PATH-CONNECTED SPACE

Ukuran: px
Mulai penontonan dengan halaman:

Download "PATH-CONNECTED SPACE"

Transkripsi

1 PATH-CONNECTED SPACE (LINTASAN TERHUBUNG) A. LINTASAN Misal I = [0,1] adalah interval unit tutup. Lintasan dari titik a sampai titik b dalam ruang topologi X adalah fungsi kontinu f : I X dengan f(0) = a dan f(1) = b. dalam hal ini, a disebut titik awal (initial point) dan b disebut titik terminal (titik akhir / terminal point) dari lintasan. 1 Gambar 1. Lintasan Contoh 1 Untuk suatu p X, fungsi konstan e p : I X yang didefinisikan oleh e p (s) = p adalah kontinu dan oleh karenanya e adalah lintasan. Fungsi tersebut disebut lintasan konstan di p. 2 Contoh 2 Bila f : I X lintasan dari a ke b, maka fungsi f : I X yang didefinisikan oleh f(s) = f(1 s) adalah lintasan dari b ke a. 3 1 Wahyudin. Dasar-Dasar Topologi. Bandung : Tarsito hlm Ibid. 3 Ibid. 1

2 Contoh 3 Misal f : I X lintasan dari a ke b dan g : I X lintasan dari b ke c. maka penjajaran dari dua lintasan f dan g, yang ditulis dengan f * g, adalah fungsi f * g : I X yang didefinisikan oleh ( )( ) { ( ) ( ) Adalah lintasan dari a ke c sebagai hasil lanjutan dari lintasan f dari a ke b dilanjutkan oleh lintasan g dari b ke c. 4 B. LINTASAN TERHUBUNG Sebuah ruang topologi adalah lintasan terhubung jika untuk setiap a dan b di X adalah lintasan pada X dari a ke b. 5 Teorema Setiap lintasan terhubung adalah terhubung. 6 Pembuktian : Untuk setiap pasang a, b pada X, ada sebuah lintasan f di X dari a ke b, jadi f([0,1]) adalah subset terhubung pada X yang terdiri dari a dan b. Dengan kata lain, setiap pasang titik pada X terdiri subset terhubung X. ini berarti X mempunyai satu komponen, dan demikian itu adalah terhubung. Contoh 4 Misalkan a A dan b C(A). X adalah lintasan terhubung sedemikian hingga f : [0,1] X sedemikian hingga f(0) = a, dan f(1) = b. Anggap B = {t f(t) Jelas 4 Ibid. 5 George L. Cain. Introduction To General Topology. USA : Addison-Wesley Publishing Company hlm Ibid. 2

3 sekali B Ø ketika f(0) = a A. Dengan kata lain B [0,1] ketika f(1) = b A. Himpunan B keduanya adalah buka atau tertutup tetapi tidak keduanya ketika [0,1] adalah terhubung. Dengan kata lain, A dapat buka atau tutup tapi tidak keduanya. Ini adalah sebuah kontradiksi. Jadi, kita menyimpulkan bahwa setiap lintasan terhubung adalah terhubung. 7 Gambar 2. C. LOKAL TERHUBUNG DAN LINTASAN TERHUBUNG LOKAL Sebuah ruang topologi X adalah terhubung lokal di titik x pada X jika setiap persekitaran dari x meliputi sebuah persekitaran buka yang terhubung di x. Jika X adalah lintasan terhubung lokal di setiap titik, maka dikatakan terhubung lokal. 8 Sebuah ruang topologi X adalah terhubung lokal di titik X jika setiap persekitaran dari X terdiri dari sebuah lintasan persekitaran buka di x. jika X adalah lokal terhubung di setiap titiknya, maka dikatakan lintasan terhubung lokal. 9 7 Nate Black, 19 November Senior Math Presentation. Bob Jones University. 8 George L. Cain. Introduction To General Topology. USA : Addison-Wesley Publishing Company hlm Ibid. 3

4 D. SET TERHUBUNG ARCWISE Subset E dari ruang topologi X disebut terhubung arcwise bila untuk sebarang dua titik a, b E ada lintasan f : I X dari a ke b yang termasuk dalam E yaitu f[1] E. 10 Subset subset terhubung arcwise maksimal dari X disebut komponen-komponen terhubung arcwise yang merupakan partisi dari X. hubungan antara keterhubungan dan keterhubungan arcwise dinyatakan pada teorema berikut : Teorema Set set terhubung arcwise adalah terhubung. 11 Konvers dari teorema tersebut tidak benar seperti ditunjukkan dalam contoh berikut : Contoh 5 Perhatikan subset-subset dari bidang R 2 berikut A = {(x,y) : 0 x 1, y =, n bilangan asli } B = {(x,0) : x 1 } Set A terdiri dari titik-titik pada segmen garis yang melalui titik asal (0,0) dan titik (1, ), n bilangan asli; dan B terdiri dari titik-titik pada sumbu x antara dan 1. Setset A dan B keduanya terhubung arcwise, jadi juga terhubung. Selanjutnya, A dan B tidak terpisah, karena tiap p B adalah titik kumpul dari A; dan A B terhubung. Tetapi A B tidak terhubung arcwise. Jadi, tidak ada lintasan dari suatu titik dalam A ke suatu titik dalam B Wahyudin. Dasar-Dasar Topologi. Bandung : Tarsito hlm Ibid. hlm Ibid. 4

5 Gambar 3. Contoh 6 Perhatikan A dan B subset-subset dari R 2 berikut A = {(0,y) : y 1} B = {(x,y) : y = sin, 0 < x 1} A dan B adalah bayangan kontinu dari interval-interval, karenanya A dan B terhubung. Selanjutnya A dan B adalah set-set terpisah dan A B bukan terhubung arcwise; ternyata tidak ada lintasan dari titik dalam A ke suatu titik dalam B. 13 Topologi dari bidang R 2 adalah bagian esensial (pokok) dari teori variabel kompleks. Dalam hal ini, suatu daerah didefinisikan sebagai subset terhubung buka dari bidang R 2. Teorema berikut memegang peranan penting dalam teori tersebut. Teorema Subset terhubung buka dari bidang R 2 adalah terhubung arcwise Ibid. 14 Ibid. hlm

6 E. LINTASAN HOMOTOPIK Misal f : I X adalah dua lintasan dengan titik awal yang sama p X dan titik terminal yang sama q X. maka f disebut homotopik dengan g. ditulis f g, bila ada fungsi kontinu H : I 2 X, sedemikian hingga 15 H(s,0) = f(s) H(s,1) = g(s) H(0,t) = p H(1,t) = q Contoh 7 Misal X adalah set dari titik-titik yang terletak diantara dua lingkaran konsentris (annulus). Maka lintasan f dan g dalam diagram di sebelah kiri adalah homotopik, sebaliknya f dan g dalam diagram di sebelah kanan tidak homotopik. 16 Gambar 4. Lintasan homotopik Contoh 8 Misal f : I X adalah suatu lintasan. Maka f f, yaitu f homotopik dengan dirinya. Karena untuk fungsi H : I 2 X yang didefinisikan oleh H(s,t) = f(s) adalah homotopik dari f ke f Ibid. 16 Ibid. 17 Ibid. hlm

