ANALISIS TENTANG GRAF PERFECT

Ukuran: px
Mulai penontonan dengan halaman:

Download "ANALISIS TENTANG GRAF PERFECT"

Transkripsi

1 Aalisis Tetag Graf Perfect ANALISIS TENTANG GRAF PERFET Nurul Imamah AH Fakultas Matematika da Ilmu Pegetahua Alam Uiversitas Pesatre Tiggi Darul Ulum Jombag Abstrak Seirig perkembaga kemajua tekologi maka ilmu matematika juga semaki berkembag, salah satu aalisis matematika khususya metode graf yag perlu dikembagka adalah aalisis megeai graf perfect. Graf perfect adalah suatu graf yag memiliki bilaga chromatik (G da bilaga clique (G yag sama. Bilaga khromatik adalah bilaga terkecil pada pewaraa yag diberika pada titik-titik yag dimiliki graf G sedemikia sehigga utuk setiap dua titik yag terhubug lagsug medapatka wara yag berbeda. Sedagka bilaga lique adalah order maksimum dari subgraf komplit yag dapat dibetuk dari suatu graf G dega order dari G adalah bayakya titik yag dimiliki oleh graf G. Berdasarka pembahasa pada artikel ii maka diperoleh bahwa graf kosog, graf komplit, graf bipartite komplit, graf sikel geap, da graf litasa adalah graf perfect karea masig-masig graf tersebut memiliki bilaga chromatik (G da bilaga clique (G yag sama. ata kuci: Graf, Graf Perfect, bilaga lique, bilaga hromatik Abstract As techology advaces the developmet of mathematics is also growig, oe of mathematical aalysis particularly method graph that eeds to be developed is the aalysis of the perfect graph. Perfect graph is a graph that has chromatik umbers (G ad umbers of the same clique (G. Numbers khromatik is the smallest umber i a give colorig dots owed graph G such that for every two poits are coected directly to get differet colors. While the umber lique is the maximum order of a complete subgraph which ca be formed of a graph G with the order of G is the umber of dots that are owed by the graph G. Based o the discussio i this article is obtaied that the empty graph, complete graph, complete bipartite graph, graph sikel eve, ad the graph trajectory is a graph perfect for each graph has chromatik umbers (G ad umbers of the same clique (G. eywords: Graf, Graf Perfect, lique umbers, umbers hromatik. Pedahulua. Graf Graf G didefiisika sebagai pasaga himpua (V(G,E(G dega V(G adalah himpua berhigga tak kosog dari eleme-eleme yag disebut titik (vertex, da E(G adalah himpua (boleh kosog dari pasaga tak terurut (u,v dari titik u da v yag berbeda di V yag disebut sisi (edge. Jadi dapat diketahui Gamatika Vol. II No. Nopember 0 5 e v e

2 Aalisis Tetag Graf Perfect Gambar. Titik da Sisi pada Graf bahwa kompoe utama terbetukya suatu graf G adalah titik. Sisi e=(u,v di dalam graf G dapat ditulis dega e= uv. Sebagai cotoh graf G pada Gambar. adalah graf dega V(G={ v, v, v, v } da E(G= { e, e, e, e, e5} dega e vv, e vv, e vv, e vv, da e5 vv. v e e e 5 v v Jika e=uv adalah sisi dari graf G, maka u da v dikataka adjacet atau terhubug lagsug, sedagka sisi e dikataka terkait lagsug atau icidet pada titik u da v.. Graf Perfect Graf perfect adalah suatu graf yag mempuyai bilaga kromatik da bilaga clique yag sama, ( ( H ( H (hartrad da Lesiak, 996:80. Bilaga clique diotasika dega (G didefiisika sebagai order dari subgraf komplit maksimum yag bisa dibetuk dari graf G. Bilaga khromatik suatu graf G diotasika dega (G didefiisika sebagai jumlah miimal wara yag diperluka utuk mewarai titik-titik pada graf G sedemikia sehigga setiap titik-titik yag terhubug lagsug medapatka wara yag berbeda. Berikut ii cotoh dari graf perfect: = e v Subgraf komplit dari = = = Gamatika Vol. II No. Nopember 0 6

3 Aalisis Tetag Graf Perfect = Subgraf komplit maksimum dari graf adalah sediri. area subgraf komplit maksimumya adalah, maka order subgraf komplitya adalah, sehigga (. area atara satu titik dega titik yag lai salig terhubug lagsug maka pewaraa miimum yag diberika adalah, sehigga (. area terbukti ( ( =, maka graf adalah graf perfect.. Pewaraa Pewaraa Graf adalah suatu pemberia wara pada salah satu elemeelemeya (titik da sisi, sehigga eleme-eleme yag salig terhubug lagsug medapatka wara yag berbeda. Ada tiga macam pewaraa graf yaitu pewaraa titik, pewaraa sisi, da pewaraa wilayah (regio. Pembahasa pada artikel ii haya terbatas pada pewaraa titik saja... Pewaraa Titik Pewaraa titik adalah memberi wara pada titk-titik suatu graf sedemikia sehigga tidak ada dua titik terhubug lagsug mempuyai wara yag sama. Bilaga romatik (G (hromatik Number adalah bayakya wara miimum yag diperluka utuk mewarai titik-titik pada graf G sedemikia sehigga setiap titik-titik yag terhubug lagsug medapatka wara yag berbeda. Jika (G = k, maka titik-titik pada graf G dapat diwarai dega k wara, tetapi tidak diwarai dega k- wara. Beberapa graf tertetu dapat lagsug ditetuka bilaga kromatikya. Graf kosog N memiliki ( G. karea semua titik tidak terhubug, jadi utuk mewarai semua titik cukup dibutuhka satu wara saja. Graf komplit memiliki ( G sebab semua titik salig terhubug sehigga diperluka wara. Pewaraa-k utuk graf G merupaka peujuka k wara pada titik G sedemikia higga titik yag berdekata medapat wara berbeda (Watkis da Wilso, 99:56. Jika G memiliki pewaraa-k, maka G dapat diwara-k. Bilaga khromatik G diotasika dega (G adalah bilaga terkecil k yag meujukka bahwa G dapat diwara-k. Berikut ii adalah cotoh pewaraa titik pada graf: (a (b (c Gambar.. Pewaraa Titik pada Gamatika Vol. II No. Nopember 0 7 5

4 Aalisis Tetag Graf Perfect Pewaraa-k ii dapat ditujukka dega meulis bilaga,,,, k di dekat titik pada graf. Pada Gambar.5 (a, (b, da (c masig-masig megilustrasika pewaraa-, pewaraa-, da pewaraa-5. Dega demikia, ( G karea G memiliki pewaraa- (gambar a sehigga ( G. Berikut ii adalah beberapa bilaga khromatik yag telah diketahui: ( N ( (, m (, ( (. (hartrad da Lida Lesiak, 979:7 P. Pembahasa Pembahasa megeai aalisis graf perfect ii aka diaplikasika pada berbagai macam graf yaitu graf kosog, graf komplit, graf bipartisi komplit, graf litasa, da graf sikel. Lagkah- lagkah meetuka graf perfect. Meetuka subgraf komplit maksimum yag dapat dibetuk dari graf G. Meetuka bilaga clique (G. Meetuka bilaga khromatik (G. Pola yag diperoleh diyataka dega teorema 5. Membuktika teorema Pembahasa megeai perfect dari suatu graf kemudia diaplikasika pada graf kosog, utuk meujukka graf kosog sebagai graf perfect, maka harus ditetuka bilaga clique da bilaga khromatik dari graf kosog dega titik ( N. Berikut ii adalah graf N dega bilaga clique da bilaga khromatikya: Perhatika graf N berikut! N : Subgraf komplit maksimum dari graf N haya =. area haya memuat titik saja, Sehigga bilaga clique ( N, da bilaga khromatik ( N karea haya satu titik yag diberi wara. Terbukti bahwa bilaga clique da bilaga khromatik ( N ( N, maka N adalah graf perfect. Selajutya aalisa graf kosog N N N,...,N sebagaimaa gambar berikut: N : N : N : N :,, Subgraf komplit maksimum dari graf N N N,...,N haya =, sehigga bilaga clique (N =. area atara titik satu dega titik yag laiya tidak terhubug lagsug, maka pewaraa miimumya haya Gamatika Vol. II No. Nopember 0 8

