SATUAN ACARA PERKULIAHAN ( SAP )
|
|
|
- Yohanes Kusuma
- 8 tahun lalu
- Tontonan:
Transkripsi
1 SATUAN ACARA PERKULIAHAN ( SAP ) Mata Kuliah : Pengolahan Citra Digital Kode : IES 6323 Semester : VI Watu : 1x 3x 50 Menit Pertemuan : 7 A. Kompetensi 1. Utama Mahasiswa dapat memahami tentang sistem pengolahan citra digital dan hal yang terait secara umum. 2. Penduung Mahasiswa dapat memahami citra dan pengolahannya hususnya operasi-operasi untu meningatan mutu citra, sehingga lebih mudah diinterpretasian oleh mata manusia. B. Poo Bahasan Perbaian ualitas citra (Image Enhancement) C. Sub Poo Bahasan Lingup proses perbaian ualitas citra Histogram Citra Pengolahan Citra Digital/ Minarni, S. Si., MT 67
2 D. Kegiatan Belajar Mengajar Tahapan Kegiatan Pengajaran Kegiatan Pendahuluan 1. Mereview materi sebelumnya 2. Menjelasan materi-materi peruliahan yang aan dipelajari. Penyajian 1. Menjelasan tentang lingup proses perbaian ualitas citra 2. Menjelasan histogram citra Penutup 1. Mengajuan pertanyaan epada mahasiswa. 2. Memberian esimpulan. 3. Mengingatan aan ewajiban mahasiswa untu pertemuan selanjutnya. Kegiatan Mahasiswa Mendengaran dan memberian omentar Memperhatian, mencatat dan memberian omentar. Mengajuan pertanyaan. Memberian omentar. Mengajuan dan menjawab pertanyaan. Media & Alat Peraga Noteboo, LCD, Papan Tulis Noteboo, LCD, Papan Tulis Noteboo, LCD, Papan Tulis E. Evaluasi Evaluasi dilauan dengan cara memberian pertanyaan langsung dan tida langsung epada mahasiswa dan dengan memberian uis. Pengolahan Citra Digital/ Minarni, S. Si., MT 68
3 RENCANA KEGIATAN BELAJAR MINGGUAN (RKBM) Mata Kuliah : Pengolahan Citra Digital Kode : IES 6323 Semester : VI Watu : 1 x 3x 50 Menit Pertemuan : 7 Minggu Topi Metode Estimasi Media e- (Poo Bahasan) Pembelajaran Watu (Menit) Lingup Proses Perbaian Kualitas Citra 5.2 Histogram Citra Ceramah, Disusi Kelas 1 x 3 x 50 Noteboo, LCD, Papan Tulis Pengolahan Citra Digital/ Minarni, S. Si., MT 69
4 BAB 5 PERBAIKAN KUALITAS CITRA Perbaian ualitas citra (image enhancement) merupaan salah satu proses dalam pengolahan citra (image preprocessing). Perbaian ualitas diperluan arena seringali citra yang dijadian obie pembahasan mempunyai ualitas yang buru, misalnya citra mengalami derau (noise) pada saat pengiriman melalui saluran transmisi, citra terlalu terang/gelap, citra urang tajam, abur, dan sebagainya. Melalui operasi pemrosesan awal inilah ualitas citra diperbaii sehingga citra dapat digunaan untu apliasi lebih lanjut, misalnya untu apliasi pengenalan (recognition) obje di dalam citra 5.1 Lingup Proses Perbaian Kualitas Citra Yang dimasud dengan perbaian ualitas citra adalah proses mendapatan citra yang lebih mudah diinterpretasian oleh mata manusia. Pada proses ini, ciriciri tertentu yang terdapat di dalam citra lebih diperjelas emunculannya. Secara matematis, image enhancement dapat diartian sebagai proses mengubah citra f(x,y) menjadi f '(x, y) sehingga ciri-ciri yang dilihat pada f(x, y) lebih ditonjolan. Proses-proses yang termasu e dalam perbaian ualitas citra: 1. Pengubahan ecerahan gambar (image brightness) 2. Peregangan ontras (contrast stretching) 3. Pengubahan histogram citra. 4. Pelembutan citra (image smoothing) 5. Penajaman (sharpening) tepi (edge). 6. Pewarnaan semu (pseudocolouring) 7. Pengubahan geometri Pengubahan Kecerahan Gambar Untu membuat citra lebih terang atau lebih gelap dengan cara menambahan atau mengurangan sebuah onstanta epada setiap pisel di dalam citra. Seperti pada operasi aritmetia pada Bab Peregangan Kontras Pengolahan Citra Digital/ Minarni, S. Si., MT 70
5 Mengubah ontras dari suatu image dengan cara mengubah greylevel piselpisel pada citra menurut fungsi s = T(r) tertentu. r1 r2, s1 s2 r1 = r2, s1 = s2 tida ada perubahan r1 = r2, s1 = 0, s2 = 255 tresholding menjadi citra biner dengan ambang r1 Gambar 5.1 Peregangan Kontras 5.2 Histogram Citra Informasi penting mengenai isi citra digital dapat dietahui dengan membuat histogram citra. Histogram citra adalah grafi yang menggambaran penyebaran nilai-nilai intensitas pixel dari suatu citra atau bagian tertentu di dalam citra. Dari sebuah histogram dapat dietahui freuensi emunculan nisbi (relative) dari intensitas padacitra tersebut. Histogram juga dapat menunjuan banya hal tentang ecerahan (brigthness) dan ontras (contrast) dari sebuah gambar. Karena itu, histogram adalah alat bantu yang berharga dalam peerjaan pengolahan citra bai secara ualitatif maupun uantitatif. Pengolahan Citra Digital/ Minarni, S. Si., MT 71
6 Gambar 5.2 Tiga Jenis Histogram Membuat Histogram Misalan citra digital memilii L derajat eabuan, yaitu dari nilai 0 sampai L 1 (misalnya pada citra dengan uantisasi derajat eabuan 8-bit, nilai derajat abuan dari 0 sampai 225). Secara matematis histogram citra dihitung dengan rumus: n 1 =,i = 0,1,.L 1 (5.1) n h 1 Yang dalam hal ini, n1 = jumlah pixel yang memilii derajat eabuan i n = jumlah seluruh pixel di dalam citra Plot h1 versus f1 dinamaan histogram. Gambar 5.3 adalah contoh sebuah histogram citra. Secara grafis histogram ditamplan dengan diagram batang. Perhatian dari persamaan 5.1 bahwa nilai n1 telah dinormalan dengan membaginya dengan n. nilai h1 berada dalam selang 0 sampai 1. Pengolahan Citra Digital/ Minarni, S. Si., MT 72