7 Contoh 9 Misal f g dan H : I 2 X adalah homotopik dari f ke g. Maka fungsi : I 2 X yang didefinisikan oleh (s,t) = H(s, 1 t) Adalah homotopik dari g ke f, dan juga g f. 18 Contoh 10 Misal f g dan g h ; katakanlah, F : I 2 X adalah homotopik dari f ke g dan G : I 2 X adalah dari g ke h. fungsi H : I 2 X didefinisikan oleh ( ) { ( ) ( ) Adalah homotopik dari f ke h dan f g. Homotopik H dapat diinterpretasikan secara geometri sebagai domain-domain dari F ke G ke dalam suatu bujur sangkar. 19 pemadatan Gambar Ibid. 19 Ibid. 7

8 F. RUANG TERHUBUNG SEDERHANA Lintasan f : I X dengan titik awal dan titik terminal yang sama, katakanlah f(0) = f(1) = p, disebut lintasan tutup di p X. Khususnya, lintasan konstan e p : I X yang didefinisikan oleh e p (s) = p adalah lintasan tutup di p. Lintasan tutup f : I X disebut mengkerut (contracable) ke suatu titik, bila lintasan tutup tersebut homotopik ke lintasan konstan. 20 (Lihat diagram) Gambar 6. Suatu ruang topologi disebut ruang terhubung sederhana bila dan hanya bila setiap lintasan tutup dalam X mengkerut ke suatu titik Ibid. hlm Ibid. 8

9 Contoh 11 Daerah buka dalam bidang R 2 adalah terhubung sederhana, sedangkan lingkaran konsentris (annulus) adalah bukan terhubung sederhana, karena terdiri dari kurva-kurva tertutup, seperti ditunjukkan oleh diagram berikut, yang tidak mengkerut ke suatu titik. 22 Gambar Ibid. hlm

FUNGSI CANTOR KAJIAN TEORI ABSTRAK 2.1 HIMPUNAN KOMPAK 2.2 HIMPUNAN COUNTABLE 2.3 HIMPUNAN TERUKUR I. PENDAHULUAN

FUNGSI CANTOR KAJIAN TEORI ABSTRAK 2.1 HIMPUNAN KOMPAK 2.2 HIMPUNAN COUNTABLE 2.3 HIMPUNAN TERUKUR I. PENDAHULUAN FUNGSI CANTOR Kisti Nur Aliyah 1, Manuharawati 2, 1 Fakultas Matematika dan Ilmu Pengetahuan Alam,Universitas Negeri Surabaya Kampus Ketintang 60231,Surabaya email : chist_kiss@yahoocoid 1, manuhara1@yahoocoid

Lebih terperinci

TURUNAN, EKSTRIM, BELOK, MINIMUM DAN MAKSIMUM

TURUNAN, EKSTRIM, BELOK, MINIMUM DAN MAKSIMUM TURUNAN, EKSTRIM, BELOK, MINIMUM DAN MAKSIMUM Fungsi f dikatakan mencapai maksimum mutlak di c jika f c f x untuk setiap x I. Di sini f c dinamakan nilai maksimum mutlak. Dan c, f c dinamakan titik maksimum

Lebih terperinci

DASAR-DASAR ANALISIS MATEMATIKA

DASAR-DASAR ANALISIS MATEMATIKA (Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. December 26, 2007 Misalkan f kontinu pada interval [a, b]. Apakah masuk akal untuk membahas luas daerah

Lebih terperinci

Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada,

Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada, Lecture 4. Limit B A. Continuity Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada, (2) lim f(x) ada, (3) lim f(x) =

Lebih terperinci

CARA LAIN PEMBUKTIAN TEOEMA ARZELA-ASCOLI DAN HUBUNGANNYA DENGAN EKSISTENSI PENYELESAIAN PERSAMAAN DIFERENSIAL (SUATU KAJIAN TEORITIS)

CARA LAIN PEMBUKTIAN TEOEMA ARZELA-ASCOLI DAN HUBUNGANNYA DENGAN EKSISTENSI PENYELESAIAN PERSAMAAN DIFERENSIAL (SUATU KAJIAN TEORITIS) CARA LAIN PEMBUKTIAN TEOEMA ARZELA-ASCOLI DAN HUBUNGANNYA DENGAN EKSISTENSI PENYELESAIAN PERSAMAAN DIFERENSIAL SUATU KAJIAN TEORITIS) Sufri Program Studi Pendidikan Matematika FKIP Universitas Jambi Kampus

Lebih terperinci

MATEMATIKA TEKNIK 1 3 SKS TEKNIK ELEKTRO UDINUS

MATEMATIKA TEKNIK 1 3 SKS TEKNIK ELEKTRO UDINUS MATEMATIKA TEKNIK 1 3 SKS TEKNIK ELEKTRO UDINUS 1 BAB II FUNGSI LIMIT DAN KEKONTINUAN Sebelum dibahas mengenai fungsi kompleks, maka perlu dipelajari konsep-konsep topologi yang akan digunakan pada fungsi

Lebih terperinci

: D C adalah fungsi kompleks dengan domain riil

: D C adalah fungsi kompleks dengan domain riil BAB 4. INTEGRAL OMPLES 4. Integral Garis ompleks Misalkan ( : D adalah fungsi kompleks dengan domain riil b D [ a, b], maka integral (, dimana ( x( + iy( dapat dengan mudah a b dihitung, yaitu a i contoh

Lebih terperinci

BUKU DIKTAT ANALISA VARIABEL KOMPLEKS. OLEH : DWI IVAYANA SARI, M.Pd

BUKU DIKTAT ANALISA VARIABEL KOMPLEKS. OLEH : DWI IVAYANA SARI, M.Pd BUKU DIKTAT ANALISA VARIABEL KOMPLEKS OLEH : DWI IVAYANA SARI, M.Pd i DAFTAR ISI BAB I. BILANGAN KOMPLEKS... 1 I. Bilangan Kompleks dan Operasinya... 1 II. Operasi Hitung Pada Bilangan Kompleks... 1 III.

Lebih terperinci

Fungsi dan Limit Fungsi 23. Contoh 5. lim. Buktikan, jika c 0, maka

Fungsi dan Limit Fungsi 23. Contoh 5. lim. Buktikan, jika c 0, maka Contoh 5 Buktikan jika c 0 maka c c Analisis Pendahuluan Akan dicari bilangan 0 sedemikian sehingga apabila c untuk setiap 0. 0 c berlaku Perhatikan: c ( c)( c) c c c c Dapat dipilih c Bukti: c c c Ambil

Lebih terperinci

PENGANTAR TOPOLOGI. Dosen Pengampu: Siti Julaeha, M.Si EDISI PERTAMA UNIVERSITAS ISLAM NEGERI SUNAN GUNUNG DJATI BANDUNG 2015

PENGANTAR TOPOLOGI. Dosen Pengampu: Siti Julaeha, M.Si EDISI PERTAMA UNIVERSITAS ISLAM NEGERI SUNAN GUNUNG DJATI BANDUNG 2015 PENGANTAR TOPOLOGI EDISI PERTAMA Dosen Pengampu: Siti Julaeha, M.Si UNIVERSITAS ISLAM NEGERI SUNAN GUNUNG DJATI BANDUNG 2015 by Matematika Sains 2012 UIN SGD, Copyright 2015 BAB 0. HIMPUNAN, RELASI, FUNGSI,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Aljabar Linear Definisi 2.1.1 Matriks Matriks A adalah susunan persegi panjang yang terdiri dari skalar-skalar yang biasanya dinyatakan dalam bentuk berikut: [ ] Definisi 2.1.2

