BAB 3 LANGKAH PEMECAHAN MASALAH

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 3 LANGKAH PEMECAHAN MASALAH"

Transkripsi

1 BAB 3 LANGKAH PEMECAHAN MASALAH 3.1 Penetapan Kriteria Optimasi Gambar 3.1 Bagan Penetapan Kriteria Optimasi Sumber: Peneliti Determinasi Kinerja Operasional BLU Transjaarta Busway Di tahap ini, peneliti aan mencari tahu inerja operasional yang paling menjadi endala dalam proses pengoperasiannya. Dengan menggunaan metode AHP (Analytical Hirarchy Process), dimana pertama-tama aan diberian uesioner 38

2 39 epada Manajer Operasional, yang nantinya dari hasil uesioner tersebut aan diolah dengan menggunaan software Expert Choice Analisis dan Determinasi Dampa Kendala Kinerja Operasional BLU Transjaarta Busway Pada tahap ini, aan dibahas lebih dalam hal-hal yang menjadi penyebab inerja operasional tersebut belum memenuhi standar pelayanan publi yang duharapan. Setelah itu aan dianalisis dampa-dampa yang bisa diaibatan apabila hal ini dibiaran terus-menerus. Pengumpulan Data Setelah semua fator penyebab masalah dietahui, maa tahap selanjutnya adalah mengumpulan data-data yang diperluan untu diolah menjadi suatu solusi dari masalah-masalah yang timbul. Data-data yang diumpulan tersebut diambil pada rentang watu tertentu yang telah ditetapan peneliti. Tahap pengumpulan data ini yaitu pengumpulan data secara langsung. Pengumpulan data secara langsung meliputi wawancara dengan manager operasional dan petugas layanan, dan observasi terhadap jumlah edatangan customer. Melalui pengumpulan data secara langsung diperoleh watu pelayanan dan data jumlah edatangan customer. Melalui pengumpulan data secara langsung ini diperoleh watu pelayanan dan data jumlah edatangan untu emudian diolah menjadi rata-rata tingat pelayanan (service rate) dan rata-rata tingat edatangan (arrival rate).

3 40 Pengolahan Data Awal Tahap beriutnya yang dilauan setelah semua data yang diperluan berhasil diumpulan adalah tahap pengolahan data awal. Tahap ini disebut tahap pengolahan data awal arena pada tahap ini sudah mulai dilauan perhitunganperhitungan yang diperluan agar data tersebut dapat diolah lagi pada tahap selanjutnya. Pengolahan data awal ini sangat penting dilauan untu menjamin hasil penelitian yang aurat dan dapat dipercaya. Langah-langah yang diambil dalam tahap pengolahan data awal ini adalah penghitungan distribusi laju edatangan () dan distribusi laju pelayanan (μ). Laju edatangan ditetapan berdasaran penelitian atas setiap edatangan di setiap halte-halte Transjaarta Busway. Sedangan laju edatangan ditetapan berdasaran 3 watu edatangan bus Transjaarta. Pengolahan Data Ahir Jia semua persyaratan dalam tiap pengolahan data awal telah dipenuhi, maa dapat dilauan pengolahan data tahap selanjutnya. Pengolahan data yang diamsudan disini adalah mengolah data sedemiian rupa dengan menggunaan teni-teni dan formula tertentu sehingga data mentah yang diumpulan dapat berubah menjadi informasi yang berguna dalam pemecahan masalah. Langah-langah yang diambil dalam tahap pengolahan data ini adalah: o Menentuan jenis model antrian yang sesuai dengan hasil pengujian data edatangan dan pelayanan. Kemudian melauan penghitungan evaluasi arateristi operasional dari sistem antrian yang ada. Penghitungan

4 41 arateristi operasional sistem antrian ini meliputi Po, Pw, Ls, Lq, Ws, dan Wq. Pengendalian Kinerja Operasional Pada tahap ini, setelah melihat permasalahan yang dapat terjadi dalam inerja operasional, maa perusahaan perlu menetapan ebijaan baru untu tetap mempertahanan omitmen yang sudah ditetapan dari awal beroperasinya Transjaarta. Diharapan dengan pengendalian ini, inerja operasional berlangsung semain bai dan dapat mengurangi permasalahan yang terjadi pada proses pengoperasiannya. 3.2 Pengembangan Model Optimasi Pengembangan model optimasi dengan manajemen operasional terutama diduung dengan metode Analytical Hierarchy Process. Beriut ini aan dijelasan penerapannya: Analytical Hierarchy Process (AHP) Analytical Hierarchy Process merupaan metode analisis eputusan dengan riteria majemu yang digunaan untu menurunan sala rasio dari perbandingan berpasangan dari riteria dan alternatif, bai yang disrit maupun sampai pada ontinyu, yang tersusun dalam hirari multilevel. Perbandingan ini bisa diambil dari hasil penguuran atual atau menggunaan sala dasar yang menunjuan epentingan/euatan relatif berdasaran preferensi partisipan. Dalam penelitian ini, AHP digunaan untu mendeterminasian inerja operasional yang paling merupaan permasalahan penting yang dihadapi Perusahaan Transjaarta Busway. Untu itu aan diberian uesioner yang berisi perbandingan 6 (enam) inerja operasional. Enam inerja operasional ditetapan berdasaran standar pelayanan publi yang diharapan dari sistem

5 42 busway. Beriut adalah gambaran uesioner yang nantinya aan diberian epada Manajer Operasional Perusahaan Transjaarta Busway untu membandingan dan memberi bobot tiap inerja operasional secara berpasangan. Keterangan pengisian : SKALA KETERANGAN 1 Kedua elemen sama pentingnya 3 Elemen yang satu sediit lebih penting etimbang lainnya 5 Elemen yang satu sangat penting etimbanga elemen lainnya 7 Satu elemen jelas lebih penting dari elemen lainnya 9 Satu elemen mutla lebih penting etimbang elemen lainnya 2,4,6,8 Nilai-nilai antara dua pertimbangan berdeatan i j Berarti i sediit lebih penting dari j i = (3) j i j Berarti j sediit lebih penting dari i i = (1/3) j Gambar 3.2 Gambaran uesioner AHP Sumber : Kemudian jawaban dari uesioner tersebut aan diolah menggunaan software Expert Choice Dan aan langsung ditemuan inerja operasional yang paling menjadi permasalahan yang dihadapi oleh Perusahaan Transjaarta Busway.

6 43 Beriut adalah gambaran penggunaan software Expert Choice Gambar 3.3 Gambaran Software Expert Choice 2000 Sumber : Expert Choice 2000 Waiting Line (Sistem Antrian) Antrian merupaan atifitas yang tida lepas dari ehidupan manusia sehari hari. Sua atau tida sua, manusia tetap harus melauan atifitas antrian tersebut. Menurut Taha (1997, p176), fenomena menunggu atau mengantri merupaan hasil langsung dari eacaan dalam operasional pelayanan fasilitas. Secara umum, edatangan pelanggan e dalam suatu sistem dan watu pelayanan untu pelanggan tersebut tida dapat diatur dan dietahui watunya secara tepat, namun sebalinya, fasilitas operasional dapat diatur sehingga dapat mengurangi antrian.

