E-book Statistika Gratis... Statistical Data Analyst. Uji Asumsi Klasik Regresi Linear

Ukuran: px
Mulai penontonan dengan halaman:

Download "E-book Statistika Gratis... Statistical Data Analyst. Uji Asumsi Klasik Regresi Linear"

Transkripsi

1 E-boo Sasa Gras... Sascal Daa Anals Uj Asums Klas Regres Lnear Pada penulsan enang Regres Lnear n, penuls aan memberan bahasan mengena Uj Asums Klas epada para pembaca unu memberan pemahaman dan solus dalam menganspas asums ang dberan. Pengujan Asums Klas merupaan pengujan asums-asums sas ang harus dpenuh pada analss regres lnear berganda ang berbass ordnar leas square (OLS). Kea asums da erpenuh, basana penel menggunaan berbaga solus agar asumsna dapa erpenuh, aau beralh e meode ang lebh advance agar asumsna dapa erselesaan. Pada penulsan n, Asums Klas ang aan dberan adalah Mulolnearas, Auoorelas, Heerosedasas, dan Normalas. Pengujan Asums Klas. Pengujan Asums Klas harus dlauan unu menguj asums-asums ang ada dalam pemodelan regres lnear berganda. Dberan benu umum dar model regres lnear berganda unu n pengamaan, au = β + β X d ε ~ N(, σ ) ;, + β X, =,,..., n β X Varabel-varabel predor dalam model regres lnear berganda dsebu juga sebaga varabel-varabel ndependen (bebas), arna varabel-varabel predor da meml hubungan aau eeraan sau dengan ang lan (nercorrelaon). Dengan aa lan, varabel-varabel predor da meml sfa Mulolnearas. Dasumsan Error (ε) bersfa den dan ndependen (d), sera berdsrbus Normal dengan mean nol dan varan σ. Hal n memberan ar bahwa omponen error meml ecenderungan mendea nol dan da meml eerganungan danara omponen error berdasaran wau erenu (Auoorelas), sera error mengu dsrbus Normal (Normalas) dan da meml sfa Heerosedasas (varan da onsan). Kea dgunaan daa pengamaan (sampel), parameer/oefsen model regres aan desmas dengan meode OLS sehngga aan menghaslan dugaan dar oefsen regres β, β, β,, β p, au b, b, b,, b p sehngga model regresna aan menjad, + ε Page

2 E-boo Sasa Gras... Sascal Daa Anals ˆ = b = ˆ = b + b X + e + b X,, + b + b X X,, b b X X,, + e. ; =,,..., n Resdual (e) merupaan uuran esalahan sampel ang dgunaan unu menggambaran uuran esalahan populas au Error (ε). Resdual juga dnaaan sebaga perbedaan anara daa pengamaan (sampel) dar varabel respon () dengan daa preds respon dar esmas model regres (-ha), sehngga dperoleh resdual secara maemas e = ˆ ; =,,..., n. Tda semua uj asums las harus dlauan pada analss regres lnear, seper: pengujan asums Mulolnearas da harus dlauan pada analss regres lnear sederhana ang meml varabel respon dan predor hana sau. Asums Mulolnearas Asums Mulolnearas adalah asums ang menunjuan adana hubungan lnear ang ua danara beberapa varabel predor dalam suau model regres lnear berganda. Model regres ang ba meml varabel-varabel predor ang ndependen aau da berorelas. Pada pengujan asums n, dharapan asums Mulolneras da erpenuh. Penebab erjadna asus Mulolneras adalah erdapa orelas aau hubungan lnear ang ua danara beberapa varabel predor ang dmasuan edalam model regres, seper: varabel-varabel eonom ang ebanaan era sau dengan ang lan (nercorrelaon). Beru aan dberan cara-cara mengdenfas adana asus Mulolneras:. Menghung dan menguj oefsen orelas danara varabel-varabel predor. Terjad asus Mulolneras ea erdapa orelas ang ua (aau sgnfan) danara varabel-varabel predor.. Mengece nla sandard error dar masng-masng oefsen regres [se(β)]. Kasus Mulolneras basana erjad ea nla sandard error dar oefsen regres membesar, sehngga hasl n aan cenderung menerma H (menmpulan bahwa oefsen regres da sgnfan) pada pengujan sgnfans parameer/oefsen regres. Hal n dapa erjad, mespun nla oefsen regresna da mendea nol. Page

3 E-boo Sasa Gras... Sascal Daa Anals 3. Menjumpa adana oupu pengujan serena oefsen regres aau Uj ANOVA aau Uj F ang sgnfan, eap oupu pengujan parsal oefsen regres aau Uj dar masng-masng varabel predor da ada ang sgnfan. 4. Membandngan oupu oefsen regres dengan oefsen orelas anara varabel respon dan predor. Perama, asus Mulolneras basana erjad ea erdapa perubahan hasl pengujan sgnfans pada oefsen regres dan oefsen orelas, seper: oefsen orelas anara dan X adalah,765 dengan p-value =, (sgnfan arena p-value < 5%), emudan pada pemodelan regres dperoleh oefsen regres anara dan X sebesar,65 dengan p-value =,9 (da sgnfan arena p-value > 5%). Kedua, erjad asus Mulolneras ea erdapa perubahan anda oefsen (+/-) pada oefsen regres dan oefsen orelas, seper: oefsen orelas anara dan X adalah,765, emudan pada pemodelan regres dperoleh oefsen regres anara dan X sebesar -,659 (erjad perubahan anda dar posf menjad negaf). 5. Melauan pemersaan nla Varance Inflaon Facor (VIF) dar masng-masng varabel predor. Kasus Mulolneras erjad ea nla VIF j > []. Solus Kasus Mulolnearas Solus Mulolnearas pada penulsan n dberan dalam empa saran, au:. Menambahan aau mengganan daa sampel baru arena eradang sampel lan da meml asus Mulolneras ang sanga serus.. Menghapus salah sau varabel predor ang mengalam asus Mulolnearas, namun cara n sealgus memasa penel unu melauan esalahan penguuran (menghapus varabel penelan ang seharusna duur). 3. Mengabaan asus Mulolneras selama da erjad masalah ang sanga serus, seper: perubahan hasl pengujan sgnfans aau perubahan anda anara oefsen regres dengan oefsen orelas. 4. Menggunaan meode ang lebh advance, seper: Sepwse Regresson, Bes Subse Regresson, Prncpal Componen Regresson, dan Rdge Regresson. Page 3

4 E-boo Sasa Gras... Sascal Daa Anals Asums Auoorelas. Asums Auoorelas merupaan asums resdual ang meml omponen/nla ang berorelas berdasaran wau (uruan wau) pada hmpunan daa u sendr. Proses Auoorelas erjad ea ovaran anara ε dengan ε j da sama dengan nol dengan Cov( ε, ε ) ; j. j Pada pengujan asums n, dharapan asums Auoorelas da erpenuh. Penebab erjadna asus Auoorelas adalah:. Terdapa varabel predor penng ang da dmasuan edalam model regres.. Pola hubungan anara dan X da lnear (uadra, ub, aau nonlnear) ea dgambaran dalam scaerplo. 3. Daa pengamaan ang dambl merupaan daa ang dcaa menuru wau erenu (daa me seres), seper: perjam, haran, mngguan, bulanan, rwulan, uaral, dan ahunan. 4. Adana Manpulas Daa ang menebaban resdual daa erbenu secara ssema. Beru dberan cara-cara mengdenfas adana asus Auoorelas:. Pengujan Durbn-Wason ang menguj adana auoorelas pada lag-. Pada Tabel Durbn-Wason [4] dperoleh Oupu Tabel, au nla Durbn-Wason baas bawah (d L ) dan baas aas (d U ). Krera pemersaan asums Auoorelas resdual menggunaan Nla Durbn-Wason (d), au: ) Ja d < dan d < d L, maa resdual bersfa auoorelas posf. ) Ja d < dan d > d U, maa resdual da bersfa auoorelas. 3) Ja d < dan d L d d U, maa hasl pengujan da dapa dsmpulan. 4) Ja d > dan 4 d < d L, maa resdual bersfa auoorelas negaf. 5) Ja d > dan 4 d > d U, maa resdual da bersfa auoorelas. 6) Ja d > dan d L 4 d d U, maa hasl pengujan da dapa dsmpulan.. Pengujan Auocorrelaon Funcon (ACF) ang menguj adana auoorelas pada lag-, lag-, lag-3, dan seerusna. Pada uj ACF, asus auoorelas erjad ea ada lag pada plo ACF ang eluar baas sgnfans (margn error). 3. Pengujan Auoorelas lanna, seper: Uj Breusch-Godfre dan Uj Ljung-Box (gunaan sofware EVIEWS). Page 4