Lebih terperinci

KALKULUS I MUG1A4 PROGRAM PERKULIAHAN DASAR DAN UMUM (PPDU) TELKOM UNIVERSITY V. APLIKASI TURUNAN

KALKULUS I MUG1A4 PROGRAM PERKULIAHAN DASAR DAN UMUM (PPDU) TELKOM UNIVERSITY V. APLIKASI TURUNAN KALKULUS I MUGA4 PROGRAM PERKULIAHAN DASAR DAN UMUM (PPDU) TELKOM UNIVERSITY V. APLIKASI TURUNAN MENGGAMBAR GRAFIK FUNGSI A. Titik potong dengan sumbu dan sumbu y B. Asimtot ungsi Deinisi : Asimtot ungsi

Lebih terperinci

Teorema Divergensi, Teorema Stokes, dan Teorema Green

Teorema Divergensi, Teorema Stokes, dan Teorema Green TEOREMA DIVERGENSI, STOKES, DAN GREEN Materi pokok pertemuan ke 13: 1. Teorema divergensi Gauss URAIAN MATERI Untuk memudahkan perhitungan seringkali dibutuhkan penyederhanaan bentuk integral yang berdasarkan

Lebih terperinci

Ruang Linear Metrik: Sifat Sifat Dasar Dan Struktur Ruang Dalam Ruang Linear Metrik

Ruang Linear Metrik: Sifat Sifat Dasar Dan Struktur Ruang Dalam Ruang Linear Metrik Ruang Linear Metrik: Sifat Sifat Dasar Dan Struktur Ruang Dalam Ruang Linear Metrik Oleh : Iswanti 1, Soeparna Darmawijaya 2 Iswanti, Jurusan Teknik Elektro, Politeknik Negeri Semarang, Semarang, Jawa

Lebih terperinci

Pengantar Topologi - MK : Prinsip Matematika

Pengantar Topologi - MK : Prinsip Matematika Pengantar Topologi - MK : Prinsip Matematika Topologi merupakan kajian pemetaan dari suatu obyek dalam ruang baik dalam struktur global maupun dalam struktur lokal yang lebih halus. Dapat dikatakan bahwa

Lebih terperinci

Integral lipat dua BAB V INTEGRAL LIPAT 5.1. DEFINISI INTEGRAL LIPAT DUA. gambar 5.1 Luasan di bawah permukaan

Integral lipat dua BAB V INTEGRAL LIPAT 5.1. DEFINISI INTEGRAL LIPAT DUA. gambar 5.1 Luasan di bawah permukaan BAB V INTEGRAL LIPAT 5.1. DEFINISI INTEGRAL LIPAT DUA gambar 5.1 Luasan di bawah permukaan 61 Pada Matematika Dasar I telah dipelajari integral tertentu b f ( x) dx yang dapat didefinisikan, apabila f

Lebih terperinci

Fungsi dan Limit Fungsi 23. Contoh 5. lim. Buktikan, jika c > 0, maka

Fungsi dan Limit Fungsi 23. Contoh 5. lim. Buktikan, jika c > 0, maka Contoh 5 Buktikan jika c > 0 maka c c Analisis Pendahuluan Akan dicari bilangan δ > 0 sedemikian sehingga apabila c < ε untuk setiap ε > 0. 0 < c < δ berlaku Perhatikan: c ( c)( c) c c c c c c c Dapat

Lebih terperinci

Fungsi Analitik (Bagian Pertama)

Fungsi Analitik (Bagian Pertama) Fungsi Analitik (Bagian Pertama) Supama Jurusan Matematika, FMIPA UGM Yogyakarta 55281, INDONESIA Email:maspomo@yahoo.com, supama@ugm.ac.id (Pertemuan Minggu IV) Outline 1 Fungsi Variabel Kompleks 2 Pemetaan/Transformasi/Mappings

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini akan didiskusikan tentang istilah-istilah, teorema-teorema yang akan

II. TINJAUAN PUSTAKA. Pada bab ini akan didiskusikan tentang istilah-istilah, teorema-teorema yang akan II. TINJAUAN PUSTAKA Pada bab ini akan didiskusikan tentang istilah-istilah, teorema-teorema yang akan digunakan dalam penelitian ini. 2.1 Himpunan Himpunan adalah kumpulan objek-objek yang memiliki karakteristik

Lebih terperinci

3.2 Teorema-Teorema Limit Fungsi

3.2 Teorema-Teorema Limit Fungsi . Teorema-Teorema Limit Fungsi Menghitung it fungsi di suatu titik dengan menggunakan definisi dan pembuktian seperti ang telah diuraikan di atas adalah pekerjaan rumit. Semakin rumit bentuk fungsina,

Lebih terperinci

Nilai mutlak pada definisi tersebut di interpretasikan untuk mengukur jarak dua

Nilai mutlak pada definisi tersebut di interpretasikan untuk mengukur jarak dua II. LANDASAN TEORI 2.1 Limit Fungsi Definisi 2.1.1(Edwin J, 1987) Misalkan I interval terbuka pada R dan f: I R fungsi bernilai real. Secara matematis ditulis lim f(x) = l untuk suatu a I, yaitu nilai

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan dijelaskan himpunan dan beberapa definisi yang berkaitan dengan himpunan, serta konsep dasar dan teori graf yang akan digunakan pada bab selanjutnya. 2.1 Himpunan

Lebih terperinci

BAB II DASAR TEORI. Di dalam BAB II ini akan dibahas materi yang menjadi dasar teori pada

BAB II DASAR TEORI. Di dalam BAB II ini akan dibahas materi yang menjadi dasar teori pada BAB II DASAR TEORI Di dalam BAB II ini akan dibahas materi yang menjadi dasar teori pada pembahasan BAB III, mulai dari definisi sampai sifat-sifat yang merupakan konsep dasar untuk mempelajari Fungsi

Lebih terperinci

SRI REDJEKI KALKULUS I

SRI REDJEKI KALKULUS I SRI REDJEKI KALKULUS I KLASIFIKASI BILANGAN RIIL n Bilangan yang paling sederhana adalah bilangan asli : n 1, 2, 3, 4, 5,. n n Bilangan asli membentuk himpunan bagian dari klas himpunan bilangan yang lebih

Lebih terperinci

Bagian 1 Sistem Bilangan

Bagian 1 Sistem Bilangan Bagian 1 Sistem Bilangan Dalam bagian 1 Sistem Bilangan kita akan mempelajari berbagai jenis bilangan, pemakaian tanda persamaan dan pertidaksamaan, menggambarkan himpunan penyelesaian pada selang bilangan,

Lebih terperinci

MATEMATIKA DASAR TAHUN 1987

MATEMATIKA DASAR TAHUN 1987 MATEMATIKA DASAR TAHUN 987 MD-87-0 Garis singgung pada kurva y di titik potong nya dengan sumbu yang absisnya positif mempunyai gradien 0 MD-87-0 Titik potong garis y + dengan parabola y + ialah P (5,

