MATEMATIKA DASAR TAHUN 1987

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "MATEMATIKA DASAR TAHUN 1987"

Transkripsi

1 MATEMATIKA DASAR TAHUN 987 MD-87-0 Garis singgung pada kurva y di titik potong nya dengan sumbu yang absisnya positif mempunyai gradien 0 MD-87-0 Titik potong garis y + dengan parabola y + ialah P (5, 8) dan Q (, ) P (, ) dan Q (, ) P (, ) dan Q (, ) P ( 5, ) dan Q (, ) P (5, 8) dan Q (, ) MD-87-0 Jika salah satu akar persamaan a adalah, maka a, akar yang lain a, akar yang lain a, akar yang lain a, akar yang lain 0 a, akar yang lain MD-87-0 Jika parabola f() b + 7 puncaknya mempunyai absis, maka ordinatnya adalah MD Jika f : p + r mempunyai grafik seperti di bawah ini, maka f p > 0, r > 0 p > 0, r < 0 p < 0, r > 0 p < 0, r < 0 p < 0, r 0 0 MD Lingkaran berpusat di titik asal O dan berjari-jari memotong sumbu positif, sumbu y positif, dan y negatif berturut-turut di titik A, B dan Dibuat garis singgung di B, garis melalui CA memotong garis singgung tersebut di titik P. Koordinat P ialah (, 6) (, 6) (6, ) (6, ) (6, 6) MD Persamaan garis melalui (, ) dan sejajar dengan y dapat ditulis y + y + y y 0 y 5 0 MD Jika f(), maka dengan 0 lim p 0 f (+p) - f () p MD Turunan pertama fungsi y cos ( ) ialah y sin ( ) y sin ( ) y (6 ) cos ( ) y (6 ) sin ( ) y (6 ) sin ( ) MD-87-0 Pertaksamaan ( ) ( + ) 0, R mempunyai himpunan penyelesaian { } { < } { } { atau } { atau } sama

2 MD-87- Jika dan akar persamaan a + b + c 0, maka persamaan kuadrat yang akar-akarnya dan adalah a + b + c 0 a (b ac) + c 0 a + (b + ac) + c 0 a (b + ac) + c 0 a + (b ac) + c 0 MD-87- > 0 bila < < < < < + MD-87- Bila D f menyatakan daerah asal dan R f daerah hasil fung si y - maka D f { R}, R f {y y R} D f { R, > 0}, R f {y y R, y > 0} D f { R, > }, R f {y y R} D f { R, }, R f {y y R, y 0} D f { R, 0}, R f {y y R, y 0} MD-87- Nilai maksimum untuk 0 + 0y yang memenuhi sistem pertidaksamaan + y, + y 6,, y bilangan cacah adalah MD-87-5 y 0 Dalam sistem pertaksa- 9 R maan S y ; y Q y + 0 ; + y 9 P P Q R S T nilai maksimum untuk 9 0 y dicapai di titik MD Jika, maka 6 y dan y dan y dan y dan y dan y MD-87-7 Suatu masalah program linear memuat kendala (syarat) sebagai berikut : y 6 ; + y y ; 0 ; y 0 Daerah himpunan penyelesaiannya adalah Himpunan kosong MD Invers matriks A 6 adalah

3 MD-87-9 b Jika b > 0 dan ( ) d, maka nilai b MD-87-0 Jika α, β dan γ sudut-sudut segitiga ABC dan sin α cos α cos β sin β sin γ cos cos β sin β sin β cos β 0 maka γ γ MD-87- Bila persamaan garis lurus dinyatakan oleh y a 0 mempunyai gradien, maka a 0 MD-87- Persamaan cos sin MD-87- d + b maka a cos, dipenuhi oleh sin 5 b c c a + MD-87- d MD-87-5 Jika dan memenuhi ( + log ) log log 0 maka MD-87-6 log + log + log 6 + log 6 + membentuk deret aritmatika dengan beda log deret geometri dengan pembanding log deret aritmatika dengan beda deret geometri dengan pembanding bukan deret aritmatika maupun deret geometri MD-87-7 Penyelesaian dari ( log ) + log ( ) adalah MD-87-8 Jika dan akar-akar persamaan log ( + ), maka 6 5 MD y Nilai yang memenuhi y semua jawaban di atas salah 8 adalah

4 MD-87-0 ( log 6) log 8 8 ( log ) MD-87- Bila + y, maka tan sama dengan tan y + tan y tan y + tan y + tan y tan y + tan y tan y tan y - tan y MD-87- Jika grafik dengan garis terputus-putus itu persa- maannya y cos maka grafik garis penuh persa- - 0 maannya adalah - - (A) y cos (B) y cos (C) y cos (D) y cos (E) y cos MD-87- Diketahui deret sin + cos sin + cos sin + Jika 0 < < maka jumlah deret tersebut sama dengan sin + cos sin tan sin + cos cos MD-87- a a a a 5 a Bujur sangkar yang terjadi seperti pada gambar di samping jika diteruskan jumlah luasnya adalah... MD-87-5 Jika jumlah n suku pertama suatu barisan adalah n (n + ), maka suku ke barisan tersebut adalah MD-87-6 log log Persamaan 0 - ( 0 ) - 0 oleh () () () () MD-87-7 Jika nilai rapor A : 7, 7, 7, 7, 7, 7, 7 nilai rapor B :, 5, 6, 7, 8, 9, 0 nilai rapor C :, 7, 7, 7, 7, 7, 0 maka () rata-rata hitung nilai ketiga rapor sama () median ketiga rapor sama () simpangan kuartil nilai rapor A dan C sama () jangkauan nilai ketiga rapor sama dipenuhi MD-87-8 Jika pernyataan p bernilai benar dan q bernilai salah, maka pernyataan di bawah ini yang bernilai benar () ~ p q () ~ p ~ q () q p () ~ q p MD-87-9 S adalah sebarang himpunan yang tidak kosong. Pernyataan-pernyataan di bawah ini yang SALAH adalah () S S () S S () {S} S () {S} S

5 MD-87-0 Daerah yang diarsir pada P Q gambar di samping dapat dinyatakan dengan R () (P Q) (R P Q ) () (P Q) (Q P) R () (P Q R) (P Q) () P Q R

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a Soal - Soal UM UGM. Soal Matematika Dasar UM UGM 00. Jika x = 3 maka + 3 log 4 x =... a. b. c. d. e.. Jika x+y log = a dan x y log 8 = b dengan 0 < y < x maka 4 log (x y ) =... a. a + 3b ab b. a + b ab

Lebih terperinci

Matematika EBTANAS Tahun 1986

Matematika EBTANAS Tahun 1986 Matematika EBTANAS Tahun 986 EBT-SMA-86- Bila diketahui A = { x x bilangan prima < }, B = { x x bilangan ganjil < }, maka eleman A B =.. 3 7 9 EBT-SMA-86- Bila matriks A berordo 3 dan matriks B berordo