7 44 Dalam penelitian ini, penghitungan waiting line digunaan untu menghitung sistem antrian pada halte Bus Transjaarta yang merupaan masalah paling omples yang dihadapi oleh BLU Transjaarta Busway. Asumsi dan Rumus Rumus Dalam sripsi ini permasalahan antrian didasaran pada asumsi beriut ; 1. Satu pelayanan dan dua tahap. 2. Jumlah edatangan per unit watu digambaran oleh distribusi Poisson, dengan = rata rata ecepatan edatangan. 3. Watu pelayanan esponensial dengan μ = rata rata ecepatan pelayanan. 4. Disiplin antrian adalah First Come Firs Served (aturan antrian pertama datang, pertama dilayani) seluruh edatangan dalam barisan hingga dilayani. 5. Dimunginan panjang barisan yang ta terhingga. 6. Populasi yang dilayani tida terbatas. 7. Rata-rata edatangan lebih ecil dari rata rata watu pelayanan. 8. Rata-rata tingat edatangan lebih ecil dari tingat pelayanan semua channel (= jumlah channel dialian rata-rata tingat pelayanan per channel). Dari asumsi tersebut dapat diperoleh hasil secara statisti sebagai beriut : Probabilitas terdapat 0 orang dalam sistem Po = 1 n= 0 1 n! μ n 1 1 +! μ,.μ = dimana = jumlah saluran Probabilitas jia sedang sibu

8 45 1 Pw =! μ Po Jumlah pelanggan rata-rata dalam sistem μ μ Ls = Po + 2 ( 1)!( ) μ Jumlah orang rata-rata yang menunggu dalam antrian Lq = Ls μ Watu rata-rata yang dihabisan pelanggan dalam antrian atau sedang dilayani (dalam sistem) μ( μ) Ws = ( 1)!( ) 2 1 Po + = μ Ls Watu rata-rata yang dihabisan oleh seorang pelanggan untu menunggu dalam antrian Lq Wq =

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. Universitas Sumatera Utara BAB 1 PENDAHULUAN 1.1 Latar Belaang Keadaan dunia usaha yang selalu berubah membutuhan langah-langah untu mengendalian egiatan usaha di suatu perusahaan. Perencanaan adalah salah satu langah yang diperluan

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belaang Model Loglinier adalah salah satu asus husus dari general linier model untu data yang berdistribusi poisson. Model loglinier juga disebut sebagai suatu model statisti

Lebih terperinci

BAB 3 METODOLOGI PEMECAHAN MASALAH

BAB 3 METODOLOGI PEMECAHAN MASALAH 49 BAB 3 METODOLOGI PEMECAHAN MASALAH 3.1 Model Kerangka Pikir dan Pengambilan Keputusan Menurut Sugiyono (2004, p1), Metodologi penelitian merupakan suatu langkah-langkah sistematis yang akan menjadi

Lebih terperinci

SISTEM ANTRIAN PELAYANAN BONGKAR MUAT KAPAL DI TERMINAL BERLIAN PELABUHAN TANJUNG PERAK SURABAYA

SISTEM ANTRIAN PELAYANAN BONGKAR MUAT KAPAL DI TERMINAL BERLIAN PELABUHAN TANJUNG PERAK SURABAYA SISTEM ANTRIAN PELAYANAN BONGKAR MUAT KAPAL DI TERMINAL BERLIAN PELABUHAN TANJUNG PERAK SURABAYA Ruhana Khabibah, Hery Tri Sutanto 2, Yuliani Puji Astuti 3 Jurusan Matematia, Faultas Matematia dan Ilmu

Lebih terperinci

Optimasi Non-Linier. Metode Numeris

Optimasi Non-Linier. Metode Numeris Optimasi Non-inier Metode Numeris Pendahuluan Pembahasan optimasi non-linier sebelumnya analitis: Pertama-tama mencari titi-titi nilai optimal Kemudian, mencari nilai optimal dari fungsi tujuan berdasaran

Lebih terperinci

Analisis Pengaruh Kualitas Pelayanan Terhadap Loyalitas Pelanggan Jasa Pengiriman Pos Kilat Khusus

Analisis Pengaruh Kualitas Pelayanan Terhadap Loyalitas Pelanggan Jasa Pengiriman Pos Kilat Khusus Jurnal Teni Industri, Vol.1, No., Juni 013, pp.96-101 ISSN 30-495X Analisis Pengaruh Kualitas Pelayanan Terhadap Loyalitas Pelanggan Jasa Pengiriman Pos Kilat Khusus Apriyani 1, Shanti Kirana Anggaraeni,

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini menggunakan data sekunder bersifat runtun waktu (time series)

III. METODOLOGI PENELITIAN. Penelitian ini menggunakan data sekunder bersifat runtun waktu (time series) III. METODOLOGI PENELITIAN A. Jenis dan Sumber Data Penelitian ini menggunaan data seunder bersifat runtun watu (time series) dalam periode tahunan dan data antar ruang (cross section). Data seunder tersebut

Lebih terperinci

Penentuan Nilai Ekivalensi Mobil Penumpang Pada Ruas Jalan Perkotaan Menggunakan Metode Time Headway

Penentuan Nilai Ekivalensi Mobil Penumpang Pada Ruas Jalan Perkotaan Menggunakan Metode Time Headway Rea Racana Jurnal Online Institut Tenologi Nasional Teni Sipil Itenas No.x Vol. Xx Agustus 2015 Penentuan Nilai Eivalensi Mobil Penumpang Pada Ruas Jalan Perotaan Menggunaan Metode Time Headway ENDI WIRYANA

Lebih terperinci

II. TINJAUAN PUSTAKA. sebuah teknik yang baru yang disebut analisis ragam. Anara adalah suatu metode

II. TINJAUAN PUSTAKA. sebuah teknik yang baru yang disebut analisis ragam. Anara adalah suatu metode 3 II. TINJAUAN PUSTAKA 2.1 Analisis Ragam (Anara) Untu menguji esamaan dari beberapa nilai tengah secara sealigus diperluan sebuah teni yang baru yang disebut analisis ragam. Anara adalah suatu metode

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 ObjePenelitian Obje penelitian merupaan hal yang tida dapat dipisahan dari suatu penelitian. Obje penelitian merupaan sumber diperolehnya data dari penelitian yang dilauan.

Lebih terperinci

MODEL REGRESI INTERVAL DENGAN NEURAL FUZZY UNTUK MEMPREDIKSI TAGIHAN AIR PDAM

MODEL REGRESI INTERVAL DENGAN NEURAL FUZZY UNTUK MEMPREDIKSI TAGIHAN AIR PDAM MODEL REGRESI INTERVAL DENGAN NEURAL FUZZY UNTUK MEMPREDIKSI TAGIHAN AIR PDAM 1,2 Faultas MIPA, Universitas Tanjungpura e-mail: [email protected], email: [email protected] Abstract

Lebih terperinci

APLIKASI METODE FUZZY MULTI CRITERIA DECISION MAKING (FMCDM) UNTUK OPTIMALISASI PENENTUAN LOKASI PROMOSI PRODUK

APLIKASI METODE FUZZY MULTI CRITERIA DECISION MAKING (FMCDM) UNTUK OPTIMALISASI PENENTUAN LOKASI PROMOSI PRODUK APLIKASI METODE FUZZY MULTI CRITERIA DECISION MAKING (FMCDM) UNTUK OPTIMALISASI PENENTUAN LOKASI PROMOSI PRODUK Novhirtamely Kahar, ST. 1, Nova Fitri, S.Kom. 2 1&2 Program Studi Teni Informatia, STMIK

