E-book Statistika Gratis... Statistical Data Analyst. Uji Asumsi Klasik Regresi Linear

Ukuran: px
Mulai penontonan dengan halaman:

Download "E-book Statistika Gratis... Statistical Data Analyst. Uji Asumsi Klasik Regresi Linear"

Transkripsi

1 E-boo Sasa Gras... Sascal Daa Anals Uj Asums Klas Regres Lnear Pada penulsan enang Regres Lnear n, penuls aan memberan bahasan mengena Uj Asums Klas epada para pembaca unu memberan pemahaman dan solus dalam menganspas asums ang dberan. Pengujan Asums Klas merupaan pengujan asums-asums sas ang harus dpenuh pada analss regres lnear berganda ang berbass ordnar leas square (OLS). Kea asums da erpenuh, basana penel menggunaan berbaga solus agar asumsna dapa erpenuh, aau beralh e meode ang lebh advance agar asumsna dapa erselesaan. Pada penulsan n, Asums Klas ang aan dberan adalah Mulolnearas, Auoorelas, Heerosedasas, dan Normalas. Pengujan Asums Klas. Pengujan Asums Klas harus dlauan unu menguj asums-asums ang ada dalam pemodelan regres lnear berganda. Dberan benu umum dar model regres lnear berganda unu n pengamaan, au = β + β X d ε ~ N(, σ ) ;, + β X, =,,..., n β X Varabel-varabel predor dalam model regres lnear berganda dsebu juga sebaga varabel-varabel ndependen (bebas), arna varabel-varabel predor da meml hubungan aau eeraan sau dengan ang lan (nercorrelaon). Dengan aa lan, varabel-varabel predor da meml sfa Mulolnearas. Dasumsan Error (ε) bersfa den dan ndependen (d), sera berdsrbus Normal dengan mean nol dan varan σ. Hal n memberan ar bahwa omponen error meml ecenderungan mendea nol dan da meml eerganungan danara omponen error berdasaran wau erenu (Auoorelas), sera error mengu dsrbus Normal (Normalas) dan da meml sfa Heerosedasas (varan da onsan). Kea dgunaan daa pengamaan (sampel), parameer/oefsen model regres aan desmas dengan meode OLS sehngga aan menghaslan dugaan dar oefsen regres β, β, β,, β p, au b, b, b,, b p sehngga model regresna aan menjad, + ε Page

2 E-boo Sasa Gras... Sascal Daa Anals ˆ = b = ˆ = b + b X + e + b X,, + b + b X X,, b b X X,, + e. ; =,,..., n Resdual (e) merupaan uuran esalahan sampel ang dgunaan unu menggambaran uuran esalahan populas au Error (ε). Resdual juga dnaaan sebaga perbedaan anara daa pengamaan (sampel) dar varabel respon () dengan daa preds respon dar esmas model regres (-ha), sehngga dperoleh resdual secara maemas e = ˆ ; =,,..., n. Tda semua uj asums las harus dlauan pada analss regres lnear, seper: pengujan asums Mulolnearas da harus dlauan pada analss regres lnear sederhana ang meml varabel respon dan predor hana sau. Asums Mulolnearas Asums Mulolnearas adalah asums ang menunjuan adana hubungan lnear ang ua danara beberapa varabel predor dalam suau model regres lnear berganda. Model regres ang ba meml varabel-varabel predor ang ndependen aau da berorelas. Pada pengujan asums n, dharapan asums Mulolneras da erpenuh. Penebab erjadna asus Mulolneras adalah erdapa orelas aau hubungan lnear ang ua danara beberapa varabel predor ang dmasuan edalam model regres, seper: varabel-varabel eonom ang ebanaan era sau dengan ang lan (nercorrelaon). Beru aan dberan cara-cara mengdenfas adana asus Mulolneras:. Menghung dan menguj oefsen orelas danara varabel-varabel predor. Terjad asus Mulolneras ea erdapa orelas ang ua (aau sgnfan) danara varabel-varabel predor.. Mengece nla sandard error dar masng-masng oefsen regres [se(β)]. Kasus Mulolneras basana erjad ea nla sandard error dar oefsen regres membesar, sehngga hasl n aan cenderung menerma H (menmpulan bahwa oefsen regres da sgnfan) pada pengujan sgnfans parameer/oefsen regres. Hal n dapa erjad, mespun nla oefsen regresna da mendea nol. Page

3 E-boo Sasa Gras... Sascal Daa Anals 3. Menjumpa adana oupu pengujan serena oefsen regres aau Uj ANOVA aau Uj F ang sgnfan, eap oupu pengujan parsal oefsen regres aau Uj dar masng-masng varabel predor da ada ang sgnfan. 4. Membandngan oupu oefsen regres dengan oefsen orelas anara varabel respon dan predor. Perama, asus Mulolneras basana erjad ea erdapa perubahan hasl pengujan sgnfans pada oefsen regres dan oefsen orelas, seper: oefsen orelas anara dan X adalah,765 dengan p-value =, (sgnfan arena p-value < 5%), emudan pada pemodelan regres dperoleh oefsen regres anara dan X sebesar,65 dengan p-value =,9 (da sgnfan arena p-value > 5%). Kedua, erjad asus Mulolneras ea erdapa perubahan anda oefsen (+/-) pada oefsen regres dan oefsen orelas, seper: oefsen orelas anara dan X adalah,765, emudan pada pemodelan regres dperoleh oefsen regres anara dan X sebesar -,659 (erjad perubahan anda dar posf menjad negaf). 5. Melauan pemersaan nla Varance Inflaon Facor (VIF) dar masng-masng varabel predor. Kasus Mulolneras erjad ea nla VIF j > []. Solus Kasus Mulolnearas Solus Mulolnearas pada penulsan n dberan dalam empa saran, au:. Menambahan aau mengganan daa sampel baru arena eradang sampel lan da meml asus Mulolneras ang sanga serus.. Menghapus salah sau varabel predor ang mengalam asus Mulolnearas, namun cara n sealgus memasa penel unu melauan esalahan penguuran (menghapus varabel penelan ang seharusna duur). 3. Mengabaan asus Mulolneras selama da erjad masalah ang sanga serus, seper: perubahan hasl pengujan sgnfans aau perubahan anda anara oefsen regres dengan oefsen orelas. 4. Menggunaan meode ang lebh advance, seper: Sepwse Regresson, Bes Subse Regresson, Prncpal Componen Regresson, dan Rdge Regresson. Page 3

4 E-boo Sasa Gras... Sascal Daa Anals Asums Auoorelas. Asums Auoorelas merupaan asums resdual ang meml omponen/nla ang berorelas berdasaran wau (uruan wau) pada hmpunan daa u sendr. Proses Auoorelas erjad ea ovaran anara ε dengan ε j da sama dengan nol dengan Cov( ε, ε ) ; j. j Pada pengujan asums n, dharapan asums Auoorelas da erpenuh. Penebab erjadna asus Auoorelas adalah:. Terdapa varabel predor penng ang da dmasuan edalam model regres.. Pola hubungan anara dan X da lnear (uadra, ub, aau nonlnear) ea dgambaran dalam scaerplo. 3. Daa pengamaan ang dambl merupaan daa ang dcaa menuru wau erenu (daa me seres), seper: perjam, haran, mngguan, bulanan, rwulan, uaral, dan ahunan. 4. Adana Manpulas Daa ang menebaban resdual daa erbenu secara ssema. Beru dberan cara-cara mengdenfas adana asus Auoorelas:. Pengujan Durbn-Wason ang menguj adana auoorelas pada lag-. Pada Tabel Durbn-Wason [4] dperoleh Oupu Tabel, au nla Durbn-Wason baas bawah (d L ) dan baas aas (d U ). Krera pemersaan asums Auoorelas resdual menggunaan Nla Durbn-Wason (d), au: ) Ja d < dan d < d L, maa resdual bersfa auoorelas posf. ) Ja d < dan d > d U, maa resdual da bersfa auoorelas. 3) Ja d < dan d L d d U, maa hasl pengujan da dapa dsmpulan. 4) Ja d > dan 4 d < d L, maa resdual bersfa auoorelas negaf. 5) Ja d > dan 4 d > d U, maa resdual da bersfa auoorelas. 6) Ja d > dan d L 4 d d U, maa hasl pengujan da dapa dsmpulan.. Pengujan Auocorrelaon Funcon (ACF) ang menguj adana auoorelas pada lag-, lag-, lag-3, dan seerusna. Pada uj ACF, asus auoorelas erjad ea ada lag pada plo ACF ang eluar baas sgnfans (margn error). 3. Pengujan Auoorelas lanna, seper: Uj Breusch-Godfre dan Uj Ljung-Box (gunaan sofware EVIEWS). Page 4