7 Gambar 5.3 Histogram citra Sebagai contoh, misalan matris dibawah ini menyataan citra digital yang beruuran 8 x 8 pixel dengan derajat eabuan, dari 0 sampai 15 (ada 16 buah derajat eabuan): Tabel perhitungan perhitungan histogramnya ditunjuan pada Tabel 5.1. Mudah dilihat bahwa semain besar nilai n1 maa semain besar pula nilai h1. Pengolahan Citra Digital/ Minarni, S. Si., MT 73
8 Tabel 5.1 Perhitungan histogram ni hi=niln (n=6) ) , Histogram untu contoh di atas ditunjuan oleh gambar Probabilitas Series level eabuan Gambar 5.4 Histogram Histogram citra banya memberian informasi penting sebagai beriut: 1. Nilai hi menyataan peluang (probability) pixel, P(i), dengan derajat eabuan i. Jumlah seluruh nilai hi sama dengan 1, atau Pengolahan Citra Digital/ Minarni, S. Si., MT 74
9 L 1 i= 0 h i = 1 Peluang suatu pixel memilii derajat eabuan lebih ecil atau sama dengan derajat eabuan tertentu adalah jumlah hi untu 0 i j, atau j P( i j) = h, 0 j L 1 i= 0 i 2. Punca histogram menunjuan intensitas pixel yang menonjol. Lebar dan punca menunjuan rentang ontras dari gambar. Citra yang mempunyai ontras terlalu terang (overexposed) atau terlalu gelap (underexposed) milii histogram yang sempit. Histogramnya terlihat hanya menggunaan setengah dari daerah derajat eabuan. Citra yang bai memilii histogram yang mengisi daerah derajat eabuan secara penuh dengan distribusi yang rata pada setiap nilai intensitas pixel Perataan Histogram (Histogram Equalization) Perataan histogram bertujuan memperoleh penyebaran histogram yang merata, sehingga derajat eabuan memilii jumlah pisel yang relatif sama. Algoritma Perataan Histogram Langah 1. Untu citra dengan derajat eabuan tertentu, hitunglah: n Pr ( r ) =, r =, 0 L-1 n L 1 L= Total Jumlah Derajat Keabuan n= Jumlah pisel dengan derajat eabuan e- n = Total jumlah pisel dalam citra Langah 2. Berdasar CDF (Cummulative Density Function), hitung bentu disret dari transformasi: s = T ( r ) = P r, 0 L-1 j= 0 r j Contoh. Misalan terdapat citra yang beruuran 64 x 64 dengan jumlah derajat eabuan (L) = 8 dan jumlah seluruh pisel (n) = 64 x 64 = 4096 pisel, dengan distribusi pisel seperti pada Tabel 5.2. Pengolahan Citra Digital/ Minarni, S. Si., MT 75
10 Tabel 5.2 Distribusi nilai pisel Dengan histogram citra seperti pada Gambar 5.5 Jumlah Pisel Pecahan Pisel Nilai Keabuan Nilai Keabuan Ternormalisasi Gambar 5.5 Kiri: Histogram citra berdasaran jumlah pisel; Kanan: Histogram citra berdasaran nilai eabuan ternormalisasi (Gambar diperoleh menggunaan Software MATLAB 7.0.4) Langah selanjutnya, menerapan transformasi diperoleh: s = T ( r ) = P r, sehingga j= 0 r j Pengolahan Citra Digital/ Minarni, S. Si., MT 76
11 Hasil transformasinya: r s 0 0 1/7 1 1/7 3/7 2 2/7 5/7 3 3/7 6/7 4 4/7 6/7 5 5/ / Terlihat dari contoh di atas hanya lima nilai intensitas yang terisi (1/7, 3/7, 5/7, 6/7, dan 1). Dengan transformasi ini, maa histogram citra output adalah sebagai beriut. Pengolahan Citra Digital/ Minarni, S. Si., MT 77
12 Dengan histogram citra hasil perataan pada Gambar 5.6 Jumlah Pisel Nilai Keabuan Gambar 5.6 Histogram Citra Hasil Perataan (Gambar diperoleh menggunaan Software MATLAB 7.0.4) Mesipun perataan histogram bertujuan menyebaran secara merata nilai nilai derajat eabuan, tetapi seringali histogram hasil perataan ida benar benar tersebar secara merata. Alasannya adalah derajat eabuan terbatas jumlahnya sehingga nilai intensitas baru hasil perataan merupaan pembulatan e derajat eabuan terdeat, dan jumlah pisel yang digunaan sangat terbatas. Latihan 5 Lauanlah proses perataan histogram pada citra di bawah ini yang beruuran 16 x 16 dengan jumlah derajat eabuan (L) adalah 8. Distribusi derajat eabuan pada citra di samping Derajat eabuan Jumlah pisel Pengolahan Citra Digital/ Minarni, S. Si., MT 78
PERBAIKAN KUALITAS CITRA MENGGUNAKAN HISTOGRAM LINEAR CONTRAST STRETCHING PADA CITRA SKALA KEABUAN
PERBAIKAN KUALITAS CITRA MENGGUNAKAN HISTOGRAM LINEAR CONTRAST STRETCHING PADA CITRA SKALA KEABUAN Murinto Program Studi Teni Informatia Universitas Ahmad Dahlan Kampus III UAD Jl. Prof. Soepomo Janturan
APLIKASI IMAGE THRESHOLDING UNTUK SEGMENTASI OBJEK
APLIKASI IMAGE THRESHOLDING UNTUK SEGMENTASI OBJEK Rinaldi Munir Sekolah Teknik Elektro dan Informatika, Institut Teknologi Bandung Jl. Ganesha 10 Bandung 40132 E-mail: [email protected] Abstrak
SATUAN ACARA PERKULIAHAN ( SAP )
SATUAN ACARA PERKULIAHAN ( SAP ) Mata Kuliah : Pengolahan Citra Digital Kode : IES 6323 Semester : VI Waktu : 1 x 3x 50 Menit Pertemuan : 6 A. Kompetensi 1. Utama Mahasiswa dapat memahami tentang sistem
SATUAN ACARA PERKULIAHAN ( SAP )
SATUAN ACARA PERKULIAHAN ( SAP ) Mata Kuliah : Pengolahan Citra Digital Kode : IES 6323 Semester : VI Waktu : 2 x 3x 50 Menit Pertemuan : 10&11 A. Kompetensi 1. Utama Mahasiswa dapat memahami tentang sistem
APLIKASI IMAGE THRESHOLDING UNTUK SEGMENTASI OBJEK