Lebih terperinci

BAB 3 METODE PENELITIAN

BAB 3 METODE PENELITIAN 36 BAB 3 METODE PENELITIAN 3.1 Disain Penelitian Jenis penelitian yang digunaan adalah penelitian desriptif, yaitu penelitian terhadap fenomena atau populasi tertentu yang diperoleh peneliti dari subye

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Statisti Inferensia Tujuan statisti pada dasarnya adalah melauan desripsi terhadap data sampel, emudian melauan inferensi terhadap data populasi berdasaran pada informasi yang

Lebih terperinci

SISTEM PENDUKUNG KEPUTUSAN PENENTU NILAI INTERVAL KADAR LEMAK TUBUH MENGGUNAKAN REGRESI INTERVAL DENGAN NEURAL FUZZY

SISTEM PENDUKUNG KEPUTUSAN PENENTU NILAI INTERVAL KADAR LEMAK TUBUH MENGGUNAKAN REGRESI INTERVAL DENGAN NEURAL FUZZY SISTEM PENDUKUNG KEPUTUSAN PENENTU NILAI INTERVAL KADAR LEMAK TUBUH MENGGUNAKAN REGRESI INTERVAL DENGAN NEURAL FUZZY Tedy Rismawan dan Sri Kusumadewi Laboratorium Komputasi dan Sistem Cerdas, Jurusan Teni

Lebih terperinci

APLIKASI PREDIKSI HARGA SAHAM MENGGUNAKAN JARINGAN SYARAF RADIAL BASIS FUNCTION DENGAN METODE PEMBELAJARAN HYBRID

APLIKASI PREDIKSI HARGA SAHAM MENGGUNAKAN JARINGAN SYARAF RADIAL BASIS FUNCTION DENGAN METODE PEMBELAJARAN HYBRID APLIKASI PREDIKSI HARGA SAHAM MENGGUNAKAN JARINGAN SYARAF RADIAL BASIS FUNCTION DENGAN METODE PEMBELAJARAN HYBRID Ferry Tan, Giovani Gracianti, Susanti, Steven, Samuel Luas Jurusan Teni Informatia, Faultas

Lebih terperinci

BAB 3 PATTERN MATCHING BERBASIS JARAK EUCLID, PATTERN MATCHING BERBASIS JARAK MAHALANOBIS, DAN JARINGAN SYARAF TIRUAN BERBASIS PROPAGASI BALIK

BAB 3 PATTERN MATCHING BERBASIS JARAK EUCLID, PATTERN MATCHING BERBASIS JARAK MAHALANOBIS, DAN JARINGAN SYARAF TIRUAN BERBASIS PROPAGASI BALIK BAB 3 PATTERN MATCHING BERBASIS JARAK EUCLID, PATTERN MATCHING BERBASIS JARAK MAHALANOBIS, DAN JARINGAN SYARAF TIRUAN BERBASIS PROPAGASI BALIK Proses pengenalan dilauan dengan beberapa metode. Pertama

Lebih terperinci

ANALISA STATIK DAN DINAMIK GEDUNG BERTINGKAT BANYAK AKIBAT GEMPA BERDASARKAN SNI DENGAN VARIASI JUMLAH TINGKAT

ANALISA STATIK DAN DINAMIK GEDUNG BERTINGKAT BANYAK AKIBAT GEMPA BERDASARKAN SNI DENGAN VARIASI JUMLAH TINGKAT Jurnal Sipil Stati Vol. No. Agustus (-) ISSN: - ANALISA STATIK DAN DINAMIK GEDUNG BERTINGKAT BANYAK AKIBAT GEMPA BERDASARKAN SNI - DENGAN VARIASI JUMLAH TINGKAT Revie Orchidentus Francies Wantalangie Jorry

Lebih terperinci

BAB 2 TEORI PENUNJANG

BAB 2 TEORI PENUNJANG BAB EORI PENUNJANG.1 Konsep Dasar odel Predictive ontrol odel Predictive ontrol P atau sistem endali preditif termasu dalam onsep perancangan pengendali berbasis model proses, dimana model proses digunaan

Lebih terperinci

SISTEM PENDUKUNG KEPUTUSAN PERBANDINGAN TINGKAT PELANGGARAN PERLINDUNGAN KEKERASAN PADA ANAK

SISTEM PENDUKUNG KEPUTUSAN PERBANDINGAN TINGKAT PELANGGARAN PERLINDUNGAN KEKERASAN PADA ANAK SISTEM PENDUKUNG KEPUTUSAN PERBANDINGAN TINGKAT PELANGGARAN PERLINDUNGAN KEKERASAN PADA ANAK Airani Elizabeth Mani Program Studi Teni Informatia Jurusan Teni Eletro Faultas Teni Universitas Tanjungpura

Lebih terperinci

BAB III DESAIN DAN APLIKASI METODE FILTERING DALAM SISTEM MULTI RADAR TRACKING

BAB III DESAIN DAN APLIKASI METODE FILTERING DALAM SISTEM MULTI RADAR TRACKING Bab III Desain Dan Apliasi Metode Filtering Dalam Sistem Multi Radar Tracing BAB III DESAIN DAN APLIKASI METODE FILTERING DALAM SISTEM MULTI RADAR TRACKING Bagian pertama dari bab ini aan memberian pemaparan

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belaang Masalah untu mencari jalur terpende di dalam graf merupaan salah satu masalah optimisasi. Graf yang digunaan dalam pencarian jalur terpende adalah graf yang setiap sisinya

Lebih terperinci

ANALISIS PETA KENDALI DEWMA (DOUBLE EXPONENTIALLY WEIGHTED MOVING AVERAGE)

ANALISIS PETA KENDALI DEWMA (DOUBLE EXPONENTIALLY WEIGHTED MOVING AVERAGE) Seminar Nasional Matematia dan Apliasinya, 1 Otober 17 ANALISIS PETA KENDALI DEWMA (DOUBLE EXPONENTIALLY WEIGHTED MOVING AVERAGE) DALAM PENGENDALIAN KUALITAS PRODUKSI FJLB (FINGER JOINT LAMINATING BOARD)

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Penelitian Terdahulu Penelitian yang aan dilauan meruju epada beberapa penelitian terdahulu yang sudah pernah dilauan sebelumnya, diantaranya: 1. I Gst. Bgs. Wisuana (2009)

Lebih terperinci

PENYELESAIAN PERSAMAAN LOTKA-VOLTERRA DENGAN METODE TRANSFORMASI DIFERENSIAL. Sutriani Hidri. Ja faruddin. Syafruddin Side, ABSTRAK

PENYELESAIAN PERSAMAAN LOTKA-VOLTERRA DENGAN METODE TRANSFORMASI DIFERENSIAL. Sutriani Hidri. Ja faruddin. Syafruddin Side, ABSTRAK PENYELESAIAN PERSAMAAN LOTKA-VOLTERRA DENGAN METODE TRANSFORMASI DIFERENSIAL Syafruddin Side, Jurusan Matematia, FMIPA, Universitas Negeri Maassar email:[email protected] Info: Jurnal MSA Vol. 3

Lebih terperinci

PENCARIAN JALUR TERPENDEK MENGGUNAKAN ALGORITMA SEMUT

PENCARIAN JALUR TERPENDEK MENGGUNAKAN ALGORITMA SEMUT Seminar Nasional Apliasi Tenologi Informasi 2007 (SNATI 2007) ISSN: 1907-5022 Yogyaarta, 16 Juni 2007 PENCARIAN JALUR TERPENDEK MENGGUNAKAN ALGORITMA SEMUT I ing Mutahiroh, Indrato, Taufiq Hidayat Laboratorium