5 E-boo Sasa Gras... Sascal Daa Anals Solus Kasus Auoorelas Solus Auoorelas pada penulsan n dberan dalam ga saran, au:. Menambahan aau mengganan daa sampel baru arena eradang sampel lan da meml asus Auoorelas ang sanga serus.. Menggunaan model regres lnear berganda dengan resdualna mengu proses Auoregressve orde aau AR() ang desmas secara smulan (gunaan sofware EVIEWS) dengan rumusan v = β + β X ε = ρε + v ~ N(, σ ) ; v, + β X, =,,..., n β X, + ε ; < ρ <. Asums Heerosedasas Asums Heerosedasas adalah asums resdual dar model regres ang meml varan da onsan. Pada pemersaan n, dharapan asums Heerosedasas da erpenuh arena model regres lner berganda meml asums varan resdual ang onsan (Homosedasas). Penebab erjadna asus heerosedasas adalah:. Terdapa esalahan npu omponen/nla varabel respon pada beberapa predor, sehngga pada omponen predor ang berbeda meml omponen varabel respon ang sama, seper: Unu X = 5 dan X = 6, dperoleh nla =,9.. Kasus Heerosedasas erjad secara alam pada varabel-varabel eonom, seper: asus rumah angga dengan pendapaan ang berbeda eradang meml pengeluaran ang hampr sama. 3. Terdapa pengaruh Heerosedasas pada daa me seres ang umum erjad pada varabel-varabel eonom ang meml volalas (conoh: nflas, reurn saham, dll). 4. Adana Manpulas Daa ang menebaban resdual daa meml varan ang ssema. Beru dberan cara-cara mengdenfas adana asus Heerosedasas:. Dlauan pemersaan dengan meode Graf, seper: a. Pemersaan oupu scaer plo dar varabel respon () pada sumbu-y dengan masng-masng varabel predorna (X) pada sumbu-x. Page 5

6 E-boo Sasa Gras... Sascal Daa Anals b. Pemersaan oupu scaer plo dar varabel resdual (e) pada sumbu-y dengan varabel preds respon (-ha) pada sumbu-x. c. Pemersaan oupu scaer plo dar varabel resdual (e) pada sumbu-y dengan masng-masng varabel predorna (X) pada sumbu-x. Model regres aan menghaslan oupu scaer plo dengan pola erenu sebaga beru [] : Gambar. Plo Resdual dengan pola: (a) plo nol; (b) megafon erbua anan; (c) megafon erbua r; (d) double ouward box; (e) (f) nonlnearas; (g) (h) ombnas dar fungs nonlnearas dan varan da onsan. Plo (a) adalah plo nol ang mengndasan da ada masalah dengan model regres (da ada asus Heerosedasas). Plo (b) (d) mengndasan resdual dengan varan da onsan (ada asus Heerosedasas). Plo (e) (f) menunjuan fungs mean aau model regres ang da sesua (menunjuan nonlneras), msalna: pola hubungan anara dan X ang berbenu uadra ( = a + bx + cx + ε) eap dmodelan dengan model lnear ( = a + bx + ε). Plo (g) (h) menunjuan ejadan Page 6

7 E-boo Sasa Gras... Sascal Daa Anals fungs mean ang da sesua dan resdual dengan varan da onsan (ada asus Heerosedasas).. Dlauan pengujan dengan meode Formal, melpu: Uj Par, Uj Glejser, Uj Goldfeld-Quand, Uj Breusch-Pagan/Godfre, dan Uj Whe (gunaan sofware EVIEWS). Solus Kasus Heerosedasas Solus Heerosedasas pada penulsan n dberan dalam empa saran, au:. Menambahan aau mengganan daa sampel baru arena eradang sampel lan da meml asus Heerosedasas ang sanga serus.. Melauan ransformas varabel erhadap varabel respon () dan varabel predor (x), seper: ransformas ln, aar uadra, dan Box-Cox. 3. Menggunaan meode esmas ang lebh advance, seper: generalzed leas squares (GLS) dan weghed leas squares (WLS). 4. Menggunaan model regres lnear berganda dengan resdualna mengu Auoregressve Condonall Heeroscedasc orde, aau ARCH() ang desmas secara smulan (gunaan sofware EVIEWS) dengan rumusan ε = σ η ; σ = = β + β X, α + α ε η ~ N(,) + β X ;, β X α > ;, ε ~ N(, σ ) ; =,,..., n, α < aau resdualna mengu Generalzed ARCH orde dan, aau GARCH(,) ang desmas secara smulan (gunaan sofware EVIEWS) dengan rumusan + ε ε = σ η ; σ = = β + β X, α + α ε η ~ N(,) + β X, + β σ β X ; ε ~ N(, σ ) ;, α > ; + ε α ; =,,..., n. β ; α + β < Asums Normalas Asums Normalas adalah asums resdual ang berdsrbus Normal. Asums n harus erpenuh unu model regres lnear ang ba. Uj Normalas dlauan pada nla resdual model regres. Penebab erjadna asus Normalas adalah: Page 7

8 E-boo Sasa Gras... Sascal Daa Anals. Terdapa daa resdual dar model regres ang meml nla daa ang berada jauh dar hmpunan daa aau daa esrm (oulers), sehngga penebaran daana menjad non-normal.. Terdapa onds alam dar daa ang pada dasarna da berdsrbus Normal aau berdsrbus lan, seper: dsrbus bnormal, mulnormal, esponensal, gamma, dll. Beru dberan cara-cara mengdenfas adana asus Normalas:. Dlauan pemersaan dengan meode Graf, au pemersaan Normalas dengan oupu normal P-P plo aau Q-Q plo. Asums Normalas erpenuh ea pencaran daa resdual berada dsear gars lurus melnang seper pada gambar n. Gambar. Oupu plo probablas dar resdual ang berdsrbus Normal. Beru dberan juga beberapa plo probablas dar resdual ang mungn erjad. Gambar 3. Varas benu plo probablas dar resdual.. Dlauan pengujan dengan meode Formal, seper: pengujan normalas ang dlauan melalu uj Kolmogorov-Smrnov, uj Anderson-Darlng, uj Shapro-Wl, dan uj Jarque-Bera ang mana semua pengujan n meml hpoess nerpreas, au: Page 8

9 E-boo Sasa Gras... Sascal Daa Anals H : Resdual berdsrbus Normal H : Resdual da berdsrbus Normal Asums Normalas erpenuh ea pengujan normalas menghaslan P-value (Sgn.) lebh besar dar α dengan nla α denuan sebesar %, 5%, aau %. Solus Kasus Normalas Solus Normalas pada penulsan n dberan dalam empa saran, au:. Menghapus daa pengamaan ang meml nla oulers pada daa resdualna.. Melauan ransformas varabel erhadap varabel respon () dan varabel predor (X). Transformas ang dgunaan adalah ransformas ln, aar uadra, dan Box-Cox. 3. Menggunaan ransformas plhan unu mensmulas Normalas [3], au: ransformas ln-sewness (gunaan sofware STATA) ang dlauan pada varabel respon (), emudan ransformas ang erbenu derapan juga pada varabel predorna (X). Keenuan ransformas n dlauan dengan menransformasan dalam ln secara eraf sehngga demuan suau nla ang menebaban nla sewness-na mendea nol. 4. Menggunaan meode esmas ang lebh advance, seper: Regres dengan pendeaan Boosrappng (gunaan sofware SPSS vers 9), Regres Nonparamer, dan Regres dengan pendeaan Baessan (gunaan sofware WnBugs). REFERENSI [] Wesberg, S., (5), Appled Lnear Regresson, Thrd Edon, New Jerse: John Wle & Sons. [] Hocng, R.R., (3), Mehods and Applcaons of Lnear Models: Regresson and he Analss of Varance, Second Edon, New Jerse: John Wle & Sons. [3] Aff, A.A., dan Clar, V. (999), Compuer-Aded Mulvarae Analss, Thrd Edon, New Yor: CRC Press. [4] Draper, N.R. dan Smh, H., (998), Appled Regresson Analss, Thrd Edon, Canada: John Wle & Sons. Page 9

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah BAB PENDAHULUAN. Latar Belaang Masalah Analss regres merupaan lmu peramalan dalam statst. Analss regres dapat dataan sebaga usaha mempreds atau meramalan perubahan. Regres mengemuaan tentang engntahuan

Lebih terperinci

Pemodelan Indeks Pembangunan Gender dengan Pendekatan Regresi Nonparametrik Spline di Indonesia