5 E-boo Sasa Gras... Sascal Daa Anals Solus Kasus Auoorelas Solus Auoorelas pada penulsan n dberan dalam ga saran, au:. Menambahan aau mengganan daa sampel baru arena eradang sampel lan da meml asus Auoorelas ang sanga serus.. Menggunaan model regres lnear berganda dengan resdualna mengu proses Auoregressve orde aau AR() ang desmas secara smulan (gunaan sofware EVIEWS) dengan rumusan v = β + β X ε = ρε + v ~ N(, σ ) ; v, + β X, =,,..., n β X, + ε ; < ρ <. Asums Heerosedasas Asums Heerosedasas adalah asums resdual dar model regres ang meml varan da onsan. Pada pemersaan n, dharapan asums Heerosedasas da erpenuh arena model regres lner berganda meml asums varan resdual ang onsan (Homosedasas). Penebab erjadna asus heerosedasas adalah:. Terdapa esalahan npu omponen/nla varabel respon pada beberapa predor, sehngga pada omponen predor ang berbeda meml omponen varabel respon ang sama, seper: Unu X = 5 dan X = 6, dperoleh nla =,9.. Kasus Heerosedasas erjad secara alam pada varabel-varabel eonom, seper: asus rumah angga dengan pendapaan ang berbeda eradang meml pengeluaran ang hampr sama. 3. Terdapa pengaruh Heerosedasas pada daa me seres ang umum erjad pada varabel-varabel eonom ang meml volalas (conoh: nflas, reurn saham, dll). 4. Adana Manpulas Daa ang menebaban resdual daa meml varan ang ssema. Beru dberan cara-cara mengdenfas adana asus Heerosedasas:. Dlauan pemersaan dengan meode Graf, seper: a. Pemersaan oupu scaer plo dar varabel respon () pada sumbu-y dengan masng-masng varabel predorna (X) pada sumbu-x. Page 5

6 E-boo Sasa Gras... Sascal Daa Anals b. Pemersaan oupu scaer plo dar varabel resdual (e) pada sumbu-y dengan varabel preds respon (-ha) pada sumbu-x. c. Pemersaan oupu scaer plo dar varabel resdual (e) pada sumbu-y dengan masng-masng varabel predorna (X) pada sumbu-x. Model regres aan menghaslan oupu scaer plo dengan pola erenu sebaga beru [] : Gambar. Plo Resdual dengan pola: (a) plo nol; (b) megafon erbua anan; (c) megafon erbua r; (d) double ouward box; (e) (f) nonlnearas; (g) (h) ombnas dar fungs nonlnearas dan varan da onsan. Plo (a) adalah plo nol ang mengndasan da ada masalah dengan model regres (da ada asus Heerosedasas). Plo (b) (d) mengndasan resdual dengan varan da onsan (ada asus Heerosedasas). Plo (e) (f) menunjuan fungs mean aau model regres ang da sesua (menunjuan nonlneras), msalna: pola hubungan anara dan X ang berbenu uadra ( = a + bx + cx + ε) eap dmodelan dengan model lnear ( = a + bx + ε). Plo (g) (h) menunjuan ejadan Page 6

7 E-boo Sasa Gras... Sascal Daa Anals fungs mean ang da sesua dan resdual dengan varan da onsan (ada asus Heerosedasas).. Dlauan pengujan dengan meode Formal, melpu: Uj Par, Uj Glejser, Uj Goldfeld-Quand, Uj Breusch-Pagan/Godfre, dan Uj Whe (gunaan sofware EVIEWS). Solus Kasus Heerosedasas Solus Heerosedasas pada penulsan n dberan dalam empa saran, au:. Menambahan aau mengganan daa sampel baru arena eradang sampel lan da meml asus Heerosedasas ang sanga serus.. Melauan ransformas varabel erhadap varabel respon () dan varabel predor (x), seper: ransformas ln, aar uadra, dan Box-Cox. 3. Menggunaan meode esmas ang lebh advance, seper: generalzed leas squares (GLS) dan weghed leas squares (WLS). 4. Menggunaan model regres lnear berganda dengan resdualna mengu Auoregressve Condonall Heeroscedasc orde, aau ARCH() ang desmas secara smulan (gunaan sofware EVIEWS) dengan rumusan ε = σ η ; σ = = β + β X, α + α ε η ~ N(,) + β X ;, β X α > ;, ε ~ N(, σ ) ; =,,..., n, α < aau resdualna mengu Generalzed ARCH orde dan, aau GARCH(,) ang desmas secara smulan (gunaan sofware EVIEWS) dengan rumusan + ε ε = σ η ; σ = = β + β X, α + α ε η ~ N(,) + β X, + β σ β X ; ε ~ N(, σ ) ;, α > ; + ε α ; =,,..., n. β ; α + β < Asums Normalas Asums Normalas adalah asums resdual ang berdsrbus Normal. Asums n harus erpenuh unu model regres lnear ang ba. Uj Normalas dlauan pada nla resdual model regres. Penebab erjadna asus Normalas adalah: Page 7

8 E-boo Sasa Gras... Sascal Daa Anals. Terdapa daa resdual dar model regres ang meml nla daa ang berada jauh dar hmpunan daa aau daa esrm (oulers), sehngga penebaran daana menjad non-normal.. Terdapa onds alam dar daa ang pada dasarna da berdsrbus Normal aau berdsrbus lan, seper: dsrbus bnormal, mulnormal, esponensal, gamma, dll. Beru dberan cara-cara mengdenfas adana asus Normalas:. Dlauan pemersaan dengan meode Graf, au pemersaan Normalas dengan oupu normal P-P plo aau Q-Q plo. Asums Normalas erpenuh ea pencaran daa resdual berada dsear gars lurus melnang seper pada gambar n. Gambar. Oupu plo probablas dar resdual ang berdsrbus Normal. Beru dberan juga beberapa plo probablas dar resdual ang mungn erjad. Gambar 3. Varas benu plo probablas dar resdual.. Dlauan pengujan dengan meode Formal, seper: pengujan normalas ang dlauan melalu uj Kolmogorov-Smrnov, uj Anderson-Darlng, uj Shapro-Wl, dan uj Jarque-Bera ang mana semua pengujan n meml hpoess nerpreas, au: Page 8

9 E-boo Sasa Gras... Sascal Daa Anals H : Resdual berdsrbus Normal H : Resdual da berdsrbus Normal Asums Normalas erpenuh ea pengujan normalas menghaslan P-value (Sgn.) lebh besar dar α dengan nla α denuan sebesar %, 5%, aau %. Solus Kasus Normalas Solus Normalas pada penulsan n dberan dalam empa saran, au:. Menghapus daa pengamaan ang meml nla oulers pada daa resdualna.. Melauan ransformas varabel erhadap varabel respon () dan varabel predor (X). Transformas ang dgunaan adalah ransformas ln, aar uadra, dan Box-Cox. 3. Menggunaan ransformas plhan unu mensmulas Normalas [3], au: ransformas ln-sewness (gunaan sofware STATA) ang dlauan pada varabel respon (), emudan ransformas ang erbenu derapan juga pada varabel predorna (X). Keenuan ransformas n dlauan dengan menransformasan dalam ln secara eraf sehngga demuan suau nla ang menebaban nla sewness-na mendea nol. 4. Menggunaan meode esmas ang lebh advance, seper: Regres dengan pendeaan Boosrappng (gunaan sofware SPSS vers 9), Regres Nonparamer, dan Regres dengan pendeaan Baessan (gunaan sofware WnBugs). REFERENSI [] Wesberg, S., (5), Appled Lnear Regresson, Thrd Edon, New Jerse: John Wle & Sons. [] Hocng, R.R., (3), Mehods and Applcaons of Lnear Models: Regresson and he Analss of Varance, Second Edon, New Jerse: John Wle & Sons. [3] Aff, A.A., dan Clar, V. (999), Compuer-Aded Mulvarae Analss, Thrd Edon, New Yor: CRC Press. [4] Draper, N.R. dan Smh, H., (998), Appled Regresson Analss, Thrd Edon, Canada: John Wle & Sons. Page 9

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.. Populas dan Sampel Populas adalah eseluruhan unt atau ndvdu dalam ruang lngup yang ngn dtelt. Banyanya pengamatan atau anggota suatu populas dsebut uuran populas, sedangan suatu nla

Lebih terperinci

Probabilitas dan Statistika Distribusi Peluang Diskrit 1. Adam Hendra Brata

Probabilitas dan Statistika Distribusi Peluang Diskrit 1. Adam Hendra Brata Probabltas dan Statsta Dsrt Adam Hendra Brata Unform Bernoull Multnomal Setap perstwa aan mempunya peluangnya masng-masng, dan peluang terjadnya perstwa tu aan mempunya penyebaran yang mengut suatu pola