Lebih terperinci

PREDIKSI UAN MATEMATIKA SESUAI KISI-KISI PEMERINTAH

PREDIKSI UAN MATEMATIKA SESUAI KISI-KISI PEMERINTAH PREDIKSI UAN MATEMATIKA SESUAI KISI-KISI PEMERINTAH. Apabila P dan q kalimat pernyataan, di mana ~p q kalimat bernilai salah, maka kalimat yang benar berikut ini, kecuali (d) p q (~p ~q) (~p ~q) ~ (~p

Lebih terperinci

Matematika EBTANAS Tahun 1991

Matematika EBTANAS Tahun 1991 Matematika EBTANAS Tahun 99 EBT-SMA-9-0 Persamaan sumbu simetri dari parabola y = 8 x x x = 4 x = x = x = x = EBT-SMA-9-0 Salah satu akar persamaan kuadrat mx 3x + = 0 dua kali akar yang lain, maka nilai

Lebih terperinci

Matematika EBTANAS Tahun 1995

Matematika EBTANAS Tahun 1995 Matematika EBTANAS Tahun 99 EBT-SMA-9-0 Grafik fungsi kuadrat di samping (,) persamaannya y = + + y = + y = + (0,) y = + y = + EBT-SMA-9-0 Akar-akar persamaan kuadrat = 0 adalah dan. Persamaan kuadrat

Lebih terperinci

Matematika EBTANAS Tahun 1999

Matematika EBTANAS Tahun 1999 Matematika EBTANAS Tahun 999 EBT-SMA-99-0 Akar-akar persamaan kuadrat + = 0 adalah α dan β. Persamaan kuadrat baru yang akar-akarnya (α + ) dan (β + ) + = 0 + 7 = 0 + = 0 + 7 = 0 + = 0 EBT-SMA-99-0 Akar-akar

Lebih terperinci

ISTIYANTO.COM. memenuhi persamaan itu adalah B. 4 4 C. 4 1 PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPA

ISTIYANTO.COM. memenuhi persamaan itu adalah B. 4 4 C. 4 1 PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPA PERBANDINGAN KISI-KISI UN 009 DAN 00 SMA IPA Materi Logika Matematika Kemampuan yang diuji UN 009 UN 00 Menentukan negasi pernyataan yang diperoleh dari penarikan kesimpulan Menentukan negasi pernyataan

Lebih terperinci

8. Nilai x yang memenuhi 2 log 2 (4x -

8. Nilai x yang memenuhi 2 log 2 (4x - 1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p p > l 2 < p < 3 p > 3 1 < p < 2 p < 1 atau p > 2 2. Fungsi kuadrat yang mempunyai nilai maksimum

Lebih terperinci

Soal UN 2009 Materi KISI UN 2010 Prediksi UN 2010

Soal UN 2009 Materi KISI UN 2010 Prediksi UN 2010 PREDIKSI UN 00 SMA IPA BAG. (Berdasar buku terbitan Istiyanto: Bank Soal Matematika-Gagas Media) Logika Matematika Soal UN 009 Materi KISI UN 00 Prediksi UN 00 Menentukan negasi pernyataan yang diperoleh

Lebih terperinci

Matematika Proyek Perintis I Tahun 1979

Matematika Proyek Perintis I Tahun 1979 Matematika Proyek Perintis I Tahun 979 MA-79-0 Irisan himpunan : A = { x x < } dan himpunan B = { x < x < 8 } ialah himpunan A. { x x < 8 } { x x < } { x < x < 8 } { x < x < } { x < x } MA-79-0 Apabila

Lebih terperinci

UM UGM 2017 Matematika Dasar

UM UGM 2017 Matematika Dasar UM UGM 07 Matematika Dasar Soal UTUL UGM - Matematika Dasar 07 (Kode Soal 84) Halaman 0. Tujuh bilangan membentuk barisan aritmetika. Jika jumlah tiga bilangan pertama sama dengan 33 dan jumlah tiga bilangan

Lebih terperinci

(A) 3 (B) 5 (B) 1 (C) 8

(A) 3 (B) 5 (B) 1 (C) 8 . Turunan dari f ( ) = + + (E) 7 + +. Turunan dari y = ( ) ( + ) ( ) ( + ) ( ) ( + ) ( + ) ( + ) ( ) ( + ) (E) ( ) ( + ) 7 5 (E) 9 5 9 7 0. Jika f ( ) = maka f () = 8 (E) 8. Jika f () = 5 maka f (0) +

Lebih terperinci

TRY OUT MATEMATIKA PAKET 2A TAHUN 2010

TRY OUT MATEMATIKA PAKET 2A TAHUN 2010 TRY OUT MATEMATIKA PAKET A TAHUN 00. Diketahui premis premis () Jika hari hujan terus menerus maka masyarakat kawasan Kaligawe gelisah atau mudah sakit. () Hujan terus menerus. Ingkaran kesimpulan premis

Lebih terperinci

Matematika EBTANAS Tahun 2002

Matematika EBTANAS Tahun 2002 Matematika EBTANAS Tahun 00 EBT-SMA-0-0 Ditentukan nilai a = 9, b = dan c =. Nilai a b c = 9 EBT-SMA-0-0 Hasil kali akar-akar persamaan kuadrat + = 0 adalah EBT-SMA-0-0 Persamaan kuadrat + (m ) + 9 = 0

Lebih terperinci

TRY OUT MATEMATIKA PAKET 3B TAHUN 2010

TRY OUT MATEMATIKA PAKET 3B TAHUN 2010 . Perhatikan argumen berikut ini. p q. q r. r ~ s TRY OUT MATEMATIKA PAKET B TAHUN 00 Negasi kesimpulan yang sah dari argumen di atas adalah... A. p ~s B. p s C. p ~s D. p ~s E. p s. Diketahui npersamaan

Lebih terperinci

Ujian Akhir Nasional Tahun Pelajaran 2002/2003

Ujian Akhir Nasional Tahun Pelajaran 2002/2003 DOKUMEN NEGARA SANGAT RAHASIA Ujian Akhir Nasional Tahun Pelajaran 00/00 SMU/MA Program Studi IPA Paket Utama (P) MATEMATIKA (D0) SELASA, 6 MEI 00 Pukul 07.0 09.0 DEPARTEMEN PENDIDIKAN NASIONAL Hak Cipta

Lebih terperinci

(D) 2 x < 2 atau x > 2 (E) x > Kurva y = naik pada

(D) 2 x < 2 atau x > 2 (E) x > Kurva y = naik pada f =, maka fungsi f naik + 1 pada selang (A), 0 (D), 1. Jika ( ) (B) 0, (E) (C),,. Persamaan garis singgung kurva lurus + = 0 adalah (A) + = 0 (B) + = 0 (C) + + = 0 (D) + = 0 (E) + + = 0 = ang sejajar dengasn

Lebih terperinci

PAKET 3 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 2009 MATA PELAJARAN MATEMATIKA

PAKET 3 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 2009 MATA PELAJARAN MATEMATIKA Kumpulan Soal - Soal Latihan UN Matematika IPA SMA dan MA 009. (Suprayitno) 33 PAKET 3 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 009 MATA PELAJARAN MATEMATIKA PETUNJUK UMUM. Kerjakan semua soal - soal ini menurut