APLIKASI IMAGE THRESHOLDING UNTUK SEGMENTASI OBJEK Rinaldi Munir Sekolah Teknik Elektro dan Informatika, Institut Teknologi Bandung Jl. Ganesha 10 Bandung 40132 E-mail: [email protected] ABSTRAKSI
MAKALAH PENGOLAHAN CITRA DIGITAL. ( Histogram Citra ) Disusun Oleh : : 1. Agus Riyanto (2111T0238) 2. M. Yazid Nasrullah ( 2111T0233 )
MAKALAH PENGOLAHAN CITRA DIGITAL ( Histogram Citra ) Disusun Oleh : Nama : 1. Agus Riyanto (2111T0238) 2. M. Yazid Nasrullah ( 2111T0233 ) Jurusan : Tehnik Informatika ( Semester VI ) Kampus : STIMIK HIMSYA
Perbaikan Kualitas Citra
Bab 7 Perbaian Kualitas Citra P erbaian ualitas citra (image enhancement) merupaan salah satu proses awal dalam pengolahan citra (image preprocessing). Perbaian ualitas diperluan arena seringali citra
BAB 1 PENDAHULUAN. Universitas Sumatera Utara
BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Penggunaan kamera digital sebagai alat untuk mengambil citra saat ini sudah banyak digunakan karena kepraktisannya, terkadang hasil citra memiliki tampilan
PENDAHULUAN TINJAUAN PUSTAKA
1 Latar Belaang PENDAHULUAN Sistem biometri adalah suatu sistem pengenalan pola yang melauan identifiasi personal dengan menentuan eotentian dari arateristi fisiologis dari perilau tertentu yang dimilii
PENGOLAHAN CITRA DIGITAL
PENGOLAHAN CITRA DIGITAL Aditya Wikan Mahastama [email protected] Histogram dan Operasi Dasar Pengolahan Citra Digital 3 UNIV KRISTEN DUTA WACANA GENAP 1213 v2 MAMPIR SEB EN TAR Histogram Histogram citra
ANALISIS PERBANDINGAN HISTOGRAM EQUALIZATION DAN MODEL LOGARITHMIC IMAGE PROCESSING (LIP) UNTUK IMAGE ENHANCEMENT
ANALISIS PERBANDINGAN HISTOGRAM EQUALIZATION DAN MODEL LOGARITHMIC IMAGE PROCESSING (LIP) UNTUK IMAGE ENHANCEMENT Murinto 1), Willy Permana Putra, Sri Handayaningsih Program Studi Teknik Informatika Fakultas
Review Paper. Image segmentation by histogram thresholding using hierarchical cluster analysis
Review Paper Image segmentation by histogram thresholding using hierarchical cluster analysis Agus Zainal Arifin a,*, Akira Asano b a Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama,
ANALISIS PETA KENDALI DEWMA (DOUBLE EXPONENTIALLY WEIGHTED MOVING AVERAGE)
Seminar Nasional Matematia dan Apliasinya, 1 Otober 17 ANALISIS PETA KENDALI DEWMA (DOUBLE EXPONENTIALLY WEIGHTED MOVING AVERAGE) DALAM PENGENDALIAN KUALITAS PRODUKSI FJLB (FINGER JOINT LAMINATING BOARD)
SATUAN ACARA PERKULIAHAN ( SAP )
SATUAN ACARA PERKULIAHAN ( SAP ) Mata Kuliah : Pengolahan Citra Digital Kode : IES 6323 Semester : VI Waktu : 1 x 3x 50 Menit Pertemuan : 1 A. Kompetensi 1. Utama Mahasiswa dapat memahami tentang sistem
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB 1 PENDAHULUAN 1.1 Latar Belaang Model Loglinier adalah salah satu asus husus dari general linier model untu data yang berdistribusi poisson. Model loglinier juga disebut sebagai suatu model statisti
Studi dan Analisis mengenai Hill Cipher, Teknik Kriptanalisis dan Upaya Penanggulangannya
Studi dan Analisis mengenai Hill ipher, Teni Kriptanalisis dan Upaya enanggulangannya Arya Widyanaro rogram Studi Teni Informatia, Institut Tenologi Bandung, Jl. Ganesha 10 Bandung Email: [email protected]
CONTENT BASED IMAGE RETRIEVAL MENGGUNAKAN MOMENT INVARIANT, TEKSTUR DAN BACKPROPAGATION
UPN Veteran Yogyaarta, 30 Juni 2012 CONTENT BASED IMAGE RETRIEVAL MENGGUNAKAN MOMENT INVARIANT, TEKSTUR DAN BACKPROPAGATION Ni G.A.P Harry Saptarini 1), Rocy Yefrenes Dilla 2) 1) Politeni Negeri Bali 2)
Pengolahan Citra Digital: Peningkatan Mutu Citra Pada Domain Spasial
Pengolahan Citra Digital: Peningkatan Mutu Citra Pada Domain Spasial Dr. Aniati Murni (R.1202) Dina Chahyati, M.Kom (R.1226) Universitas Indonesia DC - OKT 2003 1 Tujuan Peningkatan Mutu Citra Sumber Pustaka:
Operasi-operasi Dasar Pengolahan Citra Digital
Operasi-operasi Dasar Pengolahan Citra Digital Pendahuluan Citra digital direpresentasikan dengan matriks. Operasi pada citra digital pada dasarnya adalah memanipulasi elemen- elemen matriks. Elemen matriks
SATUAN ACARA PERKULIAHAN ( SAP )
SATUAN ACARA PERKULIAHAN ( SAP ) Mata Kuliah : Pengolahan Citra Digital Kode : IES 6 Semeste r : VI Waktu : x x 5 Menit Pertemuan : & 4 A. Kompetensi. Utama Mahasiswa dapat memahami tentang sistem pengolahan
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1. Tinjauan Pustaa Untu menacapai tujuan penulisan sripsi, diperluan beberapa pengertian dan teori yang relevan dengan pembahasan. Karena itu, dalam subbab ini aan diberian beberapa
Optimasi Non-Linier. Metode Numeris
Optimasi Non-inier Metode Numeris Pendahuluan Pembahasan optimasi non-linier sebelumnya analitis: Pertama-tama mencari titi-titi nilai optimal Kemudian, mencari nilai optimal dari fungsi tujuan berdasaran
MODEL REGRESI INTERVAL DENGAN NEURAL FUZZY UNTUK MEMPREDIKSI TAGIHAN AIR PDAM
MODEL REGRESI INTERVAL DENGAN NEURAL FUZZY UNTUK MEMPREDIKSI TAGIHAN AIR PDAM 1,2 Faultas MIPA, Universitas Tanjungpura e-mail: [email protected], email: [email protected] Abstract
Sesi 3 Operasi Pixel dan Histogram. : M. Miftakul Amin, S. Kom., M. Eng.