Lebih terperinci

KOLINEARITAS GANDA (MULTICOLLINEARITY) Oleh Bambang Juanda

KOLINEARITAS GANDA (MULTICOLLINEARITY) Oleh Bambang Juanda KOLINEARITAS GANDA MULTICOLLINEARIT Oleh Bambang Juanda Model: = X + X + + X + ε. Hubungan Lnear Sempurna esa, Ja C X 0 C onstanta yg td semuanya 0. Mudah detahu rn td ada dugaan parameter oef dgn OLS,

Lebih terperinci

PARTIAL PROPORTIONAL ODDS MODEL PADA USIA KAWIN PERTAMA WANITA 1. PENDAHULUAN

PARTIAL PROPORTIONAL ODDS MODEL PADA USIA KAWIN PERTAMA WANITA 1. PENDAHULUAN ISBN : 978.60.36.00.0 PARIAL PROPORIONAL ODDS MODEL PADA USIA KAWIN PERAMA WANIA Mhraunnsa, Isman Zan Mahasswa Jurusan Sasa Insu enolog Sepuluh Nopember (IS) Surabaa Dosen Jurusan Sasa Insu enolog Sepuluh

Lebih terperinci

Analisis Regresi Linear Sederhana

Analisis Regresi Linear Sederhana Analss Regres Lnear Sederhana Al Muhson Pendahuluan Menggunakan metode statstk berdasarkan data yang lalu untuk mempredks konds yang akan datang Menggunakan pengalaman, pernyataan ahl dan surve untuk mempredks

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI Defns Parwsaa dan Wsaawan Parwsaa adalah slah yang dberan apabla seseorang wsaawan melauan perjalanan u sendr, aau dengan aa lan avas dan ejadan yang erjad ea seseorang pengunjung melauan

Lebih terperinci

ANALISIS EVOLUSI MATRIK ASAL TUJUAN (MAT) MENGGUNAKAN METODE GRAFIK REPRESENTASI MATRIK

ANALISIS EVOLUSI MATRIK ASAL TUJUAN (MAT) MENGGUNAKAN METODE GRAFIK REPRESENTASI MATRIK ANAII EVOUI MATRIK AA TUJUAN (MAT) MENGGUNAKAN METODE GRAFIK REPREENTAI MATRIK Tas an Junaed Absra Mar Asal Tujuan (MAT) sebaga salah sau benu nformas pola perjalanan mempunya peranan yang sanga penng

Lebih terperinci

Created by Simpo PDF Creator Pro (unregistered version)

Created by Simpo PDF Creator Pro (unregistered version) Created by Smpo PDF Creator Pro (unregstered verson) http://www.smpopd.com Statst Bsns : BAB IV. UKURA PEMUSATA DATA. Pendahuluan Untu mendapatan gambaran yang lebh jelas tentang seumpulan data mengena

Lebih terperinci

Created by Simpo PDF Creator Pro (unregistered version)

Created by Simpo PDF Creator Pro (unregistered version) Creaed by Smpo PDF Creaor Pro (unregsered verson) hp://www.smpopdf.com Sask Bsns : BAB 8 VIII. ANALISIS DATA DERET BERKALA (TIME SERIES) 8.1 Pendahuluan Daa Berkala (Daa Dere waku) adalah daa yang dkumpulkan

Lebih terperinci

REGRESI DAN KORELASI LINEAR SEDERHANA. Regresi Linear

REGRESI DAN KORELASI LINEAR SEDERHANA. Regresi Linear REGRESI DAN KORELASI LINEAR SEDERHANA Regres Lnear Tujuan Pembelajaran Menjelaskan regres dan korelas Menghtung dar persamaan regres dan standard error dar estmas-estmas untuk analss regres lner sederhana

Lebih terperinci

BAB 2 LANDASAN TEORI. Teori Galton berkembang menjadi analisis regresi yang dapat digunakan sebagai alat

BAB 2 LANDASAN TEORI. Teori Galton berkembang menjadi analisis regresi yang dapat digunakan sebagai alat BAB LANDASAN TEORI. 1 Analsa Regres Regres pertama kal dpergunakan sebaga konsep statstk pada tahun 1877 oleh Sr Francs Galton. Galton melakukan stud tentang kecenderungan tngg badan anak. Teor Galton

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Penelitian ini mengenal dua macam variabel yaitu : 2. Variabel terikat (Y) yaitu : Hasil belajar Sejarah

BAB III METODOLOGI PENELITIAN. Penelitian ini mengenal dua macam variabel yaitu : 2. Variabel terikat (Y) yaitu : Hasil belajar Sejarah BAB III METODOLOGI PENELITIAN 3.1 Varans Peneltan 3.1.1 Varabel Peneltan Peneltan n mengenal dua macam varabel yatu : 1. Varabel bebas (X) yatu : Berpr formal. Varabel terat (Y) yatu : Hasl belajar Sejarah

Lebih terperinci

STATISTICAL STUDENT OF IST AKPRIND

STATISTICAL STUDENT OF IST AKPRIND E-mal : statstkasta@yahoo.com Blog : Analss Regres SederhanaMenggunakan MS Excel 2007 Lsens Dokumen: Copyrght 2010 sssta.wordpress.com Seluruh dokumen d sssta.wordpress.com dapat dgunakan dan dsebarkan

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PEDAHULUA. Latar Belakang Rsko ddentfkaskan dengan ketdakpastan. Dalam mengambl keputusan nvestas para nvestor mengharapkan hasl yang maksmal dengan rsko tertentu atau hasl tertentu dengan rsko yang

Lebih terperinci

BAB I PENDAHULUAN. pembangunan dalam sektor energi wajib dilaksanakan secara sebaik-baiknya. Jika

BAB I PENDAHULUAN. pembangunan dalam sektor energi wajib dilaksanakan secara sebaik-baiknya. Jika BAB I PENDAHULUAN 1.1.Latar Belakang Energ sangat berperan pentng bag masyarakat dalam menjalan kehdupan seharhar dan sangat berperan dalam proses pembangunan. Oleh sebab tu penngkatan serta pembangunan

Lebih terperinci

4. Hukum Dan Kaidah Rangkaian

4. Hukum Dan Kaidah Rangkaian Inroducon o rcu naly Tme Doman www.drhamblora.com. Huum Dan Kadah angaan.. Huum-Huum angaan Peerjaan anal erhadap uau rangaan lner yang parameernya deahu mencaup pemlhan en anal dan penenuan bearan eluaran

Lebih terperinci

PERAMALAN DENGAN MODEL ARCH SKRIPSI

PERAMALAN DENGAN MODEL ARCH SKRIPSI PERAMALAN DENGAN MODEL ARCH SKRIPSI Dajuan unu Memenuh Salah Sau Syara Memeroleh Gelar Sarjana Sans (S.S) Program Sud Maemaa Oleh: SUHARTINI NIM : 48 PROGRAM STUDI MATEMATIKA JURUSAN MATEMATIKA FAKULTAS

Lebih terperinci

PENDUGAAN STATISTIK AREA KECIL DENGAN METODE EMPIRICAL CONSTRAINED BAYES 1

PENDUGAAN STATISTIK AREA KECIL DENGAN METODE EMPIRICAL CONSTRAINED BAYES 1 PENDUGAAN SAISIK AREA KECIL DENGAN MEODE EMPIRICAL CONSRAINED AYES Ksmann Jurusan Penddkan Maemaka FMIPA Unversas Neger Yogyakara Absrak Meode emprcal ayes (E merupakan meode yang lebh aplkaf pada pendugaan

Lebih terperinci

BAB 2 LANDASAN TEORI. diteliti. Banyaknya pengamatan atau anggota suatu populasi disebut ukuran populasi,

BAB 2 LANDASAN TEORI. diteliti. Banyaknya pengamatan atau anggota suatu populasi disebut ukuran populasi, BAB LANDASAN TEORI.1 Populas dan Sampel Populas adalah keseluruhan unt atau ndvdu dalam ruang lngkup yang ngn dtelt. Banyaknya pengamatan atau anggota suatu populas dsebut ukuran populas, sedangkan suatu

Lebih terperinci

Karakterisasi Matrik Leslie Ordo Tiga

Karakterisasi Matrik Leslie Ordo Tiga Jurnal Graden Vol No Januar 006 : 34-38 Karatersas Matr Lesle Ordo Tga Mudn Smanhuru, Hartanto Jurusan Matemata, Faultas Matemata dan Ilmu Pengetahuan Alam, Unverstas Bengulu, Indonesa Dterma Desember

Lebih terperinci

JURNAL SAINS DAN SENI POMITS Vol. 3, No.1, (2014) ( X Print) D-36

JURNAL SAINS DAN SENI POMITS Vol. 3, No.1, (2014) ( X Print) D-36 JURNAL SAINS DAN SENI POMIS Vol. 3, No., (04 337-350 (30-98X Prnt D-36 Fator-Fator Yang Mempengaruh ngat Keberhaslan Pemberan Kemoterap Pada Pasen Penderta Kaner Payudara D RSUD Dr.Soetomo Dengan Menggunaan