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar belakang

BAB 1 PENDAHULUAN. 1.1 Latar belakang BAB PENDAHULUAN. Latar belaang Metode analisis yang telah dibicaraan hingga searang adalah analisis terhadap data mengenai sebuah arateristi atau atribut (jia data itu ualitatif) dan mengenai sebuah variabel,

Lebih terperinci

Aplikasi diagonalisasi matriks pada rantai Markov

Aplikasi diagonalisasi matriks pada rantai Markov J. Sains Dasar 2014 3(1) 20-24 Apliasi diagonalisasi matris pada rantai Marov (Application of matrix diagonalization on Marov chain) Bidayatul hidayah, Rahayu Budhiyati V., dan Putriaji Hendiawati Jurusan

Lebih terperinci

MODEL SISTEM ANTRIAN

MODEL SISTEM ANTRIAN BB V MODEL SISTEM TRI ada teori antrian, suatu model antrian digunaan untu memperiraan suatu situasi antrian sesungguhnya, sehingga elauan antrian dapat dianalisa secara matemati. Dengan model sistem antrian

Lebih terperinci

PEBANDINGAN METODE ROBUST MCD-LMS, MCD-LTS, MVE-LMS, DAN MVE-LTS DALAM ANALISIS REGRESI KOMPONEN UTAMA

PEBANDINGAN METODE ROBUST MCD-LMS, MCD-LTS, MVE-LMS, DAN MVE-LTS DALAM ANALISIS REGRESI KOMPONEN UTAMA PEBANDINGAN METODE ROBUST MCD-LMS, MCD-LTS, MVE-LMS, DAN MVE-LTS DALAM ANALISIS REGRESI KOMPONEN UTAMA Sear Wulandari, Nur Salam, dan Dewi Anggraini Program Studi Matematia Universitas Lambung Mangurat

Lebih terperinci

BAB III METODE SCHNABEL

BAB III METODE SCHNABEL BAB III METODE SCHNABEL Uuran populasi tertutup dapat diperiraan dengan teni Capture Mar Release Recapture (CMRR) yaitu menangap dan menandai individu yang diambil pada pengambilan sampel pertama, melepasan

Lebih terperinci

BAB IV PERHITUNGAN HARGA PREMI BERDASARKAN FUNGSI PERMINTAAN PADA TITIK KESETIMBANGAN

BAB IV PERHITUNGAN HARGA PREMI BERDASARKAN FUNGSI PERMINTAAN PADA TITIK KESETIMBANGAN BAB IV PERHITUNGAN HARGA PREMI BERDASARKAN FUNGSI PERMINTAAN PADA TITIK KESETIMBANGAN Berdasaran asumsi batasan interval pada bab III, untu simulasi perhitungan harga premi pada titi esetimbangan, maa

Lebih terperinci

PENERAPAN DYNAMIC PROGRAMMING DALAM WORD WRAP Wafdan Musa Nursakti ( )

PENERAPAN DYNAMIC PROGRAMMING DALAM WORD WRAP Wafdan Musa Nursakti ( ) PENERAPAN DYNAMIC PROGRAMMING DALAM WORD WRAP Wafdan Musa Nursati (13507065) Program Studi Teni Informatia, Seolah Teni Eletro dan Informatia, Institut Tenologi Bandung Jalan Ganesha No. 10 Bandung, 40132

Lebih terperinci

Sistem Pendukung Keputusan Penerima Beasiswa SMK Menggunakan Metode Backpropagation

Sistem Pendukung Keputusan Penerima Beasiswa SMK Menggunakan Metode Backpropagation Seminar Nasional e 9: Reayasa Tenologi Industri dan Informasi Sistem Penduung Keputusan Penerima Beasiswa SMK Menggunaan Metode Bacpropagation Teti Rohaeti 1, Yoyon Kusnendar Suprapto 2, Eo Mulyanto 3

Lebih terperinci

PENDAHULUAN TINJAUAN PUSTAKA

PENDAHULUAN TINJAUAN PUSTAKA 1 Latar Belaang PENDAHULUAN Sistem biometri adalah suatu sistem pengenalan pola yang melauan identifiasi personal dengan menentuan eotentian dari arateristi fisiologis dari perilau tertentu yang dimilii

Lebih terperinci

Makalah Seminar Tugas Akhir

Makalah Seminar Tugas Akhir Maalah Seminar ugas Ahir Simulasi Penapisan Kalman Dengan Kendala Persamaan Keadaan Pada Kasus Penelusuran Posisi Kendaraan (Vehicle racing Problem Iput Kasiyanto [], Budi Setiyono, S., M. [], Darjat,

Lebih terperinci

III DESKRIPSI DAN FORMULASI MASALAH PENGANGKUTAN SAMPAH DI JAKARTA PUSAT

III DESKRIPSI DAN FORMULASI MASALAH PENGANGKUTAN SAMPAH DI JAKARTA PUSAT III DESKRIPSI DAN FORMULASI MASALAH PENGANGKUTAN SAMPAH DI JAKARTA PUSAT 3.1 Studi Literatur tentang Pengelolaan Sampah di Beberapa Kota di Dunia Kaian ilmiah dengan metode riset operasi tentang masalah

Lebih terperinci

Penempatan Optimal Phasor Measurement Unit (PMU) dengan Integer Programming

Penempatan Optimal Phasor Measurement Unit (PMU) dengan Integer Programming JURAL TEKIK POMITS Vol. 2, o. 2, (2013) ISS: 2337-3539 (2301-9271 Print) B-137 Penempatan Optimal Phasor Measurement Unit (PMU) dengan Integer Programming Yunan Helmy Amrulloh, Rony Seto Wibowo, dan Sjamsjul

Lebih terperinci

PEMANFAATAN METODE HEURISTIK DALAM PENCARIAN JALUR TERPENDEK DENGAN ALGORITMA SEMUT DAN ALGORITMA GENETIKA

PEMANFAATAN METODE HEURISTIK DALAM PENCARIAN JALUR TERPENDEK DENGAN ALGORITMA SEMUT DAN ALGORITMA GENETIKA PEMANFAATAN METODE HEURISTIK DALAM PENCARIAN JALUR TERPENDEK DENGAN ALGORITMA SEMUT DAN ALGORITMA GENETIKA Iing Mutahiroh, Fajar Saptono, Nur Hasanah, Romi Wiryadinata Laboratorium Pemrograman dan Informatia

Lebih terperinci

PENYELESAIAN PERSAMAAN LOTKA-VOLTERRA DENGAN METODE TRANSFORMASI DIFERENSIAL SUTRIANI HIDRI

PENYELESAIAN PERSAMAAN LOTKA-VOLTERRA DENGAN METODE TRANSFORMASI DIFERENSIAL SUTRIANI HIDRI PENYELESAIAN PERSAMAAN LOTKA-VOLTERRA DENGAN METODE TRANSFORMASI DIFERENSIAL SUTRIANI HIDRI Jurusan Matematia, FMIPA, Universitas Negeri Maassar Email: [email protected] Abstra. Pada artiel ini dibahas