5 Aalisis Tetag Graf Perfect sehigga ( N N N,...,N =. Terbukti Bilaga clique da bilaga khromatik ( N ( N. Jadi N N N,...,N adalah graf perfect. Berikut ii adalah tabel utuk graf kosog beserta bilaga clique da bilaga khromatikya: Tabel. Graf N dega ( N da ( N Graf N Subgraf komplit maksimum ( N ( N N N N N N Dari beberapa kasus yag telah diselesaika serta berdasarka Tabel., maka terlihat pola bahwa graf kosog memiliki (N = (N =. Dega demikia dapat dihasilka teorema berikut: Teorema.: Graf kosog dega titik N adalah graf perfect Bukti : Graf N memiliki subgraf komplit maksmum, karea subgraf komplit maksimumya, maka order maksimumya adalah, sehigga ( N =. area setiap titik tidak terhubug lagsug dega titik yag lai, maka bayakya pewaraa titik yag diberika adalah, sehigga ( N =. Jadi karea ( N = ( N =, maka terbukti bahwa graf kosog adalah graf perfect. Berikut ii aalisa dari graf komplit bilaga chromatikya: Berikut ii graf Subgraf komplit dari graf dega meetuka bilaga clique da Graf komplit sama dega graf kosog N yag memuat satu titik. Subgraf komplit maksimum dari graf adalah sediri, sehigga ( =. area graf haya mempuyai satu titik, maka pewaraa miimumya juga haya sehigga ( =, Jadi karea ( = ( =, maka graf merupaka graf perfect. Selajutya utuk graf komplit = Gamatika Vol. II No. Nopember 0 9

6 Aalisis Tetag Graf Perfect Subgraf komplit dari graf = = Subgraf komplit maksimum dari graf Subgraf komplit maksimum dari graf adalah sediri, sehigga ( =. area atara titik satu dega titik yag lai terhubug lagsug, sehigga pewaraa pada setiap titik harus berbeda, maka bayakya wara miimumya adalah sehigga ( =. area ( = ( =, maka graf adalah graf perfect. Berikut ii Graf : Subgraf komplit dari graf = = = Subgraf komplit maksimum dari graf Subgraf komplit maksimum adalah sediri, sehigga ( =. area atara titik yag satu dega titik yag lai didalam graf tersebut terhubug lagsug, megakibatka bayakya wara miimum pada graf adalah Gamatika Vol. II No. Nopember 0 0

7 Aalisis Tetag Graf Perfect sehigga ( =. area ( = ( =, maka graf adalah graf perfect. Aalisa graf perfect dapat diaplikasika pada graf komplit yag lai dega yag lebih besar, sehigga didapatka Tabel. Graf komplit beserta bilaga clique da bilaga khromatikya: Tabel. Graf dega da Graf ( ( Subgraf omplit ( ( Maksimum N Berdasarka Tabel. tersebut maka pola yag dihasilka dapat dibetuk dalam teorema, berikut ii Teorema. yag dihasilka dari hasil aalisa graf perfect pada graf komplit Teorema.: Graf komplit dega titik adalah graf perfect Bukti: Graf memiliki subgraf komplit maksimum diriya sediri atau, karea subgraf komplit maksimumya adalah itu sediri, maka order maksimumya adalah, sehigga ( =. area setiap titik terhubug lagsug dega setiap titik yag lai, maka bayakya wara miimum pada graf juga sebayak, sehigga ( =. area ( = ( =, maka graf perfect. adalah graf Aalisa megeai graf perfect selajutya diaplikasika pada graf bipartite komplit, sehigga dari hasil aalisa tersebut maka diperoleh table m, sebagaimaa berikut: Tabel. Graf Graf, dega da m ( m, ( m, m, Subgraf komplit maksimum ( m, ( m,,,,, Gamatika Vol. II No. Nopember 0

8 Aalisis Tetag Graf Perfect v m m, Lagkah berikutya adalah membuat pola yag sudah terbetuk mejadi sebuah teorema, berikut ii Teorema. Graf bipartisi komplit dega titik m, adalah graf perfect. Teorema. Graf bipartisi komplit dega titik m, Bukti: Berikut ii adalah gambar graf m, : m, adalah graf perfect, m v Graf bipartisi komplit memiliki kompoe titik v m da v. area titik pada v m haya terhubug lagsug dega v, maka subgraf komplit maksimumya adalah, sehigga order maksimumya adalah. Oleh karea itu ( m, =. area setiap titik pada v m haya terhubug lagsug dega v, maka titik v m memiliki wara da v juga memiliki wara sehigga ( =. Jadi karea ( m, = ( m, =, maka graf m, adalah graf perfect. Berikutya adalah Proses aalisa pada graf sikel, dega hasilya diberika pada tabel : Tabel. Graf, dega da Graf ( (, m Subgraf komplit ( ( maksimum Dari tabel dihasilka teorema. Teorema. Graf sikel dega titik, adalah graf perfect Bukti: Gamatika Vol. II No. Nopember 0

9 Aalisis Tetag Graf Perfect Graf sikel dega titik, memiliki subgraf komplit maksimum, karea haya dapat dibuat subgraf komplit maksimum dega titik saja, sehigga ( =. area titik yag terhubug lagsug pada graf adalah titik, maka bayakya pewaraa yag diberika adalah, sehigga ( =. area ( = ( =, maka terbukti bahwa graf sikel adalah graf perfect., Aalisa megeai graf perfect selajutya diaplikasika pada graf bipartite komplit, sehigga dari hasil aalisa tersebut maka diperoleh table m, sebagaimaa berikut: Tabel.5 Graf P dega ( P da ( P Graf P Subgraf komplit ( P ( P maksimum P P P P P Pola yag sudah terbetuk mejadi sebuah teorema, berikut ii Teorema.5 Graf litasa dega titik P adalah graf perfect. Teorema.5 Graf litasa dega titik P adalah graf perfect. Bukti: Graf P memiliki subgraf komplit maksimum, maka order dari subgraf komplit maksimum graf P adalah, sehigga (P =. area P haya memiliki titik, maka bayak pewaraa yag diberika adalah, sehigga ( P =. Graf litasa dega titik P memiliki subgraf komplit maksimum, sehigga (P =. area graf P haya memiliki titik terhubug lagsug, maka bayak pewaraa miimum yag diberika adalah, sehigga ( P =,. area ilai ( P = ( P = da ( P = ( P =, maka graf P adalah graf perfect.. esimpula Graf perfect adalah suatu graf yag memiliki bilaga clique da bilaga khromatik yag sama utuk setiap graf G. Berdasarka pembahasa dalam artikel ii diperoleh bahwa graf kosog, graf komplit, graf bipartisi komplit, graf sikel Gamatika Vol. II No. Nopember 0

10 Aalisis Tetag Graf Perfect geap, da graf litasa adalah graf perfect, karea beberapa graf tersebut memiliki bilaga clique (G da bilaga chromatik (G yag sama. Daftar Pustaka hartrad G da Lesiak. L. (986. Graphs & Digraphs, Secod Editio. Wadsworth & Brooks/ole: aliforia Golumbic. (980. Alghoritmic Graph Theory ad perfect Graphs. USA: Academic Press Murty da Body. (976. Graph Theory with Applicatios. aada: The Macmilla Press LTD Wilso, J da Watkis, J. (990, Graph ad Itroductory Approach. Ope Uiversity ourse, Sigapore. Gamatika Vol. II No. Nopember 0