Lebih terperinci

Pemodelan Data Runtun Waktu : Kasus Data Tingkat Pengangguran di Amerika Serikat pada Tahun

Pemodelan Data Runtun Waktu : Kasus Data Tingkat Pengangguran di Amerika Serikat pada Tahun Pemodelan Daa Runun Waku : Kasus Daa Tingka Pengangguran di Amerika Serika pada Tahun 948 978. Adi Seiawan Program Sudi Maemaika, Fakulas Sains dan Maemaika Universias Krisen Saya Wacana, Jl. Diponegoro

Lebih terperinci

REGRESI LINIER FUZZY PADA DATA TIME SERIES

REGRESI LINIER FUZZY PADA DATA TIME SERIES Regres Lner Fuzzy Pada Daa Tme Seres REGRESI LINIER FUZZY PADA DATA TIME SERIES Abdul Roza Progam Sud Maemaa Unversas Pesanren Tngg Darul Ulum Jombang abd.roza76@yahoo.co.d Absra Perembangan eor dan alas

Lebih terperinci

NILAI AKUMULASI DARI SUATU CASH FLOW DENGAN TINGKAT BUNGA BERUBAH BERDASARKAN FORMULA FISHER

NILAI AKUMULASI DARI SUATU CASH FLOW DENGAN TINGKAT BUNGA BERUBAH BERDASARKAN FORMULA FISHER ILAI AKUMULASI DARI SUATU CASH FLOW DEGA TIGKAT BUGA BERUBAH BERDASARKA FORMULA FISHER Devs Apranda, Johannes Kho, Sg Sugaro Mahasswa rogram S Maemaka Dosen Jurusan Maemaka Fakulas Maemaka dan Ilmu engeahuan

Lebih terperinci

USING THE PAST TO PREDICT THE FUTURE WORKSHOP ANALISIS RESIKO UNTUK BISNIS

USING THE PAST TO PREDICT THE FUTURE WORKSHOP ANALISIS RESIKO UNTUK BISNIS USING THE PAST TO PREDICT THE FUTURE WORKSHOP ANALISIS RESIKO UNTUK BISNIS Oleh : Maman Seawan, SE, MT 28 29 Sepember 2004 PROGRAM PENGEMBANGAN KOMPETENSI BISNIS DIVISI PENGKAJIAN DAN PENGEMBANGAN BISNIS

Lebih terperinci

SOLUSI SISTEM PERSAMAAN DIFFERENSIAL NON LINEAR MENGGUNAKAN METODE EULER BERBANTUAN PROGRAM MATLAB SKRIPSI

SOLUSI SISTEM PERSAMAAN DIFFERENSIAL NON LINEAR MENGGUNAKAN METODE EULER BERBANTUAN PROGRAM MATLAB SKRIPSI SOLUSI SISTEM PERSAMAAN DIFFERENSIAL NON LINEAR MENGGUNAKAN METODE EULER BERBANTUAN PROGRAM MATLAB SKRIPSI oleh: RILA DWI RAHMAWATI NIM: 0350050 JURUSAN MATEMATIKA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS

Lebih terperinci

Pemodelan Penyerapan Tenaga Kerja Sektor Industri di Indonesia Dengan Pendekatan Regresi Data Panel Dinamis

Pemodelan Penyerapan Tenaga Kerja Sektor Industri di Indonesia Dengan Pendekatan Regresi Data Panel Dinamis JURAL SAIS DA SEI ITS Vol. 5 o. 2 (2016) 2337-3520 (2301-928X Prn) D-217 Pemodelan Penyerapan Tenaga Kerja Sekor Indusr d Indonesa Dengan Pendekaan Regres Daa Panel Dnams Avolla Terza Damalana dan Seawan

Lebih terperinci

ANALISIS REGRESI PADA DATA OUTLIER DENGAN MENGGUNAKAN LEAST TRIMMED SQUARE (LTS) DAN MM-ESTIMASI. Heru Nurcahyadi

ANALISIS REGRESI PADA DATA OUTLIER DENGAN MENGGUNAKAN LEAST TRIMMED SQUARE (LTS) DAN MM-ESTIMASI. Heru Nurcahyadi ANALISIS REGRESI PADA DATA OUTLIER DENGAN MENGGUNAKAN LEAST TRIMMED SQUARE (LTS) DAN MM-ESTIMASI Heru Nurcahyad PROGRAM STUDI MATEMATIKA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI SYARIF HIDAYATULLAH

Lebih terperinci

Hidden Markov Model. Oleh : Firdaniza, Nurul Gusriani dan Akmal

Hidden Markov Model. Oleh : Firdaniza, Nurul Gusriani dan Akmal Hdden Markov Model Oleh : Frdanza, urul Gusran dan Akmal Dosen Jurusan Maemaka FMIPA Unversas Padjadjaran Jl. Raya Bandung Sumedang Km 2, Janangor, Jawa Bara elp. / Fax : 022 7794696 Absrak Hdden Markov

Lebih terperinci

PENGEMBANGAN MODEL MATEMATIS UNTUK OPTIMASI PERENCANAAN PRODUKSI MINUMAN MARIMAS

PENGEMBANGAN MODEL MATEMATIS UNTUK OPTIMASI PERENCANAAN PRODUKSI MINUMAN MARIMAS PENGEMBANGAN MODEL MATEMATIS UNTUK OPTIMASI PERENCANAAN PRODUKSI MINUMAN MARIMAS Mra Puspasar, Snggh Sapad, Dana Puspasar Absraks PT Ulam Tba Halm merupakan salah sau ndusr mnuman serbuk d Indonesa, dmana

Lebih terperinci

Darpublic Nopember 2013

Darpublic Nopember 2013 Darpublic Nopember 01 www.darpublic.com 4.1. Pengerian 4. Persamaan Diferensial (Orde Sau) Sudarano Sudirham Persamaan diferensial adalah suau persamaan di mana erdapa sau aau lebih urunan fungsi. Persamaan

Lebih terperinci

ANALISIS REGRESI KOMPONEN UTAMA UNTUK MENGATASI MASALAH MULTIKOLINIERITAS DALAM ANALISIS REGRESI LINIER BERGANDA

ANALISIS REGRESI KOMPONEN UTAMA UNTUK MENGATASI MASALAH MULTIKOLINIERITAS DALAM ANALISIS REGRESI LINIER BERGANDA ANALISIS REGRESI KOMPONEN UTAMA UNTUK MENGATASI MASALAH MULTIKOLINIERITAS DALAM ANALISIS REGRESI LINIER BERGANDA Hars Bhat Prasetyo, Dan Handayan, Wdyant Rahayu JURUSAN MATEMATIKA FMIPA-UNIVERSITAS NEGERI

Lebih terperinci

ANALISIS DATA DERET BERKALA DENGAN METODE TREND SEKULER UNTUK MENENTUKAN MODEL PERTUMBUHAN PENDUDUK MISKIN JAWA BARAT

ANALISIS DATA DERET BERKALA DENGAN METODE TREND SEKULER UNTUK MENENTUKAN MODEL PERTUMBUHAN PENDUDUK MISKIN JAWA BARAT ANALISIS DATA DERET BERKALA DENGAN METODE TREND SEKULER UNTUK MENENTUKAN MODEL PERTUMBUHAN PENDUDUK MISKIN JAWA BARAT ANALSIS OF TIME SERIES USING SECULAR TREND METHOD TO DETERMINE POPULATION GROWTH MODEL

Lebih terperinci

BAB IV TRIP GENERATION

BAB IV TRIP GENERATION BAB IV TRIP GENERATION 4.1 PENDAHULUAN Trp Generaton td : 1. Trp Producton 2. Trp Attracton j Generator Attractor - Setap tempat mempunya fktor untuk membangktkan dan menark pergerakan - Bangktan, Tarkan

Lebih terperinci

Faktor-Faktor Eksternal Pneumonia pada Balita di Jawa Timur dengan Pendekatan Geographically Weighted Regression

Faktor-Faktor Eksternal Pneumonia pada Balita di Jawa Timur dengan Pendekatan Geographically Weighted Regression JURNAL SAINS DAN SENI ITS Vol., No., (Sept. ) ISSN: 3-98X D-37 Fator-Fator Esternal Pneumona pada Balta d Jawa Tmur dengan Pendeatan Geographcally Weghted Regresson Ftrarma Putr Santoso, Sr Pngt W, dan

Lebih terperinci

ANALISIS PEUBAH RESPON BINER

ANALISIS PEUBAH RESPON BINER Analss Peubah Respon Bner... (Ksmantn) ANALISIS PEUBAH RESPON BINER Ksmantn Jurusan Penddkan Matematka FMIPA Unverstas Neger Yogyakarta Abstrak Pada regres lner klask, peubah respon dasumskan merupakan

