KEKONVERGENAN BARISAN DI DALAM RUANG

Ukuran: px
Mulai penontonan dengan halaman:

Download "KEKONVERGENAN BARISAN DI DALAM RUANG"

Transkripsi

1 KEKONVERGENAN BARISAN DI DALAM RUANG FUNGSI KONTINU C[a, b] Firdaus Ubaidillah 1, Soepara Darmawijaya, Ch. Rii Idrati 1 Jurusa Matematika FMIPA Uiversitas Gadjah Mada Yogyakarta irdaus_u@yahoo.com ABSTRAK Diberika C[a,b] merupaka koleksi semua ugsi kotiu berilai real pada selag tertutup [a,b]. C[a,b] merupaka ruag liear atas lapaga real. Dalam tulisa ii dibahas pegertia-pegertia orma, barisa koverge, terbatas da mooto, iimum da supremum da lai-lai yag semuaya disajika dalam bahasa ugsi kotiu. Selai itu aka ditujukka bahwa barisa yag terbatas da mooto di dalam ruag ugsi kotiu C[a,b] belum tetu koverge. Satu siat yag mejami sebuah barisa memiliki supremum atau iimum aka dibahas. Kata kuci: Barisa koverge, Fugsi kotiu berilai real, Ruag ugsi kotiu ABSTRACT Let C[a,b] be a collectio o all real-valued cotiuous uctios o a closed iterval [a, b]. The C[a,b] is a liear space over the real ield. I this paper, we discussed some otios o orm, mootoe, bouded ad coverget sequece, iimum ad supremum ad others o which are preseted i the laguage o cotiuous uctios. They will also be show that bouded ad mootoe sequece i the cotiuous uctios space C[a,b] is ot ecessarily coverget. A property that esures a sequece has a supremum or iimum will be discussed. Keywords: Coverget sequece, Cotiuous real-valued uctio, Cotiuous uctio space PENDAHULUAN Telah bayak dibahas siat-siat ugsi kotiu berilai real pada selag tertutup [a, b] oleh Bartle da Sherbert (2000), diataraya siat terbatas, mecapai ilai maksimum da miimum, dapat didekati dega ugsi tagga, merupaka ugsi kotiu seragam, teritegral Riema da lai sebagaiya. Dalam tulisa ii, C[a, b] meyataka koleksi semua ugsi kotiu berilai real pada selag tertutup [a, b] R, yaki : [a, b] R kotiu. Pembahasa beberapa siat dasar C[a, b] bayak dijumpai dalam ruag Baach klasik diataraya oleh Lidestrauss da Tsariri (1977), Diestel (1984), Meyer-Nieberg (1991), Albiac da Kalto (2006), da lai-lai. Jika dideiisika pejumlaha da perkalia skalar di C[a, b] berturut-turut ( + g)(x) = (x) + g(x) utuk setiap, g C[a, b], x [a, b], da (α)(x) = α(x) utuk setiap C[a, b], α R, x [a, b], maka α, ( + g) C[a, b]. Oleh karea itu C[a, b] merupaka ruag liear atas lapaga R (Yeh, 2006). Lebih jauh, jika diberika orma pada C[a, b] yag dideiisika = sup (x) a x b utuk setiap C[a, b], maka (C[a, b], ) merupaka ruag Baach (Dales, 2003). Dua aggota da g di dalam C[a, b] dikataka i. = g jika (x) = g(x) utuk setiap x [a, b]; ii. < g jika (x) < g(x) utuk setiap x [a, b]; iii. g jika (x) g(x) utuk setiap x [a, b]. Berdasarka pegertia di atas, mudah dipahami bahwa C[a, b] merupaka himpua terurut parsial (partially ordered set) terhadap relasi. Dua aggota da g di dalam C[a, b] dikataka dapat dibadigka (comparable) jika g atau g da dikataka tidak dapat dibadigka (icomparable) jika tidak g da g. Selajutya jika diaggap petig, peulisa < g da g berturutturut dapat digatika dega g > da g.

2 Kekovergea Barisa di Dalam Ruag Fugsi Kotiu C[a,b] Selajutya dideiisika ugsi ol (ull uctio) θ da ugsi satua (uit uctio) e di dalam C[a, b] berturut-turut dega θ(x) = 0 da e(x) = 1 utuk setiap x [a, b]. Karea setiap, g, h C[a, b] da g i. + h g + h ii. γ < γg utuk setiap bilaga γ > 0, maka disimpulka bahwa C[a, b] merupaka ruag Riesz. Lebih jauh, jika dideiisika perkalia di dalam C[a, b], yaki (g)(x) = (x)g(x) utuk setiap, g C[a, b] da setiap x [a, b] maka g C[a, b]. Oleh karea itu C[a, b] merupaka aljabar Baach dega usur satua e (Dales, 2003 ). Dalam tulisa ii, aka diperkealka pegertia orma dalam bahasa ugsi kotiu. Utuk membedaka pegertia orma pada umumya dega orma dalam bahasa ugsi kotiu, utuk itu diguaka otasi orma*. Deiisi 1. (Darmawijaya, 2012) Sebuah ugsi : C[a, b] C[a, b] dikataka orma* (orm*) pada C[a, b] jika memeuhi siat-siat i. θ, utuk setiap C[a, b]; = θ jika da haya jika = θ; ii. α = α, utuk setiap C[a, b] α R; iii. + g + g, utuk setiap, g C[a, b]. Sekarag dideiisika ilai mutlak di dalam C[a, b] dega (x) = (x), utuk setiap x [a, b]. Karea memeuhi semua siat dalam Deiisi 1, maka merupaka sebuah orma* pada C[a, b]. Berkaita dega hal-hal tersebut di atas, tujua dalam tulisa ii adalah membahas kekovergea barisa di dalam C[a, b] dega orma* yag dijelaska di atas dalam bahasa ugsi kotiu, yag mempuyai arti cukup bekerja di dalam C[a, b]. Namu begitu, utuk memudahka pembuktia teorema da perhituga, dalam beberapa kasus aka dibawa ke ugsi real. HASIL DAN PEMBAHASAN Dalam bagia ii aka dibahas beberapa deiisi da teorema yag aka diguaka utuk membahas kekovergea barisa di dalam C[a, b]. Di akhir bagia ii dibahas syarat suatu barisa memiliki supremum atau iimum. Utuk setiap, g C[a, b] da α R, yag dimaksud dega ugsi i. g adalah ugsi yag dideiisika g (x) = (x) g(x) asalka g(x) 0, ii. g adalah ugsi yag dideiisika dega ( g)(x) = sup {(x), g(x)}, iii. g adalah ugsi yag dideiisika dega ( g)(x) = i {(x), g(x)}, iv. adalah ugsi yag dideiisika dega (x) = (x) dega (x) 0, v. 1 = e jika > θ atau < θ, utuk setiap x [a, b]. Telah ditujukka oleh Bartle da Sherbert (2000), bahwa jika, g C[a, b], maka g, g, ((x) 0) da (g(x) 0) di dalam g C[a, b]. Oleh karea itu C[a, b] merupaka sebuah aljabar (algebra), lebih jauh C[a, b] sebuah aljabar Baach (Baach algebra) (Dales, 2003). Berikut diberika pegertia himpua terbatas ke atas, himpua terbatas ke bawah da himpua terbatas di dalam C[a, b]. Deiisi 2. Sebuah himpua A C[a, b] tidak kosog dikataka i. terbatas ke atas (bouded above) jika terdapat q C[a, b] sehigga h q utuk setiap h A; selajutya q disebut batas atas (upper boud) himpua A; ii. terbatas ke bawah (bouded below) jika terdapat p C[a, b] sehigga p h utuk setiap h A; selajutya p disebut batas bawah (lower boud) himpua A; iii. terbatas (bouded) jika A terbatas ke atas da terbatas ke bawah atau himpua A dikataka terbatas jika terdapat t C[a, b] da t > θ sehigga h t utuk setiap h A. Selajutya diperkealka pegertia batas atas terkecil da batas bawah terbesar dari suatu himpua. Jural CAUCHY ISSN:

3 Firdaus Ubaidillah, Soepara Darmawijaya, Ch. Rii Idrati Deiisi 3. Diberika himpua A C[a, b] tidak kosog. i. Himpua A terbatas ke atas. Titik s C[a, b] disebut batas atas terkecil (least upper boud) atau supremum A jika s adalah batas atas A da utuk setiap v batas atas A s v. Dalam kasus ii ditulis s = sup(a). ii. Himpua A terbatas ke bawah. Titik r C[a, b] disebut batas bawah terbesar (greates lower boud) atau iimum A jika r adalah batas bawah A da utuk setiap u batas bawah A r u. Dalam kasus ii ditulis r = i(a). Dari pegertia ii, belum tetu bear bahwa setiap himpua terbatas ke atas (bawah) memiliki supremum (iimum), lihat Cotoh 10 da Cotoh 11. Dalam kasus himpua A C[a, b] higga, maka A memiliki supremum da iimum, da sup(a) = h A h da i(a) = h A h. Dalam Deiisi 4 berikut ii diberika pegertia dari barisa koverge da barisa Cauchy di dalam C[a, b] da dilajutka dega sebuah cotoh barisa koverge (Cotoh 5). Deiisi 4. Sebuah barisa { } C[a, b] dikataka i. koverge (coverges) jika ada C[a, b] sehigga utuk setiap bilaga ε > 0 terdapat bilaga asli K sehigga utuk setiap K < εe. Jika demikia halya, barisa { } dikataka koverge (coverget) ke atau barisa { } mempuyai limit utuk da dituliska dega lim =. ii. barisa Cauchy (Cauchy sequece) jika setiap bilaga ε > 0 terdapat bilaga asli K sehigga utuk setiap m, K m < εe. Cotoh 5. Diberika barisa { } C[0,1] yag dideiisika (x) = x, utuk setiap x [0,1]. Barisa { } merupaka barisa koverge ke θ, sebab jika diberika bilaga ε > 0 sebarag maka dipilih bilaga asli K > 1/ε, sehigga jika utuk setiap K diperoleh (x) θ(x) = x 0 = x 1 1 K < ε. Jadi lim = θ. Selajutya dibahas beberapa siat dasar barisa koverge diataraya ketuggala limit barisa da keterbatasa barisa yag koverge berturut-turut disajika dalam Teorema 6 da Teorema 7. Teorema 6. Jika barisa { } C[a, b] koverge, maka limit barisa { } tuggal. Bukti: Aggap, g C[a, b] sehigga barisa { } koverge ke da g. Jadi utuk setiap bilaga ε > 0 terdapat dua bilaga asli 0 da m 0 sehigga da < ε 2 e jika 0 g < ε 2 e jika m 0. Oleh karea itu utuk setiap bilaga asli maks{ 0, m 0 } diperoleh g + g < ε 2 e + ε e = εe. 2 Jadi = g. Teorema 7. Jika barisa { } C[a, b] koverge, maka { } terbatas. Bukti: Diberika barisa { } koverge ke C[a, b] da sebarag bilaga ε > 0. Terdapat bilaga asli K sehigga utuk setiap K dipuyai < εe. Utuk setiap K diperoleh = + + < εe +. Selajutya diambil K 1 p = ( ) (εe + ). =1 Jadi diperoleh p utuk setiap bilaga asli, atau dega kata lai { } terbatas. Berikutya dibahas pegembaga lebih lajut siat-siat kekovergea barisa yag disajika dalam Teorema 8 da Teorema 9. Teorema 8. Diberika sebarag bilaga γ R da barisa-barisa { }, {g } C[a, b] koverge berturut-turut ke da g. Maka barisa {γ }, { + g } da { g } koverge berturutturut ke γ, + g da g. Lebih jauh, barisa { : g g > θ atau g < θ utuk setiap } koverge ke bilamaa g > θ atau g < θ. g 186 Volume 2 No. 4 Mei 2013

4 Kekovergea Barisa di Dalam Ruag Fugsi Kotiu C[a,b] Bukti: Di sii haya aka dibuktika utuk barisa { g } koverge ke g saja. Diberika barisa { }, {g } C[a, b] koverge berturut-turut ke da g. Berdasarka Teorema 7, terdapat p > θ sehigga p utuk setiap N. Dideiisika t = p g. Diberika sebarag bilaga ε > 0. Karea { } koverge ke da {g } koverge ke g, maka terdapat bilaga K 1, K 2 N sehigga jika K 1 < εe 2t da jika K 2 g g < εe 2t. Dipilih K = sup {K 1, K 2 }. Oleh karea itu jika K maka diperoleh g g g g + g g = g g + g < t εe 2t + εe t = εe. 2t Jadi { g } koverge ke g. Teorema 9. Barisa { } C[a, b] koverge jika da haya jika { } barisa Cauchy. Bukti: Syarat perlu. Diketahui { } koverge, maka terdapat C[a, b] sehigga utuk setiap bilaga ε > 0 terdapat bilaga asli K sehigga jika K < ε 2 e. Jadi utuk setiap bilaga asli, m K diperoleh m + m < ε 2 e + ε e = εe. 2 Syarat cukup: Diketahui { } barisa Cauchy. Artiya, utuk setiap bilaga ε > 0 terdapat bilaga asli N sehigga jika m, N bear bahwa m < εe. Jadi utuk setiap m, N (x) m (x) < ε utuk setiap x [a, b]. Ii berarti utuk setiap x [a, b], { (x)} merupaka barisa Cauchy di R. Oleh karea itu setiap x [a, b], barisa { (x)} koverge di R. Selajutya dideiisika (x) = lim (x) utuk setiap x [a, b]. Jadi utuk setiap bilaga ε > 0 terdapat bilaga asli N sehigga jika N (x) (x) < ε utuk setiap x [a, b]. (1) Karea N C[a, b], maka N kotiu seragam pada [a, b]. Artiya, utuk setiap bilaga ε > 0 terdapat bilaga δ > 0 sehigga utuk setiap x, y [a, b] dega x y < δ maka N (x) N (y) < ε 3. (2) Berdasarka ketaksamaa (1) da (2), utuk setiap x, y [a, b] dega x y < δ, diperoleh (x) (y) (x) N (x) + N (x) N (y) + N (x) (y) < ε 3 + ε 3 + ε 3 = ε. Jadi terbukti C[a, b]. Selajutya, berdasarka ketaksamaa (1) karea utuk setiap N da utuk setiap x [a, b], (x) (x) ε/3 maka utuk setiap N diperoleh ε e < εe. 3 Jadi { } barisa koverge. Barisa { } C[a, b] dikataka aik mooto (odecreasig) jika setiap bilaga asli dipuyai +1. Barisa { } C[a, b] dikataka turu mooto (oicreasig) jika setiap bilaga asli dipuyai +1. Sebuah barisa { } C[a, b] dikataka mooto (mootoe) jika { } aik mooto atau turu mooto. Sebuah barisa yag turu (aik) mooto da terbatas ke bawah (ke atas) belum tetu mempuyai iimum (supremum), seperti diberika dalam dua cotoh berikut. Cotoh 10. Diberika barisa { } C[0,1] yag dideiisika (x) = x utuk setiap N da setiap x [0,1]. Aka ditujukka bahwa barisa { } turu (aik) mooto da terbatas tetapi tidak mempuyai iimum. Cukup jelas bahwa barisa { } terbatas sebab θ e da turu mooto sebab +1 utuk setiap. Barisa { (x)} koverge titik demi titik ke (x) = 0 utuk x [0,1) da (1) = 1, tetapi C[0,1]. Cotoh 11. Diberika barisa {g } C[0,1] yag dideiisika g (x) = x utuk 0 x < 1 da g (x) = 1 utuk 1 x 1 utuk setiap N da setiap x [0,1]. Aka ditujukka bahwa barisa {g } aik mooto da terbatas tetapi tidak mempuyai supremum. Cukup jelas bahwa barisa {g } terbatas sebab θ g e da aik mooto sebab g g +1 utuk setiap. Barisa {g (x)} koverge titik demi titik ke g(x) = 1 utuk x (0,1] da g(0) = 0, tetapi g C[0,1]. Teorema 12. Jika barisa { } C[a, b] aik (turu) mooto da mempuyai supremum (iimum) maka barisa { } koverge ke supremumya (iimumya). Jural CAUCHY ISSN:

5 Firdaus Ubaidillah, Soepara Darmawijaya, Ch. Rii Idrati Bukti: Diberika s = sup { : N} C[a, b]. Utuk setiap bilaga ε > 0, terdapat bilaga asli K sehigga s εe < K. Nyataya bahwa barisa { } aik mooto, hal ii megakibatka K utuk setiap K, sehigga diperoleh s εe < K s < s + εe utuk setiap K. Oleh karea itu diperoleh s < εe utuk setiap K. Jadi lim = s. Bukti utuk iimum serupa. Barisa { } C[a, b] dikataka aik seragam (uiormly odecreasig) jika setiap bilaga ε > 0 terdapat bilaga asli N sehigga utuk setiap N dipuyai θ +1 < εe. Barisa { } C[a, b] dikataka turu seragam (uiormly oicreasig) jika setiap bilaga ε > 0 terdapat bilaga asli K sehigga utuk setiap K dipuyai θ +1 < εe. Di akhir bagia ii diberika Teorema 13 yag mejami suatu barisa memiliki supremum atau iimum. Teorema 13. Diberika barisa { } C[a, b] terbatas. (i). Jika { } aik seragam maka { } memiliki supremum. Lebih jauh, barisa { } koverge ke supremumya. (ii). Jika { } turu seragam maka { } memiliki iimum. Lebih jauh, barisa { } koverge ke iimumya. Bukti: (i). Diberika barisa { } terbatas da aik seragam. Maka, utuk setiap bilaga ε > 0 terdapat bilaga asli N 1 sehigga utuk setiap N 1 dipuyai θ +1 < εe 0 +1 (x) (x) < ε utuk setiap x [a, b]. Karea { } terbatas maka utuk setiap x [a, b] barisa { (x)} terbatas di R. Oleh karea itu, terdapat bilaga (x) = sup { (x)} utuk setiap x [a, b]. Utuk sebarag bilaga ε > 0 terdapat bilaga asli N 2 sehigga jika N 2 maka Akibatya, berdasarka ketaksamaa (3) da (4) disimpulka bahwa jika setiap x, y [a, b] dega x y < δ diperoleh (x) (y) (x) N (x) + N (x) N (y) + N (y) (y) < ε 3 + ε 3 + ε 3 = ε. Jadi C[a, b]. Bukti utuk iimum serupa. REFERENSI [1] Albiac, F., da Kalto, NJ., (2006), Topics i Baach Space Theory, Spriger-Verlag, New York. [2] Bartle, R.G. da Sherbert, D.R., (2000), Itroductio to Real Aalysis, 3rd editio, JohWiley, New York. [3] Dales, H.G., (2003), Itroductio Baach Algebras, Operators, ad Harmoic Aalysis, Cambridge Uiversity Press, Cambridge. [4] Darmawijaya, S., (2012), Calculus o the Family o Cotiuous Fuctios, Semiar Nasioal KNM XVI, Uiversitas Padjadjara Sumedag. [5] Diestel, J., (1984), Sequeces ad Series i Baach Spaces, Spriger-Verlag, New York. [6] Lidestrauss, J. da Tsariri, L., (1977), Classical Baach Spaces II, Spriger-Verlag, Berli. [7] Meyer-Nieberg, P., (1991), Baach Lattices, Spriger-Verlag, Berli. [8] Yeh, J., (2006), Real Aalysis: Theory o Measure ad Itegratio, 2d editio, World Scietiic Publishig, Sigapore atau (x) ε 3 < (x) (x) < (x) + ε 3 (x) (x) < ε 3. (3) Jelas bahwa ugsi berilai real yag terdeiisi pada [a, b]. Selajutya diambil bilaga asli N = sup {N 1, N 2 }. Karea N C[a, b] maka terdapat bilaga δ > 0 sehigga utuk setiap x, y [a, b] dega x y < δ dipuyai N (x) N (y) < ε 3. (4) 188 Volume 2 No. 4 Mei 2013

PEMBUKTIAN SIFAT RUANG BANACH PADA B 1/4 (K) Malahayati

PEMBUKTIAN SIFAT RUANG BANACH PADA B 1/4 (K) Malahayati Jural Matematika Muri da Terapa εpsilo Vol. 07, No.01, (2013), Hal. 33 44 PEMBUKTIAN SIFAT RUANG BANACH PADA B 1/4 (K) Malahayati Program Studi Matematika Fakultas Sais da Tekologi UIN Sua Kalijaga Yogyakarta

Lebih terperinci

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n LIMIT 4.. FUNGSI LIMIT Defiisi 4.. A R Titik c R adalah titik limit dari A, jika utuk setiap δ > 0 ada palig sedikit satu titik di A, c sedemikia sehigga c < δ. Defiisi diatas dapat disimpulka dega cara

Lebih terperinci

TINJAUAN PUSTAKA. 2.1 Ruang Vektor. Definisi (Darmawijaya, 2007) Diketahui (V, +) grup komutatif dan (F,,. ) lapangan dengan elemen identitas

TINJAUAN PUSTAKA. 2.1 Ruang Vektor. Definisi (Darmawijaya, 2007) Diketahui (V, +) grup komutatif dan (F,,. ) lapangan dengan elemen identitas II. TINJAUAN PUSTAKA 2.1 Ruag Vektor Defiisi 2.1.1 (Darmawijaya, 2007) Diketahui (V, +) grup komutatif da (F,,. ) lapaga dega eleme idetitas 1. V disebut ruag vektor (vector space) atas F jika ada operasi

Lebih terperinci

Mariatul Kiftiah. JurusanMatematika FMIPA Universitas Tanjungpura, Pontianak Jl. A Yani Pontianak ABSTRACT

Mariatul Kiftiah. JurusanMatematika FMIPA Universitas Tanjungpura, Pontianak Jl. A Yani Pontianak ABSTRACT Prosidig Semirata2015 bidag MIPA BKS-PTN Barat Uiversitas Tajugpura Potiaak EKSISTENSI DAN KETUNGGALAN TITIK TETAP DARI PEMETAAN KANNAN DI RUANG MODULAR (THE EXISTENCE AND UNIQUENESS OF A FIXED POINT FOR

Lebih terperinci

InfinityJurnal Ilmiah Program Studi Matematika STKIP Siliwangi Bandung, Vol 2, No.1, Februari 2013

InfinityJurnal Ilmiah Program Studi Matematika STKIP Siliwangi Bandung, Vol 2, No.1, Februari 2013 IfiityJural Ilmiah Program Studi Matematika STKIP Siliwagi Badug, Vol 2, No.1, Februari 2013 KEKONTINUAN FUNGSI PADA RUANG METRIK Oleh: Cece Kustiawa Jurusa Pedidika Matematika FPMIPA UPI, cecekustiawa@yahoo.com

Lebih terperinci

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang 5. DERET

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang 5. DERET Pertemua 7. BAHAN AJAR ANALISIS REAL Matematika STKIP Tuaku Tambusai Bagkiag 5. da kekovergeaya 5. DERET Diberika sebuah barisa a, dapat didefeisika barisa bilaga real S N dega S N := N a = a + a 2 +...

Lebih terperinci

Hendra Gunawan. 12 Februari 2014

Hendra Gunawan. 12 Februari 2014 MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2013/2014 12 Februari 2014 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 82 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg

Lebih terperinci

Secara umum, suatu barisan dapat dinyatakan sebagai susunan terurut dari bilangan-bilangan real:

Secara umum, suatu barisan dapat dinyatakan sebagai susunan terurut dari bilangan-bilangan real: BARISAN TAK HINGGA Secara umum, suatu barisa dapat diyataka sebagai susua terurut dari bilaga-bilaga real: u 1, u 2, u 3, Barisa tak higga merupaka suatu fugsi dega domai berupa himpua bilaga bulat positif

Lebih terperinci

SIFAT-SIFAT FUNGSI EKSPONENSIAL BERBASIS BILANGAN NATURAL YANG DIDEFINISIKAN SEBAGAI LIMIT

SIFAT-SIFAT FUNGSI EKSPONENSIAL BERBASIS BILANGAN NATURAL YANG DIDEFINISIKAN SEBAGAI LIMIT Jural Matematika UNAND Vol. 4 No. 1 Hal. 12 22 ISSN : 2303 2910 c Jurusa Matematika FMIPA UNAND SIFAT-SIFAT FUNGSI EKSPONENSIAL BERBASIS BILANGAN NATURAL YANG DIDEFINISIKAN SEBAGAI LIMIT ENIVA RAMADANI

Lebih terperinci

HALAMAN Dengan definisi limit barisan buktikan limit berikut ini : = 0. a. lim PENYELESAIAN : jadi terbukti bahwa lim = 0 = 5. b.

