani 2

Elly Musta adah 1, Erna Apriliani 2 Prosiding Seminar Nasional Penelitian, Pendidikan Dan Penerapan MIPA, Fakultas MIPA, Universitas Negeri Yogyakarta, 14 Mei 2011 PENYELESAIAN INVERS PROBLEM PADA REAKSI DIFUSI DENGAN MENGGUNAKAN METODE

Lebih terperinci

Metode Beda Hingga untuk Penyelesaian Persamaan Diferensial Parsial

Metode Beda Hingga untuk Penyelesaian Persamaan Diferensial Parsial Metode Beda Hingga untuk Penyelesaian Persamaan Diferensial Parsial Ikhsan Maulidi Jurusan Matematika,Universitas Syiah Kuala, ikhsanmaulidi@rocketmail.com Abstract Artikel ini membahas tentang salah satu

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Dalam kehidupan sehari-hari banyak permasalahan yang muncul di lingkungan sekitar. Hal tersebut dapat dikembangkan melalui pemodelan matematika. Sehingga dengan

Lebih terperinci

PENYELESAIAN PERSAMAAN PANAS BALIK (BACKWARD HEAT EQUATION) Oleh: RICHA AGUSTININGSIH

PENYELESAIAN PERSAMAAN PANAS BALIK (BACKWARD HEAT EQUATION) Oleh: RICHA AGUSTININGSIH TUGAS AKHIR PENYELESAIAN PERSAMAAN PANAS BALIK (BACKWARD HEAT EQUATION) Oleh: RICHA AGUSTININGSIH 1204100019 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH

Lebih terperinci

SIMULASI ALIRAN PANAS PADA SILINDER YANG BERGERAK. Rico D.P. Siahaan, Santo, Vito A. Putra, M. F. Yusuf, Irwan A Dharmawan

SIMULASI ALIRAN PANAS PADA SILINDER YANG BERGERAK. Rico D.P. Siahaan, Santo, Vito A. Putra, M. F. Yusuf, Irwan A Dharmawan SIMULASI ALIRAN PANAS PADA SILINDER YANG BERGERAK Rico D.P. Siahaan, Santo, Vito A. Putra, M. F. Yusuf, Irwan A Dharmawan ABSTRAK SIMULASI ALIRAN PANAS PADA SILINDER YANG BERGERAK. Aliran panas pada pelat

Lebih terperinci

BAB 3 SISTEM DINAMIK ORDE SATU

BAB 3 SISTEM DINAMIK ORDE SATU BAB 3 SISTEM DINAMIK ORDE SATU Isi: Pengantar pengembangan model sederhana Arti fisik parameter-parameter proses 3. PENGANTAR PENGEMBANGAN MODEL Pemodelan dibutuhkan dalam menganalisis sisten kontrol (lihat

Lebih terperinci

KARAKTERISTIK ALIRAN PANAS DALAM LOGAM PENGHANTAR LISTRIK THE CHARACTERISTICS OF HEAT FLOW IN AN ELECTRICAL METAL CONDUCTOR

KARAKTERISTIK ALIRAN PANAS DALAM LOGAM PENGHANTAR LISTRIK THE CHARACTERISTICS OF HEAT FLOW IN AN ELECTRICAL METAL CONDUCTOR UJIAN TUGAS AKHIR KARAKTERISTIK ALIRAN PANAS DALAM LOGAM PENGHANTAR LISTRIK THE CHARACTERISTICS OF HEAT FLOW IN AN ELECTRICAL METAL CONDUCTOR Diusulkan oleh : Mudmainnah Farah Dita NRP. 1209 100 008 Dosen

Lebih terperinci

Persamaan Diferensial Parsial CNH3C3

Persamaan Diferensial Parsial CNH3C3 Persamaan Diferensial Parsial CNH3C3 Week 4: Separasi Variabel untuk Persamaan Panas Orde Satu Tim Ilmu Komputasi Coordinator contact: Dr. Putu Harry Gunawan phgunawan@telkomuniversity.ac.id 1 Persamaan

Lebih terperinci

Pengaruh Karakteristik Logam Dalam Elemen Pemanas Terhadap Waktu Pengeringan Kayu

Pengaruh Karakteristik Logam Dalam Elemen Pemanas Terhadap Waktu Pengeringan Kayu Pengaruh Karakteristik Logam Dalam Elemen Pemanas Terhadap Waktu Pengeringan Kayu Oleh : Alifinanda Firca Ardini 1209100064 Pembimbing: Drs.Lukman Hanafi, M.Sc Abstrak Indonesia merupakan negara penghasil

Lebih terperinci

BAB I PENDAHULUAN. digunakan untuk masalah-masalah dalam kehidupan sehari-hari, diantaranya