Lebih terperinci

3.2 Teorema-Teorema Limit Fungsi

3.2 Teorema-Teorema Limit Fungsi . Teorema-Teorema Limit Fungsi Menghitung it fungsi di suatu titik dengan menggunakan definisi dan pembuktian seperti ang telah diuraikan di atas adalah pekerjaan rumit. Semakin rumit bentuk fungsina,

Lebih terperinci

C. y = 2x - 10 D. y = 2x + 10

C. y = 2x - 10 D. y = 2x + 10 1. Diantara himpunan berikut yang merupakan himpunan kosong adalah... A. { bilangan cacah antara 19 dan 20 } B. { bilangan genap yang habis dibagi bilangan ganjil } C. { bilangan kelipatan 3 yang bukan

Lebih terperinci

FUNGSI dan LIMIT. 1.1 Fungsi dan Grafiknya

FUNGSI dan LIMIT. 1.1 Fungsi dan Grafiknya FUNGSI dan LIMIT 1.1 Fungsi dan Grafiknya Fungsi : suatu aturan yang menghubungkan setiap elemen suatu himpunan pertama (daerah asal) tepat kepada satu elemen himpunan kedua (daerah hasil) fungsi Daerah

Lebih terperinci

HIMPUNAN. A. Pendahuluan

HIMPUNAN. A. Pendahuluan HIMPUNAN A. Pendahuluan Konsep himpunan pertama kali dicetuskan oleh George Cantor (185-1918), ahli mtk berkebangsaan Jerman Semula konsep tersebut kurang populer di kalangan matematisi, kurang diperhatikan,

Lebih terperinci

Himpunan dan Fungsi. Modul 1 PENDAHULUAN

Himpunan dan Fungsi. Modul 1 PENDAHULUAN Modul 1 Himpunan dan Fungsi Dr Rizky Rosjanuardi P PENDAHULUAN ada modul ini dibahas konsep himpunan dan fungsi Pada Kegiatan Belajar 1 dibahas konsep-konsep dasar dan sifat dari himpunan, sedangkan pada

Lebih terperinci

HUBUNGAN LIMIT FUNGSI DAN LIMIT BARISAN PADA TOPOLOGI REAL

HUBUNGAN LIMIT FUNGSI DAN LIMIT BARISAN PADA TOPOLOGI REAL HUBUNGAN LIMIT FUNGSI DAN LIMIT BARISAN PADA TOPOLOGI REAL Ukhti Raudhatul Jannah Program Studi Pendidikan Matematika, FKIP, Universitas Madura Alamat Jalan Raya Panglegur 3,5 KM Pamekasan Abstrak: Tulisan

Lebih terperinci

5. Aplikasi Turunan MA1114 KALKULUS I 1

5. Aplikasi Turunan MA1114 KALKULUS I 1 5. Aplikasi Turunan MA4 KALKULUS I 5. Menggambar grafik fungsi Informasi yang dibutuhkan: A. Titik potong dengan sumbu dan sumbu y B. Asimtot fungsi C. Kemonotonan Fungsi D. Ekstrim Fungsi E. Kecekungan

Lebih terperinci

TOPOLOGI RUANG LINEAR

TOPOLOGI RUANG LINEAR TOPOLOGI RUANG LINEAR Nila Kurniasih Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo Jalan KHA. Dahlan 3 Purworejo e-mail: kurniasih.nila@yahoo.co.id Abstrak Tulisan ini bertujuan

Lebih terperinci

Materi Aljabar Linear Lanjut

Materi Aljabar Linear Lanjut Materi Aljabar Linear Lanjut TRANSFORMASI LINIER DARI R n KE R m ; GEOMETRI TRANSFORMASI LINIER DARI R 2 KE R 2 Disusun oleh: Dwi Lestari, M.Sc email: dwilestari@uny.ac.id JURUSAN PENDIDIKAN MATEMATIKA

Lebih terperinci

2 G R U P. 1 Struktur Aljabar Grup Aswad 2013 Blog: aswhat.wordpress.com

2 G R U P. 1 Struktur Aljabar Grup Aswad 2013 Blog: aswhat.wordpress.com 2 G R U P Struktur aljabar adalah suatu himpunan tak kosong S yang dilengkapi dengan satu atau lebih operasi biner. Jika himpunan S dilengkapi dengan satu operasi biner * maka struktur aljabar tersebut

Lebih terperinci

DINAMIKA KELUARGA FUNGSI KUADRAT TITIK TETAP. Jl. Prof. Soedarto, S.H, Semarang, 50275

DINAMIKA KELUARGA FUNGSI KUADRAT TITIK TETAP. Jl. Prof. Soedarto, S.H, Semarang, 50275 DINAMIKA KELUARGA FUNGSI KUADRAT TITIK TETAP BERDASARKAN Rineka Eight Neenty 1, Siti Khabibah 2, YD Sumanto 3 1,2,3 Program Studi Matematika Jl Prof Soedarto, SH, Semarang, 50275 ABSTRAK Sistem dinamik

Lebih terperinci

5.1 Menggambar grafik fungsi

5.1 Menggambar grafik fungsi 5. Aplikasi Turunan 5. Menggambar graik ungsi Inormasi yang dibutuhkan: A. Titik potong dengan sumbu dan sumbu y B. Asimtot ungsi Deinisi 5.: Asimtot ungsi adalah garis lurus yang didekati oleh graik ungsi.

Lebih terperinci

ALTERNATIF PEMBUKTIAN DAN PENERAPAN TEOREMA BONDY. Hasmawati Jurusan Matematika, Fakultas Mipa Universitas Hasanuddin

ALTERNATIF PEMBUKTIAN DAN PENERAPAN TEOREMA BONDY. Hasmawati Jurusan Matematika, Fakultas Mipa Universitas Hasanuddin ALTERNATIF PEMBUKTIAN DAN PENERAPAN TEOREMA BONDY Hasmawati Jurusan Matematika, Fakultas Mipa Universitas Hasanuddin hasma_ba@yahoo.com Abstract Graf yang memuat semua siklus dari yang terkecil sampai

Lebih terperinci

KONSTRUKSI HOMOMORFISMA PADA GRUP BERHINGGA

KONSTRUKSI HOMOMORFISMA PADA GRUP BERHINGGA KONSTRUKSI HOMOMORFISMA PADA GRUP BERHINGGA I Ketut Suastika Pend. Matematika Univ. Kanjuruhan Malang Suastika_cipi@yahoo.co.id Abstrak Pada tulisan ini, penulis mencoba mengkonstruksi homomorfisma grup

Lebih terperinci

KAJIAN SIFAT SIFAT GRAF PEMBAGI-NOL DARI RING KOMUTATIF DENGAN ELEMEN SATUAN

KAJIAN SIFAT SIFAT GRAF PEMBAGI-NOL DARI RING KOMUTATIF DENGAN ELEMEN SATUAN KAJIAN SIFAT SIFAT GRAF PEMBAGI-NOL DARI RING KOMUTATIF DENGAN ELEMEN SATUAN STUDY OF PROPERTIES OFZERO-DIVISOR GRAPH OF A COMMUTATIVE RING WITH UNITY Satrio Adi Wicaksono (1209 100 069) Pembimbing: Soleha,