Lebih terperinci

Estimasi Reliabilitas Pengukuran Dalam Pendekatan Model Persamaan Struktural

Estimasi Reliabilitas Pengukuran Dalam Pendekatan Model Persamaan Struktural Estmas Relabltas Penguuran Dalam Pendeatan Model Persamaan Strutural Wahyu Wdharso Unverstas Gadjah Mada Pendeatan analss data peneltan dengan menggunaan persamaan model strutural (SEM telah banya dgunaan

Lebih terperinci

PROPOSAL SKRIPSI JUDUL:

PROPOSAL SKRIPSI JUDUL: PROPOSAL SKRIPSI JUDUL: 1.1. Latar Belakang Masalah SDM kn makn berperan besar bag kesuksesan suatu organsas. Banyak organsas menyadar bahwa unsur manusa dalam suatu organsas dapat memberkan keunggulan

Lebih terperinci

U JIAN A KHIR S EMESTER M ATEMATIKA T EKNIK

U JIAN A KHIR S EMESTER M ATEMATIKA T EKNIK Jurusan Ten Spl dan Lngungan FT UGM U JIAN A KHIR S EMESTER M ATEMATIKA T EKNIK SENIN, 4 JANUARI 23 OPEN BOOK WAKTU MENIT PETUNJUK ) Saudara tda boleh menggunaan omputer untu mengerjaan soal- soal ujan

Lebih terperinci

METODE BEDA HINGGA UNTUK SOLUSI NUMERIK DARI PERSAMAAN BLACK-SCHOLES HARGA OPSI PUT AMERIKA SURITNO

METODE BEDA HINGGA UNTUK SOLUSI NUMERIK DARI PERSAMAAN BLACK-SCHOLES HARGA OPSI PUT AMERIKA SURITNO MEODE BEDA HINGGA UNUK OLUI NUMERIK DARI PERAMAAN BLACK-CHOLE HARGA OPI PU AMERIKA URINO EKOLAH PACAARJANA INIU PERANIAN BOGOR BOGOR 8 PERNYAAAN MENGENAI EI DAN UMBER INFORMAI Dengan n saya menyaaan baha

Lebih terperinci

π(x) JURNAL SAINS DAN SENI ITS Vol. 1, No. 1, (Sept. 2012) ISSN: X D-112

π(x) JURNAL SAINS DAN SENI ITS Vol. 1, No. 1, (Sept. 2012) ISSN: X D-112 JURNAL SAINS DAN SENI ITS Vol., No., (Sept. ) ISSN: 3-98X D- Analss Pemaaan Kemoterap pada Kasus Kaner Payudara dengan Menggunaan Metode Regres Logst Multnomal (Stud Kasus Pasen d Rumah Sat X Surabaya)

Lebih terperinci

Regresi. Bahan Kuliah IF4058 Topik Khusus Informatika I. Oleh; Rinaldi Munir(IF-STEI ITB)

Regresi. Bahan Kuliah IF4058 Topik Khusus Informatika I. Oleh; Rinaldi Munir(IF-STEI ITB) Regres Bahan Kulah IF4058 Topk Khusus Informatka I Oleh; Rnald Munr(IF-STEI ITB) 1 Pendahuluan Regresadalahteknkpencocokankurvauntukdata ang berketeltanrendah. Contohdata ang berketeltanrendahdata haslpengamatan,

Lebih terperinci

LAPORAN PENELITIAN. Pola Kecenderungan Penempatan Kunci Jawaban Pada Soal Tipe-D Melengkapi Berganda. Oleh: Drs. Pramono Sidi

LAPORAN PENELITIAN. Pola Kecenderungan Penempatan Kunci Jawaban Pada Soal Tipe-D Melengkapi Berganda. Oleh: Drs. Pramono Sidi LAPORAN PENELITIAN Pola Kecenderungan Penempatan Kunc Jawaban Pada Soal Tpe-D Melengkap Berganda Oleh: Drs. Pramono Sd Fakultas Matematka dan Ilmu Pengetahuan Alam Me 1990 RINGKASAN Populas yang dambl

Lebih terperinci

APLIKASI INVERSI NON LINIER DENGAN PENDEKATAN LINIER UNTUK MENENTUKAN HIPOSENTER (CONTOH KASUS DI G. KELUD)

APLIKASI INVERSI NON LINIER DENGAN PENDEKATAN LINIER UNTUK MENENTUKAN HIPOSENTER (CONTOH KASUS DI G. KELUD) Alkas Iners Non Lner Dengan Pendekaan Lner Unuk Menenukan Hosener Conoh Kasus d G. Kelud) Cece Sulaeman) APLIKASI INVERSI NON LINIER DENGAN PENDEKATAN LINIER UNTUK MENENTUKAN HIPOSENTER CONTOH KASUS DI

Lebih terperinci

Diagram Kontrol Fuzzy Multinomial Untuk Data Linguistik

Diagram Kontrol Fuzzy Multinomial Untuk Data Linguistik Prosdng Statsta ISSN: 2460-6456 Dagram Kontrol Fuzzy Multnomal Untu Data ngust 1 Amy Amallya Azzah, 2 Suwanda Idrs, 3 snur Wachdah 1,2,3 Prod Statsta, Faultas Matemata dan Ilmu Pengetahuan Alam, Unverstas

Lebih terperinci

APLIKASI PEMULUSAN EKSPONENSIAL DARI BROWN DAN DARI HOLT UNTUK DATA YANG MEMUAT TREND

APLIKASI PEMULUSAN EKSPONENSIAL DARI BROWN DAN DARI HOLT UNTUK DATA YANG MEMUAT TREND APLIKASI PEMULUSAN EKSPONENSIAL DARI BROWN DAN DARI HOLT UNTUK DATA YANG MEMUAT TREND Noeryani 1, Ely Okafiani 2, Fera Andriyani 3 1,2,3) Jurusan maemaika, Fakulas Sains Terapan, Insiu Sains & Teknologi

Lebih terperinci

PERSAMAAN GERAK VEKTOR SATUAN. / i / = / j / = / k / = 1

PERSAMAAN GERAK VEKTOR SATUAN. / i / = / j / = / k / = 1 PERSAMAAN GERAK Posisi iik maeri dapa dinyaakan dengan sebuah VEKTOR, baik pada suau bidang daar maupun dalam bidang ruang. Vekor yang dipergunakan unuk menenukan posisi disebu VEKTOR POSISI yang diulis

Lebih terperinci

BAB 2 URAIAN TEORI. waktu yang akan datang, sedangkan rencana merupakan penentuan apa yang akan

BAB 2 URAIAN TEORI. waktu yang akan datang, sedangkan rencana merupakan penentuan apa yang akan BAB 2 URAIAN EORI 2.1 Pengerian Peramalan Peramalan adalah kegiaan memperkirakan aau memprediksi apa yang erjadi pada waku yang akan daang, sedangkan rencana merupakan penenuan apa yang akan dilakukan

Lebih terperinci

JURNAL GAUSSIAN, Volume 2, Nomor 4, Tahun 2013, Halaman Online di:

JURNAL GAUSSIAN, Volume 2, Nomor 4, Tahun 2013, Halaman Online di: JURNAL GAUSSIAN, Volume 2, Nomor 4, Tahun 2013, Halaman 361-368 Onlne d: http://ejournal-s1.undp.ac.d/ndex.php/gaussan APLIKASI MODEL REGRESI POISSON TERGENERALISASI PADA KASUS ANGKA KEMATIAN BAYI DI JAWA

Lebih terperinci

Pemodelan Persentase Kriminalitas Dan Faktor- Faktor Yang Mempengaruhi Di Jawa Timur Dengan Pendekatan Geographically Weighted Regression (GWR)

Pemodelan Persentase Kriminalitas Dan Faktor- Faktor Yang Mempengaruhi Di Jawa Timur Dengan Pendekatan Geographically Weighted Regression (GWR) JURNAL SAINS DAN SENI POMITS Vol., No.1, (014 7-50 (01-98X Prnt D-18 Pemodelan Persentase Krmnaltas Dan Fator- Fator ang Mempengaruh D Jaa Tmur Dengan Pendeatan Geographcally Weghted Regresson (GWR Pan

Lebih terperinci

Integral dan Persamaan Diferensial

Integral dan Persamaan Diferensial Sudaryano Sudirham Sudi Mandiri Inegral dan Persamaan Diferensial ii Darpublic 4.1. Pengerian BAB 4 Persamaan Diferensial (Orde Sau) Persamaan diferensial adalah suau persamaan di mana erdapa sau aau lebih

Lebih terperinci

BAB III METODE DEKOMPOSISI CENSUS II. Data deret waktu adalah data yang dikumpulkan dari waktu ke waktu

BAB III METODE DEKOMPOSISI CENSUS II. Data deret waktu adalah data yang dikumpulkan dari waktu ke waktu BAB III METODE DEKOMPOSISI CENSUS II 3.1 Pendahuluan Daa dere waku adalah daa yang dikumpulkan dari waku ke waku unuk menggambarkan perkembangan suau kegiaan (perkembangan produksi, harga, hasil penjualan,

Lebih terperinci

BAB III METODE RESPONSE SURFACE DENGAN SIMULASI MONTE CARLO. solusi dari suatu masalah diberikan berdasarkan proses rendomisasi (acak).

