Proses Keputusan Markovian
|
|
|
- Hendra Tanudjaja
- 9 tahun lalu
- Tontonan:
Transkripsi
1 Proses Keputusan Marovian 1
2 Pengantar Proses eputusan Marovian adalah proses eputusan stoasti/probabilistidimana banyanya state adalah hingga (finit). Melibatan dua buah matris: matris transisi (P) dan reward(r)(revenue/cost) bergantung epada alternatif eputusan yang tersedia. Tujuannya adalah menentuan ebijaan optimal yang memasimuman revenue yang diharapan atas sejumlah hingga atau tahingga tahapan (stage). 2
3 The Gardener Problem Produtivitas (P 1 ) dan fungsi return (R 1 ) tanah tanpa ferlitizer: (1) good, (2) fair, dan (3) poor untu tahun searang dan beriutnya adalah sbb:
4 Produtivitas (P 2 ) dan fungsi return (R 2 ) tanah dengan ferlitizer: (1) good, (2) fair, dan (3) poor untu tahun searang dan tahun beriutnya adalah sbb:
5 Apa eputusan yang aan diambil? Bila ativitas aan berlanjut dalam watu yang terhingga / terbatas (finite): Model tahapan terbatas (finite-stage). Bila ativitas aan berlanjut dalam watu yang taterhinnga / taterbatas (infinite): Model tahapan taterbatas (infinite-stage). 5
6 Model Finite-Stage m= banya state pada setiap stage (year) ( misalan 3) f n (i) = revenue optimal yang diharapan dari stage (tahun) n, n+1,, N (dalam hal ini N=3); iadalah state dari sistem (yaitu:(1) good, (2) fair dan (3) poor). =1,2 (yaitu banyanya alternatif tersedia: tanpa dan dengan fertilizer) 6
7 Rumus persamaan reursif programa dinamis yang digunaan adalah: max{ } ) ( 1 = = = v i f r p v m j ij ij i 7 { } 1 2,..., 1,, ) ( max ) ( max ) ( 1 1 = + = = = + N n j f p v i f v i f m j n ij i n i N
8 Solusi Stage 3: v i Solusi Optimal i =1 =2 f 3 (i) *
9 Stage 2: i v i + p i1 f 3 (1)+ p i2 f 3 (2) + p i3 f 3 (3) Solusi Optimal =1 =2 f 2 (i) * x x x.4 = x x x.4 = x x x.4 =
10 Stage 1: i v i + p i1 f 2 (1)+ p i2 f 2 (2) + p i3 f 2 (3) Solusi Optimal =1 = 2 f 1 (i) *
11 Kesimpulan: Solusi optimal menunjuan bahwa untu tahun 1 dan 2 harus menerapan fertilizer (* = 2). Tahun e 3, fertilizer diterapan hanya jia sistem dalam state 2 atau 3 (ondisi fairatau poor). Total revenue yang diharapan untu tiga tahun adalah f 1 (1)=10.74 jia state sistem di tahun 1 adalah good, f 1 (2)=7.92 jia fair dan f 1 (3)=4.23 jia poor. 11
12 Problem set 19.2A No. 1 Sebuah perusahaan aan menilai status produ pentingnya setiap tahun dan memutusan apaah berhasil (status 1) atau gagal (status 2). Ada dua perlauan yang aan diambil yaitu dengan mengilanan (=1) atau tida (=2). Matris P1 dan P2 adalah probabilitas transisi dengan mengilanan dan tida mengilanan selama sebarang tahun. Matris return yang terait dengan P1 dan P2 adalah R1 dan R2. Carilah eputusan optimal selama tiga tahun beriutnya P1 = R1 = P2 = R2 =
13 Problem set 19.2A No. 2 Sebuah perusahaan dapat mengilanan melalui radio, Tv atau surat abar. Biaya ilan per minggu pada tiga media diperiraan sebesar $200, $900 dan $300. Perusahaan dapat menggolongan volume penjualannya selama setiap minggu dengan (1) gagal, (2) bagus atau (3) sangat bagus. Probabilitas transisi yang terait dengan media ilan adalah sebagai beriut: PRadio = ; PTV = ; PSK = Return per minggu (dalam ribuan dollar) untu etiga media ilan berturut-turut adalah sebagai beriut. Carilah ebijaan mengilanan optimal selama tiga minggu beriutnya RRadio = ; RTV = ; RSK =
14 Model Infinite-Stage Ada dua metode untu menyelesaian masalah infinite-stage: Exhaustive Enumeration Method (mengevaluasi semua stationary policies yang mungin dari masalah eputusan) Policy iteration (secara umum lebih efisien arena hal ini menentuan ebijaan optimum secara iteratif) 14