Lebih terperinci

MATEMATIKA DASAR TAHUN 1981

MATEMATIKA DASAR TAHUN 1981 MATEMATIKA DASAR TAHUN 98 MD-8-0 Jika A = {bilangan asli} dan B = {bilangan prima} maka A B adalah himpunan... bilangan asli bilangan cacah bilangan bulat bilangan prima kosong MD-8-0 Pada diagram Venn

Lebih terperinci

SMA / MA IPA Mata Pelajaran : Matematika

SMA / MA IPA Mata Pelajaran : Matematika Latihan Soal UN 00 Paket Sekolah Menengah Atas / Madrasah Aliyah IPA SMA / MA IPA Mata Pelajaran : Matematika Dalam UN berlaku Petunjuk Umum seperti ini :. Isikan identitas Anda ke dalam Lembar Jawaban

Lebih terperinci

muhammadamien.wordpress.com

muhammadamien.wordpress.com 1. 2. Gradien garis singgung di setiap titik dapat dinyatakan sebagai 34 maka nilai minimumnya 1 3 5 7 9. Jika nilai maksimum 3. Jika maka 4. 5. 1 3 4 5 6 1 6. 7. Luas daerah yang dibatasi oleh parabola

Lebih terperinci

Matematika Ebtanas IPS Tahun 1997

Matematika Ebtanas IPS Tahun 1997 Matematika Ebtanas IPS Tahun 99 EBTANAS-IPS-9-0 Bentuk sederhana dari 86 6 + 8 6 9 6 0 6 6 6 EBTANAS-IPS-9-0 Bentuk sederhana dari 8 + 6 + + 6 6 + + EBTANAS-IPS-9-0 x+ Nilai x yang memenuhi persamaan =

Lebih terperinci

Soal dan Pembahasan UN Matematika Program IPA 2008

Soal dan Pembahasan UN Matematika Program IPA 2008 Soal dan Pembahasan UN Matematika Program IPA 2008. Diketahui premis premis : () Jika hari hujan, maka udara dingin. (2) Jika udara dingin, maka ibu memakai baju hangat. (3) Ibu tidak memakai baju hangat

Lebih terperinci

( ) 2. Nilai x yang memenuhi log 9. Jadi 4x 12 = 3 atau x = 3,75

( ) 2. Nilai x yang memenuhi log 9. Jadi 4x 12 = 3 atau x = 3,75 Here is the Problem and the Answer. Diketahui premis premis berikut! a. Jika sebuah segitiga siku siku maka salah satu sudutnya 9 b. Jika salah satu sudutnya 9 maka berlaku teorema Phytagoras Ingkaran

Lebih terperinci

Pembahasan Matematika IPA SIMAK UI 2009

Pembahasan Matematika IPA SIMAK UI 2009 Pembahasan Matematika IPA SIMAK UI 2009 Kode 924 Oleh Kak Mufidah 1. Diketahui fungsi. Agar fungsi tersebut senantiasa berada di bawah sumbu x, maka nilai m yang mungkin adalah Agar fungsi tersebut senantiasa

Lebih terperinci

PREDIKSI UJIAN NASIONAL 2009

PREDIKSI UJIAN NASIONAL 2009 LEMBAGA PENJAMINAN MUTU PENDIDIKAN (LPMP) PROVINSI DAERAH KHUSUS IBU KOTA JAKARTA Alamat : Jl. Nangka No. 60, Tanjung Barat, Jagakarsa, Jakarta Selatan, Telp. (0) 79, 7099, 7067, Fax. (0) 7067 PREDIKSI

Lebih terperinci

12. Diketahui segitiga ABC dengan AC = 5 cm, AB = 7 cm, dan BCA = 120. Keliling segitiga ABC =...

12. Diketahui segitiga ABC dengan AC = 5 cm, AB = 7 cm, dan BCA = 120. Keliling segitiga ABC =... 1 1. Diketahui: Premis 1 : Jika hari hujan maka tanah basah. Premis : Tanah tidak basah. Ingkaran dari penarikan kesimpulan yang sah dari premis-premis di atas adalah.... Agar F(x) = (p - ) x² - (p - 3)

Lebih terperinci

UN SMA IPA 2008 Matematika

UN SMA IPA 2008 Matematika UN SMA IPA 008 Matematika Kode Soal D0 Doc. Version : 0-06 halaman 0. Ingkaran dari pernataan "Ada bilangan prima adalah bilangan genap." Semua bilangan prima adalah bilangan genap. Semua bilangan prima

Lebih terperinci

KOMPETISI MATEMATIKA 2017 TINGKAT SMA SE-SULUT SOAL BABAK PENYISIHAN Rabu, 22 Februari 2017

KOMPETISI MATEMATIKA 2017 TINGKAT SMA SE-SULUT SOAL BABAK PENYISIHAN Rabu, 22 Februari 2017 KOMPETISI MATEMATIKA 2017 TINGKAT SMA SE-SULUT SOAL BABAK PENYISIHAN Rabu, 22 Februari 2017 Petunjuk: 1. Babak penyisihan ini terdiri dari 30 soal pilihan ganda. 2. Waktu yang disediakan 120 menit. 3.

Lebih terperinci

Xpedia Matematika. Kapita Selekta Set 05

Xpedia Matematika. Kapita Selekta Set 05 Xpedia Matematika Kapita Selekta Set 05 Doc. Name: XPMAT9705 Doc. Version : 0-07 halaman 0a Garis singgung pada kurva y=x -x + akan sejajar dengan sumbu x di titik yang absisnya... x = x = 0 x = 0 dan

Lebih terperinci

( )( ) ISTIYANTO.COM. Pembahasan: Nomor 2 Bentuk sederhana dari A. B. C. D. E. 5 a b. Pembahasan: Nomor 3. Bentuk sederhana dari

( )( ) ISTIYANTO.COM. Pembahasan: Nomor 2 Bentuk sederhana dari A. B. C. D. E. 5 a b. Pembahasan: Nomor 3. Bentuk sederhana dari ISTIYANTO.COM Pembahasan: Nomor (a b Bentuk sederhana dari (a b A. a b a b a b ab 9 a b 8 adalah Pembahasan: Soal UN Matematika IPA Dapatkan Buku Bank Soal Matematika SMA karangan Istiyanto untuk memudahkan

Lebih terperinci

04-05 P23-P UJIAN NASIONAL SMA/MA Tahun Pelajaran 2004/2005 MATEMATIKA (D10) PROGRAM STUDI IPA ( U T A M A )

04-05 P23-P UJIAN NASIONAL SMA/MA Tahun Pelajaran 2004/2005 MATEMATIKA (D10) PROGRAM STUDI IPA ( U T A M A ) 0-0 P3-P 0-3 UJIAN NASIONAL SMA/MA Tahun Pelajaran 00/00 MATEMATIKA (D0) PROGRAM STUDI IPA ( U T A M A ) P 0-0 P3-P 0-3 MATEMATIKA Program Studi : IPA MATA PELAJARAN Hari/Tanggal : Rabu, Juni 00 Jam :