MATHunesa (Volume 3 No 3) 2014

MATHunesa (Volume 3 No 3) 2014 MATHuesa (Volume 3 No 3) 014 MINIMUM PENUTUP TITIK DAN MINIMUM PENUTUP SISI PADA GRAF KOMPLIT DAN GRAF BIPARTIT KOMPLIT Yessi Riskiada Kusumawardai Program Studi S1 Matematika, Fakultas Matematika da Ilmu

Lebih terperinci

CAYLEY COLOR DIGRAPH DARI GRUP SIKLIK Z DENGAN n BILANGAN PRIMA

CAYLEY COLOR DIGRAPH DARI GRUP SIKLIK Z DENGAN n BILANGAN PRIMA dega Bilaga Prima CAYLEY COLOR DIGRAPH DARI GRUP SIKLIK DENGAN BILANGAN PRIMA Abdul Jalil Sekolah Tiggi Kegurua Ilmu Pedidika PGRI Jombag Jl. Patimura III/0 zida_hilma@yahoo.com Abstrak Peelitia ii merupaka

Lebih terperinci

Secara umum, suatu barisan dapat dinyatakan sebagai susunan terurut dari bilangan-bilangan real:

Secara umum, suatu barisan dapat dinyatakan sebagai susunan terurut dari bilangan-bilangan real: BARISAN TAK HINGGA Secara umum, suatu barisa dapat diyataka sebagai susua terurut dari bilaga-bilaga real: u 1, u 2, u 3, Barisa tak higga merupaka suatu fugsi dega domai berupa himpua bilaga bulat positif

Lebih terperinci

HUBUNGAN PELABELAN GRACEFUL PADA DIGRAF BIDIRECTIONAL G DAN GRAF UNDERLYING DARI G

HUBUNGAN PELABELAN GRACEFUL PADA DIGRAF BIDIRECTIONAL G DAN GRAF UNDERLYING DARI G J Sais MIPA Desember 7 Vol 1 No Hal: 197 - ISSN 1978-187 ABSTRACT HUBUNGAN PELABELAN GRACEFUL PADA DIGRAF BIDIRECTIONAL G DAN GRAF UNDERLYING DARI G Kristiaa Wijaya Jurusa Matematika FMIPA Uiversitas Jember

Lebih terperinci

TEOREMA WEYL UNTUK OPERATOR HYPONORMAL

TEOREMA WEYL UNTUK OPERATOR HYPONORMAL Jural UJMC, Volume 3, Nomor, Hal. - 6 pissn : 460-3333 eissn : 579-907X TEOREMA WEYL UNTUK OPERATOR HYPONORMAL Guawa Uiversitas Muhammadiyah Purwokerto, gu.oge@gmail.com Abstract This paper aims at describig

Lebih terperinci

Pelabelan E-cordial pada Graf Hasil Cartesian Product

Pelabelan E-cordial pada Graf Hasil Cartesian Product Pelabela E-cordial pada Gra Hasil Cartesia Product Kholis Widyasmedi, R. Heri Soelistyo Program Studi Matematika Jurusa Matematika Fakultas Sais da Matematika Uiversitas Dipoegoro Email: widyasmedi@gmail.com

Lebih terperinci

DIMENSI PARTISI PADA GRAF KINCIR PARTITION DIMENSION OF WINDMILL GRAPH

DIMENSI PARTISI PADA GRAF KINCIR PARTITION DIMENSION OF WINDMILL GRAPH PROPOAL TUGA AKHIR DIMENI PARTII PADA GRAF KINCIR PARTITION DIMENION OF WINDMILL GRAPH Oleh: CHANDRA IRAWAN NRP : 100 109 04 JURUAN MATEMATIKA FAKULTA MATEMATIKA DAN ILMU PENGETAHUAN ALAM INTITUT TEKNOLOGI

Lebih terperinci

PELABELAN GRACEFUL SISI PADA GRAF KOMPLIT, GRAF KOMPLIT REGULER K-PARTIT, GRAF RODA, GRAF BISIKEL, DAN GRAF TRISIKEL

PELABELAN GRACEFUL SISI PADA GRAF KOMPLIT, GRAF KOMPLIT REGULER K-PARTIT, GRAF RODA, GRAF BISIKEL, DAN GRAF TRISIKEL PELABELAN GRACEFUL SISI PADA GRAF KOMPLIT, GRAF KOMPLIT REGULER K-PARTIT, GRAF RODA, GRAF BISIKEL, DAN GRAF TRISIKEL Dia Noer Idah Sari 1, Budi Rahadjeg, S.Si, M.Si., 1 Jurusa Matematika, FMIPA, Uesa email

Lebih terperinci

KAJIAN TENTANG GRAF PERFECT SKRIPSI. Oleh: NURUL IMAMAH AH NIM:

KAJIAN TENTANG GRAF PERFECT SKRIPSI. Oleh: NURUL IMAMAH AH NIM: AJIAN TENTANG GRAF PERFECT SRIPSI Oleh: NURUL IMAMAH AH NIM: 050008 JURUSAN MATEMATIA FAULTAS SAINS DAN TENOLOGI UNIVERSITAS ISLAM NEGERI (UIN) MALANG MALANG 008 AJIAN TENTANG GRAF PERFECT SRIPSI Diajuka

Lebih terperinci

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4 Program Studi : Tekik Iformatika Miggu ke : 4 INDUKSI MATEMATIKA Hampir semua rumus da hukum yag berlaku tidak tercipta dega begitu saja sehigga diraguka kebearaya. Biasaya, rumus-rumus dapat dibuktika

Lebih terperinci

Batas Bilangan Ajaib Pada Graph Caterpillar

Batas Bilangan Ajaib Pada Graph Caterpillar J. Math. ad Its Appl. ISSN: 189-605X Vol. 3, No., Nov 006, 49 56 Batas Bilaga Ajaib Pada Graph Caterpillar Chairul Imro Jurusa Matematika FMIPA ITS Surabaya imro-its@matematika.its.ac.id Abstrak Jika suatu

Lebih terperinci

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa istilah, definisi serta konsep-konsep yang

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa istilah, definisi serta konsep-konsep yang II. LANDASAN TEORI Pada bab ii aka diberika beberapa istilah, defiisi serta kosep-kosep yag medukug dalam peelitia ii. 2.1 Kosep Dasar Teori Graf Berikut ii aka diberika kosep dasar teori graf yag bersumber

Lebih terperinci

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian BAB I PENDAHULUAN A. Latar Belakag Masalah Matematika merupaka suatu ilmu yag mempuyai obyek kajia abstrak, uiversal, medasari perkembaga tekologi moder, da mempuyai pera petig dalam berbagai disipli,

Lebih terperinci

Himpunan Kritis Pada Graph Caterpillar

Himpunan Kritis Pada Graph Caterpillar 1 0 Himpua Kritis Pada Graph Caterpillar Chairul Imro, Budi Setiyoo, R. Simajutak, Edy T. Baskoro {imro-its,budi}@matematika.its.ac.id, {rio,ebaskoro}@ds.math.itb.ac.id Ues, Semarag, 4 7 Juli 006 Abstrak

Lebih terperinci

PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT

PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT Prosidig Semiar Nasioal Matematika da Terapaya 06 p-issn : 0-0384; e-issn : 0-039 PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT Liatus

Lebih terperinci

MATHunesa Jurnal Ilmiah Matematika Volume 6 No.2 Tahun 2018 ISSN

MATHunesa Jurnal Ilmiah Matematika Volume 6 No.2 Tahun 2018 ISSN MATHuesa Jural Ilmiah Matematika Volume No Tahu 08 ISSN 30-95 INDEKS HARARY GRAF HAMILTON, SEMI-HAMILTON DAN HAMILTON-KUAT Fatimatus Zahro (S Matematika, FMIPA, Uiversitas Negeri Surabaya) e-mail: imatus0@gmailcom