15 Metode Exhaustive Enumeration Misalan masalah eputusan mempunyai Sstationary policies, dan asumsian P s dan R s berturut-turut adalah matris transisi dan revenue terhadap ebijaan s=1,2,,s. Langah metode enumersi adalah: 1. Hitung v is, untu setiap ebijaan s dan state i=1,2,,m. 2. Hitung π s s i,long-run probabilities dari matris transisi P dengan rumus: π s P s = π s π s 1 + π 2s + + π s m =1 dengan π s = (π s 1, π 2s,, π s m ) 3. Tentuan Es = jumlah semua πs i vs i ;(i=1,,m). 4. E S * = mas {E s } 15
16 Example Gardener problem mempunyai total 8 ebijaan statinary, seperti ditunjuan dalam tabel beriut. Kebijaanstasionary Action 1 Do not fertilize 2 Fertilize regardless of the state 3 Fertilize if in state 1 4 Fertilize if in state 2 5 Fertilize if in state 3 6 Fertilize if in state 1or 2 7 Fertilize if in state 1or 3 8 Fertilize if in state 2or 3 16
17 Matris Ps dan Rs ebijaan 3 hingga 8 diturunan dari matris ebijaan 1 dan 2 yang diberian oleh: 17
PENERAPAN DYNAMIC PROGRAMMING DALAM WORD WRAP Wafdan Musa Nursakti ( )
PENERAPAN DYNAMIC PROGRAMMING DALAM WORD WRAP Wafdan Musa Nursati (13507065) Program Studi Teni Informatia, Seolah Teni Eletro dan Informatia, Institut Tenologi Bandung Jalan Ganesha No. 10 Bandung, 40132
Aplikasi diagonalisasi matriks pada rantai Markov
J. Sains Dasar 2014 3(1) 20-24 Apliasi diagonalisasi matris pada rantai Marov (Application of matrix diagonalization on Marov chain) Bidayatul hidayah, Rahayu Budhiyati V., dan Putriaji Hendiawati Jurusan
Penggunaan Induksi Matematika untuk Mengubah Deterministic Finite Automata Menjadi Ekspresi Reguler
Penggunaan Indusi Matematia untu Mengubah Deterministic Finite Automata Menjadi Espresi Reguler Husni Munaya - 353022 Program Studi Teni Informatia Seolah Teni Eletro dan Informatia Institut Tenologi Bandung,
BAB III PENENTUAN HARGA PREMI, FUNGSI PERMINTAAN, DAN TITIK KESETIMBANGANNYA
BAB III PENENTUAN HARGA PREMI, FUNGSI PERMINTAAN, DAN TITIK KESETIMBANGANNYA Pada penelitian ini, suatu portfolio memilii seumlah elas risio. Tiap elas terdiri dari n, =,, peserta dengan umlah besar, dan
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB 1 PENDAHULUAN 1.1 Latar Belaang Model Loglinier adalah salah satu asus husus dari general linier model untu data yang berdistribusi poisson. Model loglinier juga disebut sebagai suatu model statisti
BAB 3 LANGKAH PEMECAHAN MASALAH
BAB 3 LANGKAH PEMECAHAN MASALAH 3.1 Penetapan Kriteria Optimasi Gambar 3.1 Bagan Penetapan Kriteria Optimasi Sumber: Peneliti Determinasi Kinerja Operasional BLU Transjaarta Busway Di tahap ini, peneliti
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1. Statisti Inferensia Tujuan statisti pada dasarnya adalah melauan desripsi terhadap data sampel, emudian melauan inferensi terhadap data populasi berdasaran pada informasi yang
VARIASI NILAI BATAS AWAL PADA HASIL ITERASI PERPINDAHAN PANAS METODE GAUSS-SEIDEL
SEMINAR NASIONAL PENDIDIKAN SAINS Peningatan Kualitas Pembelajaran Sains dan Kompetensi Guru melalui Penelitian & Pengembangan dalam Menghadapi Tantangan Abad-1 Suraarta, Otober 016 VARIASI NILAI BATAS
BAB III METODE SCHNABEL
BAB III METODE SCHNABEL Uuran populasi tertutup dapat diperiraan dengan teni Capture Mar Release Recapture (CMRR) yaitu menangap dan menandai individu yang diambil pada pengambilan sampel pertama, melepasan
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
1 BAB 1 PENDAHULUAN 1.1 Latar Belaang Di aman searang sebuah adal yang tersusun rapi merupaan ebutuhan bagi setiap individu. Namun masalah penyusunan sebuah adal merupaan sebuah masalah umum yang teradi,
CATATAN KULIAH RISET OPERASIONAL
CATATAN KULIAH RISET OPERASIONAL Pertemuan minggu pertama ( x 50 menit) Pemrograman Bulat Linear (Integer Linear Programming - ILP) Tuuan Instrusional Umum : Mahasiswa dapat menggunaan algoritma yang
MATA KULIAH MATEMATIKA TEKNIK 2 [KODE/SKS : KD / 2 SKS] Ruang Vektor