Lebih terperinci

PETUNJUK UMUM PETUNJUK KHUSUS

PETUNJUK UMUM PETUNJUK KHUSUS LEMBAR SOAL PERSIAPAN UJIAN NASIONAL SMA/MA Tahun Ajaran 00/009 MATEMATIKA Program Studi IPA (Berdasarkan Lampiran Permendiknas No.77 Tahun 00) Try Out UN Matematika IPA SMA/MA - Esis PETUNJUK UMUM. Tuliskan

Lebih terperinci

Try Out Matematika MIPA

Try Out Matematika MIPA . Diketahui fungsi f dan g dirumuskan oleh f(x) = x x + 6 dan g(x) = x. Jika nilai fog x = 0, maka nilai x yang memenuhi adalah. / dan / dan / dan / dan / dan. Fungsi g : R R ditentukan oleh g ( x) x x

Lebih terperinci

M. PRAHASTOMI M. S. SISTEM PERSAMAAN LINEAR. A. a = 2 dan b = 4 B. a = 2 dan b = 4 C. a = 2 dan b = 4 D. E. a = 2

M. PRAHASTOMI M. S. SISTEM PERSAMAAN LINEAR. A. a = 2 dan b = 4 B. a = 2 dan b = 4 C. a = 2 dan b = 4 D. E. a = 2 SISTEM PERSAMAAN LINEAR M. PRAHASTOMI M. S. 0. MD-8-8 B C G E F A D H 6 7 8 6 Jika gradien garis AB = m, gradien garis CD = m, gradien garis EF = m dan gradien garis GH = m, maka... () m = () m = 0 ()

Lebih terperinci

Evaluasi Belajar Tahap Akhir Nasional TAHUN 1990 Matematika

Evaluasi Belajar Tahap Akhir Nasional TAHUN 1990 Matematika Evaluasi Belajar Tahap Akhir Nasional TAHUN 0 Matematika EBTANAS-IPS-0-0 x Nilai x R yang memenuhi ( ) = 8 EBTANAS-IPS-0-0 Bentuk sederhana dari + ( + ) 5 ( + 7 + EBTANAS-IPS-0-0 Ordinat titik balik grafik

Lebih terperinci

Matematika Proyek Perintis I Tahun 1980

Matematika Proyek Perintis I Tahun 1980 Matematika Proyek Perintis I Tahun 980 MA-80-0 Di antara lima hubungan di bawah ini, yang benar adalah Jika B C dan B C, maka A C Jika A B dan C B, maka A C Jika B A dan C B, maka A C Jika A C dan C B,

Lebih terperinci

PREDIKSI SOAL UAN MATEMATIKA 2009 KELOMPOK TEKNIK

PREDIKSI SOAL UAN MATEMATIKA 2009 KELOMPOK TEKNIK PREDIKSI SOAL UAN MATEMATIKA 2009 KELOMPOK TEKNIK 1. Jarak kota P dan kota R pada sebuah peta adalah 20 cm. Jika skala pada peta tersebut 1:2.500.000, maka jarak sebenarnya dua kota tersebut adalah. A.

Lebih terperinci

B. y = 1 x 2 1 UN-SMK-TEK Jika A = 2 0

B. y = 1 x 2 1 UN-SMK-TEK Jika A = 2 0 UN-SMK-TEK-04-0 Jarak kota A ke kota B pada peta 0 cm. Jika skala peta : 0.000, maka jarak kedua kota sebenarnya adalah..., km km 0 km.00 km.000 km UN-SMK-TEK-04-0 Hasil perkalian dari (4a) - (a) =...

Lebih terperinci

= definit postif untuk konstanta p yang = 0 mempunyai dua akar postif,

= definit postif untuk konstanta p yang = 0 mempunyai dua akar postif, 000 SOAL UNTUK MATEMATIKA CEPAT TEPAT MATEMATIKA. Fungsi kuadrat y ( p ) ( p ) = + + + definit postif untuk konstanta p yang memenuhi adalah. Jika persamaan kuadrat p ( p p) + 4 = 0 mempunyai dua akar

Lebih terperinci

Himpunan. 01. MD S adalah sebarang himpunan yang tidak kosong. Pernyataan-pernyataan di bawah ini yang SALAH

Himpunan. 01. MD S adalah sebarang himpunan yang tidak kosong. Pernyataan-pernyataan di bawah ini yang SALAH Himpunan 0. MD-87-9 S adalah sebarang himpunan yang tidak kosong. Pernyataan-pernyataan di bawah ini yang SALAH () S S () S S () {S} S () {S} S 0. MD-86-07 Pernyataan pernyataan berikut yang benar = {0}

Lebih terperinci

Matematika SMA/MA IPA. : Ximple Education. No. Peserta : Nilai dari. A. x 4 B. x 3 C. 3 4 D. 3 3 E Bentuk sederhana 5 2 3

Matematika SMA/MA IPA. : Ximple Education. No. Peserta : Nilai dari. A. x 4 B. x 3 C. 3 4 D. 3 3 E Bentuk sederhana 5 2 3 Nama : Ximple Education No. Peserta : 08-6600-77. Nilai dari A. B. C. D. E. 6 0 0 7. Bentuk sederhana 6 =. A. 9 B. 9 + C. 9 D. 9 E. + 9. Nilai dari ( A. B. 7 8 C. 9 6 log log log 6 6 log 0 log 6 + log

Lebih terperinci

Wardaya College. Tes Simulasi Ujian Nasional SMA Berbasis Komputer. Mata Pelajaran Matematika Tahun Ajaran 2017/2018

Wardaya College. Tes Simulasi Ujian Nasional SMA Berbasis Komputer. Mata Pelajaran Matematika Tahun Ajaran 2017/2018 Tes Simulasi Ujian Nasional SMA Berbasis Komputer Mata Pelajaran Matematika Tahun Ajaran 2017/2018-1. Jika diketahui x = 8, y = 25 dan z = 81, maka nilai dari x 2 y 2 z adalah.... (a) 0 (b) 00 (c) 500

Lebih terperinci

f(-1) = = -7 f (4) = = 3 Dari ketiga fungsi yang didapat ternyata yang terkecil -7 dan terbesar 11. Rf = {y -7 y 11, y R}

f(-1) = = -7 f (4) = = 3 Dari ketiga fungsi yang didapat ternyata yang terkecil -7 dan terbesar 11. Rf = {y -7 y 11, y R} 1. Persamaan (m - 1)x 2-8x - 8m = 0 mempunyai akar-akar real, maka nilai m adalah... -2 m -1-2 m 1-1 m 2 Kunci : C D 0 b 2-4ac 0 (-8)² - 4(m - 1) 8m 0 64-32m² + 32m 0 m² - m - 2 0 (m - 2)(m + 1) 0 m -1

Lebih terperinci

1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l B. 2 < p < 3 C.