Lebih terperinci

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n LIMIT 4.. FUNGSI LIMIT Defiisi 4.. A R Titik c R adalah titik limit dari A, jika utuk setiap δ > 0 ada palig sedikit satu titik di A, c sedemikia sehigga c < δ. Defiisi diatas dapat disimpulka dega cara

Lebih terperinci

BAB II TEORI DASAR. Definisi Grup G disebut grup komutatif atau grup abel jika berlaku hukum

BAB II TEORI DASAR. Definisi Grup G disebut grup komutatif atau grup abel jika berlaku hukum BAB II TEORI DASAR 2.1 Aljabar Liier Defiisi 2. 1. 1 Grup Himpua tak kosog G disebut grup (G, ) jika pada G terdefiisi operasi, sedemikia rupa sehigga berlaku : a. Jika a, b eleme dari G, maka a b eleme

Lebih terperinci

II. TINJAUAN PUSTAKA. Secara umum apabila a bilangan bulat dan b bilangan bulat positif, maka ada tepat = +, 0 <

II. TINJAUAN PUSTAKA. Secara umum apabila a bilangan bulat dan b bilangan bulat positif, maka ada tepat = +, 0 < II. TINJAUAN PUSTAKA 2.1 Keterbagia Secara umum apabila a bilaga bulat da b bilaga bulat positif, maka ada tepat satu bilaga bulat q da r sedemikia sehigga : = +, 0 < dalam hal ii b disebut hasil bagi

Lebih terperinci

BAB III RUANG HAUSDORFF. Pada bab ini akan dibahas mengenai ruang Hausdorff, kekompakan pada

BAB III RUANG HAUSDORFF. Pada bab ini akan dibahas mengenai ruang Hausdorff, kekompakan pada 8 BAB III RUANG HAUSDORFF Pada bab ii aka dibahas megeai ruag Hausdorff, kekompaka pada ruag Hausdorff da ruag regular legkap. Pembahasa diawali dega medefiisika Ruag Hausdorff da beberapa sifatya kemudia

Lebih terperinci

Semigrup Matriks Admitting Struktur Ring

Semigrup Matriks Admitting Struktur Ring Semigrup Matriks dmittig Struktur ig K a r y a t i Jurusa Pedidika Matematika FMIP, Uiversitas Negeri Yogyakarta Email: yatiuy@yahoo.com bstrak Diberika adalah rig komutatif dega eleme satua da adalah

Lebih terperinci

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai definisi suatu ring serta

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai definisi suatu ring serta BAB II LANDASAN TEORI Pada bab ii aka dibahas megeai defiisi suatu rig serta beberaa sifat yag dierluka dalam embahasa oliomial ermutasi Pejelasa megeai rig dimulai dega defiisi dari suatu sistem matematika

Lebih terperinci

,n N. Jelas barisan ini terbatas pada dengan batas M =: 1, dan. barisan ini kovergen ke 0.

,n N. Jelas barisan ini terbatas pada dengan batas M =: 1, dan. barisan ini kovergen ke 0. PROGRAM STUDI PENDIDIKAN MATEMATIKA FKIP UNMUH PONOROGO SOAL UJIAN TENGAH SEMESTER GENAP TA 03/04 Mata Ujia : Aalisis Real Tipe Soal : REGULER Dose : Dr. Jula HERNADI Waktu : 90 meit Hari, Taggal : Selasa,

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN JURAL MATEMATKA DA KOMPUTER Vol. 6. o., 77-85, Agustus 003, SS : 40-858 DSTRBUS WAKTU BERHET PADA PROSES PEMBAHARUA Sudaro Jurusa Matematika FMPA UDP Abstrak Dalam proses stokhastik yag maa kejadia dapat

Lebih terperinci

SIFAT-SIFAT FUNGSI EKSPONENSIAL BERBASIS BILANGAN NATURAL YANG DIDEFINISIKAN SEBAGAI LIMIT

SIFAT-SIFAT FUNGSI EKSPONENSIAL BERBASIS BILANGAN NATURAL YANG DIDEFINISIKAN SEBAGAI LIMIT Jural Matematika UNAND Vol. 4 No. 1 Hal. 12 22 ISSN : 2303 2910 c Jurusa Matematika FMIPA UNAND SIFAT-SIFAT FUNGSI EKSPONENSIAL BERBASIS BILANGAN NATURAL YANG DIDEFINISIKAN SEBAGAI LIMIT ENIVA RAMADANI

Lebih terperinci

BAB I PENDAHULUAN. Integral adalah salah satu konsep penting dalam Matematika yang

BAB I PENDAHULUAN. Integral adalah salah satu konsep penting dalam Matematika yang BAB I PENDAHULUAN 1.1 Latar Belakag Masalah Itegral adalah salah satu kosep petig dalam Matematika yag dikemukaka pertama kali oleh Isac Newto da Gottfried Wilhelm Leibiz pada akhir abad ke-17. Selajutya

Lebih terperinci

Abstract: Given a graph G ( V,

Abstract: Given a graph G ( V, PELABELAN SUPER GRACEFUL UNTUK BEBERAPA GRAF KHUSUS Prias Tri Ajar Ajai, Robertus Heri SU, Bayu Surarso,, Jurusa Mateatika Uiversitas Dipoegoro Jl. Prof. Soedarto, SH, Tebalag, Searag 7 Abstract: Give

Lebih terperinci

Abstract

Abstract Domiatig Set ada Hasil Oerasi Graf Khusus Hedry Dwi Sautro 1,2, Ika Hesti A. 1,2, Dafik 1,3 1 CGANT- Uiversity of Jember 2 Deartmet of Mathematics Educatio - Uiversity of Jember 3 Deartmet of Iformatio

Lebih terperinci

Energi Derajat Maksimal pada Graf Terhubung

Energi Derajat Maksimal pada Graf Terhubung Eergi Derajat Maksimal pada Graf Terhubug Destika Dwi Setyowidi, Lucia Ratasari S.Si, M.Si Program Studi Matematika Jurusa Matematika Uiversitas Dipoegoro Semarag ABSTRAK Graf G adalah pasaga himpua (V,

Lebih terperinci

Hendra Gunawan. 12 Februari 2014

Hendra Gunawan. 12 Februari 2014 MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2013/2014 12 Februari 2014 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 82 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg

Lebih terperinci

BUKTI ALTERNATIF KONVERGENSI DERET PELL DAN PELL-LUCAS (ALTERNATIVE PROOF THE CONVERGENCE OF PELL AND PELL-LUCAS SERIES)

BUKTI ALTERNATIF KONVERGENSI DERET PELL DAN PELL-LUCAS (ALTERNATIVE PROOF THE CONVERGENCE OF PELL AND PELL-LUCAS SERIES) rosidig Semirata2015 bidag MIA BKS-TN Barat Uiversitas Tajugpura otiaak BUKTI ALTERNATIF KONVERGENSI DERET ELL DAN ELL-LUCAS (ALTERNATIVE ROOF THE CONVERGENCE OF ELL AND ELL-LUCAS SERIES) Baki Swita 1

Lebih terperinci

SEMI MODUL POLINOMIAL FUZZY ATAS ALJABAR MAX-PLUS FUZZY

SEMI MODUL POLINOMIAL FUZZY ATAS ALJABAR MAX-PLUS FUZZY JMP : Volume 3 Nomor 1, Jui 2011 SEMI MODUL POLINOMIAL FUZZY ATAS ALJABAR MAX-PLUS FUZZY Ari Wardayai da Suroto Prodi Matematika, Jurusa MIPA, Fakultas Sais da Tekik Uiversitas Jederal Soedirma (email