MATA KULIAH MATEMATIKA TEKNIK [KODE/SKS : KD4 / SKS] Ruang Vetor FIELD: Ruang vetor V atas field salar K adalah himpunan ta osong dengan operasi penjumlahan vetor dan peralian salar. Himpunan ta osong
BAB 3 PATTERN MATCHING BERBASIS JARAK EUCLID, PATTERN MATCHING BERBASIS JARAK MAHALANOBIS, DAN JARINGAN SYARAF TIRUAN BERBASIS PROPAGASI BALIK
BAB 3 PATTERN MATCHING BERBASIS JARAK EUCLID, PATTERN MATCHING BERBASIS JARAK MAHALANOBIS, DAN JARINGAN SYARAF TIRUAN BERBASIS PROPAGASI BALIK Proses pengenalan dilauan dengan beberapa metode. Pertama
OSN 2014 Matematika SMA/MA
Soal 5. Suatu barisan bilangan asli a 1, a 2, a 3,... memenuhi a + a l = a m + a n untu setiap bilangan asli, l, m, n dengan l = mn. Jia m membagi n, butian bahwa a m a n. Solusi. Andaian terdapat bilangan
MODEL REGRESI INTERVAL DENGAN NEURAL FUZZY UNTUK MEMPREDIKSI TAGIHAN AIR PDAM
MODEL REGRESI INTERVAL DENGAN NEURAL FUZZY UNTUK MEMPREDIKSI TAGIHAN AIR PDAM 1,2 Faultas MIPA, Universitas Tanjungpura e-mail: [email protected], email: [email protected] Abstract
MENYELESAIKAN PERSAMAAN DIFFERENSIAL BILANGAN BULAT DAN BILANGAN RASIONAL
MENYELESAIKAN PERSAMAAN DIFFERENSIAL BILANGAN BULAT DAN BILANGAN RASIONAL Sarta Meliana 1, Mashadi 2, Sri Gemawati 2 1 Mahasiswa Program Studi S1 Matematia 2 Dosen Jurusan Matematia Faultas Matematia dan
III. METODOLOGI PENELITIAN. Penelitian ini menggunakan data sekunder bersifat runtun waktu (time series)
III. METODOLOGI PENELITIAN A. Jenis dan Sumber Data Penelitian ini menggunaan data seunder bersifat runtun watu (time series) dalam periode tahunan dan data antar ruang (cross section). Data seunder tersebut
Sifat-sifat Nilai Eigen dan Vektor Eigen Matriks atas Aljabar Maxplus
J. Sains Dasar () Sifat-sifat Nilai Eigen dan Vetor Eigen Matris atas ljabar Maxplus (The Properties of Eigen Value and Eigen Vector of Matrices Over Maxplus lgebra) Musthofa * dan Nienasih inatari * Jurusan
TEORI KINETIKA REAKSI KIMIA
TORI KINTIK RKSI KII da (dua) pendeatan teoreti untu menjelasan ecepatan reasi, yaitu: () Teori tumbuan (collision theory) () Teori eadaan transisi (transition-state theory) atau teori omples atif atau
Studi dan Analisis mengenai Hill Cipher, Teknik Kriptanalisis dan Upaya Penanggulangannya
Studi dan Analisis mengenai Hill ipher, Teni Kriptanalisis dan Upaya enanggulangannya Arya Widyanaro rogram Studi Teni Informatia, Institut Tenologi Bandung, Jl. Ganesha 10 Bandung Email: [email protected]
BAB 5 RUANG VEKTOR UMUM. Dr. Ir. Abdul Wahid Surhim, MT.
BAB 5 RUANG VEKTOR UMUM Dr. Ir. Abdul Wahid Surhim, MT. KERANGKA PEMBAHASAN. Ruang Vetor Nyata. Subruang. Kebebasan Linier 4. Basis dan Dimensi 5. Ruang Baris, Ruang Kolom dan Ruang Nul 6. Ran dan Nulitas
MASALAH VEKTOR EIGEN MATRIKS INVERS MONGE DI ALJABAR MAX-PLUS
Seminar Sains Penidi Sains VI UKSW Salatiga Juni 0 MSLH VEKTOR EIGEN MTRIKS INVERS MONGE DI LJBR MX-PLUS Farida Suwaibah Subiono Mahmud Yunus Jurusan Matematia FMIP Institut Tenologi Sepuluh Nopember Surabaya
Neural Network menyerupai otak manusia dalam dua hal, yaitu:
2.4 Artificial Neural Networ 2.4.1 Konsep dasar Neural Networ Neural Networ (Jaringan Saraf Tiruan) merupaan prosesor yang sangat besar dan memilii ecenderungan untu menyimpan pengetahuan yang bersifat
BAB IV PERHITUNGAN HARGA PREMI BERDASARKAN FUNGSI PERMINTAAN PADA TITIK KESETIMBANGAN
BAB IV PERHITUNGAN HARGA PREMI BERDASARKAN FUNGSI PERMINTAAN PADA TITIK KESETIMBANGAN Berdasaran asumsi batasan interval pada bab III, untu simulasi perhitungan harga premi pada titi esetimbangan, maa
PERENCANAAN JUMLAH TENAGA PERAWAT DI RSUD PAMEKASAN MENGGUNAKAN RANTAI MARKOV
PERENCANAAN JUMLAH TENAGA PERAWAT DI RSUD PAMEKASAN MENGGUNAKAN RANTAI MARKOV Nama Mahasiswa : Husien Haial Fasha NRP : 1207 100 011 Jurusan : Matematia FMIPA-ITS Dosen Pembimbing : Drs. Suharmadi, Dipl.