Lebih terperinci

Bagian 2 Matriks dan Determinan

Bagian 2 Matriks dan Determinan Bagian Matriks dan Determinan Materi mengenai fungsi, limit, dan kontinuitas akan kita pelajari dalam Bagian Fungsi dan Limit. Pada bagian Fungsi akan mempelajari tentang jenis-jenis fungsi dalam matematika

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA Dalam bab ini dijelaskan beberapa definisi dan teorema yang digunakan dalam pembahasan berikutnya. 2.1 Teori Peluang Definisi 2.1.1 (Percobaan Acak) (Ross 2000) Suatu percobaan

Lebih terperinci

Sifat Barisan Subhimpunan Tutup di Ruang Metrik yang Completion-nya adalah Ruang Atsuji

Sifat Barisan Subhimpunan Tutup di Ruang Metrik yang Completion-nya adalah Ruang Atsuji Sifat Barisan Subhimpunan Tutup di Ruang Metrik yang Completion-nya adalah Ruang Atsuji Hendy Fergus A. Hura 1, Nora Hariadi 2, Suarsih Utama 3 1 Departemen Matematika, FMIPA UI, Kampus UI Depok, 16424,

Lebih terperinci

IDEAL PRIMA DAN IDEAL MAKSIMAL PADA GELANGGANG POLINOMIAL

IDEAL PRIMA DAN IDEAL MAKSIMAL PADA GELANGGANG POLINOMIAL Vol 11, No 1, 71-76, Juli 2014 IDEAL PRIMA DAN IDEAL MAKSIMAL PADA GELANGGANG POLINOMIAL Qharnida Khariani, Amir Kamal Amir dan Nur Erawaty Abstrak Teori gelanggang merupakan salah satu bagian di matematika

Lebih terperinci

MODUL PEMBELAJARAN ANALISIS VARIABEL KOMPLEKS 2/22/2012 IKIP BUDI UTOMO MALANG ALFIANI ATHMA PUTRI ROSYADI

MODUL PEMBELAJARAN ANALISIS VARIABEL KOMPLEKS 2/22/2012 IKIP BUDI UTOMO MALANG ALFIANI ATHMA PUTRI ROSYADI MODUL PEMBELAJARAN ANALISIS VARIABEL KOMPLEKS 2/22/2012 IKIP BUDI UTOMO MALANG ALFIANI ATHMA PUTRI ROSYADI IDENTITAS MAHASISWA NAMA NPM KELOMPOK : : : DAFTAR ISI Kata Pengantar Daftar Isi BAB I Bilangan

Lebih terperinci

SOLUSI PERIODIK TUNGGAL SUATU PERSAMAAN RAYLEIGH. Jurusan Matematika FMIPA UT ABSTRAK

SOLUSI PERIODIK TUNGGAL SUATU PERSAMAAN RAYLEIGH. Jurusan Matematika FMIPA UT ABSTRAK SOLUSI PERIODIK TUNGGAL SUATU PERSAMAAN RAYLEIGH Sugimin Jurusan Matematika FMIPA UT ugi@mail.ut.ac.id ABSTRAK Suatu persamaan vektor berbentuk x & = f (x dengan variabel bebas t yang tidak dinyatakan

Lebih terperinci

Persamaan dan Pertidaksamaan Linear

Persamaan dan Pertidaksamaan Linear MATERI POKOK Persamaan dan Pertidaksamaan Linear MATERI BAHASAN : A. Persamaan Linear B. Pertidaksamaan Linear Modul.MTK X 0 Kalimat terbuka adalah kalimat matematika yang belum dapat ditentukan nilai

Lebih terperinci

BAB I PENDAHULUAN. Misalkan diberikan suatu ruang vektor atas lapangan R atau C. Jika

BAB I PENDAHULUAN. Misalkan diberikan suatu ruang vektor atas lapangan R atau C. Jika BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Misalkan diberikan suatu ruang vektor atas lapangan R atau C. Jika dilengkapi dengan suatu norma., maka dikenal bahwa suatu ruang vektor bernorma. Kemudian

Lebih terperinci

Fungsi Analitik (Bagian Kedua)

Fungsi Analitik (Bagian Kedua) Fungsi Analitik (Bagian Kedua) Supama Jurusan Matematika, FMIPA UGM Yogyakarta 5528, INDONESIA Email:maspomo@yahoo.com, supama@ugm.ac.id (Pertemuan Minggu V) Outline Limit Menuju Tak Hingga 2 Fungsi Kontinu

Lebih terperinci

SOLUSI PERSAMAAN DIFFERENSIAL

SOLUSI PERSAMAAN DIFFERENSIAL SOLUSI PERSAMAAN DIFFERENSIAL PENGERTIAN SOLUSI. Solusi dari suatu persamaan differensial adalah persamaan yang memuat variabelvariabel dari persamaan differensial dan memenuhi persamaan differensial yang

Lebih terperinci

Memahami definisi barisan tak hingga dan deret tak hingga, dan juga dapat menentukan

Memahami definisi barisan tak hingga dan deret tak hingga, dan juga dapat menentukan 4 BARISAN TAK HINGGA DAN DERET TAK HINGGA JUMLAH PERTEMUAN : 5 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS : Memahami definisi barisan tak hingga dan deret tak hingga, dan juga dapat menentukan kekonvergenan

Lebih terperinci

SYARAT SYARAT FUNGSI DI RUANG METRIK AGAR RUANG METRIKNYA MEMILIKI ATSUJI COMPLETION

SYARAT SYARAT FUNGSI DI RUANG METRIK AGAR RUANG METRIKNYA MEMILIKI ATSUJI COMPLETION SYARAT SYARAT FUNGSI DI RUANG METRIK AGAR RUANG METRIKNYA MEMILIKI ATSUJI COMPLETION Azki Nuril Ilmiyah Departemen Matematika, FMIPA UI, Kampus UI Depok 16424 azki.nuril@ui.ac.id ABSTRAK Nama Program Studi

Lebih terperinci

Distribusi Frekuensi

Distribusi Frekuensi Distribusi Frekuensi Statistik Industri Beberapa Istilah 1 Beberapa (cont ) Kelas interval : banyaknya objek yang dikumpulkan dalam kelompok tertentu, berbentuk interval a b ex: kelas interval pertama

Lebih terperinci

3 LIMIT DAN KEKONTINUAN

3 LIMIT DAN KEKONTINUAN Menurut Bartle dan Sherbet (994), Analisis matematika secara umum dipahami sebagai tubuh matematika yang dibangun oleh berbagai konsep limit. Pada bab sebelumnya kita telah mempelajari limit barisan, kekonvergenan

Lebih terperinci

KAJIAN OPERASI ARITMETIKA INTERVAL DAN SIFAT-SIFATNYA

KAJIAN OPERASI ARITMETIKA INTERVAL DAN SIFAT-SIFATNYA Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster) Volume 03, No. 1 (2014), hal 19 28. KAJIAN OPERASI ARITMETIKA INTERVAL DAN SIFAT-SIFATNYA Analia Wenda, Evi Noviani, Nilamsari Kusumastuti INTISARI