Sesi 3 Operasi Pixel dan Histogram Materi Kuliah Dosen : Pengolahan Citra Digital : M. Miftakul Amin, S. Kom., M. Eng. Pokok Bahasan Konversi RGB ke Gray Scale Konversi Gray Scale ke Biner Konversi Gray
IMPLEMENTASI METODE RETINEX UNTUK PENCERAHAN CITRA
IMPLEMENTASI METODE RETINEX UNTUK PENCERAHAN CITRA Murinto 1), Eko Aribowo, Elena Yustina Program Studi Teknik Informatika Fakultas Teknologi Industri Universitas Ahmad Dahlan Yogyakarta Email : [email protected]
BAB 3 LANGKAH PEMECAHAN MASALAH
BAB 3 LANGKAH PEMECAHAN MASALAH 3.1 Penetapan Kriteria Optimasi Gambar 3.1 Bagan Penetapan Kriteria Optimasi Sumber: Peneliti Determinasi Kinerja Operasional BLU Transjaarta Busway Di tahap ini, peneliti
PENGEMBANGAN BUKU KOMIK FISIKA POKOK BAHASAN NEWTON BERBASIS KONSTRUKTIVISME UNTUK MENINGKATKAN MOTIVASI BELAJAR SISWA
PENGEMBANGAN BUKU KOMIK FISIKA POKOK BAHASAN NEWTON BERBASIS KONSTRUKTIVISME UNTUK MENINGKATKAN MOTIVASI BELAJAR SISWA Farida Huriawati 1), Purwandari 1,2), Intan Permatasari 1,3) 1,2,3 Program Studi Pendidian
BAB II LANDASAN TEORI. Pengolahan Citra adalah pemrosesan citra, khususnya dengan menggunakan
BAB II LANDASAN TEORI 2.1. Citra Citra adalah gambar pada bidang dwimatra (dua dimensi). Ditinjau dari sudut pandang matematis, citra merupakan fungsi menerus dan intensitas cahaya pada bidang dwimatra
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Citra Digital Citra digital merupakan fungsi intensitas cahaya f(x,y), dimana harga x dan y merupakan koordinat spasial dan harga fungsi tersebut pada setiap titik (x,y) merupakan
PENGARUH HISTOGRAM EQUALIZATION UNTUK PERBAIKAN KUALITAS CITRA DIGITAL
PENGARUH HISTOGRAM EQUALIZATION UNTUK PERBAIKAN KUALITAS CITRA DIGITAL Sisilia Daeng Bakka Mau Fakultas Teknik, Program Studi Teknik Informatika Universitas Katolik Widya Mandira Kupang Email: [email protected]
PROGRAM SIMULASI UNTUK REALISASI STRUKTUR TAPIS INFINITE IMPULSE RESPONSE UNTUK MEDIA PEMBELAJARAN DIGITAL SIGNAL PROCESSING
Konferensi asional Sistem dan Informatia 28; Bali, ovember 15, 28 KS&I8-44 PROGRAM SIMULASI UTUK REALISASI STRUKTUR TAPIS IFIITE IMPULSE RESPOSE UTUK MEDIA PEMBELAJARA DIGITAL SIGAL PROCESSIG Damar Widjaja
BAB III METODE PENELITIAN
BAB III METODE PENELITIAN 3.1 ObjePenelitian Obje penelitian merupaan hal yang tida dapat dipisahan dari suatu penelitian. Obje penelitian merupaan sumber diperolehnya data dari penelitian yang dilauan.
Pertemuan 3 Perbaikan Citra pada Domain Spasial (1) Anny Yuniarti, S.Kom, M.Comp.Sc
Pertemuan 3 Perbaikan Citra pada Domain Spasial (1), S.Kom, M.Comp.Sc Tujuan Memberikan pemahaman kepada mahasiswa mengenai berbagai teknik perbaikan citra pada domain spasial, antara lain : Transformasi
PEBANDINGAN METODE ROBUST MCD-LMS, MCD-LTS, MVE-LMS, DAN MVE-LTS DALAM ANALISIS REGRESI KOMPONEN UTAMA
PEBANDINGAN METODE ROBUST MCD-LMS, MCD-LTS, MVE-LMS, DAN MVE-LTS DALAM ANALISIS REGRESI KOMPONEN UTAMA Sear Wulandari, Nur Salam, dan Dewi Anggraini Program Studi Matematia Universitas Lambung Mangurat
PENYELESAIAN PERSAMAAN LOTKA-VOLTERRA DENGAN METODE TRANSFORMASI DIFERENSIAL. Sutriani Hidri. Ja faruddin. Syafruddin Side, ABSTRAK
PENYELESAIAN PERSAMAAN LOTKA-VOLTERRA DENGAN METODE TRANSFORMASI DIFERENSIAL Syafruddin Side, Jurusan Matematia, FMIPA, Universitas Negeri Maassar email:[email protected] Info: Jurnal MSA Vol. 3
Penempatan Optimal Phasor Measurement Unit (PMU) dengan Integer Programming
JURAL TEKIK POMITS Vol. 2, o. 2, (2013) ISS: 2337-3539 (2301-9271 Print) B-137 Penempatan Optimal Phasor Measurement Unit (PMU) dengan Integer Programming Yunan Helmy Amrulloh, Rony Seto Wibowo, dan Sjamsjul
PELABELAN FUZZY PADA GRAF. Siti Rahmah Nurshiami, Suroto, dan Fajar Hoeruddin Universitas Jenderal Soedirman.