PENDAHULUAN TINJAUAN PUSTAKA
1 Latar Belaang PENDAHULUAN Sistem biometri adalah suatu sistem pengenalan pola yang melauan identifiasi personal dengan menentuan eotentian dari arateristi fisiologis dari perilau tertentu yang dimilii
SATUAN ACARA PERKULIAHAN ( SAP )
SATUAN ACARA PERKULIAHAN ( SAP ) Mata Kuliah : Pengolahan Citra Digital Kode : IES 6323 Semester : VI Watu : 1x 3x 50 Menit Pertemuan : 7 A. Kompetensi 1. Utama Mahasiswa dapat memahami tentang sistem
ALGORITMA PENYELESAIAN PERSAMAAN DINAMIKA LIQUID CRYSTAL ELASTOMER
ALGORITMA PENYELESAIAN PERSAMAAN DINAMIKA LIQUID CRYSTAL ELASTOMER Oleh: Supardi SEKOLAH PASCA SARJANA JURUSAN ILMU FISIKA UNIVERSITAS NEGERI YOGYAKARTA 2012 1 PENDAHULUAN Liquid Crystal elastomer (LCE
2.1 Bilangan prima dan faktorisasi prima
BAB 2 BILANGAN PRIMA 2.1 Bilangan prima dan fatorisasi prima Definisi 2.1.1. Bilangan bulat p > 1 diataan prima jia ia hanya mempunyai pembagi p dan 1. Dengan ata lain bilangan prima tida mempunyai pembagi
- Persoalan nilai perbatasan (PNP/PNB)
PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL Persamaan diferensial biasanya digunaan untu pemodelan matematia dalam sains dan reayasa. Seringali tida terdapat selesaian analiti seingga diperluan ampiran
MAT. 12. Barisan dan Deret
MAT.. Barisan dan Deret i Kode MAT. Barisan dan Deret U, U, U3,..., Un,... Un a + (n-)b U + U +..., Un +... n?? Sn? BAGIAN PROYEK PENGEMBANGAN KURIKULUM DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN DIREKTORAT
PENCARIAN JALUR TERPENDEK MENGGUNAKAN ALGORITMA SEMUT
Seminar Nasional Apliasi Tenologi Informasi 2007 (SNATI 2007) ISSN: 1907-5022 Yogyaarta, 16 Juni 2007 PENCARIAN JALUR TERPENDEK MENGGUNAKAN ALGORITMA SEMUT I ing Mutahiroh, Indrato, Taufiq Hidayat Laboratorium
Makalah Seminar Tugas Akhir
Maalah Seminar ugas Ahir Simulasi Penapisan Kalman Dengan Kendala Persamaan Keadaan Pada Kasus Penelusuran Posisi Kendaraan (Vehicle racing Problem Iput Kasiyanto [], Budi Setiyono, S., M. [], Darjat,
ANALISIS PETA KENDALI DEWMA (DOUBLE EXPONENTIALLY WEIGHTED MOVING AVERAGE)
Seminar Nasional Matematia dan Apliasinya, 1 Otober 17 ANALISIS PETA KENDALI DEWMA (DOUBLE EXPONENTIALLY WEIGHTED MOVING AVERAGE) DALAM PENGENDALIAN KUALITAS PRODUKSI FJLB (FINGER JOINT LAMINATING BOARD)
UJI BARTLETT. Elty Sarvia, ST., MT. Fakultas Teknik Jurusan Teknik Industri Universitas Kristen Maranatha Bandung. Scheffe Multiple Contrast Procedure
8/9/01 UJI TUKEY UJI DUNCAN UJI BARTLETT UJI COCHRAN UJI DUNNET Elty Sarvia, ST., MT. Faultas Teni Jurusan Teni Industri Universitas Kristen Maranatha Bandung Macam Metode Post Hoc Analysis The Fisher
PENERAPAN PROGRAM DINAMIS UNTUK MENGHITUNG ANGKA FIBONACCI DAN KOEFISIEN BINOMIAL
PENERAPAN PROGRAM DINAMIS UNTUK MENGHITUNG ANGKA FIBONACCI DAN KOEFISIEN BINOMIAL Reisha Humaira NIM 13505047 Program Studi Teni Informatia Institut Tenologi Bandung Jl. Ganesha 10, Bandung E-mail : [email protected]
MODEL SISTEM ANTRIAN
BB V MODEL SISTEM TRI ada teori antrian, suatu model antrian digunaan untu memperiraan suatu situasi antrian sesungguhnya, sehingga elauan antrian dapat dianalisa secara matemati. Dengan model sistem antrian
Estimasi Harga Saham Dengan Implementasi Metode Kalman Filter
Estimasi Harga Saham Dengan Implementasi Metode Kalman Filter eguh Herlambang 1, Denis Fidita 2, Puspandam Katias 2 1 Program Studi Sistem Informasi Universitas Nahdlatul Ulama Surabaya Unusa Kampus B
mungkin muncul adalah GA, GG, AG atau AA dengan peluang masing-masing
. DISTRIUSI INOMIL pabila sebuah oin mata uang yang memilii dua sisi bertulisan ambar () dan nga () dilempar satu ali, maa peluang untu mendapatan sisi ambar adalah,5 atau. pabila oin tersebut dilempar
BAB II LANDASAN TEORI. Graf adalah kumpulan simpul (nodes) yang dihubungkan satu sama lain
8 BAB II LANDASAN TEORI 2.1 Teori Graf 2.1.1 Definisi Graf Graf adalah umpulan simpul (nodes) yang dihubungan satu sama lain melalui sisi/busur (edges) (Zaaria, 2006). Suatu Graf G terdiri dari dua himpunan
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Teori Fuzzy 2.1.1 Dasar-Dasar Teori Fuzzy Secara prinsip, di dalam teori fuzzy set dapat dianggap sebagai estension dari teori onvensional atau crisp set. Di dalam teori crisp
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 Penelitian Terdahulu Penelitian yang aan dilauan meruju epada beberapa penelitian terdahulu yang sudah pernah dilauan sebelumnya, diantaranya: 1. I Gst. Bgs. Wisuana (2009)
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1. Sistem Kendali Lup [1] Sistem endali dapat diataan sebagai hubungan antara omponen yang membentu sebuah onfigurasi sistem, yang aan menghasilan tanggapan sistem yang diharapan.