Lebih terperinci

Fungsi Peubah Banyak. Modul 1 PENDAHULUAN

Fungsi Peubah Banyak. Modul 1 PENDAHULUAN Modul 1 Fungsi Peubah Banak Prof. Dr. Bambang Soedijono PENDAHULUAN D alam modul ini dibahas masalah Fungsi Peubah Banak. Dengan sendirina para pengguna modul ini dituntut telah menguasai pengertian mengenai

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bagian ini diberikan beberapa konsep dasar yang menjadi landasan berpikir dalam penelitian ini, seperti fungsi nonlinier, fungsi smooth, fungsi nonsmooth, turunan fungsi smooth,

Lebih terperinci

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Kalkulus Kode : CIV 101. Limit Fungsi. Pertemuan - 2

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Kalkulus Kode : CIV 101. Limit Fungsi. Pertemuan - 2 Respet, Proessionalism, & Entrepreneurship Mata Kuliah : Kalkulus Kode : CIV 101 SKS : 3 SKS Limit Fungsi Pertemuan - Respet, Proessionalism, & Entrepreneurship Kemampuan Akhir yang Diharapkan Mahasiswa

Lebih terperinci

BAB III FUNGSI KUASIKONVEKS

BAB III FUNGSI KUASIKONVEKS 26 BAB III FUNGSI KUASIKONVEKS Bab ini akan membahas tentang fungsi kuasikonveks, di mana fungsi ini adalah salah satu generalisasi dari fungsi konveks. Fungsi kuasikonveks yang dibahas pada bab ini didefinisikan

Lebih terperinci

METODE DEKOMPOSISI ADOMIAN LAPLACE UNTUK SOLUSI PERSAMAAN DIFERENSIAL NONLINIER KOEFISIEN FUNGSI

METODE DEKOMPOSISI ADOMIAN LAPLACE UNTUK SOLUSI PERSAMAAN DIFERENSIAL NONLINIER KOEFISIEN FUNGSI METODE DEKOMPOSISI ADOMIAN LAPLACE UNTUK SOLUSI PERSAMAAN DIFERENSIAL NONLINIER KOEFISIEN FUNGSI Yuni Yulida Program Studi Matematika FMIPA Unlam Universitas Lambung Mangkurat Jl. Jend. A. Yani km. 36

Lebih terperinci

8 Lintasan, Kurva Mulus, dan Titik Singular

8 Lintasan, Kurva Mulus, dan Titik Singular 8 Lintasan, Kurva Mulus, dan Titik Singular Pada bab sebelumnya kita sudah membahas bagaimana kita dapat menentukan banyak sisi dan banyak titik sudut suatu bangun datar dengan mengamati lintasan tepi

Lebih terperinci

FOURIER Oktober 2014, Vol. 3, No. 2, KONSEP FUNGSI SEMIKONTINU. Malahayati 1

FOURIER Oktober 2014, Vol. 3, No. 2, KONSEP FUNGSI SEMIKONTINU. Malahayati 1 FOURIER Oktober 2014, Vol. 3, No. 2, 117 132 KONSEP FUNGSI SEMIKONTINU Malahayati 1 1 Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan Kalijaga Jl. Marsda Adisucipto No. 1 Yogyakarta 55281

Lebih terperinci

BAB I PENDAHULUAN. Kata topologi berasal dari bahasa yunani yaitu topos yang artinya tempat

BAB I PENDAHULUAN. Kata topologi berasal dari bahasa yunani yaitu topos yang artinya tempat 1 BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Kata topologi berasal dari bahasa yunani yaitu topos yang artinya tempat dan logos yang artinya ilmu merupakan cabang matematika yang bersangkutan dengan

Lebih terperinci

, maka., maka 1 = 1 +1 <3 1 < = 10 3 =1

, maka., maka 1 = 1 +1 <3 1 < = 10 3 =1 LATIHAN 4.1 1. Tentukan sebuah kondisi pada 1 yang akan menjamin bahwa : a. 1 < Penyelesaian: Kita perhatikan 1 = 1 +1

Lebih terperinci

Teorema Titik Tetap Pada Ruang Ultrametrik Diskrit

Teorema Titik Tetap Pada Ruang Ultrametrik Diskrit JURNAL SAINS DAN SENI POMITS Vol 3, No2, (2014) 2337-3520 (2301-928X Print) A-58 Teorema Titik Tetap Pada Ruang Ultrametrik Diskrit Wihdatul Ummah, Sunarsini dan Sadjidon Jurusan Matematika, Fakultas Matematika

Lebih terperinci

5. Aplikasi Turunan 1

5. Aplikasi Turunan 1 5. Aplikasi Turunan 5. Menggambar graik ungsi Inormasi yang dibutuhkan: A. Titik potong dengan sumbu dan sumbu y B. Asimtot ungsi Deinisi 5.: Asimtot ungsi adalah garis lurus yang didekati oleh graik ungsi.

Lebih terperinci

Misal, dan diberikan sebarang, terdapat sehingga untuk setiap

Misal, dan diberikan sebarang, terdapat sehingga untuk setiap PROGRAM STUDI PENDIDIKAN MATEMATIKA FKIP UNMUH PONOROGO PENYELESAIAN SOAL UJIAN AKHIR SEMESTER GENAP TA 2012/2013 Mata Ujian : Analisis Real 1 Tipe Soal : Reguler Dosen : Dr. Julan HERNADI Waktu : 90 menit

Lebih terperinci

DEFINISI TIPE RIEMANN UNTUK INTEGRAL LEBESGUE 1. Drajad Maknawi 2 dan Muslich 3 Jurusan Matematika FMIPA UNS. Abstrak

DEFINISI TIPE RIEMANN UNTUK INTEGRAL LEBESGUE 1. Drajad Maknawi 2 dan Muslich 3 Jurusan Matematika FMIPA UNS. Abstrak DEFINISI TIPE RIEMANN UNTUK INTEGRAL LEBESGUE 1 An-2 1. PENDAHULUAN Drajad Maknawi 2 dan Muslich 3 Jurusan Matematika FMIPA UNS Abstrak Tujuan dari tulisan ini adalah membahas tentang integral Lebesgue

Lebih terperinci

SOAL&PEMBAHASAN MATEMATIKATKDSAINTEK SBMPTN. yos3prens.wordpres.com

SOAL&PEMBAHASAN MATEMATIKATKDSAINTEK SBMPTN. yos3prens.wordpres.com SOAL&PEMBAHASAN MATEMATIKATKDSAINTEK SBMPTN 05 yosprens.wordpres.com SOAL DAN PEMBAHASAN MATA UJI MATEMATIKA TKD SAINTEK SBMPTN 05 Berikut ini 5 soal mata uji matematika beserta pembahasannya yang diujikan

Lebih terperinci

Kuliah 2: FUNGSI MULTIVARIABEL. Indah Yanti

Kuliah 2: FUNGSI MULTIVARIABEL. Indah Yanti Kuliah 2: FUNGSI MULTIVARIABEL Indah Yanti Definisi Dasar Perhatikan fungsi f: A R n R m : x f x n = m = 1 fungsi bernilai riil satu variabel n = 1, m > 1 fungsi bernilai vektor satu variabel n > 1, m

Lebih terperinci

Bagian 4 Terapan Differensial

Bagian 4 Terapan Differensial Bagian 4 Terapan Differensial Dalam bagian 4 Terapan Differensial, kita akan mempelajari materi bagaimana konsep differensial dapat dipergunakan untuk mengatasi persoalan yang terjadi di sekitar kita.