JMP : Volume 6 Nomor, Juni 04, hal. - PELABELAN FUZZY PADA GRAF Siti Rahmah Nurshiami, Suroto, dan Fajar Hoeruddin Universitas Jenderal Soedirman email : [email protected] ABSTRACT. This paper discusses
Kory Anggraeni [email protected]
Histogram Citra Kory Anggraeni [email protected] Lisensi Dokumen: Copyright 2003-2007 IlmuKomputer.Com Seluruh dokumen di IlmuKomputer.Com dapat digunakan, dimodifikasi dan disebarkan secara bebas
Analisis Pengaruh Kualitas Pelayanan Terhadap Loyalitas Pelanggan Jasa Pengiriman Pos Kilat Khusus
Jurnal Teni Industri, Vol.1, No., Juni 013, pp.96-101 ISSN 30-495X Analisis Pengaruh Kualitas Pelayanan Terhadap Loyalitas Pelanggan Jasa Pengiriman Pos Kilat Khusus Apriyani 1, Shanti Kirana Anggaraeni,
Makalah Seminar Tugas Akhir
Maalah Seminar ugas Ahir Simulasi Penapisan Kalman Dengan Kendala Persamaan Keadaan Pada Kasus Penelusuran Posisi Kendaraan (Vehicle racing Problem Iput Kasiyanto [], Budi Setiyono, S., M. [], Darjat,
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1. Statisti Inferensia Tujuan statisti pada dasarnya adalah melauan desripsi terhadap data sampel, emudian melauan inferensi terhadap data populasi berdasaran pada informasi yang
ADAPTIVE NOISE CANCELING MENGGUNAKAN ALGORITMA LEAST MEAN SQUARE (LMS) Anita Nardiana, SariSujoko Sumaryono ABSTRACT
Jurnal Teni Eletro Vol. 3 No.1 Januari - Juni 1 6 ADAPTIVE NOISE CANCELING MENGGUNAKAN ALGORITMA LEAST MEAN SQUARE (LMS) Anita Nardiana, SariSujoo Sumaryono ABSTRACT Noise is inevitable in communication
Variasi Spline Kubik untuk Animasi Model Wajah 3D
Variasi Spline Kubi untu Animasi Model Wajah 3D Rachmansyah Budi Setiawan (13507014 1 Program Studi Teni Informatia Seolah Teni Eletro dan Informatia Institut Tenologi Bandung, Jl. Ganesha 10 Bandung 40132,
ANALISIS KEPUASAN KONSUMEN TERHADAP PELAYANAN PELAYANAN JASA PENGIRIMAN PAKET (KURIR) DENGAN MENGGUNAKAN METODE TOPSIS FUZZY
Jurnal Manti Penusa Vol No Desember ISSN 88-9 ANALISIS EPUASAN ONSUMEN TERHADAP PELAYANAN PELAYANAN JASA PENGIRIMAN PAET (URIR DENGAN MENGGUNAAN METODE TOPSIS FUZZY Desi Vinsensia Program Studi Teni Informatia
BAB III METODE SCHNABEL
BAB III METODE SCHNABEL Uuran populasi tertutup dapat diperiraan dengan teni Capture Mar Release Recapture (CMRR) yaitu menangap dan menandai individu yang diambil pada pengambilan sampel pertama, melepasan
BAB III DESAIN DAN APLIKASI METODE FILTERING DALAM SISTEM MULTI RADAR TRACKING
Bab III Desain Dan Apliasi Metode Filtering Dalam Sistem Multi Radar Tracing BAB III DESAIN DAN APLIKASI METODE FILTERING DALAM SISTEM MULTI RADAR TRACKING Bagian pertama dari bab ini aan memberian pemaparan
Estimasi Harga Saham Dengan Implementasi Metode Kalman Filter
Estimasi Harga Saham Dengan Implementasi Metode Kalman Filter eguh Herlambang 1, Denis Fidita 2, Puspandam Katias 2 1 Program Studi Sistem Informasi Universitas Nahdlatul Ulama Surabaya Unusa Kampus B
Proses memperbaiki kualitas citra agar mudah diinterpretasi oleh manusia atau komputer
Pengolahan Citra / Image Processing : Proses memperbaiki kualitas citra agar mudah diinterpretasi oleh manusia atau komputer Teknik pengolahan citra dengan mentrasformasikan citra menjadi citra lain, contoh
BAB I PENDAHULUAN. 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Saat ini informasi tidak hanya didapatkan dari pesan teks saja namun sebuah gambar atau citra dapat juga mewakilkan sebuah informasi, bahkan sebuah citra memiliki arti
ANALISIS CONTRAST STRETCHING MENGGUNAKAN ALGORITMA EUCLIDEAN UNTUK MENINGKATKAN KONTRAS PADA CITRA BERWARNA
ANALISIS CONTRAST STRETCHING MENGGUNAKAN ALGORITMA EUCLIDEAN UNTUK MENINGKATKAN KONTRAS PADA CITRA BERWARNA Nurliadi 1 *, Poltak Sihombing 2 & Marwan Ramli 3 1,2,3 Magister Teknik Informatika, Universitas
Estimasi Konsentrasi Polutan Sungai Menggunakan Metode Reduksi Kalman Filter dengan Pendekatan Elemen Hingga
JURNAL SAINS DAN SENI POMITS ol. 2, No.1, (2013) 2337-3520 (2301-928X Print) 1 Estimasi Konsentrasi Polutan Sungai Menggunaan Metode Redusi Kalman Filter dengan Pendeatan Elemen Hingga Muyasaroh, Kamiran,
INTEGRAL NUMERIK KUADRATUR ADAPTIF DENGAN KAIDAH SIMPSON. Makalah. Disusun guna memenuhi tugas Mata Kuliah Metode Numerik. yang dibimbing oleh
INTEGRAL NUMERIK KUADRATUR ADAPTIF DENGAN KAIDAH SIMPSON Maalah Disusun guna memenuhi tugas Mata Kuliah Metode Numeri yang dibimbing oleh Dr. Nur Shofianah Disusun oleh: M. Adib Jauhari Dwi Putra 146090400111001