HALAMAN Dengan definisi limit barisan buktikan limit berikut ini : = 0. a. lim PENYELESAIAN : jadi terbukti bahwa lim = 0 = 5. b. Didowload dari ririez.blog.us.ac.id HALAMAN 36 37 5. Dega defiisi limit barisa buktika limit berikut ii : a. lim = 0 lim 1 2 + 3 = 0 > 0 h 1 = 2 + 3 0 = 1 2 + 3 1 2 1 2 1 2 < jadi terbukti bahwa lim =

Lebih terperinci

TEOREMA WEYL UNTUK OPERATOR HYPONORMAL

TEOREMA WEYL UNTUK OPERATOR HYPONORMAL Jural UJMC, Volume 3, Nomor, Hal. - 6 pissn : 460-3333 eissn : 579-907X TEOREMA WEYL UNTUK OPERATOR HYPONORMAL Guawa Uiversitas Muhammadiyah Purwokerto, gu.oge@gmail.com Abstract This paper aims at describig

Lebih terperinci

Jurnal Matematika Murni dan Terapan Vol. 6 No.1 Juni 2012: 9-16 KRITERIA KEKONVERGENAN CAUCHY PADA RUANG METRIK KABUR INTUITIONISTIC

Jurnal Matematika Murni dan Terapan Vol. 6 No.1 Juni 2012: 9-16 KRITERIA KEKONVERGENAN CAUCHY PADA RUANG METRIK KABUR INTUITIONISTIC Jural Matematika Muri da Teraa Vol. 6 No.1 Jui 01: 9-16 KRITERIA KEKONVERGENAN CAUCHY PADA RUANG METRIK KABUR INTUITIONISTIC Muhammad Ahsar Karim 1 Faisal Yui Yulida 3 [1,,3] PS Matematika FMIPA Uiversitas

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 71-76, Agustus 2003, ISSN :

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 71-76, Agustus 2003, ISSN : JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 71-76, Agustus 2003, ISSN : 1410-8518 SYARAT CUKUP AGAR SUATU FUNGSI TERINTEGRAL HENSTOCK MUTLAK DI DALAM RUANG METRIK KOMPAK LOKAL Mauharawati Jurusa Matematika

Lebih terperinci

2 BARISAN BILANGAN REAL

2 BARISAN BILANGAN REAL 2 BARISAN BILANGAN REAL Di sekolah meegah barisa diperkealka sebagai kumpula bilaga yag disusu meurut "pola" tertetu, misalya barisa aritmatika da barisa geometri. Biasaya barisa da deret merupaka satu

Lebih terperinci

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR Nur Aei Prodi Matematika, FST-UINAM uraeiatullah@gmail.com Ifo: Jural MSA Vol. 3 No. 2 Edisi: Juli Desember

Lebih terperinci

LANDASAN TEORI. Pada bab ini akan diberikan beberapa konsep dasar (pengertian) yang akan digunakan dalam. pembahasan penelitian. 2.

LANDASAN TEORI. Pada bab ini akan diberikan beberapa konsep dasar (pengertian) yang akan digunakan dalam. pembahasan penelitian. 2. II. LANDASAN TEORI Pada bab ii aka diberika beberapa kosep dasar (pegertia) yag aka diguaka dalam pembahasa peelitia 2.1 Ruag Vektor Defiisi 3.1.1 (Darmawijaya, 2007) Diketahui (V, +) grup komutatif da

Lebih terperinci

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR Nur Aei Prodi Matematika, FST-UINAM uraeiatullah@gmail.com Ifo: Jural MSA Vol. 3 No. 2 Edisi: Juli Desember

Lebih terperinci

BAB III RUANG HAUSDORFF. Pada bab ini akan dibahas mengenai ruang Hausdorff, kekompakan pada

BAB III RUANG HAUSDORFF. Pada bab ini akan dibahas mengenai ruang Hausdorff, kekompakan pada 8 BAB III RUANG HAUSDORFF Pada bab ii aka dibahas megeai ruag Hausdorff, kekompaka pada ruag Hausdorff da ruag regular legkap. Pembahasa diawali dega medefiisika Ruag Hausdorff da beberapa sifatya kemudia

Lebih terperinci

,n N. Jelas barisan ini terbatas pada dengan batas M =: 1, dan. barisan ini kovergen ke 0.

,n N. Jelas barisan ini terbatas pada dengan batas M =: 1, dan. barisan ini kovergen ke 0. PROGRAM STUDI PENDIDIKAN MATEMATIKA FKIP UNMUH PONOROGO SOAL UJIAN TENGAH SEMESTER GENAP TA 03/04 Mata Ujia : Aalisis Real Tipe Soal : REGULER Dose : Dr. Jula HERNADI Waktu : 90 meit Hari, Taggal : Selasa,

Lebih terperinci

TUGAS ANALISIS REAL LANJUT. a b < a + A. b + B < A B.

TUGAS ANALISIS REAL LANJUT. a b < a + A. b + B < A B. TUGAS ANALISIS REAL LANJUT NOVEMBER 207 () (a) Jika b > 0, B > 0, da a b < A, buktika ab < ba. Kemudia buktika B a b < a + A b + B < A B. (b) Buktika [ 2 (a + b)] 2 2 (a2 + b 2 ). Kemudia tujukka bahwa

Lebih terperinci

Homomorfisma Pada Semimodul Atas Aljabar Max-Plus

Homomorfisma Pada Semimodul Atas Aljabar Max-Plus Homomorfisma Pada Semimodul Atas Aljabar Max-Plus A 14 Oleh : Musthofa Jurusa Pedidika Matematika FMIPA UNY Abstrak Kosep homorfisma telah bayak dibahas pada beberapa struktur aljabar yaitu pada ruag vektor

Lebih terperinci

BARISAN DAN DERET. Nurdinintya Athari (NDT)

BARISAN DAN DERET. Nurdinintya Athari (NDT) BARISAN DAN DERET Nurdiitya Athari (NDT) BARISAN Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) = a Fugsi tersebut dikeal sebagai barisa bilaga

Lebih terperinci

HUBUNGAN ANTARA KONVERGEN HAMPIR PASTI, KONVERGEN DALAM PELUANG, DAN KONVERGEN DALAM SEBARAN

HUBUNGAN ANTARA KONVERGEN HAMPIR PASTI, KONVERGEN DALAM PELUANG, DAN KONVERGEN DALAM SEBARAN Jural Matematika UNAND Vol. 2 No. 2 Hal. 0 6 ISSN : 2303 290 c Jurusa Matematika FMIPA UNAND HUBUNGAN ANTARA KONVERGEN HAMPIR PASTI, KONVERGEN DALAM PELUANG, DAN KONVERGEN DALAM SEBARAN VIRA AGUSTA, DODI

Lebih terperinci

Jurnal Matematika Murni dan Terapan Vol. 4 No.2 Desember 2010: 1-13 TEOREMA TITIK TETAP BANACH PADA RUANG METRIK-D

Jurnal Matematika Murni dan Terapan Vol. 4 No.2 Desember 2010: 1-13 TEOREMA TITIK TETAP BANACH PADA RUANG METRIK-D Jural Mateatika Muri da Terapa Vol 4 No Deseber : - 3 TEOREMA TITIK TETAP BANACH PADA RUANG METRIK-D Muhaad Ahsar Kari, Dewi Sri Susati, da Nurul Huda Progra Studi Mateatika Uiversitas Labug Magkurat Jl

Lebih terperinci

I. DERET TAKHINGGA, DERET PANGKAT

I. DERET TAKHINGGA, DERET PANGKAT I. DERET TAKHINGGA, DERET PANGKAT. Pedahulua Pembahasa tetag deret takhigga sebagai betuk pejumlaha suku-suku takhigga memegag peraa petig dalam fisika. Pada bab ii aka dibahas megeai pegertia deret da

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2016/2017 3 Februari 2017 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg Batas

Lebih terperinci

GRUP TERURUT PARSIAL PADA MATRIKS SIMETRI BERUKURAN 2 2

GRUP TERURUT PARSIAL PADA MATRIKS SIMETRI BERUKURAN 2 2 Jural LOG!K@, Jilid 7, No, 7, Hal 46-5 ISSN 978 8568 GRU ERURU ARSIAL ADA MARIKS SIMERI BERUKURAN Irmatul Hasaah Uiversitas Islam Negeri Sulta Maulaa Hasauddi Bate Email: irmatulhasaah@uibateacid Abstract:

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret Program Perkuliaha Dasar Umum Sekolah Tiggi Tekologi Telkom Barisa da Deret Barisa Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) a Fugsi tersebut

Lebih terperinci

SEMI MODUL POLINOMIAL FUZZY ATAS ALJABAR MAX-PLUS FUZZY

SEMI MODUL POLINOMIAL FUZZY ATAS ALJABAR MAX-PLUS FUZZY JMP : Volume 3 Nomor 1, Jui 2011 SEMI MODUL POLINOMIAL FUZZY ATAS ALJABAR MAX-PLUS FUZZY Ari Wardayai da Suroto Prodi Matematika, Jurusa MIPA, Fakultas Sais da Tekik Uiversitas Jederal Soedirma (email

Lebih terperinci

ANALISIS RIIL I. Disusun oleh Bambang Hendriya Guswanto, S.Si., M.Si. Siti Rahmah Nurshiami, S.Si., M.Si.

ANALISIS RIIL I. Disusun oleh Bambang Hendriya Guswanto, S.Si., M.Si. Siti Rahmah Nurshiami, S.Si., M.Si. ANALISIS RIIL I Disusu oleh Bambag Hedriya Guswato, S.Si., M.Si. Siti Rahmah Nurshiami, S.Si., M.Si. PROGRAM STUDI MATEMATIKA JURUSAN MATEMATIKA DAN ILMU PENGETAHUAN ALAM FAKULTAS SAINS DAN TEKNIK UNIVERSITAS

Lebih terperinci

BAB : I SISTEM BILANGAN REAL

BAB : I SISTEM BILANGAN REAL Ruag Barisa BAB : I SISTEM BILANGAN REAL Sebelum membicaraka barisa da deret aka dibicaraka lebih dahulu tetag bilaga real karea barisa da deret yag aka dibicaraka adalah barisa da deret bilaga real. Sistem

Lebih terperinci

Bab 2. Sistem Bilangan Real Aksioma Bilangan Real Misalkan adalah himpunan bilangan real, P himpunan bilangan positif dan fungsi + dan.