Pemodelan Indeks Pembangunan Gender dengan Pendekatan Regresi Nonparametrik Spline di Indonesia JURNAL SAINS DAN SENI ITS Vol. 4, No., ( 337-3 (3-9X Prn D-7 Pemodelan Indes Pembangunan Gender dengan Pendeaan Regres Nonparamer Splne d Indonesa Nurul Fajryyah dan I Nyoman Budanara Jurusan Sasa, Faulas

Lebih terperinci

Penerapan Metode Filter Kalman Dalam Perbaikan Hasil Prediksi Cuaca Dengan Metode ARIMA

Penerapan Metode Filter Kalman Dalam Perbaikan Hasil Prediksi Cuaca Dengan Metode ARIMA JURNAL SAINS DAN SENI POMITS Vol. 3, No. 2, (24) ISSN: 2337-3539 (23-927 Prn) A-28 Penerapan Meode Fler Kalman Dalam Perbaan Hasl Preds Cuaca Dengan Meode ARIMA Tomy Kurnawan, Luman Hanaf, dan Erna Aprlan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.. Populas dan Sampel Populas adalah eseluruhan unt atau ndvdu dalam ruang lngup yang ngn dtelt. Banyanya pengamatan atau anggota suatu populas dsebut uuran populas, sedangan suatu nla

Lebih terperinci

U J I A N A K H I R S E M E S T E R M A T E M A T I K A T E K N I K

U J I A N A K H I R S E M E S T E R M A T E M A T I K A T E K N I K Isaro Elevas Jurusan Ten Spl dan Lngungan FT UGM U J I A N A K H I R S E M E S T E R M A T E M A T I K A T E K N I K SABTU JULI OPE N BOOK WAKTU ME NIT PETUNJUK ) Saudara bole menggunaan ompuer unu mengerjaan

Lebih terperinci

BAB IV METODA RUNGE-KUTTA ORDE 4 PADA MODEL ALIRAN FLUIDA YANG TERGANGGU

BAB IV METODA RUNGE-KUTTA ORDE 4 PADA MODEL ALIRAN FLUIDA YANG TERGANGGU BAB IV METODA RUNGE-KUTTA ORDE 4 PADA MODEL ALIRAN FLUIDA YANG TERGANGGU Pada bab III, ka elah melakukan penguan erhadap meoda Runge-Kua orde 4 pada persamaan panas. Haslnya, solus analk persamaan panas

Lebih terperinci

Probabilitas dan Statistika Distribusi Peluang Diskrit 1. Adam Hendra Brata

Probabilitas dan Statistika Distribusi Peluang Diskrit 1. Adam Hendra Brata Probabltas dan Statsta Dsrt Adam Hendra Brata Unform Bernoull Multnomal Setap perstwa aan mempunya peluangnya masng-masng, dan peluang terjadnya perstwa tu aan mempunya penyebaran yang mengut suatu pola

Lebih terperinci

BAB V MODEL SEDERHANA DISTRIBUSI TEMPERATUR DAN SIMULASINYA

BAB V MODEL SEDERHANA DISTRIBUSI TEMPERATUR DAN SIMULASINYA BAB V MOEL SEERHANA ISTRIBUSI TEMPERATUR AN SIMULASINYA Model matemata yang terdapat pada bab sebelumnya merupaan model umum untu njes uap pada reservor dengan bottom water. Model tersebut merupaan model

Lebih terperinci

Pemodelan Peran Perempuan Terhadap Pertumbuhan Ekonomi di Jawa Timur Tahun Menggunakan Regresi Data Panel

Pemodelan Peran Perempuan Terhadap Pertumbuhan Ekonomi di Jawa Timur Tahun Menggunakan Regresi Data Panel JURNAL SAINS DAN SENI ITS Vol. 5 No. (016) 337-350 (301-98X Prnt) D-305 Pemodelan Peran Perempuan Terhadap Pertumbuhan Eonom d Jawa Tmur Tahun 010-014 Menggunaan Regres Data Panel Putr Rachmawat, Wahu

Lebih terperinci

KOLINEARITAS GANDA (MULTICOLLINEARITY) Oleh Bambang Juanda

KOLINEARITAS GANDA (MULTICOLLINEARITY) Oleh Bambang Juanda KOLINEARITAS GANDA MULTICOLLINEARIT Oleh Bambang Juanda Model: = X + X + + X + ε. Hubungan Lnear Sempurna esa, Ja C X 0 C onstanta yg td semuanya 0. Mudah detahu rn td ada dugaan parameter oef dgn OLS,

Lebih terperinci

Zullaikah 1 dan Sutimin 2. Jl. Prof. H. Soedarto, S.H., Tembalang Semarang

Zullaikah 1 dan Sutimin 2. Jl. Prof. H. Soedarto, S.H., Tembalang Semarang MODEL PERTUMBUHAN BIOMASSA RUMPUT LAUT GRACILLARIA DENGAN CARRYING CAPACITY BERGANTUNG WAKTU Zullaah dan Sumn, Jurusan Maemaa FMIPA Unversas Dponegoro Jl Prof H Soedaro, SH, Tembalang Semarang Absrac In

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN ORI. Aljabar Matrs.. Defns Matrs Matrs adalah suatu umpulan anga-anga yang juga serng dsebut elemen-elemen yang dsusun secara teratur menurut bars dan olom sehngga berbentu perseg panjang,

Lebih terperinci

PARTIAL PROPORTIONAL ODDS MODEL PADA USIA KAWIN PERTAMA WANITA 1. PENDAHULUAN

PARTIAL PROPORTIONAL ODDS MODEL PADA USIA KAWIN PERTAMA WANITA 1. PENDAHULUAN ISBN : 978.60.36.00.0 PARIAL PROPORIONAL ODDS MODEL PADA USIA KAWIN PERAMA WANIA Mhraunnsa, Isman Zan Mahasswa Jurusan Sasa Insu enolog Sepuluh Nopember (IS) Surabaa Dosen Jurusan Sasa Insu enolog Sepuluh

Lebih terperinci

Analisis Regresi Linear Sederhana

Analisis Regresi Linear Sederhana Analss Regres Lnear Sederhana Al Muhson Pendahuluan Menggunakan metode statstk berdasarkan data yang lalu untuk mempredks konds yang akan datang Menggunakan pengalaman, pernyataan ahl dan surve untuk mempredks

Lebih terperinci

BAB II TEORI DASAR. Analisis Kelompok

BAB II TEORI DASAR. Analisis Kelompok BAB II TORI DASAR II.. Analss Kelompo Istlah analss elompo pertama al dperenalan oleh Tryon (939). Ia memperenalan beberapa metode untu mengelompoan obye yang meml esamaan araterst (statsoft, 004). Kesamaan

Lebih terperinci

ANALISIS REGRESI REGRESI NONLINEAR REGRESI LINEAR REGRESI KUADRATIK REGRESI LINEAR SEDERHANA REGRESI LINEAR BERGANDA REGRESI KUBIK

ANALISIS REGRESI REGRESI NONLINEAR REGRESI LINEAR REGRESI KUADRATIK REGRESI LINEAR SEDERHANA REGRESI LINEAR BERGANDA REGRESI KUBIK REGRESI NON LINIER ANALISIS REGRESI REGRESI LINEAR REGRESI NONLINEAR REGRESI LINEAR SEDERHANA REGRESI LINEAR BERGANDA REGRESI KUADRATIK REGRESI KUBIK Membentuk gars lurus Membentuk Gars Lengkung Regres

Lebih terperinci

Peramalan Jumlah Wisatawan di Agrowisata Kusuma Batu Menggunakan Metode Analisis Spektral

Peramalan Jumlah Wisatawan di Agrowisata Kusuma Batu Menggunakan Metode Analisis Spektral JURAL SAIS DA SEI ITS Vol., o., (Sep. 0) ISS: 30-98X A-40 Peramalan Jumlah Wsawan d Agrowsa Kusuma Bu Menggunaan Meode Analss Speral swul Maghfroh, Sr Suprap Har, ur Wahyunngsh Jurusan Mema, Faulas Mema

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI Defns Parwsaa dan Wsaawan Parwsaa adalah slah yang dberan apabla seseorang wsaawan melauan perjalanan u sendr, aau dengan aa lan avas dan ejadan yang erjad ea seseorang pengunjung melauan

Lebih terperinci

Created by Simpo PDF Creator Pro (unregistered version)

Created by Simpo PDF Creator Pro (unregistered version) Created by Smpo PDF Creator Pro (unregstered verson) http://www.smpopd.com Statst Bsns : BAB IV. UKURA PEMUSATA DATA. Pendahuluan Untu mendapatan gambaran yang lebh jelas tentang seumpulan data mengena

Lebih terperinci

Created by Simpo PDF Creator Pro (unregistered version)