Materi. Menggambar Garis. Menggambar Garis 9/26/2008. Menggambar garis Algoritma DDA Algoritma Bressenham
Materi IF37325P - Grafia Komputer Geometri Primitive Menggambar garis Irfan Malii Jurusan Teni Informatia FTIK - UNIKOM IF27325P Grafia Komputer 2008 IF27325P Grafia Komputer 2008 Halaman 2 Garis adalah
PENINGKATAN KUALITAS CITRA DENGAN METODE FUZZY POSSIBILITY DISTRIBUTION
PENINGKATAN KUALITAS CITRA DENGAN METODE FUZZY POSSIBILITY DISTRIBUTION Sugiarti [email protected] Universitas Muslim Indonesia Abstrak Peningkatan kualitas citra merupakan salah satu proses awal
Pengaruh Proses Stemming Pada Kinerja Analisa Sentimen Pada Review Buku
Jurnal Hasil Penelitian LPPM Untag Surabaya Januari 2018, Vol. 03, No. 01, hal 55-59 jurnal.untag-sby.ac.id/index.php/jhp17 E-ISSN : 2502-8308 P-ISSN : 2579-7980 Pengaruh Proses Stemming Pada Kinerja Analisa
BAB 3 METODE PENELITIAN
36 BAB 3 METODE PENELITIAN 3.1 Disain Penelitian Jenis penelitian yang digunaan adalah penelitian desriptif, yaitu penelitian terhadap fenomena atau populasi tertentu yang diperoleh peneliti dari subye
PENERAPAN ALGORITMA APRIORI UNTUK MEMPEROLEH ASSOCIATION RULE ANTAR ITEMSET BERDASARKAN PERIODE PENJUALAN DALAM SATU TRANSAKSI
PENERAPAN ALGORITMA APRIORI UNTUK MEMPEROLEH ASSOCIATION RULE ANTAR ITEMSET BERDASARKAN PERIODE PENJUALAN DALAM SATU TRANSAKSI Devi Fitrianah, Ade Hodijah Program Studi Teni Informatia, Faultas Ilmu Komputer,
BAB IV APLIKASI PADA MATRIKS STOKASTIK
BAB IV : ALIKASI ADA MARIKS SOKASIK 56 BAB IV ALIKASI ADA MARIKS SOKASIK Salah satu apliasi dari eori erron-frobenius yang paling terenal adalah penurunan secara alabar untu beberapa sifat yang dimilii
SATUAN ACARA PERKULIAHAN ( SAP )
SATUAN ACARA PERKULIAHAN ( SAP ) Mata Kuliah : Pengolahan Citra Digital Kode : IES 6323 Semester : VI Waktu : 1 x 3x 50 Menit Pertemuan : 15 A. Kompetensi 1. Utama Mahasiswa dapat memahami tentang sistem
APLIKASI METODE FUZZY MULTI CRITERIA DECISION MAKING (FMCDM) UNTUK OPTIMALISASI PENENTUAN LOKASI PROMOSI PRODUK
APLIKASI METODE FUZZY MULTI CRITERIA DECISION MAKING (FMCDM) UNTUK OPTIMALISASI PENENTUAN LOKASI PROMOSI PRODUK Novhirtamely Kahar, ST. 1, Nova Fitri, S.Kom. 2 1&2 Program Studi Teni Informatia, STMIK
Penggunaan Induksi Matematika untuk Mengubah Deterministic Finite Automata Menjadi Ekspresi Reguler
Penggunaan Indusi Matematia untu Mengubah Deterministic Finite Automata Menjadi Espresi Reguler Husni Munaya - 353022 Program Studi Teni Informatia Seolah Teni Eletro dan Informatia Institut Tenologi Bandung,
PENYELESAIAN PERSAMAAN LOTKA-VOLTERRA DENGAN METODE TRANSFORMASI DIFERENSIAL SUTRIANI HIDRI
PENYELESAIAN PERSAMAAN LOTKA-VOLTERRA DENGAN METODE TRANSFORMASI DIFERENSIAL SUTRIANI HIDRI Jurusan Matematia, FMIPA, Universitas Negeri Maassar Email: [email protected] Abstra. Pada artiel ini dibahas
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
1 BAB 1 PENDAHULUAN 1.1 Latar Belaang Di aman searang sebuah adal yang tersusun rapi merupaan ebutuhan bagi setiap individu. Namun masalah penyusunan sebuah adal merupaan sebuah masalah umum yang teradi,
Aplikasi diagonalisasi matriks pada rantai Markov
J. Sains Dasar 2014 3(1) 20-24 Apliasi diagonalisasi matris pada rantai Marov (Application of matrix diagonalization on Marov chain) Bidayatul hidayah, Rahayu Budhiyati V., dan Putriaji Hendiawati Jurusan
APLIKASI PREDIKSI HARGA SAHAM MENGGUNAKAN JARINGAN SYARAF RADIAL BASIS FUNCTION DENGAN METODE PEMBELAJARAN HYBRID
APLIKASI PREDIKSI HARGA SAHAM MENGGUNAKAN JARINGAN SYARAF RADIAL BASIS FUNCTION DENGAN METODE PEMBELAJARAN HYBRID Ferry Tan, Giovani Gracianti, Susanti, Steven, Samuel Luas Jurusan Teni Informatia, Faultas
ANALISA STATIK DAN DINAMIK GEDUNG BERTINGKAT BANYAK AKIBAT GEMPA BERDASARKAN SNI DENGAN VARIASI JUMLAH TINGKAT
Jurnal Sipil Stati Vol. No. Agustus (-) ISSN: - ANALISA STATIK DAN DINAMIK GEDUNG BERTINGKAT BANYAK AKIBAT GEMPA BERDASARKAN SNI - DENGAN VARIASI JUMLAH TINGKAT Revie Orchidentus Francies Wantalangie Jorry
Estimasi Inflasi Wilayah Kerja KPwBI Malang Menggunakan ARIMA-Filter Kalman dan VAR-Filter Kalman
JURNAL SAINS DAN SENI ITS Vol. 5, No.1, (16) 337-35 (31-98X Print) A-1 Estimasi Inflasi Wilayah Kerja KPwBI Malang Menggunaan ARIMA-Filter Kalman dan VAR-Filter Kalman Popy Febritasari, Erna Apriliani