Bab 2. Sistem Bilangan Real Aksioma Bilangan Real Misalkan adalah himpunan bilangan real, P himpunan bilangan positif dan fungsi + dan. Bab Sistem Bilaga Real.. Aksioma Bilaga Real Misalka adalah himpua bilaga real, P himpua bilaga positif da fugsi + da. dari ke da asumsika memeuhi aksioma-aksioma berikut: Aksioma Lapaga Utuk semua bilaga

Lebih terperinci

Sistem Bilangan Kompleks (Bagian Ketiga)

Sistem Bilangan Kompleks (Bagian Ketiga) Sistem Bilaga Kompleks (Bagia Ketiga) Supama Jurusa Matematika, FMIPA UGM Yogyakarta 55281, INDONESIA Email:maspomo@yahoo.com, supama@ugm.ac.id (Pertemua Miggu III) Outlie 1 Akar Bilaga Kompleks 2 Akar

Lebih terperinci

Supriyadi Wibowo Jurusan Matematika F MIPA UNS

Supriyadi Wibowo Jurusan Matematika F MIPA UNS Prosidig Semiar Nasioal Peelitia, Pedidika da Peerapa MIPA akultas MIPA, Uiversitas Negeri Yogyakarta, 16 Mei 29 HUBUNGAN ANTARA ORDER DERIVATI- DARI UNGSI f : DENGAN DIMENSI-γ DARI HIMPUNAN RAKTAL Supriyadi

Lebih terperinci

ESSENTIALLY SMALL RIEMANN SUMS FUNGSI TERINTEGRAL HENSTOCK-DUNFORD PADA [a,b]

ESSENTIALLY SMALL RIEMANN SUMS FUNGSI TERINTEGRAL HENSTOCK-DUNFORD PADA [a,b] ESSENTILLY SMLL RIEMNN SUMS FUNGSI TERINTEGRL HENSTOCK-UNFOR P [a,b] Solikhi, Sumato, Siti Khabibah 3,,3 Jurusa Matematika FSM Uiversitas ioegoro Jl Prof H Soedarto, SH Semarag 5075 solikhi@liveudiacid,

Lebih terperinci

ANALISIS REAL I PENGANTAR. (Introduction to Real Analysis I) M. Zaki Riyanto, S.Si DIKTAT KULIAH ANALISIS

ANALISIS REAL I PENGANTAR. (Introduction to Real Analysis I) M. Zaki Riyanto, S.Si DIKTAT KULIAH ANALISIS DIKTAT KULIAH ANALISIS PENGANTAR ANALISIS REAL I (Itroductio to Real Aalysis I) M Zaki Riyato, SSi e-mail: zaki@mailugmacid http://zakimathwebid COPYRIGHT 008-009 Pegatar Aalisis Real I HALAMAN PERSEMBAHAN

Lebih terperinci

SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS

SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS Prosidig Semiar Nasioal Peelitia, Pedidika da Peerapa MIPA, Fakultas MIPA, Uiversitas Negeri Yogyakarta, 4 Mei 0 SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS Musthofa Jurusa Pedidika Matematika FMIPA

Lebih terperinci

SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS. Abstrak

SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS. Abstrak Prosidig Semiar Nasioal Peelitia, Pedidika da Peerapa MIPA, Fakultas MIPA, Uiversitas Negeri Yogyakarta, 4 Mei 0 SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS Musthofa Jurusa Pedidika Matematika FMIPA

Lebih terperinci

II. TINJAUAN PUSTAKA. Secara umum apabila a bilangan bulat dan b bilangan bulat positif, maka ada tepat = +, 0 <

II. TINJAUAN PUSTAKA. Secara umum apabila a bilangan bulat dan b bilangan bulat positif, maka ada tepat = +, 0 < II. TINJAUAN PUSTAKA 2.1 Keterbagia Secara umum apabila a bilaga bulat da b bilaga bulat positif, maka ada tepat satu bilaga bulat q da r sedemikia sehigga : = +, 0 < dalam hal ii b disebut hasil bagi

Lebih terperinci

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian BAB I PENDAHULUAN A. Latar Belakag Masalah Matematika merupaka suatu ilmu yag mempuyai obyek kajia abstrak, uiversal, medasari perkembaga tekologi moder, da mempuyai pera petig dalam berbagai disipli,

Lebih terperinci

Kalkulus Rekayasa Hayati DERET

Kalkulus Rekayasa Hayati DERET Kalkulus Rekayasa Hayati DERET 1 Isi Bab Pedahulua Barisa tak-higga Deret tak-higga Deret Positif : Uji kekovergea Deret Gati Tada Deret Pagkat Deret Taylor da Maclauri 2 Kompetesi Dasar Setelah megikuti

Lebih terperinci

ESSENTIALLY SMALL RIEMANN SUMS FUNGSI TERINTEGRAL HENSTOCK-DUNFORD PADA [a,b] Jl. Prof. H. Soedarto, S.H. Semarang 50275

ESSENTIALLY SMALL RIEMANN SUMS FUNGSI TERINTEGRAL HENSTOCK-DUNFORD PADA [a,b] Jl. Prof. H. Soedarto, S.H. Semarang 50275 ESSENTILLY SMLL RIEMNN SUMS FUNGSI TERINTEGRL HENSTOCK-DUNFORD PD [ab] Solikhi Sumato Siti Khabibah 3 3 Jurusa Matematika FSM Uiversitas Dioegoro Jl Prof H Soedarto SH Semarag 575 solikhi@liveudiacid khabibah_ku@yahoocoid

Lebih terperinci

PEMETAAN KONTRAKTIF PADA RUANG b-metrik CONE R BERNILAI R 2

PEMETAAN KONTRAKTIF PADA RUANG b-metrik CONE R BERNILAI R 2 J. Math. ad Its Appl. ISSN: 829-605X Vol. 3, No. 2, Nopember 206, -0 PEMETAAN KONTRAKTIF PADA RUANG b-metrik CONE R BERNILAI R 2 Suarsii, Mahmud Yuus 2, Sadjido 3, Auda Nuril Z 4,2,3,4 Jurusa Matematika,

Lebih terperinci

PEMBUKTIAN SIFAT RUANG BANACH PADA D(K)

PEMBUKTIAN SIFAT RUANG BANACH PADA D(K) JMP : Volume 4 Nomor 1, Jui 2012, hal. 41-50 PEMBUKTIAN SIFAT RUANG BANACH PADA D(K) Malahayati Program Studi Matematia Faultas Sais da Teologi UIN Sua Kalijaga malahayati_01@yahoo.co.id ABSTRACT. I this

Lebih terperinci

BARISAN PANGKAT TERURUT MATRIKS PADA ALJABAR MAX PLUS

BARISAN PANGKAT TERURUT MATRIKS PADA ALJABAR MAX PLUS BRISN PNGKT TERURUT MTRIKS PD LJBR MX PLUS Nurwa Jurusa Matematika FMIP Uiversitas Negeri Gorotalo E-mail: urwa_mat@ug.ac.id bstrak Diberika matriks R yag memeuhi = λ. Matriks adalah k + c c k taktereduksi

Lebih terperinci

Hendra Gunawan. 14 Februari 2014

Hendra Gunawan. 14 Februari 2014 MA20 MATEMATIKA 2A Hedra Guawa Semester II, 203/204 4 Februari 204 Sasara Kuliah Hari Ii 9. Barisa Tak Terhigga Memeriksa kekovergea suatu barisa da, bila mugki, meghitug limitya 9.2 Deret Tak Terhigga

Lebih terperinci

Beberapa Sifat Semigrup Matriks Atas Daerah Integral Admitting Struktur Ring 1

Beberapa Sifat Semigrup Matriks Atas Daerah Integral Admitting Struktur Ring 1 Beberapa Sifat Semigrup Matriks Atas Daerah Itegral Admittig Struktur ig K a r y a t i Jurusa Pedidika Matematika FMIPA, Uiversitas Negeri Yogyakarta Email: yatiuy@yahoo.com Abstrak Diberika adalah daerah

Lebih terperinci

Semigrup Matriks Admitting Struktur Ring

Semigrup Matriks Admitting Struktur Ring Semigrup Matriks dmittig Struktur ig K a r y a t i Jurusa Pedidika Matematika FMIP, Uiversitas Negeri Yogyakarta Email: yatiuy@yahoo.com bstrak Diberika adalah rig komutatif dega eleme satua da adalah