Lebih terperinci

Abstract

Abstract Ideedet Domiatio Number Pada Graf Oerasi Siti Amiatus Solehah 1,, Ika Hesti Agusti 1,, Dafik 1,3 1 CGANT- Uiversity of Jember Deartmet of Mathematics Educatio - Uiversity of Jember 3 Deartmet of Iformatio

Lebih terperinci

Distribusi Pendekatan (Limiting Distributions)

Distribusi Pendekatan (Limiting Distributions) Distribusi Pedekata (Limitig Distributios) Ada 3 tekik utuk meetuka distribusi pedekata: 1. Tekik Fugsi Distribusi Cotoh 2. Tekik Fugsi Pembagkit Mome Cotoh 3. Tekik Teorema Limit Pusat Cotoh Fitriai Agustia,

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 010 TIM OLIMPIADE MATEMATIKA INDONESIA 0 Prestasi itu diraih buka didapat!!! SOLUSI SOAL Bidag Matematika Disusu oleh : Eddy Hermato, ST Olimpiade Matematika Tk

Lebih terperinci

B a b 1 I s y a r a t

B a b 1 I s y a r a t 34 TKE 315 ISYARAT DAN SISTEM B a b 1 I s y a r a t (bagia 3) Idah Susilawati, S.T., M.Eg. Program Studi Tekik Elektro Fakultas Tekik da Ilmu Komputer Uiversitas Mercu Buaa Yogyakarta 29 35 1.5.2. Isyarat

Lebih terperinci

HUBUNGAN ANTARA KONVERGEN HAMPIR PASTI, KONVERGEN DALAM PELUANG, DAN KONVERGEN DALAM SEBARAN

HUBUNGAN ANTARA KONVERGEN HAMPIR PASTI, KONVERGEN DALAM PELUANG, DAN KONVERGEN DALAM SEBARAN Jural Matematika UNAND Vol. 2 No. 2 Hal. 0 6 ISSN : 2303 290 c Jurusa Matematika FMIPA UNAND HUBUNGAN ANTARA KONVERGEN HAMPIR PASTI, KONVERGEN DALAM PELUANG, DAN KONVERGEN DALAM SEBARAN VIRA AGUSTA, DODI

Lebih terperinci

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu BAB 4 UKURAN PENYEBARAN DATA Pada Bab sebelumya kita telah mempelajari beberapa ukura pemusata data, yaitu ukura yag memberika iformasi tetag bagaimaa data-data ii megumpul atau memusat Pada bagia Bab

Lebih terperinci

PEMBUKTIAN SIFAT RUANG BANACH PADA B 1/4 (K) Malahayati

PEMBUKTIAN SIFAT RUANG BANACH PADA B 1/4 (K) Malahayati Jural Matematika Muri da Terapa εpsilo Vol. 07, No.01, (2013), Hal. 33 44 PEMBUKTIAN SIFAT RUANG BANACH PADA B 1/4 (K) Malahayati Program Studi Matematika Fakultas Sais da Tekologi UIN Sua Kalijaga Yogyakarta

Lebih terperinci

Homomorfisma Pada Semimodul Atas Aljabar Max-Plus

Homomorfisma Pada Semimodul Atas Aljabar Max-Plus Homomorfisma Pada Semimodul Atas Aljabar Max-Plus A 14 Oleh : Musthofa Jurusa Pedidika Matematika FMIPA UNY Abstrak Kosep homorfisma telah bayak dibahas pada beberapa struktur aljabar yaitu pada ruag vektor

Lebih terperinci

I. DERET TAKHINGGA, DERET PANGKAT

I. DERET TAKHINGGA, DERET PANGKAT I. DERET TAKHINGGA, DERET PANGKAT. Pedahulua Pembahasa tetag deret takhigga sebagai betuk pejumlaha suku-suku takhigga memegag peraa petig dalam fisika. Pada bab ii aka dibahas megeai pegertia deret da

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, , Agustus 2003, ISSN : METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, , Agustus 2003, ISSN : METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT Vol. 6. No., 97-09, Agustus 003, ISSN : 40-858 METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT Robertus Heri Jurusa Matematika FMIPA UNDIP Abstrak Tulisa ii membahas peetua persamaa ruag

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang Masalah

BAB I PENDAHULUAN. A. Latar Belakang Masalah BAB I PENDAHULUAN A. Latar Belakag Masalah Struktur alabar adalah suatu himpua yag di dalamya didefiisika suatu operasi bier yag memeuhi aksioma-aksioma tertetu. Gelaggag ( Rig ) merupaka suatu struktur

Lebih terperinci

Rainbow Connection Number Pada Operasi Graf

Rainbow Connection Number Pada Operasi Graf Raibow Coectio Number Pada Operasi Graf Arasyitha Yuliati S, Dafik CGANT-Uiversitas Jember Program Studi Pedidika Matematika FKIP Uiversitas Jember arasyithays, d.dafik@gmail.com Abstrak A edge-colourig

Lebih terperinci

2 BARISAN BILANGAN REAL

2 BARISAN BILANGAN REAL 2 BARISAN BILANGAN REAL Di sekolah meegah barisa diperkealka sebagai kumpula bilaga yag disusu meurut "pola" tertetu, misalya barisa aritmatika da barisa geometri. Biasaya barisa da deret merupaka satu

Lebih terperinci

Induksi Matematika. Pertemuan VII Matematika Diskret Semester Gasal 2014/2015 Jurusan Teknik Informatika UPN Veteran Yogyakarta

Induksi Matematika. Pertemuan VII Matematika Diskret Semester Gasal 2014/2015 Jurusan Teknik Informatika UPN Veteran Yogyakarta Iduksi Matematika Pertemua VII Matematika Diskret Semester Gasal 2014/2015 Jurusa Tekik Iformatika UPN Vetera Yogyakarta Metode pembuktia utuk peryataa perihal bilaga bulat adalah iduksi matematik. Cotoh

Lebih terperinci

SIFAT-SIFAT SEMIGRUP SIMETRIS INTERVAL

SIFAT-SIFAT SEMIGRUP SIMETRIS INTERVAL SIFAT-SIFAT SEMIGRUP SIMETRIS INTERVAL Riza Febri Yusma Sri Gemawati Asli Sirait *riza_febri@yahoo.com Mahasiswa Program S Matematika Dose Jurusa Matematika Fakultas Matematika da Ilmu Pegetahua Alam Uiveritas

Lebih terperinci

ISIAN SINGKAT! 1. Diberikan hasil kali digit digit dari n harus sama dengan 25

ISIAN SINGKAT! 1. Diberikan hasil kali digit digit dari n harus sama dengan 25 head office : Kompleks Sawaga Permai Blok A5 No.1A, Sawaga, Depok 16511 Telp.01-951 1160. cotact perso : 0-878787-1-8585 / 081-8691-10 Bidag Studi Kode Berkas Waktu : Matematika : MA-L01 (solusi) : 90

Lebih terperinci

Definisi Integral Tentu

Definisi Integral Tentu Defiisi Itegral Tetu Bila kita megedarai kedaraa bermotor (sepeda motor atau mobil) selama 4 jam dega kecepata 50 km / jam, berapa jarak yag ditempuh? Tetu saja jawabya sagat mudah yaitu 50 x 4 = 200 km.