SISTEM ADAPTIF PREDIKSI PENGENALAN ISYARAT VOKAL SUARA KARAKTER. Abstrak
SISTEM ADAPTIF PREDIKSI PENGENALAN ISYARAT VOKAL SUARA KARAKTER Oleh : Pandapotan Siagia, ST, M.Eng (Dosen tetap STIKOM Dinamia Bangsa Jambi) Abstra Sistem pengenal pola suara atau yang lebih dienal dengan
SISTEM ADAPTIF PREDIKSI PENGENALAN ISYARAT VOKAL SUARA KARAKTER
SISTEM ADAPTIF PREDIKSI PENGENALAN ISYARAT VOKAL SUARA KARAKTER Pandapotan Siagian, ST, M.Eng Dosen Tetap STIKOM Dinamia Bangsa - Jambi Jalan Sudirman Theoo Jambi Abstra Sistem pengenal pola suara atau
PENERAPAN ALGORITMA BACKPROPAGATION UNTUK KLASIFIKASI MUSIK DENGAN SOLO INSTRUMEN
Seminar Nasional Apliasi Tenologi Informasi 009 (SNATI 009) Yogyaarta, 0 Juni 009 ISSN:1907-50 PENERAPAN ALGORITMA BACKPROPAGATION UNTUK KLASIFIKASI MUSIK DENGAN SOLO INSTRUMEN Gunawan 1, Agus Djaja Gunawan,
Aplikasi Analisis Korelasi Somers d pada Kepemimpinan dan Kondisi Lingkungan Kerja
Apliasi Analisis Korelasi Somers d pada Kepemimpinan dan Kondisi Lingungan Kerja terhadap Kinerja Pegawai BKKBN Provinsi Kalimantan Timur The Application of Somers d Correlation Analysis at Leadership
PEMBIMBING : Dr. Cut Maisyarah Karyati, SKom, MM, DSER.
APLIKASI PERBAIKAN CITRA DENGAN MENGGUNAKAN METODE HISTOGRAM EQUALIZATION DAN CONTRAST STRECHING NAMA : DONI KURNIA SURYANA NPM : 12112254 PEMBIMBING : Dr. Cut Maisyarah Karyati, SKom, MM, DSER. LATAR
Ukuran Pemusatan Data
Uuran Pemusatan Data Atina Ahdia, S.Si., M.Si. Universitas Islam Indonesia Uuran Pemusatan Data 1. Mean (rata-rata) 2. Median (nilai tengah) 3. Modus Mean 1. Rata-rata Hitung Misalan terdapat N observasi,
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Teori Fuzzy 2.1.1 Dasar-Dasar Teori Fuzzy Secara prinsip, di dalam teori fuzzy set dapat dianggap sebagai estension dari teori onvensional atau crisp set. Di dalam teori crisp
Analisa Kinerja Kode Konvolusi pada Sistem Parallel Interference Cancellation Multi Pengguna aktif Detection
Analisa Kinerja Kode Konvolusi pada Sistem Parallel Interference Cancellation Multi Pengguna atif Detection CDMA dengan Modulasi Quadrature Phase Shift Keying Berbasis Perangat Luna Saretta Nathaniatasha
II. TINJAUAN PUSTAKA. sebuah teknik yang baru yang disebut analisis ragam. Anara adalah suatu metode
3 II. TINJAUAN PUSTAKA 2.1 Analisis Ragam (Anara) Untu menguji esamaan dari beberapa nilai tengah secara sealigus diperluan sebuah teni yang baru yang disebut analisis ragam. Anara adalah suatu metode
Deret Pangkat. Ayundyah Kesumawati. June 23, Prodi Statistika FMIPA-UII
Keonvergenan Kesumawati Prodi Statistia FMIPA-UII June 23, 2015 Keonvergenan Pendahuluan Kalau sebelumnya, suu suu pada deret ta berujung berupa bilangan real maa ali ini ita embangan suu suunya dalam
Makalah Seminar Tugas Akhir
Maalah Seminar Tugas Ahir PENDETEKSI POSISI MENGGUNAKAN SENSOR ACCELEROMETER MMA7260Q BERBASIS MIKROKONTROLER ATMEGA 32 Muhammad Riyadi Wahyudi, ST., MT. Iwan Setiawan, ST., MT. Abstract Currently, determining
Sistem Pendukung Keputusan Penerima Beasiswa SMK Menggunakan Metode Backpropagation
Seminar Nasional e 9: Reayasa Tenologi Industri dan Informasi Sistem Penduung Keputusan Penerima Beasiswa SMK Menggunaan Metode Bacpropagation Teti Rohaeti 1, Yoyon Kusnendar Suprapto 2, Eo Mulyanto 3
BAB I PENDAHULUAN. semakin berkembang. Semakin banyak penemuan-penemuan baru dan juga
BAB I PENDAHULUAN 1.1 Latar Belakang Dengan mengikuti perkembangan zaman, tentunya teknologi juga semakin berkembang. Semakin banyak penemuan-penemuan baru dan juga pengembangan dari teknologi yang sudah
PEMBUATAN MEDIA PEMBELAJARAN PADA MATA KULIAH TEKNIK KONTROL ADAPTIF SUB POKOK BAHASAN PENGHAPUSAN DERAU
Techno, ISSN 40-8607 Volume 5 No. 2 Otober 204 Hal. 23 29 PEMBUATAN MEDIA PEMBELAJARAN PADA MATA KULIAH TEKNIK KONTROL ADAPTIF SUB POKOK BAHASAN PENGHAPUSAN DERAU Instructional Media Creation on Subjects
PERANCANGAN DAN PEMBUATAN APLIKASI UNTUK MEMPERBAIKI CITRA DIGITAL
PERANCANGAN DAN PEMBUATAN APLIKASI UNTUK MEMPERBAIKI CITRA DIGITAL 1. Pendahuluan Citra / gambar merupakan hal yang vital dan menjadi bagian integral dari kehidupan sehari-hari. Pada kepentingan tertentu,
BAB I PENDAHULUAN. 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Dewasa ini penggunaan citra digital semakin meningkat karena kelebihan-kelebihan yang dimiliki oleh citra digital tersebut, antara lain kemudahan dalam mendapatkan