1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l B. 2 < p < 3 C. 1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l 2 < p < 3 p > 3 1 < p < 2 p < 1 atau p > 2 Kunci : C Persamaan fungsi : F(x)

Lebih terperinci

Wardaya College. Tes Simulasi Ujian Nasional SMA Berbasis Komputer. Mata Pelajaran Matematika Tahun Ajaran 2017/2018

Wardaya College. Tes Simulasi Ujian Nasional SMA Berbasis Komputer. Mata Pelajaran Matematika Tahun Ajaran 2017/2018 Tes Simulasi Ujian Nasional SMA Berbasis Komputer Mata Pelajaran Matematika Tahun Ajaran 07/08 -. Jika diketahui x = 8, y = 5 dan z = 8, maka nilai dari x y z adalah.... (a) 0 (b) 00 (c) 500 (d) 750 (e)

Lebih terperinci

TO MGMP MATEMATIKA BAHASA PAKET A HAL 1

TO MGMP MATEMATIKA BAHASA PAKET A HAL 1 MATEMATIKA SMA BAHASA PAKET A 1. Bentuk sederhana dari( 4x 8 y 3 16x 6 y 5) 1 =. A. ( y 2x )2 B. ( 2x y )2 C. ( x 2y )2 D. ( 1 2xy )2 E. (2xy) 2 2. Hasil dari 5 2 5+2 =. A. 4 5 + 9 B. 4 5 C. 9 4 5 D. 9

Lebih terperinci

2. Ditentukan nilai a = 9, b = 16 dan c = 36. Nilai A. 3 B. 1 C. 9 D. 12 E Rasionalkan bentuk C. D. E.

2. Ditentukan nilai a = 9, b = 16 dan c = 36. Nilai A. 3 B. 1 C. 9 D. 12 E Rasionalkan bentuk C. D. E. . Suatu peternakan memiliki 00 ekor ayam peliharaan. Persediaan pakan setiap 00 kg akan habis dalam waktu 5 hari. Bila ayam tersebut dijual 50 ekor, maka persediaan pakan akan habis dalam... hari. A. 0

Lebih terperinci

LEMBAR SOAL National Math Olympiad 3 RD PDIM UB 2014

LEMBAR SOAL National Math Olympiad 3 RD PDIM UB 2014 PETUNJUK UNTUK PESERTA 1. Tuliskan nama lengkap, kelas, asal sekolah, alamat sekolah lengkap dengan nomor telepon, faximile, email sekolah dan nama guru Matematika di tempat yang telah disediakan.. Tes

Lebih terperinci

D. (1 + 2 ) 27 E. (1 + 2 ) 27

D. (1 + 2 ) 27 E. (1 + 2 ) 27 1. Nilai dari untuk x = 4 dan y = 27 adalah... A. (1 + 2 ) 9 B. (1 + 2 ) 9 C. (1 + 2 ) 18 D. (1 + 2 ) 27 E. (1 + 2 ) 27 2. Persamaan 2x² + qx + (q - 1) = 0, mempunyai akar-akar x 1 dan x 2. Jika x 1 2

Lebih terperinci

PAKET 4 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 2009 MATA PELAJARAN MATEMATIKA

PAKET 4 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 2009 MATA PELAJARAN MATEMATIKA Kumpulan Soal - Soal Latihan UN Matematika IPA SMA dan MA 009. (Suprayitno) 49 PAKET 4 LATIHAN UJIAN NASIONAL SMA/MA TAHUN 009 MATA PELAJARAN MATEMATIKA PETUNJUK UMUM. Kerjakan semua soal - soal ini menurut

Lebih terperinci

Prediksi US Mat Wajib log16 log9 =

Prediksi US Mat Wajib log16 log9 = Bentuk Eksponen dan Logaritma Bentuk sederhana dari =.... + + Bentuk sederhana dari =.... 3 2 2 2 + 3 2 3 + 2 2 1 2 2 3 2 Nilai dari + log16 log9 =.... Persamaan dan Pertidaksamaan Nilai Mutlak jika >

Lebih terperinci

Matematika SMA/MA IPA. : Ximple Education. No. Peserta : Jika a = 1 A. 6 B. 4 C. 1 6 D. 1 4 E

Matematika SMA/MA IPA. : Ximple Education. No. Peserta : Jika a = 1 A. 6 B. 4 C. 1 6 D. 1 4 E 1 Nama : Ximple Education No. Peserta : 08-6600-747 1 1. Jika a = 1, b = 6, maka nilai dari 6 a b 1 4 =. a b A. 6 B. 4 C. 1 6 D. 1 4 E.. Nilai dari ( log + log log log ) log 7+ log =. A. B. C. 4 D. 4 8

Lebih terperinci

Matematika ITB Tahun 1975

Matematika ITB Tahun 1975 Matematika ITB Taun 975 ITB-75-0 + 5 6 tidak tau ITB-75-0 Nilai-nilai yang memenui ketidaksamaan kuadrat 5 7 0 atau atau 0 < ITB-75-0 Persamaan garis yang melalui A(,) dan tegak lurus garis + y = 0 + y

Lebih terperinci

TRY OUT MATEMATIKA PAKET 2B TAHUN 2010

TRY OUT MATEMATIKA PAKET 2B TAHUN 2010 TRY OUT MATEMATIKA PAKET B TAHUN 00. Diketahui premis- premis : () Jika Andi penurut maka ia disayang nenek. () Andi seorang anak penurut Ingkaran kesimpulan premis- premis tersebut adalah... Andi seorang

Lebih terperinci

Matematika Ebtanas IPS Tahun 1996

Matematika Ebtanas IPS Tahun 1996 Matematika Ebtanas IPS Tahun 6 EBTANAS-IPS-6-0 Koordinattitik balik grafik y = adalah (, ) (, ) (, ) (, 0) (, ) EBTANAS-IPS-6-0 Akar-akar persamaan kuadrat + = 0 adalah α dan β. Persamaan kuadrat baru

Lebih terperinci

UAN MATEMATIKA SMA IPA 2009 P45

UAN MATEMATIKA SMA IPA 2009 P45 1. Perhatikan premis premis berikut! - Jika saya giat belajar maka saya bisa meraih juara - Jika saya bisa meraih juara maka saya boleh ikut bertanding Ingkaran dari kesimpulan kedua premis di atas adalah.

Lebih terperinci

Prediksi 2 UN SMA IPS Matematika Kode Soal: 302

Prediksi 2 UN SMA IPS Matematika Kode Soal: 302 Prediksi UN SMA IPS Matematika Kode Soal: Doc. Version : -6 halaman. Negasi dari pernyataan Jika saya belajar dengan zenius maka saya lulus UN Jika saya lulus UN maka saya belajar dengan zenius Saya tidak

Lebih terperinci

SOAL UN DAN PENYELESAIANNYA 2009

SOAL UN DAN PENYELESAIANNYA 2009 1. 1. Jika saya giat belajar maka saya bisa meraih juara. 2. Jika saya bisa meraih juara maka saya boleh ikut bertanding. Ingkaran dari kesimpulan kedua premis diatas adalah... A. Saya giat belajar dan

Lebih terperinci

Soal Babak Penyisihan OMITS 2008

Soal Babak Penyisihan OMITS 2008 Soal Babak Penyisihan OMITS 008. Banyak pembagi positif dari.50.000 adalah..... a. 05 b. 0 c. 75 d. 0 e.5. Jari-jari masing-masing lingkaran adalah 5 cm. Tentukan panjang busur ketiga lingkaran tersebut.....