Lebih terperinci

PERTEMUAN 13. VEKTOR dalam R 3

PERTEMUAN 13. VEKTOR dalam R 3 PERTEMUAN VEKTOR dalam R Pegertia Ruag Vektor Defiisi R Jika adalah sebuah bilaga bulat positif, maka tupel - - terorde (ordered--tuple) adalah sebuah uruta bilaga riil ( a ),a,..., a. Semua tupel - -terorde

Lebih terperinci

SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS

SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS Prosidig Semiar Nasioal Peelitia, Pedidika da Peerapa MIPA, Fakultas MIPA, Uiversitas Negeri Yogyakarta, 4 Mei 0 SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS Musthofa Jurusa Pedidika Matematika FMIPA

Lebih terperinci

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3 BAB XII. SUKU BANYAK A = a Pegertia: f(x) = a x + a x + a x + + a x +a adalah suku bayak (poliom) dega : - a, a, a,.,a, a, a 0 adalah koefisiekoefisie suku bayak yag merupaka kostata real dega a 0 - a

Lebih terperinci

BARISAN PANGKAT TERURUT MATRIKS PADA ALJABAR MAX PLUS

BARISAN PANGKAT TERURUT MATRIKS PADA ALJABAR MAX PLUS BRISN PNGKT TERURUT MTRIKS PD LJBR MX PLUS Nurwa Jurusa Matematika FMIP Uiversitas Negeri Gorotalo E-mail: urwa_mat@ug.ac.id bstrak Diberika matriks R yag memeuhi = λ. Matriks adalah k + c c k taktereduksi

Lebih terperinci

MENENTUKAN PELABELAN TOTAL SISI AJAIB DAN KONSTANTA AJAIB TERKECIL PADA GRAF SIKEL, LINTASAN DAN STAR SKRIPSI. Oleh: BAHRIN NADA NIM.

MENENTUKAN PELABELAN TOTAL SISI AJAIB DAN KONSTANTA AJAIB TERKECIL PADA GRAF SIKEL, LINTASAN DAN STAR SKRIPSI. Oleh: BAHRIN NADA NIM. MENENTUKAN PELABELAN TOTAL SISI AJAIB DAN KONSTANTA AJAIB TERKECIL PADA GRAF SIKEL, LINTASAN DAN STAR SKRIPSI Oleh: BAHRIN NADA NIM. 045008 JURUSAN MATEMATIKA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM

Lebih terperinci

MATEMATIKA DISKRIT FUNGSI

MATEMATIKA DISKRIT FUNGSI 1 MATEMATIKA DISKRIT FUNGSI Fugsi Misalka A da B himpua. Relasi bier f dari A ke B merupaka suatu fugsi jika setiap eleme di dalam A dihubugka dega tepat satu eleme di dalam B. Jika f adalah fugsi dari

Lebih terperinci

SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS. Abstrak

SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS. Abstrak Prosidig Semiar Nasioal Peelitia, Pedidika da Peerapa MIPA, Fakultas MIPA, Uiversitas Negeri Yogyakarta, 4 Mei 0 SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS Musthofa Jurusa Pedidika Matematika FMIPA

Lebih terperinci

LANGKAH-LANGKAH PENENTUAN SUATU BARISAN SEBAGAI SUATU GRAFIK DENGAN DASAR TEOREMA HAVEL-HAKIMI. Jl. Prof. H. Soedarto, S.H., Tembalang, Semarang.

LANGKAH-LANGKAH PENENTUAN SUATU BARISAN SEBAGAI SUATU GRAFIK DENGAN DASAR TEOREMA HAVEL-HAKIMI. Jl. Prof. H. Soedarto, S.H., Tembalang, Semarang. LANGKAH-LANGKAH PENENTUAN SUATU BARISAN SEBAGAI SUATU GRAFIK DENGAN DASAR TEOREMA HAVEL-HAKIMI Erly Listiyaa, Susilo Hariyato 2 da Lucia Ratasari 3, 2, 3 Jurusa Matematika FMIPA UNDIP Jl. Prof. H. Soedarto,

Lebih terperinci

ANUITAS DUE PADA STATUS HIDUP PERORANGAN BERDASARKAN FORMULA WOOLHOUSE

ANUITAS DUE PADA STATUS HIDUP PERORANGAN BERDASARKAN FORMULA WOOLHOUSE 2 ANUITAS DUE PADA STATUS HIDUP PERORANGAN BERDASARKAN FORMULA WOOLHOUSE Sri Purwati 1, Johaes Kho 2, Aziskha 2 1 Mahasiswa Program S1 Matematika FMIPA Uiversitas Riau email : srii_purwatii@yahoo.co.id

Lebih terperinci

InfinityJurnal Ilmiah Program Studi Matematika STKIP Siliwangi Bandung, Vol 2, No.1, Februari 2013

InfinityJurnal Ilmiah Program Studi Matematika STKIP Siliwangi Bandung, Vol 2, No.1, Februari 2013 IfiityJural Ilmiah Program Studi Matematika STKIP Siliwagi Badug, Vol 2, No.1, Februari 2013 KEKONTINUAN FUNGSI PADA RUANG METRIK Oleh: Cece Kustiawa Jurusa Pedidika Matematika FPMIPA UPI, cecekustiawa@yahoo.com

Lebih terperinci

BAB II LANDASAN TEORI. matematika secara numerik dan menggunakan alat bantu komputer, yaitu:

BAB II LANDASAN TEORI. matematika secara numerik dan menggunakan alat bantu komputer, yaitu: 4 BAB II LANDASAN TEORI 2.1 Model matematis da tahapa matematis Secara umum tahapa yag harus ditempuh dalam meyelesaika masalah matematika secara umerik da megguaka alat batu komputer, yaitu: 2.1.1 Tahap

Lebih terperinci

Fungsi. Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B.

Fungsi. Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B. Fugsi Misalka A da B himpua. Relasi bier f dari A ke B merupaka suatu fugsi jika setiap eleme di dalam A dihubugka dega tepat satu eleme di dalam B. Jika f adalah fugsi dari A ke B kita meuliska f : A

Lebih terperinci

Teorema Pohon Matriks Untuk Menentukan Banyaknya Pohon Rentangan Graf Bipartisi Komplit (K m,n )

Teorema Pohon Matriks Untuk Menentukan Banyaknya Pohon Rentangan Graf Bipartisi Komplit (K m,n ) Teorema Poho Matriks Utuk Meetuka Bayakya Poho Retaga Graf Bipartisi Komplit (K m, ) Novia Dwi Rahmawati Uiversitas Hasyim Asy ari Jombag oviadwi_rahmawati87@yahoo.co.id Abstract This research aims to

Lebih terperinci

Sistem Bilangan Kompleks (Bagian Ketiga)

Sistem Bilangan Kompleks (Bagian Ketiga) Sistem Bilaga Kompleks (Bagia Ketiga) Supama Jurusa Matematika, FMIPA UGM Yogyakarta 55281, INDONESIA Email:maspomo@yahoo.com, supama@ugm.ac.id (Pertemua Miggu III) Outlie 1 Akar Bilaga Kompleks 2 Akar

Lebih terperinci

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR Nur Aei Prodi Matematika, FST-UINAM uraeiatullah@gmail.com Ifo: Jural MSA Vol. 3 No. 2 Edisi: Juli Desember

Lebih terperinci

Aplikasi Graf Pada Jaring Makanan

Aplikasi Graf Pada Jaring Makanan Aplikasi Pada Jarig Makaa Teuku Reza Auliadra Isma 13507035 Jurusa Tekik Iformatika ITB, Badug 40135, email: auliadra@studets.itb.ac.id Abstract Makalah ii membahas aplikasi graf pada jarig makaa.peetua

Lebih terperinci

RING MATRIKS ATAS RING KOMUTATIF. Achmad Abdurrazzaq, Ari Wardayani, Suroto Universitas Jenderal Soedirman

RING MATRIKS ATAS RING KOMUTATIF. Achmad Abdurrazzaq, Ari Wardayani, Suroto Universitas Jenderal Soedirman JMP : Volume 7 Nomor 1, Jui 2015, hal 11-18 RING MATRIKS ATAS RING KOMUTATIF Achmad Abdurrazzaq, Ari Wardayai, Suroto razzaqgaesha@gmailcom Uiversitas Jederal Soedirma ABSTRACT This paper discusses a matrices