BAB I PENDAHULUAN. digunakan untuk masalah-masalah dalam kehidupan sehari-hari, diantaranya BAB I PENDAHULUAN A. Latar Belakang Masalah Persamaan Diferensial merupakan ilmu matematika yang dapat digunakan untuk masalah-masalah dalam kehidupan sehari-hari, diantaranya dalam ilmu kesehatan yaitu

Lebih terperinci

Menentukan Distribusi Temperatur dengan Menggunakan Metode Crank Nicholson

Menentukan Distribusi Temperatur dengan Menggunakan Metode Crank Nicholson Jurnal Penelitian Sains Volume 13 Nomer 2(B) 13204 Menentukan Distribusi Temperatur dengan Menggunakan Metode Crank Nicholson Siti Sailah Jurusan Fisika FMIPA, Universitas Sriwijaya, Sumatera Selatan,

Lebih terperinci

Pengaruh ketebalan terhadap akurasi persamaan Rosenthal untuk model analitik distribusi suhu proses pengelasan Djarot B. Darmadi

Pengaruh ketebalan terhadap akurasi persamaan Rosenthal untuk model analitik distribusi suhu proses pengelasan Djarot B. Darmadi Pengaruh ketebalan terhadap akurasi persamaan Rosenthal untuk model analitik distribusi suhu proses pengelasan Djarot B. Darmadi FT Mesin Universitas Brawijaya, MT Haryono 167, Malang Indonesia, 65145

Lebih terperinci

PAM 252 Metode Numerik Bab 5 Turunan Numerik

PAM 252 Metode Numerik Bab 5 Turunan Numerik Pendahuluan PAM 252 Metode Numerik Bab 5 Turunan Numerik Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2013/2014 1 Mahdhivan Syafwan Metode Numerik: Turunan Numerik Permasalahan

Lebih terperinci

SKRIPSI. Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik. Oleh : JOKO SUPRIYANTO NIM. I

SKRIPSI. Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik. Oleh : JOKO SUPRIYANTO NIM. I SIMULASI NUMERIK PERPINDAHAN PANAS 2 DIMENSI PADA PROSES PENDINGINAN TEMBAGA MURNI DENGAN VARIASI CETAKAN PASIR DAN MULLITE MENGGUNAKAN PENDEKATAN BEDA HINGGA SKRIPSI Diajukan sebagai salah satu syarat

Lebih terperinci

STUDI TENTANG PERPINDAHAN PANAS PADA LOGAM DENGAN VARIASI NILAI BATAS AWAL MENGGUNAKAN METODE ITERASI OVER RELAKSASI GAUSS-SEIDEL TESIS

STUDI TENTANG PERPINDAHAN PANAS PADA LOGAM DENGAN VARIASI NILAI BATAS AWAL MENGGUNAKAN METODE ITERASI OVER RELAKSASI GAUSS-SEIDEL TESIS STUDI TENTANG PERPINDAHAN PANAS PADA LOGAM DENGAN VARIASI NILAI BATAS AWAL MENGGUNAKAN METODE ITERASI OVER RELAKSASI GAUSS-SEIDEL TESIS Disusun untuk memenuhi sebagian persyaratan mencapai derajat Magister

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Dalam bab ini dibahas tentang dasar-dasar teori yang digunakan untuk mengetahui kecepatan perambatan panas pada proses pasteurisasi pengalengan susu. Dasar-dasar teori tersebut meliputi

Lebih terperinci

PENYELESAIAN PERSAMAAN NONLINIER DENGAN METODE MODIFIKASI BAGI DUA

PENYELESAIAN PERSAMAAN NONLINIER DENGAN METODE MODIFIKASI BAGI DUA Jurnal Matematika UNAND Vol. 4 No. 1 Hal. 68 75 ISSN : 303 910 c Jurusan Matematika FMIPA UNAND PENYELESAIAN PERSAMAAN NONLINIER DENGAN METODE MODIFIKASI BAGI DUA ELSA JUMIASRI, SUSILA BAHRI, BUKTI GINTING

Lebih terperinci

PENYELESAIAN MASALAH STURM-LIOUVILLE DARI PERSAMAAN GELOMBANG SUARA DI BAWAH AIR DENGAN METODE BEDA HINGGA

PENYELESAIAN MASALAH STURM-LIOUVILLE DARI PERSAMAAN GELOMBANG SUARA DI BAWAH AIR DENGAN METODE BEDA HINGGA PENYELESAIAN MASALAH STURM-LIOUVILLE DARI PERSAMAAN GELOMBANG SUARA DI BAWAH AIR DENGAN METODE BEDA HINGGA oleh FIQIH SOFIANA M0109030 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh

Lebih terperinci

Bab II Konsep Dasar Metode Elemen Batas

Bab II Konsep Dasar Metode Elemen Batas Bab II Konsep Dasar Metode Elemen Batas II.1 II.1.1 Kalkulus Dasar Teorema Gradien Misal menyatakan domain pada ruang dimensi dua dan menyatakan batas i x + j 2 2 x 2 + 2 2 elanjutnya, penentuan integral

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN Pada bab ini dijelaskan tentang latar belakang yang mendasari penelitian, tujuan penelitian agar penelitian ini memiliki acuan yang jelas untuk dicapai. Selain itu pada bab ini juga dijelaskan

Lebih terperinci

SOLUSI ANALITIK MASALAH KONDUKSI PANAS PADA TABUNG

SOLUSI ANALITIK MASALAH KONDUKSI PANAS PADA TABUNG Jurnal LOG!K@, Jilid 6, No. 1, 2016, Hal. 11-22 ISSN 1978 8568 SOLUSI ANALITIK MASALAH KONDUKSI PANAS PADA TABUNG Afo Rakaiwa dan Suma inna Program Studi Matematika, Fakultas Sains dan Teknologi, Universitas

Lebih terperinci

ALJABAR LINEAR DAN MATRIKS. MODUL 10 Kalkulus Vektor. Zuhair Jurusan Teknik Informatika Universitas Mercu Buana Jakarta 2007 年 12 月 30 日 ( 日 )

ALJABAR LINEAR DAN MATRIKS. MODUL 10 Kalkulus Vektor. Zuhair Jurusan Teknik Informatika Universitas Mercu Buana Jakarta 2007 年 12 月 30 日 ( 日 ) ALJABAR LINEAR DAN MATRIKS MODUL 10 Kalkulus Vektor Zuhair Jurusan Teknik Informatika Universitas Mercu Buana Jakarta 2007 年 12 月 30 日 ( 日 ) Kalkulus Vektor Kalkulus vektor (vector calculus) atau sering

Lebih terperinci

Bab 2 TEORI DASAR. 2.1 Model Aliran Panas

Bab 2 TEORI DASAR. 2.1 Model Aliran Panas Bab 2 TEORI DASAR 2.1 Model Aliran Panas Perpindahan panas adalah energi yang dipindahkan karena adanya perbedaan temperatur. Terdapat tiga cara atau metode bagiamana panas dipindahkan: Konduksi Konduksi

Lebih terperinci

OPTIMISASI KONVEKS: KONSEP-KONSEP

OPTIMISASI KONVEKS: KONSEP-KONSEP Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA, Fakultas MIPA, Universitas Negeri Yogyakarta, 14 Mei 2011 OPTIMISASI KONVEKS: KONSEP-KONSEP Caturiyati 1 dan Himmawati Puji Lestari

Lebih terperinci

PENYELESAIAN MASALAH DIFUSI PANAS PADA SUATU KABEL PANJANG

PENYELESAIAN MASALAH DIFUSI PANAS PADA SUATU KABEL PANJANG PENYELESAIAN MASALAH DIFUSI PANAS PADA SUATU KABEL PANJANG Moh. Alex Maghfur ), Ari Kusumastuti ) ) Mahasiswa Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Maulana Malik Ibrahim Jalan Gajayana

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Salah satu bentuk model matematika adalah berupa persamaan diferensial. Persamaan diferensial sering digunakan dalam memodelkan suatu permasalahan untuk menggambarkan

Lebih terperinci

KONTROL OPTIMAL UNTUK DISTRIBUSI TEMPERATUR DENGAN PENDEKATAN BEDA HINGGA

KONTROL OPTIMAL UNTUK DISTRIBUSI TEMPERATUR DENGAN PENDEKATAN BEDA HINGGA KONTROL OPTIMAL UNTUK DISTRIBUSI TEMPERATUR DENGAN PENDEKATAN BEDA HINGGA Nama Mahasiswa : Asri Budi Hastuti NRP : 1205 100 006 Dosen Pembimbing : Drs. Kamiran, M.Si. Abstrak Kontrol optimal temperatur

Lebih terperinci

4.2 Laminer dan Turbulent Boundary Layer pada Pelat Datar. pada aliran di leading edge karena perubahan kecepatan aliran yang tadinya uniform

4.2 Laminer dan Turbulent Boundary Layer pada Pelat Datar. pada aliran di leading edge karena perubahan kecepatan aliran yang tadinya uniform 4.2 Laminer dan Turbulent Boundary Layer pada Pelat Datar Aliran laminer dan turbulen melintasi pelat datar dapat disimulasikan dengan mengalirkan uniform flow sepanjang pelat (Gambar 4.15). Boundary Layer

Lebih terperinci

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. Menjelaskan cara penyelesaian soal dengan

Lebih terperinci

PENYELESAIAN MODEL DISTRIBUSI SUHU BUMI DI SEKITAR SUMUR PANAS BUMI DENGAN METODE KOEFISIEN TAK TENTU. Jl. Prof. H. Soedarto, S.H.