Lebih terperinci

asimtot.wordpress.com Page 1

asimtot.wordpress.com Page 1 . Diketahui premis premis : () Jika Budi rajin menabung atau tidak mencuri, maka Ibu membelikan komputer () Ibu tidak membelikan komputer Kesimpulan yang sah adalah. a. Budi rajin menabung dan Budi mencuri

Lebih terperinci

SOAL UJIAN AKHIR MADRASAH BERTARAF NASIONAL MATA PELAJARAN MATEMATIKA PROGRAM IPA

SOAL UJIAN AKHIR MADRASAH BERTARAF NASIONAL MATA PELAJARAN MATEMATIKA PROGRAM IPA SOAL UJIAN AKHIR MADRASAH BERTARAF NASIONAL MATA PELAJARAN MATEMATIKA PROGRAM IPA. Diketahui premis-premis : (): Jika Ani lulus ujian maka ia bekerja atau kuliah di luar negeri (): Jika rajin dan tekun

Lebih terperinci

Siap UAN Matematika. Oleh. Arwan Hapsan. Portal Pendidikan Gratis Indonesia.

Siap UAN Matematika. Oleh. Arwan Hapsan. Portal Pendidikan Gratis Indonesia. Siap UAN Matematika Oleh Arwan Hapsan Portal Pendidikan Gratis Indonesia Http://okor.id Copyright okor.id Artikel ini boleh dicopy,diubah, dikutip, di cetak dalam media kertas atau yang lain, dipublikasikan

Lebih terperinci

LATIHAN PRA UN Diketahui a = 625 dan b = 27, maka nilai dari ( ) adalah... A. B. C. D. E.

LATIHAN PRA UN Diketahui a = 625 dan b = 27, maka nilai dari ( ) adalah... A. B. C. D. E. LATIHAN PRA UN 0. Suatu proyek pembuatan jembatan dikerjakan oleh pekerja dan diperkirakan akan selesai dalam waktu 0 hari. Jika ada 6 pekerja yang tidak bisa lagi bekerja,maka proyek tersebut akan selesai

Lebih terperinci

2009 ACADEMY QU IDMATHCIREBON

2009 ACADEMY QU IDMATHCIREBON NASKAH UJIAN NASIONAL TAHUN PELAJARAN 2008/2009 Jenjang Sekolah : SMA/MA Hari/Tanggal : Rabu/22 April 2009 Program Studi : IPA Waktu : 08.00 10.00 Petunjuk: Pilihlah satu jawababan yang tepat! 1. Perhatikan

Lebih terperinci

Matematika Ujian Akhir Nasional Tahun 2004

Matematika Ujian Akhir Nasional Tahun 2004 Matematika Ujian Akhir Nasional Tahun 00 UAN-SMA-0-0 Persamaan kuadrat yang akar-akarnya dan adalah x + x + 0 = 0 x + x 0 = 0 x x + 0 = 0 x x 0 = 0 x + x + 0 = 0 UAN-SMA-0-0 Suatu peluru ditembakkan ke

Lebih terperinci

Uji Coba Ujian Nasional tahun 2009 Satuan pendidikan

Uji Coba Ujian Nasional tahun 2009 Satuan pendidikan Uji Coba Ujian Nasional tahun 009 Satuan pendidikan Mata pelajaran Program Waktu. Diketahui premis-premis berikut : ). p ~ q ). q r : SMA : Matematika : IPA : 0 menit.. Negasi (ingkaran) dari kesimpulan

Lebih terperinci

Evaluasi Belajar Tahap Akhir Nasional Tahun 1985 Matematika

Evaluasi Belajar Tahap Akhir Nasional Tahun 1985 Matematika Evaluasi Belajar Tahap Akhir Nasional Tahun 98 Matematika EBTANAS-SMP-8- Jika A = {,, 8,, 4}, B = {,,,,, } dengan himpunan semesta C = (c c bilangan cacah }, maka himpunan {., 4, 6, 9,,, } =... A' B' (A

Lebih terperinci

SOAL-SOAL TO UN MATEMATIKA IPA PAKET A ... A B. x 3 C. 2 5 D E. 3 x Bentuk sederhana dari ... A. B. C. D. E. 3. Nilai dari =...

SOAL-SOAL TO UN MATEMATIKA IPA PAKET A ... A B. x 3 C. 2 5 D E. 3 x Bentuk sederhana dari ... A. B. C. D. E. 3. Nilai dari =... SOAL-SOAL TO UN MATEMATIKA IPA PAKET A 5. 4 4 Nilai dari 4 ( )4 5 4.0..... 4 5 4 5. Bentuk sederhana dari 5... 0 8 5 8 5 5 8 8 5 8 5 5 log 4. log log8. Nilai dari log 4 log 8 4 4 8 4 =.... 4. Nilai x yang

Lebih terperinci

SOAL UN DAN PENYELESAIANNYA 2008

SOAL UN DAN PENYELESAIANNYA 2008 1. Ingkaran dari pernyataan, "Beberapa bilangan prima adalah bilangan genap." adalah... Semua bilangan prima adalah bilangan genap Semua bilangan prima bukan bilangan genap Beberapa bilangan prima bukan

Lebih terperinci

USBN SMA IPA 2018 Matematika IPA

USBN SMA IPA 2018 Matematika IPA USBN SMA IPA 08 Matematika IPA Soal USBN SMA 08-Matematika IPA Doc. Name: USBNSMAIPA08MATIPA999 Version: 08-0 Halaman 0. Bentuk sederhana dari - - - a b b. : - b a a a b b a a b a b a b 0. Jika log = x

Lebih terperinci

SMA / MA Bahasa Mata Pelajaran : Matematika

SMA / MA Bahasa Mata Pelajaran : Matematika Latihan Soal UN Paket Sekolah Menengah Atas / Madrasah Aliyah SMA / MA Bahasa Mata Pelajaran : Matematika Dalam UN berlaku Petunjuk Umum seperti ini :. Isikan identitas Anda ke dalam Lembar Jawaban Ujian

Lebih terperinci

PR ONLINE MATA UJIAN: MATEMATIKA IPS (KODE S09)

PR ONLINE MATA UJIAN: MATEMATIKA IPS (KODE S09) PR ONLINE MATA UJIAN: MATEMATIKA IPS (KODE S09) 1. Luas daerah yang dibatasi oleh kurva y = x + x + 5, sumbu x, dan 0 x 1... satuan luas (A) (C) (E) 5 (B) 0 (D) 5 1. Diketahui segitiga ABC, siku-siku di

Lebih terperinci

PEMERINTAH KABUPATEN TANAH DATAR DINAS PENDIDIKAN SMA NEGERI 1 SUNGAI TARAB

PEMERINTAH KABUPATEN TANAH DATAR DINAS PENDIDIKAN SMA NEGERI 1 SUNGAI TARAB PEMERINTAH KABUPATEN TANAH DATAR DINAS PENDIDIKAN SMA NEGERI SUNGAI TARAB. Dari argumentasi berikut : Premis : Jika Ibu tidak pergi maka adik senang. Premis : Jika adik senang maka dia tersenyum. Kesimpulan