Lebih terperinci

Pengaruh Proses Stemming Pada Kinerja Analisa Sentimen Pada Review Buku

Pengaruh Proses Stemming Pada Kinerja Analisa Sentimen Pada Review Buku Jurnal Hasil Penelitian LPPM Untag Surabaya Januari 2018, Vol. 03, No. 01, hal 55-59 jurnal.untag-sby.ac.id/index.php/jhp17 E-ISSN : 2502-8308 P-ISSN : 2579-7980 Pengaruh Proses Stemming Pada Kinerja Analisa

Lebih terperinci

Deret Pangkat. Ayundyah Kesumawati. June 23, Prodi Statistika FMIPA-UII

Deret Pangkat. Ayundyah Kesumawati. June 23, Prodi Statistika FMIPA-UII Keonvergenan Kesumawati Prodi Statistia FMIPA-UII June 23, 2015 Keonvergenan Pendahuluan Kalau sebelumnya, suu suu pada deret ta berujung berupa bilangan real maa ali ini ita embangan suu suunya dalam

Lebih terperinci

Peluang Peningkatan Tipe Terminal di Kecamatan Banyumaik (Analisis Demand dan Supply) Febriana Ayu K¹ dan Bitta Pigawati²

Peluang Peningkatan Tipe Terminal di Kecamatan Banyumaik (Analisis Demand dan Supply) Febriana Ayu K¹ dan Bitta Pigawati² Jurnal Teni PWK Volume 4 Nomor 4 2015 Online : http://ejournal-s1.undip.ac.id/index.php/pw Peluang Peningatan Tipe di Kecamatan Banyumai (Analisis Demand dan Supply) Febriana Ayu K¹ dan Bitta Pigawati²

Lebih terperinci

Estimasi Konsentrasi Polutan Sungai Menggunakan Metode Reduksi Kalman Filter dengan Pendekatan Elemen Hingga

Estimasi Konsentrasi Polutan Sungai Menggunakan Metode Reduksi Kalman Filter dengan Pendekatan Elemen Hingga JURNAL SAINS DAN SENI POMITS ol. 2, No.1, (2013) 2337-3520 (2301-928X Print) 1 Estimasi Konsentrasi Polutan Sungai Menggunaan Metode Redusi Kalman Filter dengan Pendeatan Elemen Hingga Muyasaroh, Kamiran,

Lebih terperinci

Aplikasi Analisis Korelasi Somers d pada Kepemimpinan dan Kondisi Lingkungan Kerja

Aplikasi Analisis Korelasi Somers d pada Kepemimpinan dan Kondisi Lingkungan Kerja Apliasi Analisis Korelasi Somers d pada Kepemimpinan dan Kondisi Lingungan Kerja terhadap Kinerja Pegawai BKKBN Provinsi Kalimantan Timur The Application of Somers d Correlation Analysis at Leadership

Lebih terperinci

PENGUKURAN PENDAPATAN NASIONAL

PENGUKURAN PENDAPATAN NASIONAL PENGUKURAN PENDAPATAN NASIONAL A. PENDEKATAN PRODUKSI (PRODUCTION APPROACH) Menghitung besarnya pendapatan nasional dengan menggunaan pendeatan produsi didasaran atas perhitungan dari jumlah nilai barang-barang

Lebih terperinci

BAB III LANGKAH PEMECAHAN MASALAH. Dari hasil penelitian yang dilakukan pada perusahaan PITSTOP Autowash

BAB III LANGKAH PEMECAHAN MASALAH. Dari hasil penelitian yang dilakukan pada perusahaan PITSTOP Autowash BAB III LANGKAH PEMECAHAN MASALAH 3.1 Penetapan Kriteria Optimasi Dari hasil penelitian yang dilakukan pada perusahaan PITSTOP Autowash & SPA pada saat ini perusahaan PITSTOP Autowash & SPA memiliki 1

Lebih terperinci

PREDIKSI HARGA SAHAM MENGGUNAKAN JARINGAN SYARAF TIRUAN MULTILAYER FEEDFORWARD NETWORK DENGAN ALGORITMA BACKPROPAGATION

PREDIKSI HARGA SAHAM MENGGUNAKAN JARINGAN SYARAF TIRUAN MULTILAYER FEEDFORWARD NETWORK DENGAN ALGORITMA BACKPROPAGATION Konferensi Nasional Sistem dan Informatia 2008; Bali, November 5, 2008 PREDIKSI HARGA SAHAM MENGGUNAKAN JARINGAN SYARAF TIRUAN MULTILAYER FEEDFORWARD NETWORK DENGAN ALGORITMA BACKPROPAGATION Wahyudi Setiawan

Lebih terperinci

Keragaman Struktur Tegakan Hutan Alam Sekunder The Variability of Stand Structure of Logged-over Natural Forest

Keragaman Struktur Tegakan Hutan Alam Sekunder The Variability of Stand Structure of Logged-over Natural Forest JMHT Vol. XIV, (2): 81-87, Agustus 28 ISSN: 215-157X Keragaman Strutur Tegaan Hutan Alam Seunder The Variability of Stand Structure of Logged-over Natural Forest Abstract Muhdin 1*, Endang Suhendang 1,

Lebih terperinci

BAB III PENENTUAN HARGA PREMI, FUNGSI PERMINTAAN, DAN TITIK KESETIMBANGANNYA

BAB III PENENTUAN HARGA PREMI, FUNGSI PERMINTAAN, DAN TITIK KESETIMBANGANNYA BAB III PENENTUAN HARGA PREMI, FUNGSI PERMINTAAN, DAN TITIK KESETIMBANGANNYA Pada penelitian ini, suatu portfolio memilii seumlah elas risio. Tiap elas terdiri dari n, =,, peserta dengan umlah besar, dan

Lebih terperinci

ALGORITMA GENETKA PADA MULTI DEPOT VEHICLE ROUTING PROBLEM (MDVRP)

ALGORITMA GENETKA PADA MULTI DEPOT VEHICLE ROUTING PROBLEM (MDVRP) ALGORITMA GENETKA PADA MULTI DEPOT VEHICLE ROUTING PROBLEM (MDVRP) Igusta Wibis Vidi Abar Purwanto 2 FMIPA Universitas Negeri Malang E-mail: [email protected] Abstra: Multi Depot Vehicle Routing

Lebih terperinci

ANALISIS VARIANSI (ANOVA)

ANALISIS VARIANSI (ANOVA) ANALISIS VARIANSI (ANOVA) ANOVA = Analisis Varians (Anava) = Analisis Ragam = Sidi Ragam Diperenalan oleh R.A. Fisher (195) disebut uji F pengembangan dari uji t dua sampel bebas (independent samples t

Lebih terperinci

III. METODOLOGI PENELITIAN

III. METODOLOGI PENELITIAN III. METODOLOGI PENELITIAN 3.1 Keranga Pemiiran Pemerintah ahir-ahir ini sering dihadapan pada masalah persediaan pupu bersubsidi yang daya serapnya rendah dan asus elangaan di berbagai loasi di Indonesia.