Lebih terperinci

BAB 6. DERET TAYLOR DAN DERET LAURENT Deret Taylor

BAB 6. DERET TAYLOR DAN DERET LAURENT Deret Taylor Bab 6 Deret Taylor da Deret Lauret BAB 6 DERET TAYLOR DAN DERET LAURENT 6 Deret Taylor Misal fugsi f aalitik pada - < R ligkara dega pusat di da jari-jari R Maka utuk setiap titik pada ligkara itu f dapat

Lebih terperinci

HUBUNGAN VARIETY DAN IDEAL RADIKAL SKRIPSI. Oleh : Ambar Mujiarti J2A

HUBUNGAN VARIETY DAN IDEAL RADIKAL SKRIPSI. Oleh : Ambar Mujiarti J2A HUBUNGAN VARIETY DAN IDEAL RADIKAL SKRIPSI Oleh : Ambar Mujiarti J2A 004 003 PROGRAM STUDI MATEMATIKA JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS DIPONEGORO SEMARANG 2009

Lebih terperinci

Beberapa Sifat Semigrup Matriks Atas Daerah Integral Admitting Struktur Ring 1

Beberapa Sifat Semigrup Matriks Atas Daerah Integral Admitting Struktur Ring 1 Beberapa Sifat Semigrup Matriks Atas Daerah Itegral Admittig Struktur ig K a r y a t i Jurusa Pedidika Matematika FMIPA, Uiversitas Negeri Yogyakarta Email: yatiuy@yahoo.com Abstrak Diberika adalah daerah

Lebih terperinci

HALAMAN Dengan definisi limit barisan buktikan limit berikut ini : = 0. a. lim PENYELESAIAN : jadi terbukti bahwa lim = 0 = 5. b.

HALAMAN Dengan definisi limit barisan buktikan limit berikut ini : = 0. a. lim PENYELESAIAN : jadi terbukti bahwa lim = 0 = 5. b. Didowload dari ririez.blog.us.ac.id HALAMAN 36 37 5. Dega defiisi limit barisa buktika limit berikut ii : a. lim = 0 lim 1 2 + 3 = 0 > 0 h 1 = 2 + 3 0 = 1 2 + 3 1 2 1 2 1 2 < jadi terbukti bahwa lim =

Lebih terperinci

ARTIKEL. Menentukan rumus Jumlah Suatu Deret dengan Operator Beda. Markaban Maret 2015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN

ARTIKEL. Menentukan rumus Jumlah Suatu Deret dengan Operator Beda. Markaban Maret 2015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN ARTIKEL Meetuka rumus Jumlah Suatu Deret dega Operator Beda Markaba 191115198801005 Maret 015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN PUSAT PENGEMBANGAN DAN PEMBERDAYAAN PENDIDIK DAN TENAGA KEPENDIDIKAN

Lebih terperinci

TUGAS ANALISIS REAL LANJUT. a b < a + A. b + B < A B.

TUGAS ANALISIS REAL LANJUT. a b < a + A. b + B < A B. TUGAS ANALISIS REAL LANJUT NOVEMBER 207 () (a) Jika b > 0, B > 0, da a b < A, buktika ab < ba. Kemudia buktika B a b < a + A b + B < A B. (b) Buktika [ 2 (a + b)] 2 2 (a2 + b 2 ). Kemudia tujukka bahwa

Lebih terperinci

Setelah mempelajari modul ini Anda diharapkan dapat: a. memeriksa apakah suatu pemetaan merupakan operasi;

Setelah mempelajari modul ini Anda diharapkan dapat: a. memeriksa apakah suatu pemetaan merupakan operasi; Modul 1 Operasi Dr. Ahmad Muchlis B PENDAHULUAN erapakah 97531 86042? Kalau Ada megguaka kalkulator, jawabaya amat bergatug pada tipe kalkulator yag Ada pakai. 9 Kalkulator ilmiah Casio fx-250 memberika

Lebih terperinci

UKURAN PEMUSATAN DATA

UKURAN PEMUSATAN DATA Malim Muhammad, M.Sc. UKURAN PEMUSATAN DATA J U R U S A N A G R O T E K N O L O G I F A K U L T A S P E R T A N I A N U N I V E R S I T A S M U H A M M A D I Y A H P U R W O K E R T O DEFINISI UKURAN PEMUSATAN

Lebih terperinci

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR Nur Aei Prodi Matematika, FST-UINAM uraeiatullah@gmail.com Ifo: Jural MSA Vol. 3 No. 2 Edisi: Juli Desember

Lebih terperinci

terurut dari bilangan bulat, misalnya (7,2) (notasi lain 2

terurut dari bilangan bulat, misalnya (7,2) (notasi lain 2 Bab Bilaga kompleks BAB BILANGAN KOMPLEKS Defiisi Bilaga Kompleks Sebelum medefiisika bilaga kompleks, pembaca diigatka kembali pada permasalah dalam sistem bilaga yag telah dikeal sebelumya Yag pertama

Lebih terperinci

GRUP TERURUT PARSIAL PADA MATRIKS SIMETRI BERUKURAN 2 2

GRUP TERURUT PARSIAL PADA MATRIKS SIMETRI BERUKURAN 2 2 Jural LOG!K@, Jilid 7, No, 7, Hal 46-5 ISSN 978 8568 GRU ERURU ARSIAL ADA MARIKS SIMERI BERUKURAN Irmatul Hasaah Uiversitas Islam Negeri Sulta Maulaa Hasauddi Bate Email: irmatulhasaah@uibateacid Abstract:

Lebih terperinci

MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR. Dosen Pengampu : Darmadi, S.Si, M.Pd

MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR. Dosen Pengampu : Darmadi, S.Si, M.Pd MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR Dose Pegampu : Darmadi, S.Si, M.Pd Disusu : Kelas 5A / Kelompok 5 : Dia Dwi Rahayu (084. 06) Hefetamala (084. 4) Khoiril Haafi (084. 70) Liaatul Nihayah (084. 74)

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2016/2017 3 Februari 2017 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg Batas

Lebih terperinci

EMPAT CARA UNTUK MENENTUKAN NILAI INTEGRAL POISSON., Sri Gemawati 2, Agusni 2. Mahasiswa Program Studi S1 Matematika 2

EMPAT CARA UNTUK MENENTUKAN NILAI INTEGRAL POISSON., Sri Gemawati 2, Agusni 2. Mahasiswa Program Studi S1 Matematika 2 EMPAT CARA UNTUK MENENTUKAN NLA NTEGRAL POSSON Novrialma *, Sri Gemawati, Agusi Mahasiswa Program Studi S Matematika Dose Jurusa Matematika Fakultas Matematika da lmu Pegetahua Alam Uiversitas Riau Kampus

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret Program Perkuliaha Dasar Umum Sekolah Tiggi Tekologi Telkom Barisa da Deret Barisa Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) a Fugsi tersebut

Lebih terperinci

PENGGUNAAN METODE BAYESIAN OBYEKTIF DALAM PEMBUATAN GRAFIK PENGENDALI p-chart

PENGGUNAAN METODE BAYESIAN OBYEKTIF DALAM PEMBUATAN GRAFIK PENGENDALI p-chart Prosidig Semiar Nasioal Peelitia, Pedidika da Peerapa MIPA, Fakultas MIPA, Uiversitas Negeri Yogyakarta, 2 Jui 2012 PENGGUNAAN METODE BAYESIAN OBYEKTIF DALAM PEMBUATAN GRAFIK PENGENDALI p-chart Adi Setiawa