Lebih terperinci

Pembahasan Matematika IPA SIMAK UI 2012 Kode 521. Oleh Tutur Widodo. 1. Misalkan x dan y bilangan bulat yang memenuhi sistem persamaan berikut :

Pembahasan Matematika IPA SIMAK UI 2012 Kode 521. Oleh Tutur Widodo. 1. Misalkan x dan y bilangan bulat yang memenuhi sistem persamaan berikut : Tutur Widodo Pembahasan Matematika IPA SIMAK UI 0 Pembahasan Matematika IPA SIMAK UI 0 Kode 5 Oleh Tutur Widodo. Misalkan x dan y bilangan bulat yang memenuhi sistem persamaan berikut : maka nilai x y

Lebih terperinci

6 FUNGSI LINEAR DAN FUNGSI

6 FUNGSI LINEAR DAN FUNGSI 6 FUNGSI LINEAR DAN FUNGSI KUADRAT 5.1. Fungsi Linear Pada Bab 5 telah dijelaskan bahwa fungsi linear merupakan fungsi yang variabel bebasnya paling tinggi berpangkat satu. Bentuk umum fungsi linear adalah

Lebih terperinci

SPMB 2004 Matematika Dasar Kode Soal

SPMB 2004 Matematika Dasar Kode Soal SPMB 00 Matematika Dasar Kode Soal Doc. Name: SPMB00MATDAS999 Version : 0- halaman 0. Nilai x yang memenuhi persamaan : 3 x ( ) adalah. 0 - - 0. Dalam bentuk pangkat positif dan bentuk akar, x y x y...

Lebih terperinci

1. Sebuah kawat yang panjangnya 10 meter akan dibuat bangun yang berbentuk 3 persegi panjang kongruen seperti pada gambar di bawah.

1. Sebuah kawat yang panjangnya 10 meter akan dibuat bangun yang berbentuk 3 persegi panjang kongruen seperti pada gambar di bawah. 1. Sebuah kawat yang panjangnya 10 meter akan dibuat bangun yang berbentuk 3 persegi panjang kongruen seperti pada gambar di bawah. Luas maksimum daerah yang dibatasi oleh kawat tersebut adalah... 3,00

Lebih terperinci

PREDIKSI UAN MATEMATIKA 2008 Oleh: Heribertus Heri Istiyanto, S.Si Blog:

PREDIKSI UAN MATEMATIKA 2008 Oleh: Heribertus Heri Istiyanto, S.Si   Blog: PREDIKSI UAN MATEMATIKA 2008 Oleh: Heribertus Heri Istiyanto, S.Si Email: sebelasseptember@yahoo.com Blog: http://istiyanto.com Berikut soal-soal yang dapat Anda gunakan untuk latihan dalam menghadapi

Lebih terperinci

Matematika Dasar : BARISAN DAN DERET

Matematika Dasar : BARISAN DAN DERET Matematika Dasar : BARISAN DAN DERET. Suku ke-n pada barisan, 6, 0,, bisa dinyatakan dengan (A) Un = n (B) Un = 6n (C) Un = n + (D) Un = n (E) Un = n +. Suku ke-5 pada barisan, 0, 7,,.. (A) 65 (B) 59 (C)

Lebih terperinci

Ujian Akhir Nasional Tahun Pelajaran 2002/2003

Ujian Akhir Nasional Tahun Pelajaran 2002/2003 DOKUMEN NEGARA SANGAT RAHASIA Ujian Akhir Nasional Tahun Pelajaran / SMU/MA Program Studi IPA Paket Utama (P) MATEMATIKA (D) SELASA, 6 MEI Pukul 7.. DEPARTEMEN PENDIDIKAN NASIONAL --D-P Hak Cipta pada

Lebih terperinci

SMK MGMP MATEMATIKA SMK NEGERI / SWASTA NEGERI DAN SWASTA MATEMATIKA KELOMPOK TEKNOLOGI PAKET II A KOTA SURABAYA

SMK MGMP MATEMATIKA SMK NEGERI / SWASTA NEGERI DAN SWASTA MATEMATIKA KELOMPOK TEKNOLOGI PAKET II A KOTA SURABAYA LATIHAN UJIAN NASIONAL TAHUN PELAJARAN 00-0 SMK NEGERI DAN SWASTA KOTA SURABAYA MATEMATIKA KELOMPOK TEKNOLOGI PAKET II A MGMP MATEMATIKA SMK NEGERI / SWASTA KOTA SURABAYA M A T E M A T I K A S M K T E

Lebih terperinci

PERSIAPAN TES SKL KELAS X, MATEMATIKA IPS Page 1

PERSIAPAN TES SKL KELAS X, MATEMATIKA IPS Page 1 PERSIAPAN TES SKL X, MATEMATIKA 1. Pangkat, Akar dan Logaritma Menentukan hasil operasi bentuk pangkat (1 6) Menentukan hasil operasi bentuk akar (7 11) Menentukan hasil operasi bentuk logarithma (12 15)

Lebih terperinci

SOAL PM MATEMATIKA SMA NEGERI 29 JAKARTA

SOAL PM MATEMATIKA SMA NEGERI 29 JAKARTA SOAL PM MATEMATIKA SMA NEGERI 9 JAKARTA. Dengan merasionalkan penyebut, bentuk sederhana dari 5 5 + 5 4 5 5 e. + 5 6 + 5 adalah. Persamaan x (m + ) x = 0 mempunyai akar-akar yang berlawanan, maka nilai

Lebih terperinci

SOLUSI PREDIKSI SOAL MATEMATIKA UN 2015 TUGAS KELOMPOK 1 SATUAN PENDIDIKAN

SOLUSI PREDIKSI SOAL MATEMATIKA UN 2015 TUGAS KELOMPOK 1 SATUAN PENDIDIKAN SOLUSI PREDIKSI SOAL MATEMATIKA UN 0 TUGAS KELOMPOK SATUAN PENDIDIKAN MATA PELAJARAN PROGRAM BANYAK SOAL WAKTU : SMA : MATEMATIKA : IPA : 0 BUTIR : 0 MENIT. Diketahui premis-prmis berikut: Premis : Jika

Lebih terperinci

PAKET TRY OUT UN MATEMATIKA IPA

PAKET TRY OUT UN MATEMATIKA IPA PAKET TRY OUT UN MATEMATIKA IPA Berilah tanda silang (x) pada huruf A, B, C, D atau E di depan jawaban yang benar!. Kesimpulan dari pernyataan: "Jika bencana alam tsunami terjadi, maka setiap orang ketakutan"

Lebih terperinci

KISI KISI US Diberikan pernyataan majemuk berkuantor, ingkaran dari pernyataan tersebut majemuk atau pernyataan majemuk berkuantor

KISI KISI US Diberikan pernyataan majemuk berkuantor, ingkaran dari pernyataan tersebut majemuk atau pernyataan majemuk berkuantor KISI KISI US 2014 NO BAB INDIKATOR JENIS SOAL Menentukan penarikan Diketahui buah premis (ada bentuk ekuivalen) menarik kesimpulan dari buah 1 kesimpulan dari beberapa premis premis Menentukan ingkaran