Lebih terperinci

( s) PENDAHULUAN tersebut, fungsi intensitas (lokal) LANDASAN TEORI Ruang Contoh, Kejadian dan Peluang

( s) PENDAHULUAN tersebut, fungsi intensitas (lokal) LANDASAN TEORI Ruang Contoh, Kejadian dan Peluang Latar Belaang Terdapat banya permasalahan atau ejadian dalam ehidupan sehari hari yang dapat dimodelan dengan suatu proses stoasti Proses stoasti merupaan permasalahan yang beraitan dengan suatu aturan-aturan

Lebih terperinci

Modifikasi ACO untuk Penentuan Rute Terpendek ke Kabupaten/Kota di Jawa

Modifikasi ACO untuk Penentuan Rute Terpendek ke Kabupaten/Kota di Jawa 187 Modifiasi ACO untu Penentuan Rute Terpende e Kabupaten/Kota di Jawa Ahmad Jufri, Sunaryo, dan Purnomo Budi Santoso Abstract This research focused on modification ACO algorithm. The purpose of this

Lebih terperinci

BAB IV PENGUMPULAN DAN PENGOLAHAN DATA

BAB IV PENGUMPULAN DAN PENGOLAHAN DATA BAB IV PENGUMPULAN DAN PENGOLAHAN DATA 4.1 Pengumpulan Data 4.1.1 Kinerja Sistem Antrian Pada supermarket saga swalayan Padang Pariaman Sumatera Barat terdapat 7 kasir yang bertugas melayani para konsumen

Lebih terperinci

BAB II LANDASAN TEORI. Graf adalah kumpulan simpul (nodes) yang dihubungkan satu sama lain

BAB II LANDASAN TEORI. Graf adalah kumpulan simpul (nodes) yang dihubungkan satu sama lain 8 BAB II LANDASAN TEORI 2.1 Teori Graf 2.1.1 Definisi Graf Graf adalah umpulan simpul (nodes) yang dihubungan satu sama lain melalui sisi/busur (edges) (Zaaria, 2006). Suatu Graf G terdiri dari dua himpunan

Lebih terperinci

PEMODELAN OPTIMALISASI PRODUKSI UNTUK MEMAKSIMALKAN KEUNTUNGAN DENGAN MENGGUNAKAN METODE PEMROGRAMAN LINIER

PEMODELAN OPTIMALISASI PRODUKSI UNTUK MEMAKSIMALKAN KEUNTUNGAN DENGAN MENGGUNAKAN METODE PEMROGRAMAN LINIER PEMODELAN OPTIMALISASI PRODUKSI UNTUK MEMAKSIMALKAN KEUNTUNGAN DENGAN MENGGUNAKAN METODE PEMROGRAMAN LINIER Tantri Windarti Program Studi Sistem Informasi STMIK Surabaya Jl Raya Kedung Baru 98, Surabaya

Lebih terperinci

PENGARUH PELAYANAN TERHADAP KEPUASAN TERHADAP KEPUASAN NASABAH UNIT MOTOR S CENTRE FINANCING PLAZA MOTOR DI SAMARINDA

PENGARUH PELAYANAN TERHADAP KEPUASAN TERHADAP KEPUASAN NASABAH UNIT MOTOR S CENTRE FINANCING PLAZA MOTOR DI SAMARINDA PENGARUH PELAYANAN TERHADAP KEPUASAN TERHADAP KEPUASAN NASABAH UNIT MOTOR S CENTRE FINANCING PLAZA MOTOR DI SAMARINDA Adam Husaien Faultas Eonomi Manajemen Unversitas 17 agustus 1945,Samarinda Indonesia

Lebih terperinci

BAB III ANALISIS DISKRIMINAN. analisis multivariat dengan metode dependensi (dimana hubungan antar variabel

BAB III ANALISIS DISKRIMINAN. analisis multivariat dengan metode dependensi (dimana hubungan antar variabel BAB III ANALISIS DISKRIMINAN 3.1 Pengertian Analisis Disriminan Analisis disriminan merupaan sala satu metode yang digunaan dalam analisis multivariat dengan metode dependensi (dimana ubungan antar variabel

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Teori Fuzzy 2.1.1 Dasar-Dasar Teori Fuzzy Secara prinsip, di dalam teori fuzzy set dapat dianggap sebagai estension dari teori onvensional atau crisp set. Di dalam teori crisp

Lebih terperinci

BAB III MODEL KANAL WIRELESS

BAB III MODEL KANAL WIRELESS BAB III MODEL KANAL WIRELESS Pemahaman mengenai anal wireless merupaan bagian poo dari pemahaman tentang operasi, desain dan analisis dari setiap sistem wireless secara eseluruhan, seperti pada sistem

Lebih terperinci

Uji Alternatif Data Terurut Perbandingan antara Uji Jonckheere Terpstra dan Modifikasinya Ridha Ferdhiana 1 Statistics Peer Group

Uji Alternatif Data Terurut Perbandingan antara Uji Jonckheere Terpstra dan Modifikasinya Ridha Ferdhiana 1 Statistics Peer Group Uji Alternatif Data Terurut Perbandingan antara Uji Joncheere Terpstra dan Modifiasinya Ridha Ferdhiana Statistics Peer Group Jurusan Matematia FMIPA Universitas Syiah Kuala Banda Aceh, Aceh, 23 email:

Lebih terperinci

UJI BARTLETT. Elty Sarvia, ST., MT. Fakultas Teknik Jurusan Teknik Industri Universitas Kristen Maranatha Bandung. Scheffe Multiple Contrast Procedure

UJI BARTLETT. Elty Sarvia, ST., MT. Fakultas Teknik Jurusan Teknik Industri Universitas Kristen Maranatha Bandung. Scheffe Multiple Contrast Procedure 8/9/01 UJI TUKEY UJI DUNCAN UJI BARTLETT UJI COCHRAN UJI DUNNET Elty Sarvia, ST., MT. Faultas Teni Jurusan Teni Industri Universitas Kristen Maranatha Bandung Macam Metode Post Hoc Analysis The Fisher

Lebih terperinci

Materi. Menggambar Garis. Menggambar Garis 9/26/2008. Menggambar garis Algoritma DDA Algoritma Bressenham

Materi. Menggambar Garis. Menggambar Garis 9/26/2008. Menggambar garis Algoritma DDA Algoritma Bressenham Materi IF37325P - Grafia Komputer Geometri Primitive Menggambar garis Irfan Malii Jurusan Teni Informatia FTIK - UNIKOM IF27325P Grafia Komputer 2008 IF27325P Grafia Komputer 2008 Halaman 2 Garis adalah

Lebih terperinci

HUBUNGAN PENERAPAN KAWASAN TANPA ROKOK (KTR) DENGAN PERILAKU MEROKOK MAHASISWA KESEHATAN MASYARAKAT DI KOTA SEMARANG

HUBUNGAN PENERAPAN KAWASAN TANPA ROKOK (KTR) DENGAN PERILAKU MEROKOK MAHASISWA KESEHATAN MASYARAKAT DI KOTA SEMARANG Volume, Nomor, Juli 6 (ISSN: 56-6) HUBUNGAN PENERAPAN KAWASAN TANPA ROKOK (KTR) DENGAN PERILAKU MEROKOK MAHASISWA KESEHATAN MASYARAKAT DI KOTA SEMARANG Firnanda Zia Azmi *) Tinu Istiarti **) Kusyogo Cahyo

Lebih terperinci

BAB V SIMPULAN DAN SARAN

BAB V SIMPULAN DAN SARAN BAB V SIMPULAN DAN SARAN A. Simpulan Berdasarkan pengamatan dan penelitian yang penulis lakukan di PT Plaza Toyota Green Garden dapat disimpulkan kebijakan pengelolaan antrian pelanggan secara kualitatif