Lebih terperinci

Definisi. Turunan (derivative) suatu fungsi f di sebarang titik x adalah. f merupakan fungsi baru yang disebut turunan dari f (derivative of f).

Definisi. Turunan (derivative) suatu fungsi f di sebarang titik x adalah. f merupakan fungsi baru yang disebut turunan dari f (derivative of f). Lecture 5. Derivatives C A. Turunan (derivatives) Sebagai Fungsi Definisi. Turunan (derivative) suatu fungsi f di sebarang titik x adalah f ()() (x) = lim. f merupakan fungsi baru yang disebut turunan

Lebih terperinci

BAB III SIFAT SIFAT LINE DIGRAPH. Bab ini khusus membahas mengenai definisi serta sifat sifat dari line

BAB III SIFAT SIFAT LINE DIGRAPH. Bab ini khusus membahas mengenai definisi serta sifat sifat dari line BAB III SIFAT SIFAT LINE DIGRAPH Bab ini khusus membahas mengenai definisi serta sifat sifat dari line digraph yang dapat digunakan untuk mengenali line digraph. Jika suatu graf memenuhi sifat sifat yang

Lebih terperinci

FUNGSI VARIABEL KOMPLEKS. Oleh: Endang Dedy

FUNGSI VARIABEL KOMPLEKS. Oleh: Endang Dedy FUNGSI VARIABEL KOMPLEKS Oleh: Endang Dedy Diskusikan! Sistem Bilangan Kompleks 1 Perhatikan definisi berikut: Bilangan kompleks adalah suatu bilangan yang didefinisikan dengan =+iy,, y R dan i 1.Coba

Lebih terperinci

DIKTAT KULIAH KALKULUS PEUBAH BANYAK (IE-308)

DIKTAT KULIAH KALKULUS PEUBAH BANYAK (IE-308) DIKTAT KULIAH (IE-308) BAB 7 INTEGRAL PERMUKAAN Diktat ini digunakan bagi mahasiswa Jurusan Teknik Industri Fakultas Teknik Universitas Kristen Maranatha Ir. Rudy Wawolumaja M.Sc JURUSAN TEKNIK INDUSTRI

Lebih terperinci

TEOREMA TITIK TETAP PADA RUANG ULTRAMETRIK DISKRIT

TEOREMA TITIK TETAP PADA RUANG ULTRAMETRIK DISKRIT JURNAL SAINS DAN SENI POMITS Vol 2, No1, (2014) 2337-3520 (2301-928X Print) 1 TEOREMA TITIK TETAP PADA RUANG ULTRAMETRIK DISKRIT Wihdatul Ummah, Sunarsini dan Sadjidon Jurusan Matematika, Fakultas Matematika

Lebih terperinci

BILANGAN DOMINASI PERSEKITARAN PADA GRAF LENGKAP DAN GRAF BIPARTIT LENGKAP. Jl. Prof. H. Soedarto, S.H. Tembalang Semarang

BILANGAN DOMINASI PERSEKITARAN PADA GRAF LENGKAP DAN GRAF BIPARTIT LENGKAP. Jl. Prof. H. Soedarto, S.H. Tembalang Semarang BILANGAN DOMINASI PERSEKITARAN PADA GRAF LENGKAP DAN GRAF BIPARTIT LENGKAP Lucia Ratnasari 1, Bayu Surarso 2, Harjito 3, Uun Maunah 4 1,2,3 Departemen Matematika FSM Uniersitas Diponegoro 4 Program Studi

Lebih terperinci

LIMIT KED. Perhatikan fungsi di bawah ini:

LIMIT KED. Perhatikan fungsi di bawah ini: LIMIT Perhatikan fungsi di bawah ini: f x = x2 1 x 1 Perhatikan gambar di samping, untuk nilai x = 1 nilai f x tidak ada. Tetapi jikakita coba dekati nilai x = 1 dari sebelah kiri dan kanan maka dapat

Lebih terperinci

RING FUZZY DAN SIFAT-SIFATNYA FUZZY RING AND ITS PROPERTIES

RING FUZZY DAN SIFAT-SIFATNYA FUZZY RING AND ITS PROPERTIES J. Sains Dasar 2016 5(1) 28-39 RING FUZZY DAN SIFAT-SIFATNYA FUZZY RING AND ITS PROPERTIES Rifki Chandra Utama * dan Karyati Jurusan Pendidikan Matematika, FMIPA, Universitas Negeri Yogyakarta *email:

Lebih terperinci

DAFTAR DISTRIBUSI FREKUENSI DAN GRAFIKNYA

DAFTAR DISTRIBUSI FREKUENSI DAN GRAFIKNYA DAFTAR DISTRIBUSI FREKUENSI DAN GRAFIKNYA a. Tabel distribusi frekuensi Kelas Tabulasi Frekuensi 4 IIII 7 IIII IIII 9 8 1 IIII IIII II 1 11 13 IIII IIII IIII IIII 19 14 16 IIII IIII IIII IIII IIII 4 17

Lebih terperinci

IDEAL PRIMA FUZZY DI SEMIGRUP

IDEAL PRIMA FUZZY DI SEMIGRUP Vol 2 No 2 Bulan Desember 2017 Jurnal Silogisme Kajian Ilmu Matematika dan Pembelajarannya http://journal.umpo.ac.id/index.php/silogisme IDEAL PRIMA FUZZY DI SEMIGRUP Info Artikel Article History: Accepted

Lebih terperinci

G. Minimum Lokal dan Global Berikut diberikan definisi minimum local (relatif) dan minimum global (mutlak) dari fungsi dua variabel.

G. Minimum Lokal dan Global Berikut diberikan definisi minimum local (relatif) dan minimum global (mutlak) dari fungsi dua variabel. G. Minimum Lokal dan Global Berikut diberikan definisi minimum local (relatif) dan minimum global (mutlak) dari fungsi dua variabel. Definisi. (i) Suatu fungsi f(x, y) memiliki minimum lokal pada titik

Lebih terperinci

Fungsi Analitik (Bagian Keempat)

Fungsi Analitik (Bagian Keempat) Fungsi Analitik (Bagian Keempat) Supama Jurusan Matematika, FMIPA UGM Yogyakarta 55281, INDONESIA Email:maspomo@yahoo.com, supama@ugm.ac.id (Pertemuan Minggu VII) Outline 1 Fungsi Analitik 2 Fungsi Analitik

Lebih terperinci

BAB II TAUTOLOGI DAN PRINSIP-PRINSIP PEMBUKTIAN

BAB II TAUTOLOGI DAN PRINSIP-PRINSIP PEMBUKTIAN BAB II TAUTOLOGI DAN PRINSIP-PRINSIP PEMBUKTIAN 2.1 Pendahuluan Pada bab ini akan dibicarakan rumus-rumus tautologi dan prinsip-prinsip pembuktian yang tidak saja digunakan di bidang matematika, tetapi