PENYELESAIAN MODEL DISTRIBUSI SUHU BUMI DI SEKITAR SUMUR PANAS BUMI DENGAN METODE KOEFISIEN TAK TENTU. Jl. Prof. H. Soedarto, S.H. PENYELESAIAN MODEL DISTRIBUSI SUHU BUMI DI SEKITAR SUMUR PANAS BUMI DENGAN METODE KOEFISIEN TAK TENTU Lutfiyatun Niswah 1, Widowati 2, Djuwandi 3 1,2,3 Jurusan Matematika FSM Universitas Diponegoro Jl.

Lebih terperinci

Perbandingan Skema Numerik Metode Finite Difference dan Spectral

Perbandingan Skema Numerik Metode Finite Difference dan Spectral Jurnal Ilmiah Teknologi dan Informasia ASIA (JITIKA) Vol.10, No.2, Agustus 2016 ISSN: 0852-730X Perbandingan Skema Numerik Metode Finite Difference dan Spectral Lukman Hakim 1, Azwar Riza Habibi 2 STMIK

Lebih terperinci

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal (SWE)

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal (SWE) Bab 2 Landasan Teori Dalam bab ini akan dibahas mengenai Persamaan Air Dangkal dan dasar-dasar teori mengenai metode beda hingga untuk menghampiri solusi dari persamaan diferensial parsial. 2.1 Persamaan

Lebih terperinci

GARIS BESAR PROGRAM PEMBELAJARAN (GBPP)

GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) Revisi ke: Tanggal: GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) SPMI-UNDIP/GBPP/xx.xx.xx/xxx Disetujui oleh Dekan Fak Mata Kuliah : Fisika Matematika II Kode/ Bobot : PAF 215/4 sks Deskripsi singkat : Mata

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Persamaan Non Linear Definisi 2.1 (Munir, 2006) : Sistem persamaan non linear adalah kumpulan dari dua atau lebih persamaan-persamaan non linear. Bentuk umum sistem persamaan

Lebih terperinci

Konduksi Mantap 2-D. Shinta Rosalia Dewi

Konduksi Mantap 2-D. Shinta Rosalia Dewi Konduksi Mantap 2-D Shinta Rosalia Dewi SILABUS Pendahuluan (Mekanisme perpindahan panas, konduksi, konveksi, radiasi) Pengenalan Konduksi (Hukum Fourier) Pengenalan Konduksi (Resistensi ermal) Konduksi

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1.Dasar Fluida Dalam buku yang berjudul Fundamental of Fluid Mechanics karya Bruce R. Munson, Donald F. Young, Theodore H. Okiishi, dan Wade W. Huebsch, fluida didefinisikan sebagai

Lebih terperinci

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL Tujuan Instruksional: Mampu memahami definisi Persamaan Diferensial Mampu memahami klasifikasi Persamaan Diferensial Mampu memahami bentuk bentuk solusi Persamaan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Pembahasan tentang persamaan diferensial parsial terus berkembang baik secara teori maupun aplikasi. Dalam pemodelan matematika pada permasalahan di bidang

Lebih terperinci

1. BAB I PENDAHULUAN Latar Belakang

1. BAB I PENDAHULUAN Latar Belakang 1. BAB I PENDAHULUAN 1.1. Latar Belakang Sistem merupakan sekumpulan obyek yang saling berinteraksi dan memiliki keterkaitan antara satu obyek dengan obyek lainnya. Dalam proses perkembangan ilmu pengetahuan,

Lebih terperinci

PRISMA FISIKA, Vol. IV, No. 02 (2016), Hal ISSN :

PRISMA FISIKA, Vol. IV, No. 02 (2016), Hal ISSN : PRISMA FISIKA, Vol. IV, No. (1), Hal. 5 3 ISSN : 337- Aplikasi Metode Beda Hingga rank-nicholson Implisit untuk Menentukan Kasus Adveksi-Difusi D pada Sebaran Polutan Di Suatu Perairan Holand Sampera a,

Lebih terperinci

PENYELESAIAN PERSAMAAN DIFERENSIAL TUNDA LINIER ORDE 1 DENGAN METODE KARAKTERISTIK

PENYELESAIAN PERSAMAAN DIFERENSIAL TUNDA LINIER ORDE 1 DENGAN METODE KARAKTERISTIK Jurnal Matematika UNAND Vol. 5 No. 2 Hal. 45 49 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENYELESAIAN PERSAMAAN DIFERENSIAL TUNDA LINIER ORDE 1 DENGAN METODE KARAKTERISTIK FEBBY RAHMI ALFIONITA,

Lebih terperinci