Lebih terperinci

III. METODE PENELITIAN. kelas VIII semester ganjil SMP Sejahtera I Bandar Lampung tahun pelajaran 2010/2011

III. METODE PENELITIAN. kelas VIII semester ganjil SMP Sejahtera I Bandar Lampung tahun pelajaran 2010/2011 III. METODE PENELITIAN A. Latar Peelitia Peelitia ii merupaka peelitia yag megguaka total sampel yaitu seluruh siswa kelas VIII semester gajil SMP Sejahtera I Badar Lampug tahu pelajara 2010/2011 dega

Lebih terperinci

1 Persamaan rekursif linier non homogen koefisien konstan tingkat satu

1 Persamaan rekursif linier non homogen koefisien konstan tingkat satu Secara umum persamaa rekursif liier tigkat-k bisa dituliska dalam betuk: dega C 0 0. C 0 x + C 1 x 1 + C 2 x 2 + + C k x k = b, Jika b = 0 maka persamaa rekursif tersebut diamaka persamaa rekursif liier

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang. Universitas Sumatera Utara

BAB I PENDAHULUAN. 1.1 Latar Belakang. Universitas Sumatera Utara BAB I PENDAHULUAN 1.1 Latar Belakag Salah satu pera da fugsi statistik dalam ilmu pegetahua adalah sebagai. alat aalisis da iterpretasi data kuatitatif ilmu pegetahua, sehigga didapatka suatu kesimpula

Lebih terperinci

PEMETAAN KONTRAKTIF PADA RUANG b-metrik CONE R BERNILAI R 2

PEMETAAN KONTRAKTIF PADA RUANG b-metrik CONE R BERNILAI R 2 J. Math. ad Its Appl. ISSN: 829-605X Vol. 3, No. 2, Nopember 206, -0 PEMETAAN KONTRAKTIF PADA RUANG b-metrik CONE R BERNILAI R 2 Suarsii, Mahmud Yuus 2, Sadjido 3, Auda Nuril Z 4,2,3,4 Jurusa Matematika,

Lebih terperinci

Solusi Pengayaan Matematika

Solusi Pengayaan Matematika Solusi Pegayaa Matematika Edisi 11 Maret Peka Ke-, 2007 Nomor Soal: 101-110 101. Bilaga desimal 0,7777 diyataka dalam hasil bagi bilaga rasioal sebagai a b, dega a da b relatif prima. Nilai dari ab A.

Lebih terperinci

MATHunesa (Volume 3 No 3) 2014

MATHunesa (Volume 3 No 3) 2014 BEBERAPA KELAS GRAPH PLANAR SUPER SISI AJAIB Halimah Program Studi S1 Matematika, Fakultas Matematika da Ilmu Pegetahua Alam, Uiversitas Negeri Surabaya, e-mail : ur26halimah@gmail.com Prof. I Ketut Budayasa,

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BB LNDSN TEORI..Graf Teori Graf mulai dikeal pada saat seorag matematikawa bagsa Swiss, berama Leohard Euler, berhasil megugkapka Misteri Jembata Koigsberg pada tahu 736. Sebuah Graf G megadug himpua yaitu

Lebih terperinci

Solusi Soal OSN 2012 Matematika SMA/MA Hari Pertama

Solusi Soal OSN 2012 Matematika SMA/MA Hari Pertama Solusi Soal OSN Matematika SMA/MA Hari Pertama Soal 1. Buktika bahwa utuk sebarag bilaga asli a da b, bilaga adalah bilaga bulat geap tak egatif. = F P B (a, b) + KP K (a, b) a b Solusi. Pertama aka dibuktika

Lebih terperinci

Deret Fourier. Modul 1 PENDAHULUAN

Deret Fourier. Modul 1 PENDAHULUAN Modul Deret Fourier Prof. Dr. Bambag Soedijoo P PENDAHULUAN ada modul ii dibahas masalah ekspasi deret Fourier Sius osius utuk suatu fugsi periodik ataupu yag diaggap periodik, da dibahas pula trasformasi

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. Sebelum melakukan deteksi dan tracking obyek dibutuhkan perangkat

BAB IV HASIL DAN PEMBAHASAN. Sebelum melakukan deteksi dan tracking obyek dibutuhkan perangkat BAB IV HASIL DAN PEMBAHASAN 4.1 Kebutuha Sistem Sebelum melakuka deteksi da trackig obyek dibutuhka peragkat luak yag dapat meujag peelitia. Peragkat keras da luak yag diguaka dapat dilihat pada Tabel

Lebih terperinci

DERET Matematika Industri 1

DERET Matematika Industri 1 DERET TIP FP UB Pokok Bahasa Barisa Deret Deret aritmetik Deret geometrik Deret pagkat dari bilaga-bilaga asli Deret tak berhigga Nilai-ilai limit Deret koverge da deret diverge Uji kovergesi Deret secara

Lebih terperinci

Himpunan. Himpunan 3/28/2012. Semesta Pembicaraan Semua mobil di Indonesia

Himpunan. Himpunan 3/28/2012. Semesta Pembicaraan Semua mobil di Indonesia Himpua Suatu himpua atau gugus adalah merupaka sekumpula obyek. Pada umumya aggota dari gugus tersebut memiliki suatu sifat yag sama. Suatu himpua bagia atau aak gugus merupaka sekumpula obyek yag aggotaya

Lebih terperinci

BARISAN FIBONACCI DAN BILANGAN PHI

BARISAN FIBONACCI DAN BILANGAN PHI BARISAN FIBONACCI DAN BILANGAN PHI Fiboacci Matematikawa terbesar pada abad pertegaha adalah Leoardo dari Pisa, Italia (80 0). Ia lebih dikeal dega ama Fibo-acci. Artiya, aak Boaccio. Meara Pisa yag terkeal

Lebih terperinci

Bab 3 Metode Interpolasi

Bab 3 Metode Interpolasi Baha Kuliah 03 Bab 3 Metode Iterpolasi Pedahulua Iterpolasi serig diartika sebagai mecari ilai variabel tergatug tertetu, misalya y, pada ilai variabel bebas, misalya, diatara dua atau lebih ilai yag diketahui

Lebih terperinci

BAB III PEMBAHASAN. Pada BAB III ini akan dibahas mengenai bentuk program linear fuzzy

BAB III PEMBAHASAN. Pada BAB III ini akan dibahas mengenai bentuk program linear fuzzy BAB III PEMBAHASAN Pada BAB III ii aka dibahas megeai betuk program liear fuzzy dega koefisie tekis kedala berbetuk bilaga fuzzy da pembahasa peyelesaia masalah optimasi studi kasus pada UD FIRDAUS Magelag

Lebih terperinci

b. Penyajian data kelompok Contoh: Berat badan 30 orang siswa tercatat sebagai berikut:

b. Penyajian data kelompok Contoh: Berat badan 30 orang siswa tercatat sebagai berikut: Statistik da Peluag A. Statistik Statistik adalah metode ilmiah yag mempelajari cara pegumpula, peyusua, pegolaha, da aalisis data, serta cara pegambila kesimpula berdasarka data-data tersebut. Data ialah

Lebih terperinci

BAB V ANALISA PEMECAHAN MASALAH

BAB V ANALISA PEMECAHAN MASALAH 89 BAB V ANALISA PEMECAHAN MASALAH Dalam upaya mearik kesimpula da megambil keputusa, diperluka asumsi-asumsi da perkiraa-perkiraa. Secara umum hipotesis statistik merupaka peryataa megeai distribusi probabilitas

Lebih terperinci

theresiaveni.wordpress.com NAMA : KELAS :

theresiaveni.wordpress.com NAMA : KELAS : theresiaveiwordpresscom NAMA : KELAS : 1 theresiaveiwordpresscom BARISAN DAN DERET Barisa da deret dapat diguaka utuk memudahka peyelesaia perhituga, misalya buga bak, keaika produksi, da laba/rugi suatu

Lebih terperinci