Lebih terperinci

BAB I PENDAHULUAN. Integral adalah salah satu konsep penting dalam Matematika yang

BAB I PENDAHULUAN. Integral adalah salah satu konsep penting dalam Matematika yang BAB I PENDAHULUAN 1.1 Latar Belakag Masalah Itegral adalah salah satu kosep petig dalam Matematika yag dikemukaka pertama kali oleh Isac Newto da Gottfried Wilhelm Leibiz pada akhir abad ke-17. Selajutya

Lebih terperinci

FOURIER Juni 2014, Vol. 3, No. 1, TEOREMA TITIK TETAP PADA RUANG QUASI METRIK TERASING TANPA MENGGUNAKAN SIFAT KEKONTINUAN FUNGSI

FOURIER Juni 2014, Vol. 3, No. 1, TEOREMA TITIK TETAP PADA RUANG QUASI METRIK TERASING TANPA MENGGUNAKAN SIFAT KEKONTINUAN FUNGSI FOURIER Jui 04, Vol. 3, No., 4 6 TEOREMA TITIK TETAP PADA RUANG QUASI METRIK TERASING TANPA MENGGUNAKAN SIFAT KEKONTINUAN FUNGSI Malahayati, Mutia Utami, Program Studi Matematika Fakultas Sais da tekologi

Lebih terperinci

PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT

PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT Prosidig Semiar Nasioal Matematika da Terapaya 06 p-issn : 0-0384; e-issn : 0-039 PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT Liatus

Lebih terperinci

KEKONVERGENAN PADA RUANG BERNORMA DAN RUANG HASIL KALI DALAM WINA DIANA

KEKONVERGENAN PADA RUANG BERNORMA DAN RUANG HASIL KALI DALAM WINA DIANA KEKONVERGENAN PADA RUANG BERNORMA DAN RUANG HASIL KALI DALAM WINA DIANA 055400597 Taggal Sidag: 04 Februari 0 Periode Wisuda: Februari 0 Jurusa Matematika Fakultas Sais da Tekologi Uiversitas Islam Negeri

Lebih terperinci

TEOREMA REPRESENTASI RIESZ FRECHET PADA RUANG HILBERT (Riesz Frechet Representation Theorem in Hilbert Space)

TEOREMA REPRESENTASI RIESZ FRECHET PADA RUANG HILBERT (Riesz Frechet Representation Theorem in Hilbert Space) Jural Barekeg Vol. 5 No. Hal. 8 (0) TEOREMA REPRESENTASI RIESZ FRECHET PADA RUANG HILBERT (Ries Frechet Represetatio Theorem i Hilbert Space) MOZART W TALAKUA, STENLY JONDRY NANURU Staf Jurusa Matematika

Lebih terperinci

SIFAT-SIFAT SEMIGRUP SIMETRIS INTERVAL

SIFAT-SIFAT SEMIGRUP SIMETRIS INTERVAL SIFAT-SIFAT SEMIGRUP SIMETRIS INTERVAL Riza Febri Yusma Sri Gemawati Asli Sirait *riza_febri@yahoo.com Mahasiswa Program S Matematika Dose Jurusa Matematika Fakultas Matematika da Ilmu Pegetahua Alam Uiveritas

Lebih terperinci

Modul 1. (Pertemuan 1 s/d 3) Deret Takhingga

Modul 1. (Pertemuan 1 s/d 3) Deret Takhingga Modul. (Pertemua s/d ) Deret Takhigga. Deret Tidak Terhigga. Pembicaraa kita sekarag deret pada umumya. Deret yag bayakya suku tak terbatas disebut deret tak higga, otasi : Masalah pokok pada deret tak

Lebih terperinci

Deret Fourier. Modul 1 PENDAHULUAN

Deret Fourier. Modul 1 PENDAHULUAN Modul Deret Fourier Prof. Dr. Bambag Soedijoo P PENDAHULUAN ada modul ii dibahas masalah ekspasi deret Fourier Sius osius utuk suatu fugsi periodik ataupu yag diaggap periodik, da dibahas pula trasformasi

Lebih terperinci

BUKTI ALTERNATIF KONVERGENSI DERET PELL DAN PELL-LUCAS (ALTERNATIVE PROOF THE CONVERGENCE OF PELL AND PELL-LUCAS SERIES)

BUKTI ALTERNATIF KONVERGENSI DERET PELL DAN PELL-LUCAS (ALTERNATIVE PROOF THE CONVERGENCE OF PELL AND PELL-LUCAS SERIES) rosidig Semirata2015 bidag MIA BKS-TN Barat Uiversitas Tajugpura otiaak BUKTI ALTERNATIF KONVERGENSI DERET ELL DAN ELL-LUCAS (ALTERNATIVE ROOF THE CONVERGENCE OF ELL AND ELL-LUCAS SERIES) Baki Swita 1

Lebih terperinci

BAB II TEORI DASAR. Definisi Grup G disebut grup komutatif atau grup abel jika berlaku hukum

BAB II TEORI DASAR. Definisi Grup G disebut grup komutatif atau grup abel jika berlaku hukum BAB II TEORI DASAR 2.1 Aljabar Liier Defiisi 2. 1. 1 Grup Himpua tak kosog G disebut grup (G, ) jika pada G terdefiisi operasi, sedemikia rupa sehigga berlaku : a. Jika a, b eleme dari G, maka a b eleme

Lebih terperinci

BARISAN TAK HINGGA DAN DERET TAK HINGGA

BARISAN TAK HINGGA DAN DERET TAK HINGGA BARIAN TAK HINGGA DAN DERET TAK HINGGA Bajar/Barisa Tak Higga Barisa tak higga { } adalah suatu fugsi dari dimaa daerah domaiya adalah himpua bilaga bulat positif (bilaga asli). Cotoh: Bila.. maka fugsi

Lebih terperinci

Keywords: Convergen Series, Banach Space, Sequence space cs, Dual-α, Dual-

Keywords: Convergen Series, Banach Space, Sequence space cs, Dual-α, Dual- Jural MIPA FST UNDANA, Volume 2, Nomor, April 26 DUAL-, DUAL- DAN DUAL- DARI RUANG BARISAN CS Albert Kumaereg, Ariyato 2, Rapmaida 3,2,3 Jurusa Matematia, Faultas Sais da Tei Uiversitas Nusa Cedaa ABSTRACT

Lebih terperinci

A B S T R A K. Setiap teori integral selalu memuat masalah sebagai. berikut. Jika untuk setiap n berlaku fungsi f n

A B S T R A K. Setiap teori integral selalu memuat masalah sebagai. berikut. Jika untuk setiap n berlaku fungsi f n INTEGRAL TAK MUTLAK A B S T R A K Seti teori itegral selalu memuat masalah sebagai berikut. Jika utuk seti berlaku fugsi f teritegral da barisa fugsi {f } koverge ke f hampir di maa-maa pada selag (a,b),

Lebih terperinci

KONSTRUKSI KLAS BARISAN p-supremum BOUNDED VARIATION SEQUENCES

KONSTRUKSI KLAS BARISAN p-supremum BOUNDED VARIATION SEQUENCES KONSTRUKSI KLAS BARISAN p-supremum BOUNDED VARIATION SEQUENCES A-4 Moch. Aruma Imro 1, Ch. Rii Idrati 2, da Widodo 3 1 Jurusa Matematika, FMIPA, Uiversitas Brawijaya, Malag 65145 da Mahasiswa S3 Matematika,

Lebih terperinci

Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1

Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1 Barisa Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 9/0/06 Matematika Barisa Tak Higga Secara sederhaa, barisa merupaka susua dari bilaga bilaga yag urutaya berdasarka bilaga

Lebih terperinci

RING MATRIKS ATAS RING KOMUTATIF. Achmad Abdurrazzaq, Ari Wardayani, Suroto Universitas Jenderal Soedirman

RING MATRIKS ATAS RING KOMUTATIF. Achmad Abdurrazzaq, Ari Wardayani, Suroto Universitas Jenderal Soedirman JMP : Volume 7 Nomor 1, Jui 2015, hal 11-18 RING MATRIKS ATAS RING KOMUTATIF Achmad Abdurrazzaq, Ari Wardayai, Suroto razzaqgaesha@gmailcom Uiversitas Jederal Soedirma ABSTRACT This paper discusses a matrices

Lebih terperinci

LANDASAN TEORI. Secara umum, himpunan kejadian A i ; i I dikatakan saling bebas jika: Ruang Contoh, Kejadian, dan Peluang

LANDASAN TEORI. Secara umum, himpunan kejadian A i ; i I dikatakan saling bebas jika: Ruang Contoh, Kejadian, dan Peluang 2 LANDASAN TEORI Ruag Cotoh, Kejadia, da Peluag Percobaa acak adalah suatu percobaa yag dapat diulag dalam kodisi yag sama, yag hasilya tidak dapat diprediksi secara tepat tetapi dapat diketahui semua