Lebih terperinci

SOAL TO UN SMA MATEMATIKA

SOAL TO UN SMA MATEMATIKA 1 1) Perhatikan premis-premis berikut. 1. Jika saya giat belajar maka saya bisa meraih juara. 2. Jika saya bisa meraih juara maka saya boleh ikut bertanding. Ingkaran dari kesimpulan kedua premis di atas

Lebih terperinci

SOAL: MATEMATIKA Kelas : XII Mipa

SOAL: MATEMATIKA Kelas : XII Mipa SOAL: MATEMATIKA Kelas : XII Mipa Pilihlah salah satu jawaban yang tepat! Diberikan premis-preimis:. Jika Siti sakit maka dia pergi ke dokter.. Jika Siti pergi ke dokter maka dia diberi obat. Negasi dari

Lebih terperinci

3. Bentuk sederhana dari ekuivalen dengan. A B C. 6 1 D E

3. Bentuk sederhana dari ekuivalen dengan. A B C. 6 1 D E 1. Diketahui premis-premis berikut: Premis 1: jika lampu menyala merah, maka semua kendaraan berhenti. Premis 2: Jika polisi memberi tilang, maka ada kendaraan yang tidak berhenti. Premis 3: Lampu menyala

Lebih terperinci

Matematika EBTANAS Tahun 2001

Matematika EBTANAS Tahun 2001 Matematika EBTANAS Tahun 00 EBT-SMA-0-0 Luas maksimum persegipanjang OABC pada gambar adalah satuan luas satuan luas C B(,y) satuan luas + y = satuan luas satuan luas O A EBT-SMA-0-0 Diketahui + Maka nilai

Lebih terperinci

SOLUSI UJIAN SEKOLAH SEKOLAH MENENGAH ATAS (SMA) DINAS PENDIDIKAN KOTA BEKASI TAHUN PELAJARAN 2013/ a 16. definit positif adalah...

SOLUSI UJIAN SEKOLAH SEKOLAH MENENGAH ATAS (SMA) DINAS PENDIDIKAN KOTA BEKASI TAHUN PELAJARAN 2013/ a 16. definit positif adalah... SOLUSI UJIAN SEKOLAH SEKOLAH MENENGAH ATAS (SMA) DINAS PENDIDIKAN KOTA BEKASI TAHUN PELAJARAN /. Nilai a yang menyebabkan fungsi kuadrat f x a x ax a a a a a a Solusi: [Jawaban D] a a a. () D a a a a a

Lebih terperinci

1. Jika f ( x ) = sin² ( 2x + ), maka nilai f ( 0 ) =. a. 2 b. 2 c. 2. Diketahui f(x) = sin³ (3 2x). Turunan pertama fungsi f adalah f (x) =.

1. Jika f ( x ) = sin² ( 2x + ), maka nilai f ( 0 ) =. a. 2 b. 2 c. 2. Diketahui f(x) = sin³ (3 2x). Turunan pertama fungsi f adalah f (x) =. 1. Jika f ( x ) sin² ( 2x + ), maka nilai f ( 0 ). a. 2 b. 2 c. d. e. 2. Diketahui f(x) sin³ (3 2x). Turunan pertama fungsi f adalah f (x). a. 6 sin² (3 2x) cos (3 2x) b. 3 sin² (3 2x) cos (3 2x) c. 2

Lebih terperinci

asimtot.wordpress.com Page 1

asimtot.wordpress.com Page 1 . Diketahui premis premis : () Jika Ibu tidak memasak nasi, maka Ayah membeli nasi di warung dan makan di rumah () Ibu memasak nasi Kesimpulan yang sah adalah. a. Ayah tidak membeli nasi di warung atau

Lebih terperinci

TAHUN PELAJARAN 2003/2004 UJIAN NASIONAL. Matematika (D10) PROGRAM STUDI IPA PAKET 2 (UTAMA) SELASA, 11 MEI 2004 Pukul

TAHUN PELAJARAN 2003/2004 UJIAN NASIONAL. Matematika (D10) PROGRAM STUDI IPA PAKET 2 (UTAMA) SELASA, 11 MEI 2004 Pukul DOKUMEN NEGARA SANGAT RAHASIA UJIAN NASIONAL TAHUN PELAJARAN 00/004 SMA/MA Matematika (D0) PROGRAM STUDI IPA PAKET (UTAMA) SELASA, MEI 004 Pukul 07.0 09.0 DEPARTEMEN PENDIDIKAN NASIONAL Hak Cipta pada

Lebih terperinci

Ujian Nasional Tahun 2003 Matematika

Ujian Nasional Tahun 2003 Matematika Ujian Nasional Tahun 00 Matematika MK-TEK-0-0 Skala suatu peta : 00.000. Jika jarak kota A dan kota B pada peta,5 cm, maka jarak kota A dan kota B sebenarnya 0,5 km,5 km,5 km 5 km.50 km MK-TEK-0-0 Pada

Lebih terperinci

Departemen Pendidikan Nasional TRY OUT I MKKS DKI JAKARTA UJIAN NASIONAL Tahun Pelajaran

Departemen Pendidikan Nasional TRY OUT I MKKS DKI JAKARTA UJIAN NASIONAL Tahun Pelajaran Departemen Pendidikan Nasional TRY OUT I MKKS DKI JAKARTA UJIAN NASIONAL Tahun Pelajaran 009 00 Petunjuk Umum:. Tulislah nomor dan nama pada lembar jawaban!. Periksa dan bacalah soal dengan teliti!. Dahulukam

Lebih terperinci

Soal Ujian Nasional Tahun 2007 Bidang Matematika

Soal Ujian Nasional Tahun 2007 Bidang Matematika Soal Ujian Nasional Tahun 007 Bidang Matematika Oleh : Fendi Alfi Fauzi 6 Desember 01 1. Bentuk sederhana dari (1 + ) (4 50) adalah... A. B. + 5 C. 8 D. 8 + E. 8 + 5. Jika log = a dan log 5 = b, maka 15

Lebih terperinci

asimtot.wordpress.com Page 1

asimtot.wordpress.com Page 1 . Diketahui premis premis : () Jika Ayah tidak memarahi Badu, maka Badu bahagia dan tidak nakal () Jika Ayah tidak menyayangi Badu, maka Badu tidak bahagia atau nakal Kesimpulan yang sah adalah. a. Jika

Lebih terperinci

SOAL&PEMBAHASAN MATEMATIKATKDSAINTEK SBMPTN. yos3prens.wordpres.com

SOAL&PEMBAHASAN MATEMATIKATKDSAINTEK SBMPTN. yos3prens.wordpres.com SOAL&PEMBAHASAN MATEMATIKATKDSAINTEK SBMPTN 05 yosprens.wordpres.com SOAL DAN PEMBAHASAN MATA UJI MATEMATIKA TKD SAINTEK SBMPTN 05 Berikut ini 5 soal mata uji matematika beserta pembahasannya yang diujikan

Lebih terperinci