khazanah Sistem Klasifikasi Tipe Kepribadian dan Penerimaan Teman Sebaya Menggunakan Jaringan Syaraf Tiruan Backpropagation informatika
hazanah informatia Jurnal Ilmu Komputer dan Informatia Sistem Klasifiasi Tipe Kepribadian dan Penerimaan Teman Sebaya Menggunaan Jaringan Syaraf Tiruan Bacpropagation Yusuf Dwi Santoso *, Suhartono Departemen
khazanah Sistem Klasifikasi Tipe Kepribadian dan Penerimaan Teman Sebaya Menggunakan Jaringan Syaraf Tiruan Backpropagation informatika
hazanah informatia Jurnal Ilmu Komputer dan Informatia Sistem Klasifiasi Tipe Kepribadian dan Penerimaan Teman Sebaya Menggunaan Jaringan Syaraf Tiruan Bacpropagation Yusuf Dwi Santoso *, Suhartono Program
(IMAGE ENHANCEMENT) Peningkatan kualitas citra di bagi menjadi dua kategori yaitu :
(IMAGE ENHANCEMENT) Suatu proses untuk mengubah sebuah citra menjadi citra baru sesuai dengan kebutuhan melalui berbagi cara. Tujuannya adalah untuk memproses citra yang dihasilkan lebih baik daripada
Keragaman Struktur Tegakan Hutan Alam Sekunder The Variability of Stand Structure of Logged-over Natural Forest
JMHT Vol. XIV, (2): 81-87, Agustus 28 ISSN: 215-157X Keragaman Strutur Tegaan Hutan Alam Seunder The Variability of Stand Structure of Logged-over Natural Forest Abstract Muhdin 1*, Endang Suhendang 1,
MODUL V PENCACAH BINER ASINKRON (SYNCHRONOUS BINARY COUNTER)
MOUL V PENH INE SINON (SYNHONOUS INY OUNTE) I. Tujuan instrusional husus 1. Membuat rangaian dan mengamati cara erja suatu pencacah iner (inary counter). 2. Menghitung freuensi output pencacah iner. 3.
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1. Sistem Kendali Lup [1] Sistem endali dapat diataan sebagai hubungan antara omponen yang membentu sebuah onfigurasi sistem, yang aan menghasilan tanggapan sistem yang diharapan.
R(s) 1 G(s) 1 C(s) -H(s) Gambar Diagram aliran sinyal
.. Diagram Aliran Sinyal ( Signal Flow Diagram) Untu mengungapan sistem pengendalian selain digambaran dalam bentu diagram blo, adang-adang digambaran dalam diagram alir an sinyal (signal flow diagram)
KINETIKA REAKSI KIMIA TIM DOSEN KIMIA DASAR FTP UB 2012
KINETIKA REAKSI KIMIA TIM DOSEN KIMIA DASAR FTP UB Konsep Kinetia/ Laju Reasi Laju reasi menyataan laju perubahan onsentrasi zat-zat omponen reasi setiap satuan watu: V [ M ] t Laju pengurangan onsentrasi
PEMBUATAN ALBUM KENANGAN DALAM BENTUK DIGITAL MAGAZINE SEKOLAH MENENGAH PERTAMA ( SMP ) NEGERI LIMA BOYOLALI
Seruni FTI UNSA 2012 Volume 1 ISSN: 2302-1136 (Print) - 2088-0154 (Online) PEMBUATAN ALBUM KENANGAN DALAM BENTUK DIGITAL MAGAZINE SEKOLAH MENENGAH PERTAMA ( SMP ) NEGERI LIMA BOYOLALI Yohanes Ginanjar
BAB 2 LANDASAN TEORI. dari sudut pandang matematis, citra merupakan fungsi kontinyu dari intensitas cahaya
5 BAB 2 LANDASAN TEORI 2.1 Citra Secara harfiah citra atau image adalah gambar pada bidang dua dimensi. Ditinjau dari sudut pandang matematis, citra merupakan fungsi kontinyu dari intensitas cahaya pada
PENGENALAN WAJAH DENGAN METODE INTERPERSONAL DIFFERENCE BERBASIS GAUSSIAN MIXTURE MODEL DAN ANALISIS DISKRIMINAN
Prosiding Seminar Nasional Manajemen Tenologi V Program Studi MMT-TS, Surabaya Agustus 008 PENGENALAN WAJAH DENGAN METODE NTERPERSONAL DFFERENCE BERBASS GAUSSAN MXTURE MODEL DAN ANALSS DSRMNAN Made a*
mungkin muncul adalah GA, GG, AG atau AA dengan peluang masing-masing
. DISTRIUSI INOMIL pabila sebuah oin mata uang yang memilii dua sisi bertulisan ambar () dan nga () dilempar satu ali, maa peluang untu mendapatan sisi ambar adalah,5 atau. pabila oin tersebut dilempar
UJI BARTLETT. Elty Sarvia, ST., MT. Fakultas Teknik Jurusan Teknik Industri Universitas Kristen Maranatha Bandung. Scheffe Multiple Contrast Procedure
8/9/01 UJI TUKEY UJI DUNCAN UJI BARTLETT UJI COCHRAN UJI DUNNET Elty Sarvia, ST., MT. Faultas Teni Jurusan Teni Industri Universitas Kristen Maranatha Bandung Macam Metode Post Hoc Analysis The Fisher
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB 1 PENDAHULUAN 1.1 Latar Belaang Masalah untu mencari jalur terpende di dalam graf merupaan salah satu masalah optimisasi. Graf yang digunaan dalam pencarian jalur terpende adalah graf yang setiap sisinya
BAB 1 PENDAHULUAN. 1.1 Latar belakang
BAB PENDAHULUAN. Latar belaang Metode analisis yang telah dibicaraan hingga searang adalah analisis terhadap data mengenai sebuah arateristi atau atribut (jia data itu ualitatif) dan mengenai sebuah variabel,