Analisis Varians = Analysis of Variance = ANOVA
. Pendahuluan. Distribusi F Analisis Varians Analysis of Variance ANOVA χ² pengujian beberapa (>) proporsi ANOVA pengujian beberapa (>) nilai rata-rata Dasar perhitungan ANOVA ditetapan oleh Ronald A.
BAB 1 PENDAHULUAN. Universitas Sumatera Utara
BAB 1 PENDAHULUAN 1.1 Latar Belaang Keadaan dunia usaha yang selalu berubah membutuhan langah-langah untu mengendalian egiatan usaha di suatu perusahaan. Perencanaan adalah salah satu langah yang diperluan
ANALISIS VARIANSI (ANOVA)
ANALISIS VARIANSI (ANOVA) ANOVA = Analisis Varians (Anava) = Analisis Ragam = Sidi Ragam Diperenalan oleh R.A. Fisher (195) disebut uji F pengembangan dari uji t dua sampel bebas (independent samples t
PERANCANGAN SISTEM SOLUSI PENENTUAN HARGA DAN KEPUTUSAN PRODUKSI/ORDER PADA SUPPLY CHAIN SATU PABRIK-SATU DISTRIBUTOR
PERANCANGAN SISTE SOLUSI PENENTUAN HARGA DAN KEPUTUSAN PRODUKSI/ORDER PADA SUPPLY CHAIN SATU PABRIK-SATU DISTRIBUTOR Evi Yuliawati Jurusan Teni Industri Faultas Tenologi Industri Institut Tenologi Adhi
PENYELESAIAN PERSAMAAN LOTKA-VOLTERRA DENGAN METODE TRANSFORMASI DIFERENSIAL SUTRIANI HIDRI
PENYELESAIAN PERSAMAAN LOTKA-VOLTERRA DENGAN METODE TRANSFORMASI DIFERENSIAL SUTRIANI HIDRI Jurusan Matematia, FMIPA, Universitas Negeri Maassar Email: [email protected] Abstra. Pada artiel ini dibahas
SOLUSI KESTABILAN PADA MASALAH MULTIPLIKATIF PARAMETRIK (STABILITY SOLUTION OF PARAMETRIC MULTIPLICATIVE PROBLEMS)
Prosiding Semirata15 bidang MIPA BKS-PTN Barat Hal 357-36 SOLUSI KESTABILAN PADA MASALAH MULTIPLIKATIF PARAMETRIK STABILITY SOLUTION OF PARAMETRIC MULTIPLICATIVE PROBLEMS) Budi Rudianto 1, Narwen Jurusan
HUBUNGAN PENERAPAN KAWASAN TANPA ROKOK (KTR) DENGAN PERILAKU MEROKOK MAHASISWA KESEHATAN MASYARAKAT DI KOTA SEMARANG
Volume, Nomor, Juli 6 (ISSN: 56-6) HUBUNGAN PENERAPAN KAWASAN TANPA ROKOK (KTR) DENGAN PERILAKU MEROKOK MAHASISWA KESEHATAN MASYARAKAT DI KOTA SEMARANG Firnanda Zia Azmi *) Tinu Istiarti **) Kusyogo Cahyo
TEKNIK REAKSI KIMIA III SISTEM REAKSI BIOKIMIA. Oleh : Prof. Dr. Ir. SRI REDJEKI MT JURUSAN TEKNIK KIMIA FTI UPN Veteran JAWA TIMUR
TEKNIK EKSI KII III SISTE EKSI BIOKII Oleh : Prof. Dr. Ir. SI EDJEKI T JUUSN TEKNIK KII FTI UPN Veteran JW TIU Sistem easi Bioimia Terdiri dari : I. Fermentasi Enzym II. Fermentasi iroorganisme III. Fermentasi
Implementasi Algoritma Pencarian k Jalur Sederhana Terpendek dalam Graf
JURNAL TEKNIK POMITS Vol. 2, No., (203) ISSN: 2337-3539 (230-927 Print) Implementasi Algoritma Pencarian Jalur Sederhana Terpende dalam Graf Anggaara Hendra N., Yudhi Purwananto, dan Rully Soelaiman Jurusan
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB 1 PENDAHULUAN 1.1 Latar Belaang Masalah untu mencari jalur terpende di dalam graf merupaan salah satu masalah optimisasi. Graf yang digunaan dalam pencarian jalur terpende adalah graf yang setiap sisinya
BAB II KONSEP DAN DEFINISI
6 BAB II KONSEP DAN DEFINISI Pada bab ini aan dijelasan onsep dan definisi-definisi yang digunaan dalam metode pada penelitian ini. 2.1 DATA TRANSAKSI isalan = { 1, 2, 3,..., } adalah himpunan semua produ
Pengaruh Masuknya Penambahan Pembangkit Baru kedalam Jaringan 150 kv pada Kapasitas Circuit Breaker
Pengaruh Masunya Penambahan Pembangit Baru edalam Jaringan 150 V pada Kapasitas Circuit Breaer Emelia, Dian Yayan Suma Jurusan Teni Eletro Faultas Teni Universitas Riau Kampus Binawidya Km 12,5 Simpang
Penempatan Optimal Phasor Measurement Unit (PMU) dengan Integer Programming