BAB III METODE RESPONSE SURFACE DENGAN SIMULASI MONTE CARLO. solusi dari suatu masalah diberikan berdasarkan proses rendomisasi (acak). BAB III METODE RESPONSE SURFACE DENGAN SIMULASI MONTE CARLO 3. Smulas Monte Carlo Smulas Monte Carlo merupaan bentu smulas probablst dmana solus dar suatu masalah dberan berdasaran proses rendomsas (aca).

Lebih terperinci

Mahasiswa Jurusan Statistika FMIPA-ITS ( ) Abstrak

Mahasiswa Jurusan Statistika FMIPA-ITS ( ) Abstrak PEMODELAN DAYA LISTRIK DENGAN PENDEKATAN MODEL GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (GARCH). (STUDI KASUS: PT. PJB UNIT PEMBANGKITAN GRESIK) Firoh Amalia, Drs. Haryono, MSIE Mahasiswa

Lebih terperinci

SISTEM PENDUKUNG KEPUTUSAN DALAM PEMILIHAN TEMPAT KOST DENGAN METODE PEMBOBOTAN ( STUDI KASUS : SLEMAN YOGYAKARTA)

SISTEM PENDUKUNG KEPUTUSAN DALAM PEMILIHAN TEMPAT KOST DENGAN METODE PEMBOBOTAN ( STUDI KASUS : SLEMAN YOGYAKARTA) SISTEM PENDUKUNG KEPUTUSAN DALAM PEMILIHAN TEMPAT KOST DENGAN METODE PEMBOBOTAN ( STUDI KASUS : SLEMAN YOGYAKARTA) I Wayan Supriana Program Pascasarjana Ilmu Kompuer Fakulas MIPA Universias Gadjah Mada

Lebih terperinci

KOINTEGRASI DAN ESTIMASI ECM PADA DATA TIME SERIES. Abstrak

KOINTEGRASI DAN ESTIMASI ECM PADA DATA TIME SERIES. Abstrak KOINTEGRASI DAN ESTIMASI ECM PADA DATA TIME SERIES Universias Muhammadiyah Purwokero malim.muhammad@gmail.com Absrak Pada persamaan regresi linier sederhana dimana variabel dependen dan variabel independen

Lebih terperinci

PEMERINTAH KABUPATEN PACITAN PERATURAN DAERAH KABUPATEN PACITAN : NOMOR 18 TAHUN 2001

PEMERINTAH KABUPATEN PACITAN PERATURAN DAERAH KABUPATEN PACITAN : NOMOR 18 TAHUN 2001 I I PEMERINTAH KABUPATEN PACITAN PERATURAN DAERAH KABUPATEN PACITAN : NOMOR 18 TAHUN 2001 \ TENTANG PEMBERDAYAAN, PELESTARIAN DAN PENGEMBANGAN ADAT ISTIADAT DAN LEMBAGA ADAT DENGAN RAHMAT TAHUN YANG MAHA

Lebih terperinci

APLIKASI FUZZY LINEAR PROGRAMMING UNTUK MENGOPTIMALKAN PRODUKSI LAMPU (Studi Kasus di PT. Sinar Terang Abadi )

APLIKASI FUZZY LINEAR PROGRAMMING UNTUK MENGOPTIMALKAN PRODUKSI LAMPU (Studi Kasus di PT. Sinar Terang Abadi ) APLIKASI FUZZY LINEAR PROGRAMMING UNTUK MENGOPTIMALKAN PRODUKSI LAMPU (Stud Kasus d PT. Snar Terang Abad ) Bagus Suryo Ad Utomo 1203 109 001 Dosen Pembmbng: Drs. I Gst Ngr Ra Usadha, M.S Jurusan Matematka

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini merupakan studi eksperimen dengan populasi penelitian yaitu

III. METODE PENELITIAN. Penelitian ini merupakan studi eksperimen dengan populasi penelitian yaitu 4 III. METODE PENELITIAN A. Populas Peneltan Peneltan n merupakan stud ekspermen dengan populas peneltan yatu seluruh sswa kelas VIII C SMP Neger Bukt Kemunng pada semester genap tahun pelajaran 01/013

Lebih terperinci

PERGESERAN KELAS-PANJANG DAN LENGTH-WEIGHT

PERGESERAN KELAS-PANJANG DAN LENGTH-WEIGHT PERGESERAN KELAS-PANJANG DAN LENGTH-WEIGHT I. Pergeseran Kelas-Panjang Model perumuhan panjang (formula vbgf) isa diduga jika kia mempunyai panjang ikan, L, pada eragai umur,, yang ereda. Pendugaan umur

Lebih terperinci

BAB II TINJAUAN PUSTAKA. membahas analisis deret waktu, diagram kontrol Shewhart, Average Run Length

BAB II TINJAUAN PUSTAKA. membahas analisis deret waktu, diagram kontrol Shewhart, Average Run Length BAB II TINJAUAN PUSTAKA Pendahuluan Dalam enulsan maer okok dar skrs n derlukan beberaa eor-eor yang mendukung, yang menjad uraan okok ada bab n Uraan dmula dengan membahas analss dere waku, dagram konrol

Lebih terperinci

BAB III METODE PENELITIAN. Adapun yang menjadi objek penelitian adalah siswa MAN Model Gorontalo.

BAB III METODE PENELITIAN. Adapun yang menjadi objek penelitian adalah siswa MAN Model Gorontalo. BAB III METODE PENELITIAN 3.1 Tempat dan Waktu Peneltan 3.1.1 Tempat Peneltan Adapun yang menjad objek peneltan adalah sswa MAN Model Gorontalo. Penetapan lokas n ddasarkan pada beberapa pertmbangan yakn,

Lebih terperinci

PERBANDINGAN METODE TIME SERIES REGRESSION DAN ARIMAX PADA PEMODELAN DATA PENJUALAN PAKAIAN DI BOYOLALI ABSTRAK

PERBANDINGAN METODE TIME SERIES REGRESSION DAN ARIMAX PADA PEMODELAN DATA PENJUALAN PAKAIAN DI BOYOLALI ABSTRAK PERBANDINGAN METODE TIME SERIES REGRESSION DAN ARIMAX PADA PEMODELAN DATA PENJUALAN PAKAIAN DI BOYOLALI Ardia Suma Perdana (1308 100 503 Dosen Pembimbing: Ir. Dwiamono A. W., M.Iom JURUSAN STATISTIKA Faulas

Lebih terperinci

PENGUKURAN VALUE AT RISK PADA ASET TUNGGAL DAN PORTOFOLIO DENGAN SIMULASI MONTE CARLO. Di Asih I Maruddani 1, Ari Purbowati 2

PENGUKURAN VALUE AT RISK PADA ASET TUNGGAL DAN PORTOFOLIO DENGAN SIMULASI MONTE CARLO. Di Asih I Maruddani 1, Ari Purbowati 2 Pengukuran Value a sk (D Ash I Maruddan) PEGUKUA VALUE AT ISK PADA ASET TUGGAL DA POTOFOLIO DEGA SIMULASI MOTE CALO D Ash I Maruddan 1, Ar Purbowa 1 Saf Pengajar Program Sud Saska FMIPA UDIP Bro Pusa Saska

Lebih terperinci

PERANCANGAN PROGRAM APLIKASI PERAMALAN BANJIR KANAL BARAT JAKARTA MENGGUNAKAN AUTOREGRESI MULTIVARIANT

PERANCANGAN PROGRAM APLIKASI PERAMALAN BANJIR KANAL BARAT JAKARTA MENGGUNAKAN AUTOREGRESI MULTIVARIANT PERANCANGAN PROGRAM APLIKASI PERAMALAN BANJIR KANAL BARAT JAKARTA MENGGUNAKAN AUTOREGRESI MULTIVARIANT Ngarap Im Man Jurusan Matemata FST BINUS Unversty, Jln.Kebon Jeru Raya no.27 Jaarta Barat 11480, Indonesa

Lebih terperinci

ANALISIS KLASTER UNTUK SEGMENTASI PEMIRSA PROGRAM BERITA SORE STASIUN TV SWASTA

ANALISIS KLASTER UNTUK SEGMENTASI PEMIRSA PROGRAM BERITA SORE STASIUN TV SWASTA Analss Klaster (Aan Rosatun) ANALISIS KLASTER UNTUK SEGMENTASI PEMIRSA PROGRAM BERITA SORE STASIUN TV SWASTA Aan Rosatun Tat Wdharh, Dah Saftr Staf Nusantara Sat Motor Jaarta Staf Pengaar Prod Statsta

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN A. Jens Peneltan Jens peneltan n adalah peneltan quas expermental dengan one group pretest posttest desgn. Peneltan n tdak menggunakan kelas pembandng namun sudah menggunakan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN EORI.. Regres... Pengertan Persamaan Regres Persamaan regres adalah persamaan matematk yang memungknkan kta meramalkan nla-nla suatu peubah tak bebas dar nla-nla satu atau lebh peubah bebas

Lebih terperinci

Korelasi & Regresi. Oleh: Kukuh Winarso

Korelasi & Regresi. Oleh: Kukuh Winarso Korelas & Regres Oleh: Kukuh Wnarso Klasfkas Pemodelan Regres SKALA PENGUKURAN DATA PADA VARIABEL RESPON REGRESI NOMINAL, ORDINAL INTERVAL, RASIO REGRESI LOGISTIK REGRESI LINIER SEDERHANA REGRESI ORDINAL/

Lebih terperinci

ANALISIS REGRESI. Untuk mengetahui bentuk linear atau nonlinear dapat dilakukan dengan membuat scatterplot seperti berikut : Gambar.