Lebih terperinci

VI. PEMILIHAN MODA (Modal Split/Choice)

VI. PEMILIHAN MODA (Modal Split/Choice) VI. PEMILIHAN MODA (Modal Split/Choice) 6.. UMUM Tujuan: Mengetahui proporsi pengaloasian perjalanan e berbagai moda transportasi. Ada dua emunginan situasi yang dihadapi dalam meramal pemilihan moda:

Lebih terperinci

khazanah Sistem Klasifikasi Tipe Kepribadian dan Penerimaan Teman Sebaya Menggunakan Jaringan Syaraf Tiruan Backpropagation informatika

khazanah Sistem Klasifikasi Tipe Kepribadian dan Penerimaan Teman Sebaya Menggunakan Jaringan Syaraf Tiruan Backpropagation informatika hazanah informatia Jurnal Ilmu Komputer dan Informatia Sistem Klasifiasi Tipe Kepribadian dan Penerimaan Teman Sebaya Menggunaan Jaringan Syaraf Tiruan Bacpropagation Yusuf Dwi Santoso *, Suhartono Departemen

Lebih terperinci

khazanah Sistem Klasifikasi Tipe Kepribadian dan Penerimaan Teman Sebaya Menggunakan Jaringan Syaraf Tiruan Backpropagation informatika

khazanah Sistem Klasifikasi Tipe Kepribadian dan Penerimaan Teman Sebaya Menggunakan Jaringan Syaraf Tiruan Backpropagation informatika hazanah informatia Jurnal Ilmu Komputer dan Informatia Sistem Klasifiasi Tipe Kepribadian dan Penerimaan Teman Sebaya Menggunaan Jaringan Syaraf Tiruan Bacpropagation Yusuf Dwi Santoso *, Suhartono Program

Lebih terperinci

KONTROL MOTOR PID DENGAN KOEFISIEN ADAPTIF MENGGUNAKAN ALGORITMA SIMULTANEOUS PERTURBATION

KONTROL MOTOR PID DENGAN KOEFISIEN ADAPTIF MENGGUNAKAN ALGORITMA SIMULTANEOUS PERTURBATION Konferensi Nasional Sistem dan Informatia 29; Bali, November 14, 29 KONTROL MOTOR PID DENGAN KOEFISIEN ADAPTIF MENGGUNAKAN ALGORITMA SIMULTANEOUS PERTURBATION Sofyan Tan, Lie Hian Universitas Pelita Harapan,

Lebih terperinci

STANDAR PELAYANAN MINIMAL PADA RUAS JALAN TOL BELMERA (STUDI KASUS: RUAS JALAN TOL TANJUNG MORAWA-BELAWAN)

STANDAR PELAYANAN MINIMAL PADA RUAS JALAN TOL BELMERA (STUDI KASUS: RUAS JALAN TOL TANJUNG MORAWA-BELAWAN) STANDAR PELAYANAN MINIMAL PADA RUAS JALAN TOL BELMERA (STUDI KASUS: RUAS JALAN TOL TANJUNG MORAWA-BELAWAN) Oloan Sitohang Dosen Program Studi Teni Sipil, Universitas Katoli Santo Thomas SU, Jl.Setia Budi

Lebih terperinci

ANALISIS KEPUASAN KONSUMEN TERHADAP PELAYANAN PELAYANAN JASA PENGIRIMAN PAKET (KURIR) DENGAN MENGGUNAKAN METODE TOPSIS FUZZY

ANALISIS KEPUASAN KONSUMEN TERHADAP PELAYANAN PELAYANAN JASA PENGIRIMAN PAKET (KURIR) DENGAN MENGGUNAKAN METODE TOPSIS FUZZY Jurnal Manti Penusa Vol No Desember ISSN 88-9 ANALISIS EPUASAN ONSUMEN TERHADAP PELAYANAN PELAYANAN JASA PENGIRIMAN PAET (URIR DENGAN MENGGUNAAN METODE TOPSIS FUZZY Desi Vinsensia Program Studi Teni Informatia

Lebih terperinci

Kata Kunci : Multipath, LOS, N-LOS, Network Analyzer, IFFT, PDP. 1. Pendahuluan

Kata Kunci : Multipath, LOS, N-LOS, Network Analyzer, IFFT, PDP. 1. Pendahuluan Statisti Respon Kanal Radio Dalam Ruang Pada Freuensi,6 GHz Christophorus Triaji I, Gamantyo Hendrantoro, Puji Handayani Institut Tenologi Sepuluh opember, Faultas Tenologi Industri, Jurusan Teni Eletro

Lebih terperinci

4. 1 Spesifikasi Keadaan dari Sebuah Sistem

4. 1 Spesifikasi Keadaan dari Sebuah Sistem Dalam pembahasan terdahulu ita telah mempelajari penerapan onsep dasar probabilitas untu menggambaran sistem dengan jumlah partiel ang cuup besar (N). Pada bab ini, ita aan menggabungan antara statisti

Lebih terperinci

AKURASI MODEL PREDIKSI METODE BACKPROPAGATION MENGGUNAKAN KOMBINASI HIDDEN NEURON DENGAN ALPHA

AKURASI MODEL PREDIKSI METODE BACKPROPAGATION MENGGUNAKAN KOMBINASI HIDDEN NEURON DENGAN ALPHA AKURASI MODEL PREDIKSI METODE BACKPROPAGATION MENGGUNAKAN KOMBINASI HIDDEN NEURON DENGAN ALPHA Aris Puji Widodo, Suhartono 2, Eo Adi Sarwoo 3, dan Zulfia Firdaus 4,2,3,4 Departemen Ilmu Komputer/Informatia,

Lebih terperinci

SATUAN ACARA PERKULIAHAN ( SAP )

SATUAN ACARA PERKULIAHAN ( SAP ) SATUAN ACARA PERKULIAHAN ( SAP ) Mata Kuliah : Pengolahan Citra Digital Kode : IES 6323 Semester : VI Watu : 1x 3x 50 Menit Pertemuan : 7 A. Kompetensi 1. Utama Mahasiswa dapat memahami tentang sistem

Lebih terperinci

TEORI ANTRIAN PERTEMUAN #10 TKT TAUFIQUR RACHMAN PENGANTAR TEKNIK INDUSTRI

TEORI ANTRIAN PERTEMUAN #10 TKT TAUFIQUR RACHMAN PENGANTAR TEKNIK INDUSTRI TEORI ANTRIAN PERTEMUAN #10 TKT101 PENGANTAR TEKNIK INDUSTRI 6623 TAUFIQUR RACHMAN PROGRAM STUDI TEKNIK INDUSTRI FAKULTAS TEKNIK UNIVERSITAS ESA UNGGUL KEMAMPUAN AKHIR YANG DIHARAPKAN Mampu membandingkan

Lebih terperinci

TEORI KINETIKA REAKSI KIMIA

TEORI KINETIKA REAKSI KIMIA TORI KINTIK RKSI KII da (dua) pendeatan teoreti untu menjelasan ecepatan reasi, yaitu: () Teori tumbuan (collision theory) () Teori eadaan transisi (transition-state theory) atau teori omples atif atau

Lebih terperinci

BAB III METODE PENELITIAN A. Waktu dan Tempat Penelitian Penelitian dilakukan di Kantor Penjualan Senayan City PT Garuda Indonesia (Persero) Tbk yang berlokasi di Senayan City, Jakarta. Penelitian dilakukan

Lebih terperinci

Estimasi Inflasi Wilayah Kerja KPwBI Malang Menggunakan ARIMA-Filter Kalman dan VAR-Filter Kalman