JURAL TEKIK POMITS Vol. 2, o. 2, (2013) ISS: 2337-3539 (2301-9271 Print) B-137 Penempatan Optimal Phasor Measurement Unit (PMU) dengan Integer Programming Yunan Helmy Amrulloh, Rony Seto Wibowo, dan Sjamsjul
APLIKASI METODE FUZZY MULTI CRITERIA DECISION MAKING (FMCDM) UNTUK OPTIMALISASI PENENTUAN LOKASI PROMOSI PRODUK
APLIKASI METODE FUZZY MULTI CRITERIA DECISION MAKING (FMCDM) UNTUK OPTIMALISASI PENENTUAN LOKASI PROMOSI PRODUK Novhirtamely Kahar, ST. 1, Nova Fitri, S.Kom. 2 1&2 Program Studi Teni Informatia, STMIK
BAB III DIMENSI PARTISI GRAF KIPAS DAN GRAF KINCIR
BAB III DIMENSI PARTISI GRAF KIPAS DAN GRAF KINCIR 3. Dimensi Partisi Graf Kipas (F n ) Berdasaran Proposisi dan Proposisi, semua graf G selain graf P n dan K n memilii 3 pd(g) n -. Lebih husus, graf Kipas
ANALISIS PENGGANTIAN 1. PENDAHULUAN
ANALISIS PENGGANTIAN 1. PENDAHULUAN Sebuah eputusan yang seringali dihadapi oleh perusahaan maupun organisasi pemerintah adalah apaah aset yang ada saat ini harus dihentian dari penggunaannya, diterusan
BAB 1 PENDAHULUAN. 1.1 Latar belakang
BAB PENDAHULUAN. Latar belaang Metode analisis yang telah dibicaraan hingga searang adalah analisis terhadap data mengenai sebuah arateristi atau atribut (jia data itu ualitatif) dan mengenai sebuah variabel,
RINGKASAN SKRIPSI MODUL PERKALIAN
RINGKASAN SKRIPSI MODUL PERKALIAN SAMSUL ARIFIN 04/177414/PA/09899 DEPARTEMEN PENDIDIKAN NASIONAL UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM YOGYAKARTA 2008 HALAMAN PENGESAHAN
BAB VII. RELE JARAK (DISTANCE RELAY)
BAB VII. RELE JARAK (DISTANCE RELAY) 7.1 Pendahuluan. Rele jara merespon terhadap banya inputsebagai fungsi dari rangaian listri yang panjang (jauh) antara loasi rele dengan titi gangguan. Karena impedansi
BAB 2 TEORI PENUNJANG
BAB EORI PENUNJANG.1 Konsep Dasar odel Predictive ontrol odel Predictive ontrol P atau sistem endali preditif termasu dalam onsep perancangan pengendali berbasis model proses, dimana model proses digunaan
PENERAPAN FUZZY GOAL PROGRAMMING DALAM PENENTUAN INVESTASI BANK
PENERAPAN FUZZY GOAL PROGRAMMING DALAM PENENTUAN INVESTASI BANK Nurul Khotimah *), Farida Hanum, Toni Bahtiar Departemen Matematia FMIPA, Institut Pertanian Bogor Jl. Meranti, Kampus IPB Darmaga, Bogor
Analisis Varians = Analysis of Variance = ANOVA
Analisis Varians Analysis of Variance ANOVA. Pendahuluan. Distribusi F χ² pengujian beberapa (>) proporsi ANOVA pengujian beberapa (>) nilai rata-rata Dasar perhitungan ANOVA ditetapan oleh Ronald A. Fisher.
BAB IV APLIKASI PADA MATRIKS STOKASTIK
BAB IV : ALIKASI ADA MARIKS SOKASIK 56 BAB IV ALIKASI ADA MARIKS SOKASIK Salah satu apliasi dari eori erron-frobenius yang paling terenal adalah penurunan secara alabar untu beberapa sifat yang dimilii
3.1 TEOREMA DASAR ARITMATIKA
3. TEOREMA DASAR ARITMATIKA Definisi 3. Suatu bilangan bulat > disebut (bilangan) rima, jia embagi ositif bilangan tersebut hanya dan. Jia bilangan bulat lebih dari satu buan bilangan rima disebut (bilangan)
Optimasi Non-Linier. Metode Numeris
Optimasi Non-inier Metode Numeris Pendahuluan Pembahasan optimasi non-linier sebelumnya analitis: Pertama-tama mencari titi-titi nilai optimal Kemudian, mencari nilai optimal dari fungsi tujuan berdasaran
PENYELESAIAN PERSAMAAN LOTKA-VOLTERRA DENGAN METODE TRANSFORMASI DIFERENSIAL. Sutriani Hidri. Ja faruddin. Syafruddin Side, ABSTRAK
PENYELESAIAN PERSAMAAN LOTKA-VOLTERRA DENGAN METODE TRANSFORMASI DIFERENSIAL Syafruddin Side, Jurusan Matematia, FMIPA, Universitas Negeri Maassar email:[email protected] Info: Jurnal MSA Vol. 3
Ruang Barisan Orlicz Selisih Dengan Fungsional Aditif Dan Kontinunya