Lebih terperinci

TEOREMA FUNDAMENTAL PADA KALKULUS VEKTOR

TEOREMA FUNDAMENTAL PADA KALKULUS VEKTOR TEOREMA FUNDAMENTAL PADA KALKULUS VEKTOR Interpretasi Geometri dari Derivatif Vektor Jika C adalah kurva yang dinyatakan dalam bentuk fungsi vektor r(t) = x(t)i + y(t)j + z(t)k maka:. Derivatif dari kurva

Lebih terperinci

3 LIMIT DAN KEKONTINUAN

3 LIMIT DAN KEKONTINUAN Menurut Bartle dan Sherbet (1994), Analisis matematika secara umum dipahami sebagai tubuh matematika yang dibangun dari berbagai konsep limit. Pada bab sebelumnya kita telah mempelajari limit barisan,

Lebih terperinci

SIFAT KOMPAK PADA RUANG HAUSDORFF (RUANG TOPOLOGI TERPISAH)

SIFAT KOMPAK PADA RUANG HAUSDORFF (RUANG TOPOLOGI TERPISAH) SIFAT KOMPAK PADA RUANG HAUSDORFF (RUANG TOPOLOGI TERPISAH) skripsi disajikan sebagai salah satu syarat untuk memperoleh gelar Sarjana Sain Program Studi Matematika oleh Ririn Setyaningrum 4150406026 JURUSAN

Lebih terperinci

a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Pengantar Kalkulus Pertemuan - 1

a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Pengantar Kalkulus Pertemuan - 1 Mata Kuliah : Kalkulus Kode : TSP 102 SKS : 3 SKS Pengantar Kalkulus Pertemuan - 1 TIU : Mahasiswa dapat memahami dasar-dasar Kalkulus TIK : Mahasiswa mampu menjelaskan sistem bilangan real Mahasiswa mampu

Lebih terperinci

Pertemuan : 9 Materi : Teorema Green Bab IV. Teorema Green, Teorema Divergensi Gauss, dan Teorema Stokes

Pertemuan : 9 Materi : Teorema Green Bab IV. Teorema Green, Teorema Divergensi Gauss, dan Teorema Stokes Pertemuan : 9 Materi : Teorema Green Bab IV. Teorema Green, Teorema Divergensi Gauss, dan Teorema Stokes Standar Kompetensi : 1. Memahami Teorema Green Kompetensi Dasar : 1. Menyebutkan kembali pengertian

Lebih terperinci

KALKULUS 1. Oleh : SRI ESTI TRISNO SAMI, ST, MMSI /

KALKULUS 1. Oleh : SRI ESTI TRISNO SAMI, ST, MMSI / Oleh : SRI ESTI TRISNO SAMI, ST, MMSI 08125218506 / 082334051234 E-mail : sriestits2@gmail.com Bahan Bacaan / Refferensi : 1. Frank Ayres J. R., Calculus, Shcaum s Outline Series, Mc Graw-Hill Book Company.

Lebih terperinci

STUDI BILANGAN PEWARNAAN λ-backbone PADA GRAF SPLIT DENGAN BACKBONE SEGITIGA

STUDI BILANGAN PEWARNAAN λ-backbone PADA GRAF SPLIT DENGAN BACKBONE SEGITIGA STUDI BILANGAN PEWARNAAN λ-backbone PADA GRAF SPLIT DENGAN BACKBONE SEGITIGA Anis Kamilah Hayati NIM : 13505075 Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika, Institut Teknologi

Lebih terperinci

(b) M merupakan nilai minimum (mutlak) f apabila M f(x) x I..

(b) M merupakan nilai minimum (mutlak) f apabila M f(x) x I.. 3. Aplikasi Turunan a. Nilai ekstrim Bagian ini dimulai dengan pengertian nilai ekstrim suatu fungsi yang mencakup nilai ekstrim maksimum dan nilai ekstrim minimum. Definisi 3. Diberikan fungsi f: I R,

Lebih terperinci

BAB II TEORI DASAR. S, torus, topologi adalah suatu himpunan yang mempunyai topologi, yaitu koleksi dari

BAB II TEORI DASAR. S, torus, topologi adalah suatu himpunan yang mempunyai topologi, yaitu koleksi dari BAB II TEORI DASAR Pada skripsi ini, akan dipelajari perbedaan sifat grup fundamental yang dimiliki beberapa ruang topologi, yaitu 2 S, torus, 2 P dan figure eight. Ruang topologi adalah suatu himpunan

Lebih terperinci

JURUSAN PENDIDIKAN MATEMATA FPMIPA - UNIVERSITAS PENDIDKAN INDONESIA

JURUSAN PENDIDIKAN MATEMATA FPMIPA - UNIVERSITAS PENDIDKAN INDONESIA JURUSAN PENDIDIKAN MATEMATA FPMIPA - UNIVERSITAS PENDIDKAN INDONESIA 1 MINGGU KE- POKOK DAN SUB POKOK BAHASAN TUJUAN INSTRUKSIONAL UMUM (TIU) SATUAN ACARA PERKULIAHAN MATAKULIAH : FUNGSI KOMPLEKS (3 SKS)

Lebih terperinci

UNIVERSITAS GADJAH MADA. Bahan Ajar:

UNIVERSITAS GADJAH MADA. Bahan Ajar: UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Gedung Jurusan Matematika, Yogyakarta - 55281 Bahan Ajar: BAB POKOK BAHASAN

Lebih terperinci

a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Limit Fungsi Pertemuan - 2

a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Limit Fungsi Pertemuan - 2 a home base to eellene Mata Kuliah : Kalkulus Kode : TSP 0 SKS : 3 SKS Limit Fungsi Pertemuan - a home base to eellene TIU : Mahasiswa dapat memahami it ungsi TIK : Mahasiswa mampu menyelesaikan it ungsi

Lebih terperinci

SISTEM BILANGAN REAL. 1. Sistem Bilangan Real. Terlebih dahulu perhatikan diagram berikut: Bilangan. Bilangan Rasional. Bilangan Irasional

SISTEM BILANGAN REAL. 1. Sistem Bilangan Real. Terlebih dahulu perhatikan diagram berikut: Bilangan. Bilangan Rasional. Bilangan Irasional SISTEM BILANGAN REAL Sebelum membahas tentag konsep sistem bilangan real, terlebih dahulu ingat kembali tentang konsep himpunan. Konsep dasar dalam matematika adalah berkaitan dengan himpunan atau kelas

Lebih terperinci

Perbandingan trigonometri sin x merupakan relasi yang memetakan setiap x tepat satu nilai sin x yang dinyatakan dengan notasi f : x sinx

Perbandingan trigonometri sin x merupakan relasi yang memetakan setiap x tepat satu nilai sin x yang dinyatakan dengan notasi f : x sinx MENGGAMBAR GRAFIK FUNGSI TRIGONOMETRI Perbandingan trigonometri dari suatu sudut tertentu terdapat tepat satu nilai dari sinus, kosinus dan tangens dari sudut tersebut. Sehingga perbandingan trigonometri

Lebih terperinci

Bab 1 Sistem Bilangan Kompleks

Bab 1 Sistem Bilangan Kompleks Bab 1 Sistem Bilangan Kompleks Bab 1 ini direncanakan akan disampaikan dalam 3 kali pertemuan, dengan perincian sebagai berikut: (1) Pertemuan I: Pengertian bilangan kompleks, Sifat-sifat aljabat, dan

Lebih terperinci