Created by Simpo PDF Creator Pro (unregistered version) Creaed by Smpo PDF Creaor Pro (unregsered verson) hp://www.smpopdf.com Sask Bsns : BAB 8 VIII. ANALISIS DATA DERET BERKALA (TIME SERIES) 8.1 Pendahuluan Daa Berkala (Daa Dere waku) adalah daa yang dkumpulkan

Lebih terperinci

ANALISIS EVOLUSI MATRIK ASAL TUJUAN (MAT) MENGGUNAKAN METODE GRAFIK REPRESENTASI MATRIK

ANALISIS EVOLUSI MATRIK ASAL TUJUAN (MAT) MENGGUNAKAN METODE GRAFIK REPRESENTASI MATRIK ANAII EVOUI MATRIK AA TUJUAN (MAT) MENGGUNAKAN METODE GRAFIK REPREENTAI MATRIK Tas an Junaed Absra Mar Asal Tujuan (MAT) sebaga salah sau benu nformas pola perjalanan mempunya peranan yang sanga penng

Lebih terperinci

Independent Var. Dependent Var. Test. Nominal Interval Independent t-test, ANOVA. Nominal Nominal Cross Tabs, Chi Square, dan Koefisien Kontingensi

Independent Var. Dependent Var. Test. Nominal Interval Independent t-test, ANOVA. Nominal Nominal Cross Tabs, Chi Square, dan Koefisien Kontingensi Independent Var. Dependent Var. Test Nomnal Interval Independent t-test, ANOVA Nomnal Nomnal Cross Tabs, Ch Square, dan Koefsen Kontngens Nomnal Ordnal Mann Whtney, Kolmogorov- Smrnow, Kruskall Walls Ordnal

Lebih terperinci

ε adalah error random yang diasumsikan independen, m X ) adalah fungsi

ε adalah error random yang diasumsikan independen, m X ) adalah fungsi BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Analss regres merupakan suatu metode yang dgunakan untuk menganalss hubungan antara dua atau lebh varabel. Pada analss regres terdapat dua jens varabel yatu

Lebih terperinci

Bab III. Plant Nonlinear Dengan Fase Nonminimum

Bab III. Plant Nonlinear Dengan Fase Nonminimum Bab III Plant Nonlnear Dengan Fase Nonmnmum Pada bagan n dbahas mengena penurunan learnng controller untu sstem nonlnear dengan derajat relatf yang detahu Dalam hal n hanya dperhatan pada sstem-sstem nonlnear

Lebih terperinci

REGRESI DAN KORELASI LINEAR SEDERHANA. Regresi Linear

REGRESI DAN KORELASI LINEAR SEDERHANA. Regresi Linear REGRESI DAN KORELASI LINEAR SEDERHANA Regres Lnear Tujuan Pembelajaran Menjelaskan regres dan korelas Menghtung dar persamaan regres dan standard error dar estmas-estmas untuk analss regres lner sederhana

Lebih terperinci

BAB 2 LANDASAN TEORI. Teori Galton berkembang menjadi analisis regresi yang dapat digunakan sebagai alat

BAB 2 LANDASAN TEORI. Teori Galton berkembang menjadi analisis regresi yang dapat digunakan sebagai alat BAB LANDASAN TEORI. 1 Analsa Regres Regres pertama kal dpergunakan sebaga konsep statstk pada tahun 1877 oleh Sr Francs Galton. Galton melakukan stud tentang kecenderungan tngg badan anak. Teor Galton

Lebih terperinci

BAB III ANALISIS DISKRIMINAN. Analisis diskriminan (discriminant analysis) merupakan salah satu metode

BAB III ANALISIS DISKRIMINAN. Analisis diskriminan (discriminant analysis) merupakan salah satu metode BAB III ANALISIS DISKRIMINAN 3. Analss Dsrmnan Analss dsrmnan (dscrmnant analyss) merupaan salah satu metode yan dunaan dalam analss multvarat. Dalam analss dsrmnan terdapat dua jens varabel yan terlbat

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Penelitian ini mengenal dua macam variabel yaitu : 2. Variabel terikat (Y) yaitu : Hasil belajar Sejarah

BAB III METODOLOGI PENELITIAN. Penelitian ini mengenal dua macam variabel yaitu : 2. Variabel terikat (Y) yaitu : Hasil belajar Sejarah BAB III METODOLOGI PENELITIAN 3.1 Varans Peneltan 3.1.1 Varabel Peneltan Peneltan n mengenal dua macam varabel yatu : 1. Varabel bebas (X) yatu : Berpr formal. Varabel terat (Y) yatu : Hasl belajar Sejarah

Lebih terperinci

PEMODELAN PENGELUARAN RUMAH TANGGA UNTUK KONSUMSI MAKANAN DI KOTA SURABAYA DAN FAKTOR-FAKTOR YANG MEMPENGARUHI MENGGUNAKAN PENDEKATAN REGRESI SPLINE

PEMODELAN PENGELUARAN RUMAH TANGGA UNTUK KONSUMSI MAKANAN DI KOTA SURABAYA DAN FAKTOR-FAKTOR YANG MEMPENGARUHI MENGGUNAKAN PENDEKATAN REGRESI SPLINE PEMODELAN PENGELUARAN RUMAH TANGGA UNTUK KONSUMSI MAKANAN DI KOTA SURABAYA DAN FAKTOR-FAKTOR YANG MEMPENGARUHI MENGGUNAKAN PENDEKATAN REGRESI SPLINE Dew Arfanty Azm, Dra.Madu Ratna,M.S. dan 3 Prof. Dr.

Lebih terperinci

KINETIKA REAKSI HOMOGEN SISTEM BATCH

KINETIKA REAKSI HOMOGEN SISTEM BATCH KINETIK REKSI HOMOGEN SISTEM BTH SISTEM REKTOR BTH OLUME TETP REKSI SEDERHN (SERH/IREERSIBEL Beberapa sisem reasi sederhana yang disajian di sini: Reasi ireversibel unimoleuler berorde-sau Reasi ireversibel

Lebih terperinci

BAB 2 LANDASAN TEORI. estimasi, uji keberartian regresi, analisa korelasi dan uji koefisien regresi.

BAB 2 LANDASAN TEORI. estimasi, uji keberartian regresi, analisa korelasi dan uji koefisien regresi. BAB LANDASAN TEORI Pada bab n akan durakan beberapa metode yang dgunakan dalam penyelesaan tugas akhr n. Selan tu penuls juga mengurakan tentang pengertan regres, analss regres berganda, membentuk persamaan

Lebih terperinci

VI. KETIDAKPASTIAN. Contoh : Asih mengalami gejala ada bintik-bintik di wajahnya. Dokter menduga bahwa Asih terkena cacar

VI. KETIDAKPASTIAN. Contoh : Asih mengalami gejala ada bintik-bintik di wajahnya. Dokter menduga bahwa Asih terkena cacar VI. KETIDAKPASTIAN 12 Dalam enyataan sehar-har banya masalah dduna n tda dapat dmodelan secara lengap dan onssten. Suatu penalaran dmana adanya penambahan fata baru mengabatan etdaonsstenan, dengan cr-cr

Lebih terperinci

MODEL REGRESI SEMIPARAMETRIK SPLINE UNTUK DATA LONGITUDINAL PADA KASUS KADAR CD4 PENDERITA HIV. Lilis Laome 1)

MODEL REGRESI SEMIPARAMETRIK SPLINE UNTUK DATA LONGITUDINAL PADA KASUS KADAR CD4 PENDERITA HIV. Lilis Laome 1) Paradgma, Vol. 13 No. 2 Agustus 2009 hlm. 189 194 MODEL REGRESI SEMIPARAMERIK SPLINE UNUK DAA LONGIUDINAL PADA KASUS KADAR CD4 PENDERIA HIV Lls Laome 1) 1) Jurusan Matemata FMIPA Unverstas Haluoleo Kendar

Lebih terperinci

PENYELESAIAN MULTIKOLINEARITAS MELALUI METODE RIDGE REGRESSION. Oleh : SOEMARTINI

PENYELESAIAN MULTIKOLINEARITAS MELALUI METODE RIDGE REGRESSION. Oleh : SOEMARTINI PENYELESAIAN MULTIKOLINEARITAS MELALUI METODE RIDGE REGRESSION Oleh : SOEMARTINI JURUSAN STATISTIKA FAKULTAS MATEMATIKA dan ILMU PENGETAHUAN ALAM UNIVERSITAS PADJADJARAN JATINANGOR 008 DAFTAR ISI Hal DAFTAR

Lebih terperinci

BAB 4 METODOLOGI PENELITIAN. data, dan teknik analisis data. Kerangka pemikiran hipotesis membahas hipotesis