Lebih terperinci

KETERKAITAN ANTARA MODUL BEBAS DENGAN MODUL DILIHAT DARI SIFAT-SIFAT HOMOMORFISME MODUL

KETERKAITAN ANTARA MODUL BEBAS DENGAN MODUL DILIHAT DARI SIFAT-SIFAT HOMOMORFISME MODUL KETERKAITAN ANTARA MODUL BEBAS DENGAN MODUL DILIHAT DARI SIFAT-SIFAT HOMOMORFISME MODUL Khusul Afifa 1, Abdussakir 2 1 Mahasiswa Jurusa Matematika UIN Maulaa Malik Ibrahim Malag 2 Dose Jurusa Matematika

Lebih terperinci

STUDI TENTANG BEBERAPA MODIFIKASI METODE ITERASI BEBAS TURUNAN

STUDI TENTANG BEBERAPA MODIFIKASI METODE ITERASI BEBAS TURUNAN STUDI TENTANG BEBERAPA MODIFIKASI METODE ITERASI BEBAS TURUNAN Supriadi Putra, M,Si Laboratorium Komputasi Numerik Jurusa Matematika FMIPA Uiversitas Riau e-mail : spoetra@yahoo.co.id ABSTRAK Makalah ii

Lebih terperinci

Definisi Integral Tentu

Definisi Integral Tentu Defiisi Itegral Tetu Bila kita megedarai kedaraa bermotor (sepeda motor atau mobil) selama 4 jam dega kecepata 50 km / jam, berapa jarak yag ditempuh? Tetu saja jawabya sagat mudah yaitu 50 x 4 = 200 km.

Lebih terperinci

SIFAT-SIFAT FUNGSI YANG TERINTEGRAL MCSHANE DALAM RUANG EUCLIDE BERDIMENSI N UNTUK FUNGSI-FUNGSI BERNILAI BANACH

SIFAT-SIFAT FUNGSI YANG TERINTEGRAL MCSHANE DALAM RUANG EUCLIDE BERDIMENSI N UNTUK FUNGSI-FUNGSI BERNILAI BANACH βeta p-issn: 2085-5893 / e-issn: 2541-0458 http://juralbeta.ac.id Vol. 5 No. 1 (Mei) 2012, Hal. 21-29 βeta 2012 SIFAT-SIFAT FUNGSI YANG TRINTGRAL MCSHAN DALAM RUANG UCLID BRDIMNSI N UNTUK FUNGSI-FUNGSI

Lebih terperinci

RUANG METRIK DENGAN SIFAT BOLA TERTUTUPNYA KOMPAK

RUANG METRIK DENGAN SIFAT BOLA TERTUTUPNYA KOMPAK Rahmawati Y. Ruag Metrik dega Sifat RUANG METRIK DENGAN SIFAT BOLA TERTUTUPNYA KOMPAK RAHMAWATI YULIYANI rahmawatiyuliyai @yahoo.co.id 08561299991 Program studi Tekik Iformatika, Fakultas Tekik, Matematika,

Lebih terperinci

Statistika Matematika. Soal dan Pembahasan. M. Samy Baladram

Statistika Matematika. Soal dan Pembahasan. M. Samy Baladram Statistika Matematika Soal da embahasa M Samy Baladram Bab 4 Ubiasedess, Cosistecy, ad Limitig istributios Ubiasedess, Cosistecy, ad Limitig istributios 41 Ekspektasi Fugsi Key oits Ṫeorema 411 Jika T

Lebih terperinci

Solved Problems (taken from tutorials)

Solved Problems (taken from tutorials) Lampira Kumpula Soal soal Tutorial da PR Aalisis Real Solved Problems (take from tutorials). Apakah f = { x = y } suatu fugsi? Jawab: Utuk meujukka bahwa f suatu fugsi, maka perlu diigat kembali

Lebih terperinci

SKRIPSI L LEBESGUE RUANG ISMAIL 02/154094/PA/08715

SKRIPSI L LEBESGUE RUANG ISMAIL 02/154094/PA/08715 SKRIPSI RUANG P L LEBESGUE ISMAIL 02/54094/PA/0875 DEPARTEMEN PENDIDIKAN NASIONAL FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA 2007 SKRIPSI RUANG P L LEBESGUE Sebagai salah satu

Lebih terperinci

Distribusi Pendekatan (Limiting Distributions)

Distribusi Pendekatan (Limiting Distributions) Distribusi Pedekata (Limitig Distributios) Ada 3 tekik utuk meetuka distribusi pedekata: 1. Tekik Fugsi Distribusi Cotoh 2. Tekik Fugsi Pembagkit Mome Cotoh 3. Tekik Teorema Limit Pusat Cotoh Fitriai Agustia,

Lebih terperinci

PERTEMUAN 13. VEKTOR dalam R 3

PERTEMUAN 13. VEKTOR dalam R 3 PERTEMUAN VEKTOR dalam R Pegertia Ruag Vektor Defiisi R Jika adalah sebuah bilaga bulat positif, maka tupel - - terorde (ordered--tuple) adalah sebuah uruta bilaga riil ( a ),a,..., a. Semua tupel - -terorde

Lebih terperinci

Himpunan/Selang Kekonvergenan

Himpunan/Selang Kekonvergenan oki eswa (fmipa-itb) Deret Pagkat Kita aka mempelajari beberapa tehik utuk meyajika suatu fugsi f (x) dalam betuk deret pagkat (power series), yaitu meetuka derat pagkat c (x a) sehigga f (x) = c (x a)

Lebih terperinci

Barisan dan Deret. Modul 1 PENDAHULUAN

Barisan dan Deret. Modul 1 PENDAHULUAN Modul Barisa da Deret Reto Wika Tyasig Ada P PENDAHULUAN okok bahasa dalam modul ii terdiri atas dua kegiata belajar. Yag pertama tetag barisa, yag kedua tetag deret da cotoh-cotoh pemakaia deret. Pembahasa

Lebih terperinci

1 Persamaan rekursif linier non homogen koefisien konstan tingkat satu

1 Persamaan rekursif linier non homogen koefisien konstan tingkat satu Secara umum persamaa rekursif liier tigkat-k bisa dituliska dalam betuk: dega C 0 0. C 0 x + C 1 x 1 + C 2 x 2 + + C k x k = b, Jika b = 0 maka persamaa rekursif tersebut diamaka persamaa rekursif liier

Lebih terperinci

SUBGELANGGANG KOMUTATIF MAKSIMAL DARI GELANGGANG POLINOM MIRING

SUBGELANGGANG KOMUTATIF MAKSIMAL DARI GELANGGANG POLINOM MIRING SUBGELANGGANG KOMUTATIF MAKSIMAL DARI GELANGGANG POLINOM MIRING Prof. Dr. Amir Kamal Amir, M.Sc Dra. Nur Erawaty, M.Si Filawati, S.Si Jurusa Matematika, Fakultas Matemetika da Ilmu Pegetahua Alam, Uiversitas

Lebih terperinci

PENGGUNAAN TEOREMA BOLZANO-WEIERSTRASS UNTUK MENGKONSTRUKSI BARISAN KONVERGEN

PENGGUNAAN TEOREMA BOLZANO-WEIERSTRASS UNTUK MENGKONSTRUKSI BARISAN KONVERGEN PENGGUNAAN TEOREMA BOLZANO-WEIERSTRASS UNTUK MENGKONSTRUKSI BARISAN KONVERGEN S K R I P S I Disusu dalam Ragka Meyelesaika Studi Strata utuk memperoleh Gelar Sarjaa Sais Oleh Nama : Sugeg Wibowo Nim :

Lebih terperinci

Fungsi Kompleks. (Pertemuan XXVII - XXX) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

Fungsi Kompleks. (Pertemuan XXVII - XXX) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya TKS 4007 Matematika III Fugsi Kompleks (Pertemua XXVII - XXX) Dr. AZ Jurusa Tekik Sipil Fakultas Tekik Uiversitas Brawijaya Pedahulua Persamaa x + 1 = 0 tidak memiliki akar dalam himpua bilaga real. Pertayaaya,

Lebih terperinci

II LANDASAN TEORI. Sebuah bilangan kompleks dapat dinyatakan dalam bentuk. z = x jy. (2.4)

II LANDASAN TEORI. Sebuah bilangan kompleks dapat dinyatakan dalam bentuk. z = x jy. (2.4) 3 II LANDASAN TEORI 2.1 Peubah Kompleks da Fugsi Kompleks Sebuah bilaga kompleks dapat diyataka dalam betuk z = x + jy, (2.1) dega x da y adalah bilaga-bilaga real da j = 1. Bilaga x disebut bagia real