ANALISIS REGRESI. Untuk mengetahui bentuk linear atau nonlinear dapat dilakukan dengan membuat scatterplot seperti berikut : Gambar. ANALISIS REGRESI Berdasara betu eleara data, model regres dapat dlasfasa mead dua macam yatu lear da o-lear. Ja pola data lear maa dguaa pemodela lear. Begtu uga sebalya apabla pola data tda lear maa dguaa

Lebih terperinci

KLASTERISASI SINYAL SUARA MENGGUNAKAN METODE PARTICLE SWARM OPTIMIZATION PADA PENGEMBANGAN SISTEM PENGENALAN INDIVIDU BERBASIS SUARA UCAPAN

KLASTERISASI SINYAL SUARA MENGGUNAKAN METODE PARTICLE SWARM OPTIMIZATION PADA PENGEMBANGAN SISTEM PENGENALAN INDIVIDU BERBASIS SUARA UCAPAN KLASTERISASI SINYAL SUARA MENGGUNAKAN METODE PARTICLE SWARM OPTIMIZATION PADA PENGEMBANGAN SISTEM PENGENALAN INDIVIDU BERBASIS SUARA UCAPAN Abstra Nama: Moh. Bagus Had S (Nrp 1205 100 037) Dosen Pembmbng:

Lebih terperinci

PEMODELAN TINGKAT KERAWANAN DEMAM BERDARAH DENGUE DI KABUPATEN LAMONGAN DENGAN PENDEKATAN GEOGRAPHICALLY WEIGHTED ORDINAL LOGISTIC REGRESSION

PEMODELAN TINGKAT KERAWANAN DEMAM BERDARAH DENGUE DI KABUPATEN LAMONGAN DENGAN PENDEKATAN GEOGRAPHICALLY WEIGHTED ORDINAL LOGISTIC REGRESSION PEMODELAN INGKA KERAWANAN DEMAM BERDARAH DENGUE DI KABUPAEN LAMONGAN DENGAN PENDEKAAN GEOGRAPHICALLY WEIGHED ORDINAL LOGISIC REGRESSION Marsa Rfada 1, Purhad 1) Mahasswa Magster Jurusan Statsta, Insttut

Lebih terperinci

Fisika Modern. Persamaan Schroodinger dan Fingsi Gelombang

Fisika Modern. Persamaan Schroodinger dan Fingsi Gelombang Fska Modern Persaaan Schroodnger dan Fngs Gelobang Apa Persaaan unuk Gelobang Maer? De Brogle eberkan posula bahwa seap parkel elk hubungan: h/ p Golobang aer ala n dkonfras oleh percobaan dfraks elekron,

Lebih terperinci

Pemodelan Indeks Harga Konsumen Kelompok Bahan Makanan menggunakan Metode Intervensi dan Regresi Spline ABSTRAK

Pemodelan Indeks Harga Konsumen Kelompok Bahan Makanan menggunakan Metode Intervensi dan Regresi Spline ABSTRAK Pemodelan Indeks Harga Konsumen Kelompok Bahan Makanan menggunakan Meode Inervensi dan Regresi Spline Rina Andriani, Dr. Suharono, M.Sc 2 Mahasiswa Jurusan Saisika FMIPA-ITS, 2 Dosen Jurusan Saisika FMIPA-ITS

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN EORI.. Dasar Dari ransfer Panas Ilmu pengeahuan ermodinamia ang berhubungan dengan jumlah ransfer panas sebagai suau sisem ang menjalanan suau proses dari sau ii sabil e ii sabil lainna, dimana

Lebih terperinci

III. METODE PENELITIAN. Metode dalam penelitian ini adalah metode eksperimen. Penggunaan metode eksperimen ini

III. METODE PENELITIAN. Metode dalam penelitian ini adalah metode eksperimen. Penggunaan metode eksperimen ini III. METODE PENELITIAN A. Metode Peneltan Metode dalam peneltan n adalah metode ekspermen. Penggunaan metode ekspermen n bertujuan untuk mengetahu apakah suatu metode, prosedur, sstem, proses, alat, bahan

Lebih terperinci

1.4 Persamaan Schrodinger Bergantung Waktu

1.4 Persamaan Schrodinger Bergantung Waktu .4 Persamaan Schrodinger Berganung Waku Mekanika klasik aau mekanika Newon sanga sukses dalam mendeskripsi gerak makroskopis, eapi gagal dalam mendeskripsi gerak mikroskopis. Gerak mikroskopis membuuhkan

Lebih terperinci

Optimasi Model Inventory Deterministik untuk Permintaan Menaik dan Biaya Pemesanan Konstan

Optimasi Model Inventory Deterministik untuk Permintaan Menaik dan Biaya Pemesanan Konstan Opma Model Invenory Deermnk unuk Permnaan Menak dan Baya Pemeanan Konan Dana Purwaar, Rully Soelaman, Fr Qona Fakula Teknolog Informa, Inu Teknolog Sepulu Nopember, Surabaya E-mal : rully@-by.edu Abrak

Lebih terperinci

III PEMBAHASAN. merupakan cash flow pada periode i, dan C. berturut-turut menyatakan nilai rata-rata dari V. dan

III PEMBAHASAN. merupakan cash flow pada periode i, dan C. berturut-turut menyatakan nilai rata-rata dari V. dan Pada bab n akan dbahas mengena penyelesaan masalah ops real menggunakan pohon keputusan bnomal. Dalam menentukan penlaan proyek, dapat dgunakan beberapa metode d antaranya dscounted cash flow (DF). DF

Lebih terperinci

EL NINO, LA NINA, DAN PENAWARAN PANGAN DI JAWA, INDONESIA

EL NINO, LA NINA, DAN PENAWARAN PANGAN DI JAWA, INDONESIA Jurnal Ekonom Pembangunan Volume 1, Nomor, Desember 011, hlm.57-71 EL NINO, LA NINA, DAN PENAWARAN PANGAN DI JAWA, INDONESIA Arn Wahyu Uam, Jamhar, dan Suhamn Hardyasu Jurusan Sosal Ekonom Peranan, Fakulas

Lebih terperinci

Kajian Model Markov Waktu Diskrit Untuk Penyebaran Penyakit Menular Pada Model Epidemik SIR

Kajian Model Markov Waktu Diskrit Untuk Penyebaran Penyakit Menular Pada Model Epidemik SIR JURAL TEKK POT Vol, o, (0) -6 Kajan odel arkov Waku Dskr Unuk Penyebaran Penyak enular Pada odel Epdemk R Rafqaul Hasanah, Laksm Pra Wardhan, uhud Wahyud Jurusan aemaka, Fakulas PA, nsu Teknolog epuluh

Lebih terperinci

PENGGUNAAN KONSEP FUNGSI CONVEX UNTUK MENENTUKAN SENSITIVITAS HARGA OBLIGASI

PENGGUNAAN KONSEP FUNGSI CONVEX UNTUK MENENTUKAN SENSITIVITAS HARGA OBLIGASI PENGGUNAAN ONSEP FUNGSI CONVEX UNU MENENUAN SENSIIVIAS HARGA OBLIGASI 1 Zelmi Widyanuara, 2 Ei urniai, Dra., M.Si., 3 Icih Sukarsih, S.Si., M.Si. Maemaika, Universias Islam Bandung, Jl. amansari No.1 Bandung

Lebih terperinci

PENGARUH PELATIHAN TERHADAP KEMAMPUAN KERJA DAN KINERJA KARYAWAN (Studi Pada Karyawan PT. Telkom Indonesia, Tbk Kandatel Malang)

PENGARUH PELATIHAN TERHADAP KEMAMPUAN KERJA DAN KINERJA KARYAWAN (Studi Pada Karyawan PT. Telkom Indonesia, Tbk Kandatel Malang) PENGARUH PELATIHAN TERHADAP KEMAMPUAN KERJA DAN KINERJA KARYAWAN (Stud Pada Karyawan PT. Telom Indonesa, Tb Kandatel Mala) Very Mahmudhtya Rudhalawan Hamdah Nayat Utam Moehammad Soe oed Haam Faultas Ilmu

Lebih terperinci

V E K T O R Kompetensi Dasar :

V E K T O R Kompetensi Dasar : MODUL PEMELJRN I V E K T O R Kompetens Dasar : 1. Mahasswa mampu memaham perbedaan besaran vetor dan salar serta memberan contohcontohna dalam ehdupan sehar-har, 2. Mahasswa mampu melauan operas penumlahan

Lebih terperinci

SOLUSI TUGAS MATA KULIAH STATISTIKA II

SOLUSI TUGAS MATA KULIAH STATISTIKA II SOLUSI TUGAS MATA KULIAH STATISTIKA II SOAL : Suatu Peneltan dlakukan untuk menelaah empat metode pengajaran, yatu Metode A (ceramah d kelas), Metode B (mengajak dskus langsung dengan sswa), Metode C (ceramah

Lebih terperinci

VLE dari Korelasi nilai K

VLE dari Korelasi nilai K VLE dar orelas nla Penggunaan utama hubungan kesetmbangan fasa, yatu dalam perancangan proses pemsahan yang bergantung pada kecenderungan zat-zat kma yang dberkan untuk mendstrbuskan dr, terutama dalam

Lebih terperinci

BAB III PROSEDUR PENELITIAN. penelitian, hal ini dilakukan untuk kepentingan perolehan dan analisis data.

BAB III PROSEDUR PENELITIAN. penelitian, hal ini dilakukan untuk kepentingan perolehan dan analisis data. BAB III PROSEDUR PENELITIAN A. Metode Peneltan Metode peneltan harus dsesuakan dengan masalah dan tujuan peneltan, hal n dlakukan untuk kepentngan perolehan dan analss data. Mengena pengertan metode peneltan,

Lebih terperinci

PENGARUH GAJI, UPAH, DAN TUNJANGAN KARYAWAN TERHADAP KINERJA KARYAWAN PADA PT. XYZ

PENGARUH GAJI, UPAH, DAN TUNJANGAN KARYAWAN TERHADAP KINERJA KARYAWAN PADA PT. XYZ PENGARUH GAJI, UPAH, DAN TUNJANGAN KARYAWAN TERHADAP KINERJA KARYAWAN PADA PT. XYZ Khairunnisa aubara 1, Ir. Sugiharo Pujangkoro, MM 2, uchari, ST, M.Kes 2 Deparemen Teknik Indusri, Fakulas Teknik, Universias

Lebih terperinci

Bootstrap Pada Regresi Linear dan Spline Truncated

Bootstrap Pada Regresi Linear dan Spline Truncated Statstka, Vol. 8 No. 1, 47 54 Me 2008 Bootstrap Pada Regres Lnear dan Splne runcated Harson Darmaw 1) dan Bambang Wdjanarko Otok 2) 1) enaga Pengajar d Jurusan Matematka UNRI, Pekanbaru e-mal: son_ms@yahoo.co.d

Lebih terperinci

MENENTUKAN POLA DEBIT RATA-RATA TAHUNAN

MENENTUKAN POLA DEBIT RATA-RATA TAHUNAN MEETUKA POLA DEBIT RATA-RATA TAHUA Sri Eko Wahyuni ABSTRT Time series analysis applied o hydrological daa is generally used o forecas he in coming series of daa such ha use can make use of he informaion

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 5 BAB II LANDAAN TEORI Pada bab n akan dbahas beberapa eor maemaka keuangan dan saska yang mendukung dalam penurunan formula Lookback Opons pada Bab III dan pembuaan program pada Bab IV. Teor-eor yang

Lebih terperinci

FORECASTING & ARIMA. Dwi Martani. 1/26/2010 Statistik untuk Bisnis 9 1

FORECASTING & ARIMA. Dwi Martani. 1/26/2010 Statistik untuk Bisnis 9 1 FORECASTING & ARIMA Dwi Marani /26/200 Saisik unuk Bisnis 9 DERET BERKALA (TIME SERIES) Suau dere berkala merupakan suau himpunan observasi dimana variabel yang digunakan diukur dalam uruan periode waku,

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDAAN TEORI. Tnjauan Pusaka.. Uj Keseragaman Daa Tujuan uama pengukuran uj keseragaman daa adalah unuk mendapakan da yang seragam. Kedak seragaman daa dapa daang anpa dsadar, maka dperlukan suau

Lebih terperinci

ANALISIS PEUBAH RESPONS KONTINU NON NEGATIF DENGAN REGRESI GAMMA DAN REGRESI INVERSE GAUSSIAN 1

ANALISIS PEUBAH RESPONS KONTINU NON NEGATIF DENGAN REGRESI GAMMA DAN REGRESI INVERSE GAUSSIAN 1 ANALISIS PEUBAH RESPONS KONTINU NON NEGATIF DENGAN REGRESI GAMMA DAN REGRESI INVERSE GAUSSIAN Ksmantn Jurusan Penddkan Matematka, FMIPA Unverstas Neger Yogyakarta Emal : ksm@uny.ac.d Abstrak Peubah respons

Lebih terperinci

III. METODE PENELITIAN. Industri pengolahan adalah suatu kegiatan ekonomi yang melakukan kegiatan

III. METODE PENELITIAN. Industri pengolahan adalah suatu kegiatan ekonomi yang melakukan kegiatan 40 III. METODE PENELITIAN A. Konsep Dasar dan Baasan Operasional Konsep dasar dan baasan operasional pada peneliian ini adalah sebagai beriku: Indusri pengolahan adalah suau kegiaan ekonomi yang melakukan

Lebih terperinci

SUPLEMEN 3 Resume Hasil Penelitian: Analisis Respon Suku Bunga dan Kredit Bank di Sumatera Selatan terhadap Kebijakan Moneter Bank Indonesia

SUPLEMEN 3 Resume Hasil Penelitian: Analisis Respon Suku Bunga dan Kredit Bank di Sumatera Selatan terhadap Kebijakan Moneter Bank Indonesia SUPLEMEN 3 Resume Hasil Peneliian: Analisis Respon Suku Bunga dan Kredi Bank di Sumaera Selaan erhadap Kebijakan Moneer Bank Indonesia Salah sau program kerja Bank Indonesia Palembang dalam ahun 2007 adalah

Lebih terperinci

ANALISIS REGRESI BINOMIAL NEGATIF UNTUK MENGATASI OVERDISPERSION REGRESI POISSON PADA KASUS DEMAM BERDARAH DENGUE

ANALISIS REGRESI BINOMIAL NEGATIF UNTUK MENGATASI OVERDISPERSION REGRESI POISSON PADA KASUS DEMAM BERDARAH DENGUE Statstka, Vol., No., November ANALISIS REGRESI BINOMIAL NEGATIF UNTUK MENGATASI OVERDISPERSION REGRESI POISSON PADA KASUS DEMAM BERDARA DENGUE Tan Wahyu Utam Program Stud Statstka, Fakultas Matematka dan

Lebih terperinci

Penerapan Metode Runge-Kutta Orde 4 dalam Analisis Rangkaian RLC

Penerapan Metode Runge-Kutta Orde 4 dalam Analisis Rangkaian RLC Penerapan Metode Runge-Kutta Orde 4 dalam Analss Rangkaan RLC Rka Favora Gusa JurusanTeknk Elektro,Fakultas Teknk,Unverstas Bangka Beltung rka_favora@yahoo.com ABSTRACT The exstence of nductor and capactor

Lebih terperinci

Analisis Regresi 1. Pokok Bahasan : Diagnosa Model Melalui Pemeriksaan Sisaan dan Identifikasi Pengamatan Berpengaruh

Analisis Regresi 1. Pokok Bahasan : Diagnosa Model Melalui Pemeriksaan Sisaan dan Identifikasi Pengamatan Berpengaruh Analss Regres Pokok Bahasan : Dagnosa Model Melalu Pemerksaan Ssaan dan Identfkas Pengamatan Berpengaruh Ssaan Ssaan adalah menympangnya nla amatan y terhadap dugaan nla harapannya ) E [Y x ] E [Y x] =

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Control chart pertama kali dikenalkan oleh Dr. Walter Andrew Shewhart dari

BAB II TINJAUAN PUSTAKA. Control chart pertama kali dikenalkan oleh Dr. Walter Andrew Shewhart dari BAB II TINJAUAN PUSTAKA. Pendahuluan Control chart pertama al denalan oleh Dr. Walter Andrew Shewhart dar Bell Telephone Laboratores Amera Serat pada tahun 94. Control chart adalah sebuah gra yang member

Lebih terperinci