BAB 4 METODOLOGI PENELITIAN. data, dan teknik analisis data. Kerangka pemikiran hipotesis membahas hipotesis BAB 4 METODOLOGI PENELITIAN Pada bab n akan durakan kerangka pemkran hpotess, teknk pengumpulan data, dan teknk analss data. Kerangka pemkran hpotess membahas hpotess pengujan pada peneltan, teknk pengumpulan

Lebih terperinci

BAB II TINJAUAN TEORITIS

BAB II TINJAUAN TEORITIS BAB II TIJAUA TEORITIS 2.1 Peramalan (Forecasing) 2.1.1 Pengerian Peramalan Peramalan dapa diarikan sebagai beriku: a. Perkiraan aau dugaan mengenai erjadinya suau kejadian aau perisiwa di waku yang akan

Lebih terperinci

Bab 5 Penaksiran Fungsi Permintaan. Ekonomi Manajerial Manajemen

Bab 5 Penaksiran Fungsi Permintaan. Ekonomi Manajerial Manajemen Bab 5 Penaksiran Fungsi Perminaan 1 Ekonomi Manajerial Manajemen Peranyaan Umum Tenang Perminaan Seberapa besar penerimaan perusahaan akan berubah seelah adanya peningkaan harga? Berapa banyak produk yang

Lebih terperinci

BAB III HIPOTESIS DAN METODOLOGI PENELITIAN

BAB III HIPOTESIS DAN METODOLOGI PENELITIAN BAB III HIPOTESIS DAN METODOLOGI PENELITIAN III.1 Hpotess Berdasarkan kerangka pemkran sebelumnya, maka dapat drumuskan hpotess sebaga berkut : H1 : ada beda sgnfkan antara sebelum dan setelah penerbtan

Lebih terperinci

BAB III PERBANDINGAN ANALISIS REGRESI MODEL LOG - LOG DAN MODEL LOG - LIN. Pada prinsipnya model ini merupakan hasil transformasi dari suatu model

BAB III PERBANDINGAN ANALISIS REGRESI MODEL LOG - LOG DAN MODEL LOG - LIN. Pada prinsipnya model ini merupakan hasil transformasi dari suatu model BAB III PERBANDINGAN ANALISIS REGRESI MODEL LOG - LOG DAN MODEL LOG - LIN A. Regres Model Log-Log Pada prnspnya model n merupakan hasl transformas dar suatu model tdak lner dengan membuat model dalam bentuk

Lebih terperinci

BAB III METODE PENELITIAN. bersumber dari Badan Pusat Statistik (BPS) dan Bank Indonesia (BI). Data yang

BAB III METODE PENELITIAN. bersumber dari Badan Pusat Statistik (BPS) dan Bank Indonesia (BI). Data yang BAB III METODE PENELITIAN 3.1. Jens dan Sumber Data Sumber data yang dgunakan dalam peneltan n adalah data sekunder bersumber dar Badan Pusat Statstk (BPS) dan Bank Indonesa (BI). Data yang dgunakan dalam

Lebih terperinci

APLIKASI STRUKTUR GRUP YANG TERKAIT DENGAN KOMPOSISI TRANSFORMASI PADA BANGUN GEOMETRI. Mujiasih a

APLIKASI STRUKTUR GRUP YANG TERKAIT DENGAN KOMPOSISI TRANSFORMASI PADA BANGUN GEOMETRI. Mujiasih a APLIKASI STRUKTUR GRUP ANG TERKAIT DENGAN KOMPOSISI TRANSFORMASI PADA BANGUN GEOMETRI Mujash a a Program Sud Maemaka Jurusan Tadrs Fakulas Tarbah IAIN Walsongo Jl. Prof. Dr. Hamka Kampus II Ngalan Semarang

Lebih terperinci

Eman Lesmana, Riaman. Jurusan Matematika FMIPA Universitas Padjadjaran, Jl. Raya Bandung-Sumedang km 21 Jatinangor ABSTRAK

Eman Lesmana, Riaman. Jurusan Matematika FMIPA Universitas Padjadjaran, Jl. Raya Bandung-Sumedang km 21 Jatinangor ABSTRAK PENGGUNAAN MODEL REGRESI LINEAR BERGANDA PADA PROGRAM PENGGEMUKAN SAPI PO ( PERANAKAN ONGOLE) SERTA ANALISIS BCR ( BENEFIT COST RATIO ) PENGGUNAAN PAKAN BAHAN KERING Eman Lesmana, Raman Jurusan Matemata

Lebih terperinci

FUZZY BACKPROPAGATION UNTUK KLASIFIKASI POLA (Studi kasus: klasifikasi kualitas produk)

FUZZY BACKPROPAGATION UNTUK KLASIFIKASI POLA (Studi kasus: klasifikasi kualitas produk) Semnar Nasonal plas enolog Informas (SNI ) Yogyaarta, Jun FUZZY BCKPROPGION UNUK KLSIFIKSI POL (Stud asus: lasfas ualtas produ) Sr Kusumadew Jurusan en Informata, Faultas enolog Industr Unverstas Islam

Lebih terperinci

Model Suku Bunga Multinomial 4. Danang Teguh Qoyyimi *, Dedi Rosadi 2.

Model Suku Bunga Multinomial 4. Danang Teguh Qoyyimi *, Dedi Rosadi 2. ROSIDING ISBN: 978-979-6353-3- Model Suu Bunga Mulnomal 4 S-5 Danang Teguh Qoyym *, Ded Rosad Jurusan Maemaa FMIA Unversas Gadah Mada *qoyym@ugm.ac.d Maalah n adalah merupaan pengembangan dar model suu

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab ini aan diemuaan beberapa onsep dasar yang beraian dengan analisis runun wau, dianaranya onsep enang esasioneran, fungsi auoorelasi dan fungsi auoorelasi parsial, macam-macam

Lebih terperinci

STATISTICAL STUDENT OF IST AKPRIND

STATISTICAL STUDENT OF IST AKPRIND E-mal : statstkasta@yahoo.com Blog : Analss Regres SederhanaMenggunakan MS Excel 2007 Lsens Dokumen: Copyrght 2010 sssta.wordpress.com Seluruh dokumen d sssta.wordpress.com dapat dgunakan dan dsebarkan

Lebih terperinci

Peramalan Penjualan Sepeda Motor Tiap Jenis di Wilayah Surabaya dan Blitar dengan Model ARIMA Box-Jenkins dan Vector Autoregressive (VAR)

Peramalan Penjualan Sepeda Motor Tiap Jenis di Wilayah Surabaya dan Blitar dengan Model ARIMA Box-Jenkins dan Vector Autoregressive (VAR) JURNAL SAINS DAN SENI POMITS Vol. 3, No., (04) 337-350 (30-98X Prn) D-36 Peramalan Penjualan eda Moor Tap Jens d Wlayah Surabaya dan Blar dengan Model ARIMA Box-Jenkns dan Vecor Auoregressve (VAR) Ade

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 5. No. 3, , Desember 2002, ISSN :

JURNAL MATEMATIKA DAN KOMPUTER Vol. 5. No. 3, , Desember 2002, ISSN : JURNAL MATEMATIKA AN KOMPUTER Vol. 5. No. 3, 161-167, esember 00, ISSN : 1410-8518 PENGARUH SUATU ATA OBSERVASI ALAM MENGESTIMASI PARAMETER MOEL REGRESI Hern Utam, Rur I, dan Abdurakhman Jurusan Matematka

Lebih terperinci

Pendahuluan. 0 Dengan kata lain jika fungsi tersebut diplotkan, grafik yang dihasilkan akan mendekati pasanganpasangan

Pendahuluan. 0 Dengan kata lain jika fungsi tersebut diplotkan, grafik yang dihasilkan akan mendekati pasanganpasangan Pendahuluan 0 Data-data ang bersfat dskrt dapat dbuat contnuum melalu proses curve-fttng. 0 Curve-fttng merupakan proses data-smoothng, akn proses pendekatan terhadap kecenderungan data-data dalam bentuk

Lebih terperinci

4. VALIDITAS DAN RELIABILITAS DALAM MEMBUAT EVALUASI

4. VALIDITAS DAN RELIABILITAS DALAM MEMBUAT EVALUASI 4. ALIDITAS DA RELIABILITAS DALAM MEMBUAT EALUASI Tujuan : Seelah mempelajari modul ini mahasiswa mampu membua ala evaluasi bau unu program pembelajaran Evaluasi pembelajaran adalah ahap ahir dalam prosedur

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PEDAHULUA. Latar Belakang Rsko ddentfkaskan dengan ketdakpastan. Dalam mengambl keputusan nvestas para nvestor mengharapkan hasl yang maksmal dengan rsko tertentu atau hasl tertentu dengan rsko yang