Lebih terperinci

Pendiferensialan. Modul 1 PENDAHULUAN

Pendiferensialan. Modul 1 PENDAHULUAN Modul Pediferesiala Prof R Soematri D PENDAHULUAN alam modul ii dibahas fugsi berilai real yag didefiisika pada suatu iterval Defiisi derivatif suatu fugsi dimulai dega derivatif di suatu titik, kemudia

Lebih terperinci

EMPAT CARA UNTUK MENENTUKAN NILAI INTEGRAL POISSON., Sri Gemawati 2, Agusni 2. Mahasiswa Program Studi S1 Matematika 2

EMPAT CARA UNTUK MENENTUKAN NILAI INTEGRAL POISSON., Sri Gemawati 2, Agusni 2. Mahasiswa Program Studi S1 Matematika 2 EMPAT CARA UNTUK MENENTUKAN NLA NTEGRAL POSSON Novrialma *, Sri Gemawati, Agusi Mahasiswa Program Studi S Matematika Dose Jurusa Matematika Fakultas Matematika da lmu Pegetahua Alam Uiversitas Riau Kampus

Lebih terperinci

Setelah mempelajari modul ini Anda diharapkan dapat: a. memeriksa apakah suatu pemetaan merupakan operasi;

Setelah mempelajari modul ini Anda diharapkan dapat: a. memeriksa apakah suatu pemetaan merupakan operasi; Modul 1 Operasi Dr. Ahmad Muchlis B PENDAHULUAN erapakah 97531 86042? Kalau Ada megguaka kalkulator, jawabaya amat bergatug pada tipe kalkulator yag Ada pakai. 9 Kalkulator ilmiah Casio fx-250 memberika

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang Masalah

BAB I PENDAHULUAN. A. Latar Belakang Masalah BAB I PENDAHULUAN A. Latar Belakag Masalah Struktur alabar adalah suatu himpua yag di dalamya didefiisika suatu operasi bier yag memeuhi aksioma-aksioma tertetu. Gelaggag ( Rig ) merupaka suatu struktur

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 1, 41-48, April 2003, ISSN : MATRIKS STOKASTIK GANDA DAN SIFAT-SIFATNYA

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 1, 41-48, April 2003, ISSN : MATRIKS STOKASTIK GANDA DAN SIFAT-SIFATNYA JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No., 4-48, April 00, ISSN : 40-858 MATRIKS STOKASTIK GANDA DAN SIFAT-SIFATNYA Suryoto Jurusa Matematika F-MIPA Uiversas Dipoegoro Semarag Abstrak Suatu matriks tak

Lebih terperinci

BARISAN DAN DERET. 05/12/2016 Matematika Teknik 1 1

BARISAN DAN DERET. 05/12/2016 Matematika Teknik 1 1 BARISAN DAN DERET 05//06 Matematika Tekik BARISAN Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 05//06 Matematika Tekik Barisa Tak Higga Secara sederhaa, barisa merupaka

Lebih terperinci

Sistem Bilangan Real. Modul 1 PENDAHULUAN

Sistem Bilangan Real. Modul 1 PENDAHULUAN Modul 1 Sistem Bilaga Real Prof. R. Soematri D PENDAHULUAN alam modul ii aka dibahas sifat-sifat pokok bilaga real. Meskipu pembaca sudah akrab bear dega bilaga real amu modul ii aka membahasya lebih cermat

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 3 BAB II TINJAUAN PUSTAKA.1 Ruag Cotoh, Kejadia da Peluag Defiisi.1 (Ruag cotoh da kejadia) Suatu percobaa yag dapat diulag dalam kodisi yag sama, yag hasilya tidak bisa diprediksi secara tepat tetapi

Lebih terperinci

Pelabelan E-cordial pada Graf Hasil Cartesian Product

Pelabelan E-cordial pada Graf Hasil Cartesian Product Pelabela E-cordial pada Gra Hasil Cartesia Product Kholis Widyasmedi, R. Heri Soelistyo Program Studi Matematika Jurusa Matematika Fakultas Sais da Matematika Uiversitas Dipoegoro Email: widyasmedi@gmail.com

Lebih terperinci

TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL HENSTOCK- KURZWEIL SERENTAK DAN FUNGSI BERSIFAT LOCALLY SMALL RIEMANN SUMS (LSRS) DARI RUANG EUCLIDE

TEOREMA KEKONVERGENAN FUNGSI TERINTEGRAL HENSTOCK- KURZWEIL SERENTAK DAN FUNGSI BERSIFAT LOCALLY SMALL RIEMANN SUMS (LSRS) DARI RUANG EUCLIDE Teorema Keovergea Fugsi Teritegral Hestoc(Aiswita) TORMA KKONVRGNAN FUNGSI TRINTGRAL HNSTOCK- KURZWIL SRNTAK DAN FUNGSI BRSIFAT LOCALLY SMALL RIMANN SUMS (LSRS) DARI RUANG UCLID K RUANG BARISAN Aiswita,

Lebih terperinci

MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR. Dosen Pengampu : Darmadi, S.Si, M.Pd

MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR. Dosen Pengampu : Darmadi, S.Si, M.Pd MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR Dose Pegampu : Darmadi, S.Si, M.Pd Disusu : Kelas 5A / Kelompok 5 : Dia Dwi Rahayu (084. 06) Hefetamala (084. 4) Khoiril Haafi (084. 70) Liaatul Nihayah (084. 74)

Lebih terperinci

B a b 1 I s y a r a t

B a b 1 I s y a r a t 34 TKE 315 ISYARAT DAN SISTEM B a b 1 I s y a r a t (bagia 3) Idah Susilawati, S.T., M.Eg. Program Studi Tekik Elektro Fakultas Tekik da Ilmu Komputer Uiversitas Mercu Buaa Yogyakarta 29 35 1.5.2. Isyarat

Lebih terperinci

SIFAT ALJABAR BANACH KOMUTATIF DAN ELEMEN IDENTITAS PADA

SIFAT ALJABAR BANACH KOMUTATIF DAN ELEMEN IDENTITAS PADA SIFAT ALJABAR BANACH KOMUTATIF DAN ELEMEN IDENTITAS PADA KELAS D(K) Malahayati Program Studi Matematia Faultas Sais da Teologi UIN Sua Kalijaga Yogyaarta e-mail: malahayati_01@yahoo.co.id ABSTRAK Himpua

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN JURAL MATEMATKA DA KOMPUTER Vol. 6. o., 77-85, Agustus 003, SS : 40-858 DSTRBUS WAKTU BERHET PADA PROSES PEMBAHARUA Sudaro Jurusa Matematika FMPA UDP Abstrak Dalam proses stokhastik yag maa kejadia dapat

Lebih terperinci

III BAB BARISAN DAN DERET. Tujuan Pembelajaran. Pengantar

III BAB BARISAN DAN DERET. Tujuan Pembelajaran. Pengantar BAB III BARISAN DAN DERET Tujua Pembelajara Setelah mempelajari materi bab ii, Ada diharapka dapat:. meetuka suku ke- barisa da jumlah suku deret aritmetika da geometri,. meracag model matematika dari

Lebih terperinci

REPRESENTASI KANONIK UNTUK FUNGSI KARAKTERISTIK DARI SEBARAN TERBAGI TAK HINGGA

REPRESENTASI KANONIK UNTUK FUNGSI KARAKTERISTIK DARI SEBARAN TERBAGI TAK HINGGA Jural Matematika UNAND Vol. 3 No. Hal. 7 34 ISSN : 33 9 c Jurusa Matematika FMIPA UNAND REPRESENTASI KANONIK UNTUK FUNGSI KARAKTERISTIK DARI SEBARAN TERBAGI TAK HINGGA EKA RAHMI KAHAR, DODI DEVIANTO Program

Lebih terperinci

BAB VI BARISAN TAK HINGGA DAN DERET TAK HINGGA

BAB VI BARISAN TAK HINGGA DAN DERET TAK HINGGA BAB VI BARIAN TAK HINGGA DAN DERET TAK HINGGA Bajar/Barisa Tak Higga Barisa tak higga { },,,,, adalah suatu fugsi dari dimaa daerah domaiya adalah himpua bilaga bulat positif (bilaga asli). Cotoh: Bila,,,..,

Lebih terperinci

DIFERENSIAL. diferensial pada c. Sehingga dapat kita tulis menjadi f (c) untuk L.

DIFERENSIAL. diferensial pada c. Sehingga dapat kita tulis menjadi f (c) untuk L. DIFERENSIAL 6. Usur Turua 6.. Deiisi Diketahui I R mempuyai iterval : I. Kita dapat megataka bahwa bilaga real L adalah turua dari jika pada c diberika >, maka aka ada > sehigga jika da haya jika x h

Lebih terperinci