J. Math. and Its Appl. ISSN: 1829-605X Vol. 2, No. 1, May. 2005, 37 45 Ruang Barisan Orlicz Selisih Dengan Fungsional Aditif Dan Kontinunya Sadjidon Jurusan Matematia Institut Tenologi Sepuluh Nopember,
BAB III ANALISIS DISKRIMINAN. analisis multivariat dengan metode dependensi (dimana hubungan antar variabel
BAB III ANALISIS DISKRIMINAN 3.1 Pengertian Analisis Disriminan Analisis disriminan merupaan sala satu metode yang digunaan dalam analisis multivariat dengan metode dependensi (dimana ubungan antar variabel
Estimasi Inflasi Wilayah Kerja KPwBI Malang Menggunakan ARIMA-Filter Kalman dan VAR-Filter Kalman
JURNAL SAINS DAN SENI ITS Vol. 5, No.1, (16) 337-35 (31-98X Print) A-1 Estimasi Inflasi Wilayah Kerja KPwBI Malang Menggunaan ARIMA-Filter Kalman dan VAR-Filter Kalman Popy Febritasari, Erna Apriliani
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1. Tinjauan Pustaa Untu menacapai tujuan penulisan sripsi, diperluan beberapa pengertian dan teori yang relevan dengan pembahasan. Karena itu, dalam subbab ini aan diberian beberapa
MANAJEMEN DISTRIBUSI MULTI PRODUK BERDASARKAN BOBOT PROSENTASE PENJUALAN DAN EFISIENSI BIAYA DISTRIBUSI (STUDI KASUS DI PT THAMRIN BROTHERS)
Seminar Nasional Apliasi Tenologi Informasi 2011 (SNATI 2011) ISSN: 1907-5022 Yogyaarta, 17-18 Juni 2011 MANAJEMEN DISTRIBUSI MULTI PRODUK BERDASARKAN BOBOT PROSENTASE PENJUALAN DAN EFISIENSI BIAYA DISTRIBUSI
ANALISA STATIK DAN DINAMIK GEDUNG BERTINGKAT BANYAK AKIBAT GEMPA BERDASARKAN SNI DENGAN VARIASI JUMLAH TINGKAT
Jurnal Sipil Stati Vol. No. Agustus (-) ISSN: - ANALISA STATIK DAN DINAMIK GEDUNG BERTINGKAT BANYAK AKIBAT GEMPA BERDASARKAN SNI - DENGAN VARIASI JUMLAH TINGKAT Revie Orchidentus Francies Wantalangie Jorry
khazanah Sistem Klasifikasi Tipe Kepribadian dan Penerimaan Teman Sebaya Menggunakan Jaringan Syaraf Tiruan Backpropagation informatika
hazanah informatia Jurnal Ilmu Komputer dan Informatia Sistem Klasifiasi Tipe Kepribadian dan Penerimaan Teman Sebaya Menggunaan Jaringan Syaraf Tiruan Bacpropagation Yusuf Dwi Santoso *, Suhartono Departemen
khazanah Sistem Klasifikasi Tipe Kepribadian dan Penerimaan Teman Sebaya Menggunakan Jaringan Syaraf Tiruan Backpropagation informatika
hazanah informatia Jurnal Ilmu Komputer dan Informatia Sistem Klasifiasi Tipe Kepribadian dan Penerimaan Teman Sebaya Menggunaan Jaringan Syaraf Tiruan Bacpropagation Yusuf Dwi Santoso *, Suhartono Program
Y = + x + x x + e, e N(0, ), Residual e=y -Yˆ
Yogyaarta, 26 Noember 206 ISSN : 979 9X eissn : 25 528X ANALISIS PSEUDOINVERS DAN APLIKASINYA PADA REGRESI LINEAR BERGANDA Kris Suryowati Program Studi Statistia, Faultas Sains erapan, Institut Sains dan
ANALISIS KEPUASAN KONSUMEN TERHADAP PELAYANAN PELAYANAN JASA PENGIRIMAN PAKET (KURIR) DENGAN MENGGUNAKAN METODE TOPSIS FUZZY
Jurnal Manti Penusa Vol No Desember ISSN 88-9 ANALISIS EPUASAN ONSUMEN TERHADAP PELAYANAN PELAYANAN JASA PENGIRIMAN PAET (URIR DENGAN MENGGUNAAN METODE TOPSIS FUZZY Desi Vinsensia Program Studi Teni Informatia
MODEL MATEMATIKA KONSENTRASI OKSIGEN TERLARUT PADA EKOSISTEM PERAIRAN DANAU
MDEL MATEMATIKA KNSENTRASI KSIGEN TERLARUT PADA EKSISTEM PERAIRAN DANAU Sutimin Jurusan Matematia, FMIPA Universitas Diponegoro Jl. Prof. H. Soedarto SH Tembalang, Semarang 5075 E-mail: [email protected]
BEBERAPA SIFAT HIMPUNAN KRITIS PADA PELABELAN AJAIB GRAF BANANA TREE. Triyani dan Irham Taufiq Universitas Jenderal Soedirman
JMP : Volume 4 Nomor 2, Desember 2012, hal. 271-278 BEBERAPA SIFAT HIMPUNAN KRITIS PADA PELABELAN AJAIB GRAF BANANA TREE Triyani dan Irham Taufiq Universitas Jenderal Soedirman [email protected] ABSTRACT.