Lebih terperinci

EKSPEKTASI SATU PEUBAH ACAK

EKSPEKTASI SATU PEUBAH ACAK EKSPEKTASI SATU PEUBAH ACAK Dalam hal n aan dbahas beberapa macam uuran yang dhtung berdasaran espetas dar satu peubah aca, ba dsrt maupun ontnu, yatu nla espetas, rataan, varans, momen, fungs pembangt

Lebih terperinci

BAB III METODE PENELITIAN. Pada penelitian ini, penulis memilih lokasi di SMA Negeri 1 Boliyohuto khususnya

BAB III METODE PENELITIAN. Pada penelitian ini, penulis memilih lokasi di SMA Negeri 1 Boliyohuto khususnya BAB III METODE PENELITIAN 3.1 Tempat dan Waktu Peneltan 3.1.1 Tempat Peneltan Pada peneltan n, penuls memlh lokas d SMA Neger 1 Bolyohuto khususnya pada sswa kelas X, karena penuls menganggap bahwa lokas

Lebih terperinci

BAB 5 ENTROPI PADA MATRIKS EMISI MODEL MARKOV TERSEMBUNYI

BAB 5 ENTROPI PADA MATRIKS EMISI MODEL MARKOV TERSEMBUNYI BAB ETROPI PADA MATRIKS EMISI MODEL MARKOV TERSEMBUYI Model Markov Tersembuny (Hdden Markov Model, MMT) elah banyak daplkaskan dalam berbaga bdang seper pelafalan bahasa (speeh reognon) dan klasfkas (luserng).

Lebih terperinci

Pengolahan lanjut data gravitasi

Pengolahan lanjut data gravitasi Modul 6 Pengolahan lanjut data gravtas 1. Transformas/proyes e bdang datar (metode Damney atau Euvalen Tt Massa). Pemsahan Anomal Loal/Resdual dan Anomal Regonal a. Kontnuas b. Movng average c. Polynomal

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di SMP Negeri 7 Gorontalo pada tahun ajaran 2012/2013

BAB III METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di SMP Negeri 7 Gorontalo pada tahun ajaran 2012/2013 3. Lokas dan Waku Penelan 3.. Lokas Penelan BAB III METODOLOGI PENELITIAN Penelan n dlaksanakan d SMP Neger 7 Goronalo pada ahun ajaran 0/03 3.. Waku Penelan Penelan n d laksanakan pada semeser genap ahun

Lebih terperinci

BAB I PENDAHULUAN. pembangunan dalam sektor energi wajib dilaksanakan secara sebaik-baiknya. Jika

BAB I PENDAHULUAN. pembangunan dalam sektor energi wajib dilaksanakan secara sebaik-baiknya. Jika BAB I PENDAHULUAN 1.1.Latar Belakang Energ sangat berperan pentng bag masyarakat dalam menjalan kehdupan seharhar dan sangat berperan dalam proses pembangunan. Oleh sebab tu penngkatan serta pembangunan

Lebih terperinci

BAB 2 LANDASAN TEORI. diteliti. Banyaknya pengamatan atau anggota suatu populasi disebut ukuran populasi,

BAB 2 LANDASAN TEORI. diteliti. Banyaknya pengamatan atau anggota suatu populasi disebut ukuran populasi, BAB LANDASAN TEORI.1 Populas dan Sampel Populas adalah keseluruhan unt atau ndvdu dalam ruang lngkup yang ngn dtelt. Banyaknya pengamatan atau anggota suatu populas dsebut ukuran populas, sedangkan suatu

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISA

BAB IV PENGUJIAN DAN ANALISA BAB IV PENGUJIAN DAN ANALISA 4. PENGUJIAN PENGUKURAN KECEPATAN PUTAR BERBASIS REAL TIME LINUX Dalam membuktkan kelayakan dan kehandalan pengukuran kecepatan putar berbass RTLnux n, dlakukan pengujan dalam

Lebih terperinci

PENDUGAAN STATISTIK AREA KECIL DENGAN METODE EMPIRICAL CONSTRAINED BAYES 1

PENDUGAAN STATISTIK AREA KECIL DENGAN METODE EMPIRICAL CONSTRAINED BAYES 1 PENDUGAAN SAISIK AREA KECIL DENGAN MEODE EMPIRICAL CONSRAINED AYES Ksmann Jurusan Penddkan Maemaka FMIPA Unversas Neger Yogyakara Absrak Meode emprcal ayes (E merupakan meode yang lebh aplkaf pada pendugaan

Lebih terperinci

PERAMALAN KURS EURO TERHADAP RUPIAH MENGGUNAKAN MODEL ASYMMETRIC POWER AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (APARCH)

PERAMALAN KURS EURO TERHADAP RUPIAH MENGGUNAKAN MODEL ASYMMETRIC POWER AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (APARCH) erusaaan.uns.ac.d dglb.uns.ac.d PERAMALAN KURS EURO TERHADAP RUPIAH MENGGUNAKAN MODEL ASYMMETRIC POWER AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY APARCH Oleh BONDRA UJI PRATAMA M007075 SKRIPSI duls

Lebih terperinci

BAB V PENGEMBANGAN MODEL FUZZY PROGRAM LINIER

BAB V PENGEMBANGAN MODEL FUZZY PROGRAM LINIER BAB V PENGEMBANGAN MODEL FUZZY PROGRAM LINIER 5.1 Pembelajaran Dengan Fuzzy Program Lner. Salah satu model program lnear klask, adalah : Maksmumkan : T f ( x) = c x Dengan batasan : Ax b x 0 n m mxn Dengan

Lebih terperinci

JURNAL SAINS DAN SENI POMITS Vol. 3, No.1, (2014) ( X Print) D-36

JURNAL SAINS DAN SENI POMITS Vol. 3, No.1, (2014) ( X Print) D-36 JURNAL SAINS DAN SENI POMIS Vol. 3, No., (04 337-350 (30-98X Prnt D-36 Fator-Fator Yang Mempengaruh ngat Keberhaslan Pemberan Kemoterap Pada Pasen Penderta Kaner Payudara D RSUD Dr.Soetomo Dengan Menggunaan

Lebih terperinci

UJI LINEARITAS DATA TIME SERIES DENGAN RESET TEST

UJI LINEARITAS DATA TIME SERIES DENGAN RESET TEST Vol. 7. No. 3, 36-44, Desember 004, ISSN : 1410-8518 UJI LINEARITAS DATA TIME SERIES DENGAN RESET TEST Budi Warsio, Dwi Ispriyani Jurusan Maemaia FMIPA Universias Diponegoro Absra Tulisan ini membahas

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. Kegiatan untuk memperkirakan apa yang akan terjadi pada masa yang akan datang

BAB 2 TINJAUAN TEORITIS. Kegiatan untuk memperkirakan apa yang akan terjadi pada masa yang akan datang BAB 2 TINJAUAN TEORITIS 2.1 Pengerian dan Manfaa Peramalan Kegiaan unuk mempeirakan apa yang akan erjadi pada masa yang akan daang disebu peramalan (forecasing). Sedangkan ramalan adalah suau kondisi yang

Lebih terperinci

PERAMALAN DENGAN MODEL ARCH SKRIPSI

PERAMALAN DENGAN MODEL ARCH SKRIPSI PERAMALAN DENGAN MODEL ARCH SKRIPSI Dajuan unu Memenuh Salah Sau Syara Memeroleh Gelar Sarjana Sans (S.S) Program Sud Maemaa Oleh: SUHARTINI NIM : 48 PROGRAM STUDI MATEMATIKA JURUSAN MATEMATIKA FAKULTAS

Lebih terperinci

BAB III THREE STAGE LEAST SQUARE. Sebagaimana telah disinggung pada bab sebelumnya, salah satu metode

BAB III THREE STAGE LEAST SQUARE. Sebagaimana telah disinggung pada bab sebelumnya, salah satu metode BAB III THREE STAGE LEAST SQUARE Sebagamana elah dsnggung pada bab sebelumnya, salah sau meode penaksran parameer pada persamaan smulan yau meode Three Sage Leas Square (3SLS. Sebelum djelaskan lebh lanju

Lebih terperinci

Karakterisasi Matrik Leslie Ordo Tiga

Karakterisasi Matrik Leslie Ordo Tiga Jurnal Graden Vol No Januar 006 : 34-38 Karatersas Matr Lesle Ordo Tga Mudn Smanhuru, Hartanto Jurusan Matemata, Faultas Matemata dan Ilmu Pengetahuan Alam, Unverstas Bengulu, Indonesa Dterma Desember

Lebih terperinci

Di bidang ekonomi tidak semua informasi dapat diukur secara kuantitatif. Peubah dummy digunakan untuk memperoleh informasi yang bersifat kualitatif

Di bidang ekonomi tidak semua informasi dapat diukur secara kuantitatif. Peubah dummy digunakan untuk memperoleh informasi yang bersifat kualitatif Regres Dummy D bdang ekonom dak semua nformas dapa dukur secara kuanaf Peubah dummy dgunakan unuk memperoleh nformas yang bersfa kualaf Conoh pada daa cross secon: Gender: sebaga penenu jumlah pendapaan

Lebih terperinci

( ) r( t) 0 : tingkat pertumbuhan populasi x

( ) r( t) 0 : tingkat pertumbuhan populasi x III PEMODELAN Model Perumbuan Koninu Terbaasnya sumber-sumber penyoong (ruang, air, maanan, dll) menyebaban populasi dibaasi ole suau daya duung lingungan Perumbuan populasi lamba laun aan menurun dan

Lebih terperinci

BAB II LANDASAN TEORI. Peramalan (Forecasting) adalah suatu kegiatan yang mengestimasi apa yang akan

BAB II LANDASAN TEORI. Peramalan (Forecasting) adalah suatu kegiatan yang mengestimasi apa yang akan BAB II LADASA TEORI 2.1 Pengerian peramalan (Forecasing) Peramalan (Forecasing) adalah suau kegiaan yang mengesimasi apa yang akan erjadi pada masa yang akan daang dengan waku yang relaif lama (Assauri,

Lebih terperinci

4. Hukum Dan Kaidah Rangkaian

4. Hukum Dan Kaidah Rangkaian Inroducon o rcu naly Tme Doman www.drhamblora.com. Huum Dan Kadah angaan.. Huum-Huum angaan Peerjaan anal erhadap uau rangaan lner yang parameernya deahu mencaup pemlhan en anal dan penenuan bearan eluaran

Lebih terperinci

Analisis Regresi 1. Diagnosa Model Melalui Pemeriksaan Sisaan dan Identifikasi Pengamatan Berpengaruh. Pokok Bahasan :

Analisis Regresi 1. Diagnosa Model Melalui Pemeriksaan Sisaan dan Identifikasi Pengamatan Berpengaruh. Pokok Bahasan : Analss Regres Pokok Bahasan : Dagnosa Model Melalu Pemerksaan Ssaan dan Identfkas Pengamatan Berpengaruh Itasa & Y Angran Dep. Statstka FMIPA-IPB Ssaan Ssaan adalah menympangnya nla amatan y terhadap dugaan

Lebih terperinci

REGRESI LINIER SEDERHANA (MASALAH ESTIMASI)

REGRESI LINIER SEDERHANA (MASALAH ESTIMASI) REGRESI LINIER SEDERHANA (MASALAH ESTIMASI) PowerPont Sldes byyana Rohmana Educaton Unversty of Indonesan 007 Laboratorum Ekonom & Koperas Publshng Jl. Dr. Setabud 9 Bandung, Telp. 0 013163-53 Hal-hal

Lebih terperinci

KONSEP DASAR. Latar belakang Metode Numerik Ilustrasi masalah numerik Angka signifikan Akurasi dan Presisi Pendekatan dan Kesalahan

KONSEP DASAR. Latar belakang Metode Numerik Ilustrasi masalah numerik Angka signifikan Akurasi dan Presisi Pendekatan dan Kesalahan KONSEP DASAR Laar belakang Meode Numerk Ilusras masalah numerk Angka sgnfkan Akuras dan Press Pendekaan dan Kesalahan Laar Belakang Meode Numerk Tdak semua permasalahan maemas dapa dselesakan dengan mudah,

Lebih terperinci

Pemodelan Data Runtun Waktu : Kasus Data Tingkat Pengangguran di Amerika Serikat pada Tahun

Pemodelan Data Runtun Waktu : Kasus Data Tingkat Pengangguran di Amerika Serikat pada Tahun Pemodelan Daa Runun Waku : Kasus Daa Tingka Pengangguran di Amerika Serika pada Tahun 948 978. Adi Seiawan Program Sudi Maemaika, Fakulas Sains dan Maemaika Universias Krisen Saya Wacana, Jl. Diponegoro

Lebih terperinci

Oleh: TANTI MEGASARI Dosen Pembimbing : Dra. Nuri Wahyuningsih, MKes

Oleh: TANTI MEGASARI Dosen Pembimbing : Dra. Nuri Wahyuningsih, MKes PERAMALAN INDEKS HARGA SAHAM YANG DIPENGARUHI KURS, PERUBAHAN INFLASI, POSISI JUMLAH DEPOSITO BERJANGKA, SUKU BUNGA SBI DAN DEPOSITO MENGGUNAKAN FUNGSI TRANSFER DAN ARCH-GARCH Oleh: TANTI MEGASARI 6 00

Lebih terperinci

NILAI AKUMULASI DARI SUATU CASH FLOW DENGAN TINGKAT BUNGA BERUBAH BERDASARKAN FORMULA FISHER

NILAI AKUMULASI DARI SUATU CASH FLOW DENGAN TINGKAT BUNGA BERUBAH BERDASARKAN FORMULA FISHER ILAI AKUMULASI DARI SUATU CASH FLOW DEGA TIGKAT BUGA BERUBAH BERDASARKA FORMULA FISHER Devs Apranda, Johannes Kho, Sg Sugaro Mahasswa rogram S Maemaka Dosen Jurusan Maemaka Fakulas Maemaka dan Ilmu engeahuan

Lebih terperinci

REGRESI LINIER FUZZY PADA DATA TIME SERIES

REGRESI LINIER FUZZY PADA DATA TIME SERIES Regres Lner Fuzzy Pada Daa Tme Seres REGRESI LINIER FUZZY PADA DATA TIME SERIES Abdul Roza Progam Sud Maemaa Unversas Pesanren Tngg Darul Ulum Jombang abd.roza76@yahoo.co.d Absra Perembangan eor dan alas

Lebih terperinci

BAB III METODE PEMULUSAN EKSPONENSIAL TRIPEL DARI WINTER. Metode pemulusan eksponensial telah digunakan selama beberapa tahun

BAB III METODE PEMULUSAN EKSPONENSIAL TRIPEL DARI WINTER. Metode pemulusan eksponensial telah digunakan selama beberapa tahun 43 BAB METODE PEMUUAN EKPONENA TRPE DAR WNTER Meode pemulusan eksponensial elah digunakan selama beberapa ahun sebagai suau meode yang sanga berguna pada begiu banyak siuasi peramalan Pada ahun 957 C C

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN 40 BAB III METODOLOGI PENELITIAN Dalam peneltan n penuls bermaksud untuk menelt bagamana pengaruh perubahan kebjakan moneter terhadap jumlah kredt yang dberkan oleh bank pada beberapa kelompok bank berdasarkan

Lebih terperinci

Pemodelan Penduduk Miskin Di Jawa Timur Menggunakan Metode Geographically Weighted Regression (GWR)

Pemodelan Penduduk Miskin Di Jawa Timur Menggunakan Metode Geographically Weighted Regression (GWR) Pemodelan Pendudu Msn D Jawa Tmur Menggunaan Metode Geographcally Weghted Regresson (GWR) Yuanta Damayant, dan Dr. Vta Ratnasar S.S, M.S Jurusan Statsta, F-MIPA, Insttut Tenolog Sepuluh Nopember (ITS)

Lebih terperinci

Penggunaan Model Regresi Tobit Pada Data Tersensor

Penggunaan Model Regresi Tobit Pada Data Tersensor SEMINAR NASIONAL MAEMAIKA DAN PENDIDIKAN MAEMAIKA UNY 016 S 15 Penggunaan Model Regres obt Pada Data ersensor Def Yust Fadah 1, Resa Septan Pontoh 1, Departemen Statsta FMIPA Unverstas Padjadjaran def.yust@unpad.ac.d

Lebih terperinci

USING THE PAST TO PREDICT THE FUTURE WORKSHOP ANALISIS RESIKO UNTUK BISNIS

USING THE PAST TO PREDICT THE FUTURE WORKSHOP ANALISIS RESIKO UNTUK BISNIS USING THE PAST TO PREDICT THE FUTURE WORKSHOP ANALISIS RESIKO UNTUK BISNIS Oleh : Maman Seawan, SE, MT 28 29 Sepember 2004 PROGRAM PENGEMBANGAN KOMPETENSI BISNIS DIVISI PENGKAJIAN DAN PENGEMBANGAN BISNIS

Lebih terperinci

SIMULASI PERGERAKAN TRAJECTORY PLANNING PADA ROBOT LENGAN ANTHROPOMORPHIC. Moh. Imam Afandi

SIMULASI PERGERAKAN TRAJECTORY PLANNING PADA ROBOT LENGAN ANTHROPOMORPHIC. Moh. Imam Afandi SIMUASI ERGERAKAN TRAJECTOR ANNING ADA ROBOT ENGAN ANTHROOMORHIC Moh Imam Afand usl KIM-II, Kawasan usppe Serpong, Tangerang 54 INTISARI Robo lengan yang mampu bergera secara oomas membuuhan suau ssem

Lebih terperinci

Kecocokan Distribusi Normal Menggunakan Plot Persentil-Persentil yang Distandarisasi

Kecocokan Distribusi Normal Menggunakan Plot Persentil-Persentil yang Distandarisasi Statstka, Vol. 9 No., 4 47 Me 009 Kecocokan Dstrbus Normal Menggunakan Plot Persentl-Persentl yang Dstandarsas Lsnur Wachdah Program Stud Statstka Fakultas MIPA Unsba e-mal : Lsnur_w@yahoo.co.d ABSTRAK

Lebih terperinci

BAB 2 LANDASAN TEORI. Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi di masa yang

BAB 2 LANDASAN TEORI. Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi di masa yang BAB 2 LANDASAN TEORI 2.1 Pengerian Peramalan Peramalan adalah kegiaan unuk memperkirakan apa yang akan erjadi di masa yang akan daang. Sedangkan ramalan adalah suau aau kondisi yang diperkirakan akan erjadi

Lebih terperinci

BAB I PENDAHULUAN. dan. 0. Uji fungsi distribusi empiris yang populer, yaitu uji. distribusi nol

BAB I PENDAHULUAN. dan. 0. Uji fungsi distribusi empiris yang populer, yaitu uji. distribusi nol BAB I PENDAHULUAN 1.1. Latar Belakang Sebagan besar peneltan-peneltan bdang statstka berhubungan dengan pengujan asums dstrbus, bak secara teor maupun praktk d lapangan. Salah satu uj yang serng dgunakan

Lebih terperinci

ANALISIS PENGARUH GAYA KEPEMIMPINAN DAN MOTIVASI TERHADAP KINERJA KARYAWAN

ANALISIS PENGARUH GAYA KEPEMIMPINAN DAN MOTIVASI TERHADAP KINERJA KARYAWAN ANALISIS PENGARUH GAYA KEPEMIMPINAN DAN MOTIVASI TERHADAP KINERJA KARYAWAN STUDI KASUS PADA PT. DOK & PERKAPALAN KODJA BAHARI (PERSERO) CABANG SEMARANG SKRIPSI Dajukan sebaga salah satu syarat Untuk menyelesakan

Lebih terperinci

Pemodelan Penyerapan Tenaga Kerja Sektor Industri di Indonesia Dengan Pendekatan Regresi Data Panel Dinamis

Pemodelan Penyerapan Tenaga Kerja Sektor Industri di Indonesia Dengan Pendekatan Regresi Data Panel Dinamis JURAL SAIS DA SEI ITS Vol. 5 o. 2 (2016) 2337-3520 (2301-928X Prn) D-217 Pemodelan Penyerapan Tenaga Kerja Sekor Indusr d Indonesa Dengan Pendekaan Regres Daa Panel Dnams Avolla Terza Damalana dan Seawan

Lebih terperinci

ANALISIS REGRESI PADA DATA OUTLIER DENGAN MENGGUNAKAN LEAST TRIMMED SQUARE (LTS) DAN MM-ESTIMASI. Heru Nurcahyadi

ANALISIS REGRESI PADA DATA OUTLIER DENGAN MENGGUNAKAN LEAST TRIMMED SQUARE (LTS) DAN MM-ESTIMASI. Heru Nurcahyadi ANALISIS REGRESI PADA DATA OUTLIER DENGAN MENGGUNAKAN LEAST TRIMMED SQUARE (LTS) DAN MM-ESTIMASI Heru Nurcahyad PROGRAM STUDI MATEMATIKA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI SYARIF HIDAYATULLAH

Lebih terperinci

Muthmainnah PROGRAM STUDI MATEMATIKA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI SYARIF HIDAYATULLAH JAKARTA 2007 M/1428 H

Muthmainnah PROGRAM STUDI MATEMATIKA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI SYARIF HIDAYATULLAH JAKARTA 2007 M/1428 H PERBANDINGAN MODEL COX PROPORTIONAL HAZARD DAN MODEL PARAMETRIK BERDASARKAN ANALISIS RESIDUAL (Sud Kasus pada Daa Kanker Paru-Paru yang Dperoleh dar Conoh Daa pada Sofware S-Plus 2000 dan Smulas unuk Dsrbus

Lebih terperinci

BAB III OBJEK DAN DESAIN PENELITIAN. Bab ini dibagi menjadi dua bagian, yaitu objek penelitian dan desain penelitian.

BAB III OBJEK DAN DESAIN PENELITIAN. Bab ini dibagi menjadi dua bagian, yaitu objek penelitian dan desain penelitian. BAB III OBJEK DAN DESAIN PENELITIAN Bab n dbag menjad dua bagan, yatu objek peneltan dan desan peneltan. III.1 Objek Peneltan Objek peneltan dalam skrps n adalah nla perusahaan LQ 45 perode 2009-2011.

Lebih terperinci

SOLUSI SISTEM PERSAMAAN DIFFERENSIAL NON LINEAR MENGGUNAKAN METODE EULER BERBANTUAN PROGRAM MATLAB SKRIPSI

SOLUSI SISTEM PERSAMAAN DIFFERENSIAL NON LINEAR MENGGUNAKAN METODE EULER BERBANTUAN PROGRAM MATLAB SKRIPSI SOLUSI SISTEM PERSAMAAN DIFFERENSIAL NON LINEAR MENGGUNAKAN METODE EULER BERBANTUAN PROGRAM MATLAB SKRIPSI oleh: RILA DWI RAHMAWATI NIM: 0350050 JURUSAN MATEMATIKA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Kerangka Pemikiran Salah sau ujuan didirikannya perusahaan adalah dalam rangka memaksimalkan firm of value. Salah sau cara unuk mengukur seberapa besar perusahaan mencipakan

Lebih terperinci

*Corresponding Author:

*Corresponding Author: Prosiding Seminar Tugas Akhir FMIPA UNMUL 5 Periode Mare 6, Samarinda, Indonesia ISBN: 978-6-7658--3 Penerapan Model Neuro-Garch Pada Peramalan (Sudi Kasus: Reurn Indeks Harga Saham Gabungan) Applicaion

Lebih terperinci

SELANG KEPERCAYAAN UNTUK KOEFISIEN GARIS REGRESI LINEAR DENGAN METODE LEAST MEDIAN SQUARES 1 ABSTRAK

SELANG KEPERCAYAAN UNTUK KOEFISIEN GARIS REGRESI LINEAR DENGAN METODE LEAST MEDIAN SQUARES 1 ABSTRAK SELANG KEPERCAYAAN UNTUK KOEFISIEN GARIS REGRESI LINEAR DENGAN METODE LEAST MEDIAN SQUARES Harm Sugart Jurusan Statstka FMIPA Unverstas Terbuka emal: harm@ut.ac.d ABSTRAK Adanya penympangan terhadap asums

Lebih terperinci

III FUZZY GOAL LINEAR PROGRAMMING

III FUZZY GOAL LINEAR PROGRAMMING 7 Ilustras entu hmpunan fuzzy dan fungs eanggotaannya dapat dlhat pada Contoh 3. Contoh 3 Msalan seseorang dataan sudah dewasa ja erumur 7 tahun atau leh, maa dalam loga tegas, seseorang yang erumur urang

Lebih terperinci

Pemodelan Anomali Magnetik Berbentuk Prisma Menggunakan Algoritma Genetika Antonius a, Yudha Arman a *, Joko Sampurno a

Pemodelan Anomali Magnetik Berbentuk Prisma Menggunakan Algoritma Genetika Antonius a, Yudha Arman a *, Joko Sampurno a Pemodelan Anomal Magnet Berbentu Prsma Menggunaan Algortma Geneta Antonus a, Yudha Arman a *, Joo Sampurno a a Jurusan Fsa, FMIPA Unverstas Tanjungpura, Jalan Pro. Dr. Hadar Nawaw, Pontana, Indonesa *Emal

Lebih terperinci

Darpublic Nopember 2013

Darpublic Nopember 2013 Darpublic Nopember 01 www.darpublic.com 4.1. Pengerian 4. Persamaan Diferensial (Orde Sau) Sudarano Sudirham Persamaan diferensial adalah suau persamaan di mana erdapa sau aau lebih urunan fungsi. Persamaan

Lebih terperinci