Estimasi Inflasi Wilayah Kerja KPwBI Malang Menggunakan ARIMA-Filter Kalman dan VAR-Filter Kalman JURNAL SAINS DAN SENI ITS Vol. 5, No.1, (16) 337-35 (31-98X Print) A-1 Estimasi Inflasi Wilayah Kerja KPwBI Malang Menggunaan ARIMA-Filter Kalman dan VAR-Filter Kalman Popy Febritasari, Erna Apriliani

Lebih terperinci

PENERAPAN FUZZY GOAL PROGRAMMING DALAM PENENTUAN INVESTASI BANK

PENERAPAN FUZZY GOAL PROGRAMMING DALAM PENENTUAN INVESTASI BANK PENERAPAN FUZZY GOAL PROGRAMMING DALAM PENENTUAN INVESTASI BANK Nurul Khotimah *), Farida Hanum, Toni Bahtiar Departemen Matematia FMIPA, Institut Pertanian Bogor Jl. Meranti, Kampus IPB Darmaga, Bogor

Lebih terperinci

HUBUNGAN SIKAP DENGAN PRAKTIK PERAWATAN BAYI SEHARI-HARI PADA IBU PRIMIPARA DI WILAYAH KERJA PUSKESMAS NGAMPEL PABUPATEN KENDAL ABSTRAK

HUBUNGAN SIKAP DENGAN PRAKTIK PERAWATAN BAYI SEHARI-HARI PADA IBU PRIMIPARA DI WILAYAH KERJA PUSKESMAS NGAMPEL PABUPATEN KENDAL ABSTRAK HUBUNGAN SIKAP DENGAN PRAKTIK PERAWATAN BAYI SEHARI-HARI PADA IBU PRIMIPARA DI WILAYAH KERJA PUSKESMAS NGAMPEL PABUPATEN KENDAL Afifah *), Indri Subeti **) *) Mahasiswa Abid Unisa **)Dosen Abid Unisa ABSTRAK

Lebih terperinci

Simulasi Antrian Jaringan Multi Server Menggunakan Metode Open Jackson

Simulasi Antrian Jaringan Multi Server Menggunakan Metode Open Jackson IJCCS, Vol.7, No.2, July 2013, pp. 177~188 ISSN: 1978-1520 177 Simulasi Antrian Jaringan Multi Server Menggunaan Metode Open Jacson I Wan Supriana* 1, Subanar 2 1 Jurusan Ilmu Komputer, FMIPA UNUD, Denpasar

Lebih terperinci

Makalah Seminar Tugas Akhir

Makalah Seminar Tugas Akhir Maalah Seminar Tugas Ahir PENDETEKSI POSISI MENGGUNAKAN SENSOR ACCELEROMETER MMA7260Q BERBASIS MIKROKONTROLER ATMEGA 32 Muhammad Riyadi Wahyudi, ST., MT. Iwan Setiawan, ST., MT. Abstract Currently, determining

Lebih terperinci

SISTEM ADAPTIF PREDIKSI PENGENALAN ISYARAT VOKAL SUARA KARAKTER. Abstrak

SISTEM ADAPTIF PREDIKSI PENGENALAN ISYARAT VOKAL SUARA KARAKTER. Abstrak SISTEM ADAPTIF PREDIKSI PENGENALAN ISYARAT VOKAL SUARA KARAKTER Oleh : Pandapotan Siagia, ST, M.Eng (Dosen tetap STIKOM Dinamia Bangsa Jambi) Abstra Sistem pengenal pola suara atau yang lebih dienal dengan

Lebih terperinci

JARINGAN SARAF TIRUAN PROPAGASI BALIK UNTUK KLASIFIKASI DATA

JARINGAN SARAF TIRUAN PROPAGASI BALIK UNTUK KLASIFIKASI DATA JARINGAN SARAF TIRUAN PROPAGASI BALIK UNTUK KLASIFIKASI DATA Giri Dhaneswara 1) dan Veronica S. Moertini 2) Jurusan Ilmu Komputer, Universitas Katoli Parahyangan, Bandung Email: 1) [email protected],

Lebih terperinci

PENERAPAN METODE FUZZY MULTI CRITERIA DECISION MAKING PADA SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN SMARTPHONE

PENERAPAN METODE FUZZY MULTI CRITERIA DECISION MAKING PADA SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN SMARTPHONE PENERAPAN METODE FUZZY MULTI CRITERIA DECISION MAKING PADA SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN SMARTPHONE Novhirtamely Kahar 1, Rii 2 12 Program Studi Teni Informatia, STMIK Nurdin Hamzah, Jambi ` E-mail:

Lebih terperinci

BAB III METODE PENELITIAN (BAHAN DAN METODE)

BAB III METODE PENELITIAN (BAHAN DAN METODE) BAB III METODE PENELITIAN (BAHAN DAN METODE) Tahapan-tahapan pengerjaan yang dilauan dalam penelitian ini adalah sebagai beriut : 1. Tahap Persiapan Penelitian Pada tahapan ini aan dilauan studi literatur

Lebih terperinci

Teori Antrian. Riset Operasi TIP FTP UB Mas ud Effendi

Teori Antrian. Riset Operasi TIP FTP UB Mas ud Effendi Teori Antrian Riset Operasi TIP FTP UB Mas ud Effendi Bentuk Umum Teori Antrian Pelayanan Tunggal Pelayanan Multipel Pendahuluan Banyak waktu dihabiskan untuk menunggu oleh manusia, produk, dll Penyediaan

Lebih terperinci

IDENTIFIKASI PERUBAHAN POLA CURAH HUJAN MELALUI PERIODOGRAM STANDAR. Gumgum Darmawan Statistika FMIPA UNPAD

IDENTIFIKASI PERUBAHAN POLA CURAH HUJAN MELALUI PERIODOGRAM STANDAR. Gumgum Darmawan Statistika FMIPA UNPAD JMP : Vol. 9 No. 1, Juni 17, hal. 13-11 ISSN 85-1456 IDENTIFIKASI PERUBAHAN POLA CURAH HUJAN MELALUI PERIODOGRAM STANDAR Gumgum Darmawan Statistia FMIPA UNPAD [email protected] Budhi Handoo Statistia

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN Bab ini menjelaskan tentang tahapan penelitian serta penentuan variabel. Diharapkan bab ini dapat memberikan gambaran bagaimana penelitian ini dilakukan dalam upaya untuk memecahkan

Lebih terperinci

BAB III METODE PENELITIAN. Jl. Panjang No.25 Jakarta Barat. Penelitian dilakukan selama 2 Minggu, yaitu

BAB III METODE PENELITIAN. Jl. Panjang No.25 Jakarta Barat. Penelitian dilakukan selama 2 Minggu, yaitu BAB III METODE PENELITIAN A. Waktu Dan Tempat Penelitian Penelitian dilakukan di PT Plaza Toyota Green Garden yang berlokasi di Jl. Panjang No.25 Jakarta Barat. Penelitian dilakukan selama 2 Minggu, yaitu

Lebih terperinci

3. Sebaran Peluang Diskrit

3. Sebaran Peluang Diskrit 3. Sebaran Peluang Disrit EL2002-Probabilitas dan Statisti Dosen: Andriyan B. Susmono Isi 1. Sebaran seragam (uniform) 2. Sebaran binomial dan multinomial 3. Sebaran hipergeometri 4. Sebaran Poisson 5.

Lebih terperinci