Kata Kunci : Multipath, LOS, N-LOS, Network Analyzer, IFFT, PDP. 1. Pendahuluan
Statisti Respon Kanal Radio Dalam Ruang Pada Freuensi,6 GHz Christophorus Triaji I, Gamantyo Hendrantoro, Puji Handayani Institut Tenologi Sepuluh opember, Faultas Tenologi Industri, Jurusan Teni Eletro
Volume : IV, Nomor : 1, September 2014
SISTEM PENDUKUNG KEPUTUSAN PENENTUAN PEMENANG MUSABAQAH TILAWATIL QUR AN TINGKAT KECAMATAN DENGAN MENGGUNAKAN METODE SIMPLE ADDITIVE WEIGHTING (SAW) (Studi Kasus : Kecamatan Huta Raja Tinggi) Leli Asmara
PENINGKATAN EFISIENSI & EFEKTIFITAS PENGOLAHAN DATA PERCOBAAN PETAK BERJALUR
PENINGKATAN EFISIENSI & EFEKTIFITAS PENGOLAHAN DATA PERCOBAAN PETAK BERJALUR Ngarap Im Mani 1) dan Lim Widya Sanjaya ), 1) & ) Jurs. Matematia Binus University PENGANTAR Perancangan percobaan adalah suatu
BAB II KAJIAN PUSTAKA
BAB II KAJIAN PUSTAKA 21 Manajemen Polusi Polusi yang diaibatan oleh suatu perusahaan arena tida adanya eteraitan antar area dalam proses produsi yang bai Hasil dari produsi tersebut adalam produ yang
PEMANFAATAN METODE HEURISTIK DALAM PENCARIAN JALUR TERPENDEK DENGAN ALGORITMA SEMUT DAN ALGORITMA GENETIKA
PEMANFAATAN METODE HEURISTIK DALAM PENCARIAN JALUR TERPENDEK DENGAN ALGORITMA SEMUT DAN ALGORITMA GENETIKA Iing Mutahiroh, Fajar Saptono, Nur Hasanah, Romi Wiryadinata Laboratorium Pemrograman dan Informatia
MODEL OPTIMASI PEMETAAN MATA KULIAH BERPRASYARAT UNTUK RENCANA STUDI MAHASISWA (STUDI KASUS PROGRAM STUDI MATEMATIKA FMIPA UT)
MODEL OPTIMASI PEMETAAN MATA KULIAH BERPRASYARAT UNTUK RENCANA STUDI MAHASISWA (STUDI KASUS PROGRAM STUDI MATEMATIKA FMIPA UT) Asmara Iriani Tarigan ([email protected]) Sitta Alief Farihati Jurusan Matematia
PROGRAM SIMULASI UNTUK REALISASI STRUKTUR TAPIS INFINITE IMPULSE RESPONSE UNTUK MEDIA PEMBELAJARAN DIGITAL SIGNAL PROCESSING
Konferensi asional Sistem dan Informatia 28; Bali, ovember 15, 28 KS&I8-44 PROGRAM SIMULASI UTUK REALISASI STRUKTUR TAPIS IFIITE IMPULSE RESPOSE UTUK MEDIA PEMBELAJARA DIGITAL SIGAL PROCESSIG Damar Widjaja
PENGENDALIAN MOTOR DC MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION
PENGENDALIAN MOTOR DC MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION Wahyudi, Sorihi, dan Iwan Setiawan. Jurusan Teni Eletro Faultas Teni Universitas Diponegoro Semarang e-mail : [email protected].
BAB 2 TINJAUAN PUSTAKA
BAB 2 TINJAUAN PUSTAKA Pada bab ini disampaian beberapa pengertian dasar yang diperluan pada bab selanutnya. Selain definisi, diberian pula lemma dan teorema dengan atau tanpa buti. Untu beberapa teorema
APLIKASI PREDIKSI HARGA SAHAM MENGGUNAKAN JARINGAN SYARAF RADIAL BASIS FUNCTION DENGAN METODE PEMBELAJARAN HYBRID
APLIKASI PREDIKSI HARGA SAHAM MENGGUNAKAN JARINGAN SYARAF RADIAL BASIS FUNCTION DENGAN METODE PEMBELAJARAN HYBRID Ferry Tan, Giovani Gracianti, Susanti, Steven, Samuel Luas Jurusan Teni Informatia, Faultas
BAB III DESAIN DAN APLIKASI METODE FILTERING DALAM SISTEM MULTI RADAR TRACKING
Bab III Desain Dan Apliasi Metode Filtering Dalam Sistem Multi Radar Tracing BAB III DESAIN DAN APLIKASI METODE FILTERING DALAM SISTEM MULTI RADAR TRACKING Bagian pertama dari bab ini aan memberian pemaparan
JARINGAN SARAF TIRUAN PROPAGASI BALIK UNTUK KLASIFIKASI DATA
JARINGAN SARAF TIRUAN PROPAGASI BALIK UNTUK KLASIFIKASI DATA Giri Dhaneswara 1) dan Veronica S. Moertini 2) Jurusan Ilmu Komputer, Universitas Katoli Parahyangan, Bandung Email: 1) [email protected],
PEMODELAN OPTIMALISASI PRODUKSI UNTUK MEMAKSIMALKAN KEUNTUNGAN DENGAN MENGGUNAKAN METODE PEMROGRAMAN LINIER
PEMODELAN OPTIMALISASI PRODUKSI UNTUK MEMAKSIMALKAN KEUNTUNGAN DENGAN MENGGUNAKAN METODE PEMROGRAMAN LINIER Tantri Windarti Program Studi Sistem Informasi STMIK Surabaya Jl Raya Kedung Baru 98, Surabaya
PENERAPAN METODE FUZZY MULTI CRITERIA DECISION MAKING PADA SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN SMARTPHONE
PENERAPAN METODE FUZZY MULTI CRITERIA DECISION MAKING PADA SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN SMARTPHONE Novhirtamely Kahar 1, Rii 2 12 Program Studi Teni Informatia, STMIK Nurdin Hamzah, Jambi ` E-mail:
