Fungsi Analitik (Bagian Keempat)

Ukuran: px
Mulai penontonan dengan halaman:

Download "Fungsi Analitik (Bagian Keempat)"

Transkripsi

1 Fungsi Analitik (Bagian Keempat) Supama Jurusan Matematika, FMIPA UGM Yogyakarta 55281, INDONESIA (Pertemuan Minggu VII)

2 Outline 1 Fungsi Analitik 2

3 Fungsi Analitik Fungsi kompleks f dikatakan analitik (atau regular/holomorpik) pada himpunan terbuka A jika f (z) ada untuk setiap z A. Apabila himpunan E tidak terbuka, maka fungsi f dikatakan analitik pada E jika f analitik pada suatu himpunan terbuka A yang memuat E. Khususnya, fungsi f dikatakan analitik di titik z 0 jika f analitik di suatu persekitaran z 0. Example (a) Diberikan f (z) = 1 z. Karena f (z) ada untuk stiap z 0, maka f analitik di setiap z 0. (b) Pada Contoh terdahulu telah ditunjukkan bahwa f (z) = z 2 mempunyai turunan hanya di titik z = 0, sedangkan di titik z 0, f (z) tidak ada. Jadi, f tidak analitik di mana-mana.

4 Fungsi Analitik Titik di mana suatu fungsi analitik disebut titik analitik fungsi tersebut. Sedangkan titik z 0 di mana fungsi f tidak analitik, tetapi di suatu titik di setiap persekitaran z 0 f analitik, disebut titik singular f. Dari Contoh sebelumnya, z 0 dan z = 0 masing-masing merupakan titik analitik dan titik singular f (z) = 1 z. Sedangkan f (z) = z 2 tidak mempunyai titik analitik maupun titik singular.

5 Fungsi Analitik Sifat-sifat aljabar fungsi analitik secara langsung dapat diturunkan dari sifat-sifat turunan. Theorem Jika f dan g analitik di titik z 0 dan c C, maka f + g, cf, danfg masing-masing analitik di z 0, dan apabila g(z 0 ) 0, maka f g juga analitik di z 0. Mudah ditunjukkan bahwa f (z) = z analitik di setiap z 0 C.

6 Fungsi Analitik Berdasarkan sifat-sifat di atas P n (z) = a 0 z n + a 1 z n 1 + a 2 z n a n analitik pula di setiap z 0 C. Fungsi yang analitik di seluruh bidang kompleks C disebut fungsi utuh (entire function). Dari uraian sebelumnya, mudah ditunjukkan bahwa apabila fungsi f dan fungsi g masing-masing analitik pada E dan D, dengan f (E) D, maka (g f ) analitik pada E. Jadi, f (z) = ( z 1 z i )2 analitik keculai di titik z = i.

7 Fungsi Analitik Teorema di bawah ini menerangkan sifat fungsi analitik yang cukup bermanfaat di dalam teori fungsi kompleks. Theorem Jika f analitik pada D dan f (z) = 0 untuk setiap z D, maka f konstan pada D.

8 Sebagaimana telah dijelaskan pada definisi fungsi analitik, jika fungsi f analitik di titik z 0, maka f (z) ada untuk setiap z di dalam suatu persekitaran z 0. Sementara, bagaimana hubungannya dengan turunan-turunan partial u dan v tidak dijelaskan. Di dalam bagian ini, akan dijelaskan hubungan antara fungsi analitik f (z) = u(x, y) + iv(x, y) dengan turunan-turunan partial u dan v. Dalam kaitannya dengan hal itu, berikut diberikan pengertian fungsi harmonik.

9 Definition Fungsi dua perubah H(x, y) yang didefinisikan pada suatu domain D C dikatakan harmonik pada D jika H mempunyai turunan-turunan partial sampai dengan tingkat dua, masing-masing kontinu pada D, dan memenuhi 2 H(x, y) x H(x, y) y 2 = 0 (1) Persamaan (1) pada definisi di atas dikenal dengan nama persamaan differensial Laplace.

10 Example Fungsi H(x, y) = xy 3 x 3 y merupakan fungsi harmonik pada bidang D = R 2, sebab H x, H y, H xx, H xy, H yx, dan H yy semua ada dan kontinu pada D, dan berlaku H xx (x, y) + H yy (x, y) = 0 untuk setiap (x, y) D.

11 Diberikan fungsi f (z) = u(x, y) + iv(x, y) yang analitik pada domain D. Artinya, f (z) ada untuk setiap z D. Oleh karena itu, di z D berlaku persamaan Cauchy-Riemann u x = v y dan u y = v x (2) Apabila kedua ruas masing-masing persamaan pada (2) diturunkan terhadap x, maka diperoleh u xx = v yx dan u yx = v xx dan apabila diturunkan terhadap y, maka u xy = v yy dan u yy = v xy Selanjutnya, apabila semua turunan partial u dan v kontinu pada D, maka u xy = u yx dan v xy = v yx. Akibatnya, diperoleh u xx + u yy = 0 dan v xx + v yy = 0,

12 Diberikan dua fungsi sebarang u(x, y) dan v(x, y) yang masing-masing harmonik di dalam domain D. Fungsi v dikatakan merupakan sekawan harmonik (harmonic conjugate) u jika turunan-turunan partial v dan u memenuhi persamaan Cauchy-Riemann pada D. Jadi, apabila f (z) = u(x, y) + iv(x, y) ana- litik pada suatu domain D, maka v merupakan sekawan harmonik u pada D. Sebaliknya, apabila v merupakan sekawan harmonik u pada D, maka fungsi f (z) = u(x, y) + iv(x, y) analitik pada D.

13 Dengan demikian telah dibuktikan pernyataan berikut ini. Theorem Fungsi f (z) = u(x, y) + iv(x, y) analitik pada suatu domain D jika dan hanya jika v merupakan sekawan harmonik u pada D. Example Tunjukkan bahwa u(x, y) = 4x 3 y 4xy 3 + x harmonik di seluruh bidang-xy. Selanjutnya, tentukan fungsi utuh f (z) = u(x, y) + iv(x, y).

Fungsi Analitik (Bagian Kedua)

Fungsi Analitik (Bagian Kedua) Fungsi Analitik (Bagian Kedua) Supama Jurusan Matematika, FMIPA UGM Yogyakarta 5528, INDONESIA Email:maspomo@yahoo.com, supama@ugm.ac.id (Pertemuan Minggu V) Outline Limit Menuju Tak Hingga 2 Fungsi Kontinu

Lebih terperinci

Fungsi Analitik (Bagian Ketiga)

Fungsi Analitik (Bagian Ketiga) Fungsi Analitik (Bagian Ketiga) Supama Jurusan Matematika, FMIPA UGM Yogyakarta 55281, INDONESIA Email:maspomo@yahoo.com, supama@ugm.ac.id (Pertemuan Minggu VI) Outline 1 Persamaan Cauchy-Riemann 2 Persamaan

Lebih terperinci

Bab 2 Fungsi Analitik

Bab 2 Fungsi Analitik Bab 2 Fungsi Analitik Bab 2 ini direncanakan akan disampaikan dalam 4 kali pertemuan, dengan perincian sebagai berikut: () Pertemuan I: Fungsi Kompleks dan Pemetaan. (2) Pertemuan II: Limit Fungsi, Kekontiuan,

Lebih terperinci

Fungsi Analitik (Bagian Pertama)

Fungsi Analitik (Bagian Pertama) Fungsi Analitik (Bagian Pertama) Supama Jurusan Matematika, FMIPA UGM Yogyakarta 55281, INDONESIA Email:maspomo@yahoo.com, supama@ugm.ac.id (Pertemuan Minggu IV) Outline 1 Fungsi Variabel Kompleks 2 Pemetaan/Transformasi/Mappings

Lebih terperinci

Integral Kompleks (Bagian Kedua)

Integral Kompleks (Bagian Kedua) Integral Kompleks (Bagian Kedua) Supama Jurusan Matematika, FMIPA UGM Yogyakarta 55281, INDONESIA Email:maspomo@yahoo.com, supama@ugm.ac.id (Pertemuan Minggu XII) Outline 1 Antiderivatif 2 Antiderivatif

Lebih terperinci

Sistem Bilangan Kompleks (Bagian Pertama)

Sistem Bilangan Kompleks (Bagian Pertama) Sistem Bilangan Kompleks (Bagian Pertama) Supama Jurusan Matematika, FMIPA UGM Yogyakarta 55281, INDONESIA Email:maspomo@yahoo.com, supama@ugm.ac.id (Pertemuan Minggu I) Outline 1 Pendahuluan 2 Pengertian

Lebih terperinci

Fungsi Elementer (Bagian Kedua)

Fungsi Elementer (Bagian Kedua) Fungsi Elementer (Bagian Kedua) Supama Jurusan Matematika, FMIPA UGM Yogyakarta 55281, INDONESIA Email:maspomo@yahoo.com, supama@ugm.ac.id (Pertemuan Minggu IX) Outline 1 Fungsi Hiperbolik 2 sin(iz) =

Lebih terperinci

Sistem Bilangan Kompleks (Bagian Kedua)

Sistem Bilangan Kompleks (Bagian Kedua) Sistem Bilangan Kompleks (Bagian Kedua) Supama Jurusan Matematika, FMIPA UGM Yogyakarta 55281, INDONESIA Email:maspomo@yahoo.com, supama@ugm.ac.id (Pertemuan Minggu II) Outline 1 Penyajian Secara Geometris

Lebih terperinci

Bab 3 Fungsi Elementer

Bab 3 Fungsi Elementer Bab 3 Fungsi Elementer Bab 3 ini direncanakan akan disampaikan dalam 3 kali pertemuan, dengan perincian sebagai berikut: (1) Pertemuan I: Fungsi Eksponensial dan sifat-sifatnya, Fungsi Trigonometri. ()

Lebih terperinci

MATEMATIKA TEKNIK 1 3 SKS TEKNIK ELEKTRO UDINUS

MATEMATIKA TEKNIK 1 3 SKS TEKNIK ELEKTRO UDINUS MATEMATIKA TEKNIK 1 3 SKS TEKNIK ELEKTRO UDINUS 1 BAB III. TURUNAN 3.1 Definisi Turunan Diberikan fungsi f yang didefinisikan pada daerah D dan z D. Jika diketahui bahwa nilai lim zz f(z) z f(z z ) ada,

Lebih terperinci

BUKU DIKTAT ANALISA VARIABEL KOMPLEKS. OLEH : DWI IVAYANA SARI, M.Pd

BUKU DIKTAT ANALISA VARIABEL KOMPLEKS. OLEH : DWI IVAYANA SARI, M.Pd BUKU DIKTAT ANALISA VARIABEL KOMPLEKS OLEH : DWI IVAYANA SARI, M.Pd i DAFTAR ISI BAB I. BILANGAN KOMPLEKS... 1 I. Bilangan Kompleks dan Operasinya... 1 II. Operasi Hitung Pada Bilangan Kompleks... 1 III.

Lebih terperinci

Bil Riil. Bil Irasional. Bil Bulat - Bil Bulat 0 Bil Bulat + maka bentuk umum bilangan kompleks adalah

Bil Riil. Bil Irasional. Bil Bulat - Bil Bulat 0 Bil Bulat + maka bentuk umum bilangan kompleks adalah ANALISIS KOMPLEKS Pendahuluan Bil Kompleks Bil Riil Bil Imaginer (khayal) Bil Rasional Bil Irasional Bil Pecahan Bil Bulat Sistem Bilangan Kompleks Bil Bulat - Bil Bulat 0 Bil Bulat + Untuk maka bentuk

Lebih terperinci

CATATAN KULIAH FUNGSI KOMPLEKS. oleh Dr. Wuryansari Muharini Kusumawinahyu, M.Si.

CATATAN KULIAH FUNGSI KOMPLEKS. oleh Dr. Wuryansari Muharini Kusumawinahyu, M.Si. ATATAN KULIAH FUNGSI KOMPLEKS oleh Dr. Wuryansari Muharini Kusumawinahyu, M.Si. PROGRAM STUDI MATEMATIKA JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM 2014 Daftar Isi 1 Bilangan Kompleks

Lebih terperinci

Teorema Pemetaan Buka

Teorema Pemetaan Buka dan Lemma Schwarz dan Lemma Schwarz dan Lemma Schwarz dan Lemma Schwarz Peta dari sebuah himpunan buka terhadap pemetaan analitik yang tidak konstan senantiasa buka. Misalkan f : C C suatu fungsi analitik

Lebih terperinci

Trayektori ortogonal dan pemetaan konformal pada fungsi kompleks

Trayektori ortogonal dan pemetaan konformal pada fungsi kompleks Trayektori ortogonal dan pemetaan konformal pada fungsi kompleks (On the othogonal trajectories and conformal mapping of complex variable functions) Kus Prihantoso Krisnawan dan Atmini Dhoruri Jurusan

Lebih terperinci

KALKULUS MULTIVARIABEL II

KALKULUS MULTIVARIABEL II KALKULUS MULTIVARIABEL II Integral Garis Medan Vektor dan (Minggu ke-8) Andradi Jurusan Matematika FMIPA UGM Yogyakarta, Indonesia 1 Integral Garis Medan Vektor 2 Terkait Lintasan Teorema Fundamental untuk

Lebih terperinci

Tinjauan Tentang Fungsi Harmonik. Oleh : Atmini Dhoruri Jurusan Pendidikan Matematika FMIPA UNY ABSTRAK

Tinjauan Tentang Fungsi Harmonik. Oleh : Atmini Dhoruri Jurusan Pendidikan Matematika FMIPA UNY ABSTRAK Tinjauan Tentang Fungsi Harmonik Oleh : Atmini Dhoruri Jurusan Pendidikan Matematika FMIPA UNY ABSTRAK Tujuan penulisan ini untuk mengkaji tentang pengertian fungsi harmonik, fungsi harmonik konjugat pada

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA1201 MATEMATIKA 2A Hendra Gunawan Semester II, 2016/2017 15 Maret 2017 Kuliah yang Lalu 10.1-2 Parabola, Elips, dan Hiperbola 10.4 Persamaan Parametrik Kurva di Bidang 10.5 Sistem Koordinat Polar 11.1

Lebih terperinci

Turunan dalam Ruang berdimensi n

Turunan dalam Ruang berdimensi n Jurusan Matematika FMIPA Unsyiah October 13, 2011 Andaikan f adalah fungsi dengan peubah x dan y. Jika y dijaga agar tetap konstan, misalkan y = y 0 maka f(x, y 0 ) adalah fungsi dengan peubah tunggal

Lebih terperinci

II. TINJAUAN PUSTAKA. Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada ( ) ( ) ( )

II. TINJAUAN PUSTAKA. Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada ( ) ( ) ( ) II. TINJAUAN PUSTAKA 2.1 Definisi Turunan Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada sebarang bilangan c adalah asalkan limit ini ada. Jika limit ini memang ada, maka dikatakan

Lebih terperinci

Bilangan Kompleks. Anwar Mutaqin. Program Studi Pendidikan Matematika UNTIRTA

Bilangan Kompleks. Anwar Mutaqin. Program Studi Pendidikan Matematika UNTIRTA Bilangan Kompleks Anwar Mutaqin Program Studi Pendidikan Matematika UNTIRTA DAFTAR ISI 1 BILANGAN KOMPLEKS 1 1.1 Eksistensi Bilangan Kompleks.................... 1 1.2 Operasi Aritmatika..........................

Lebih terperinci

KALKULUS MULTIVARIABEL II

KALKULUS MULTIVARIABEL II Pada Bidang Bentuk Vektor dari KALKULUS MULTIVARIABEL II (Minggu ke-9) Andradi Jurusan Matematika FMIPA UGM Yogyakarta, Indonesia Pada Bidang Bentuk Vektor dari 1 Definisi Daerah Sederhana x 2 Pada Bidang

Lebih terperinci

ANALISA VARIABEL KOMPLEKS

ANALISA VARIABEL KOMPLEKS ANALISA VARIABEL KOMPLEKS Oleh: BUDI NURACHMAN, IR BAB I BILANGAN KOMPLEKS Dengan memiliki sistem bilangan real R saja kita tidak dapat menelesaikan persamaan +=0. Jadi disamping bilangan real kita perlu

Lebih terperinci

Integral Kompleks. prepared by jimmy 752A4C6B. wp.me/p4scve-e. jimlecturer

Integral Kompleks. prepared by jimmy 752A4C6B. wp.me/p4scve-e. jimlecturer Integral Kompleks prepared by jimmy hasugian 752A4C6B @jimlecturer jimlecturer wp.me/p4scve-e Review Analisis Kompleks Sebuah Fungsi Kompleks disebut Analitik dalam domain tertentu, jika fungsi tersebut

Lebih terperinci

Aljabar Boole. Meliputi : Boole. Boole. 1. Definisi Aljabar Boole 2. Prinsip Dualitas dalam Aljabar

Aljabar Boole. Meliputi : Boole. Boole. 1. Definisi Aljabar Boole 2. Prinsip Dualitas dalam Aljabar Aljabar Boole Meliputi : 1. Definisi Aljabar Boole 2. Prinsip Dualitas dalam Aljabar Boole 3. Teorema Dasar Aljabar Boole 4. Orde dalam sebuah Aljabar Boole Definisi Aljabar Boole Misalkan B adalah himpunan

Lebih terperinci

Pertemuan ke-10: UJI PERBANDINGAN, DERET BERGANTI TANDA, KEKONVERGENAN MUTLAK, UJI RASIO, DAN UJI AKAR

Pertemuan ke-10: UJI PERBANDINGAN, DERET BERGANTI TANDA, KEKONVERGENAN MUTLAK, UJI RASIO, DAN UJI AKAR Pertemuan ke-0: UJI PERBANDINGAN, DERET BERGANTI TANDA, KEKONVERGENAN MUTLAK, UJI RASIO, DAN UJI AKAR Departemen Matematika FMIPA IPB Bogor, 205 (Departemen Matematika FMIPA IPB) Kalkulus II Bogor, 205

Lebih terperinci

DASAR-DASAR ANALISIS MATEMATIKA

DASAR-DASAR ANALISIS MATEMATIKA (Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. December 6, 2007 Misalkan f terdefinisi pada suatu interval terbuka (a, b) dan c (a, b). Kita katakan

Lebih terperinci

Nilai Ekstrim. (Extreme Values)

Nilai Ekstrim. (Extreme Values) TKS 4003 Matematika II Nilai Ekstrim (Extreme Values) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan Jika terdapat suatu hasil pengukuran seperti pada Gambar 1, dimana pengukuran

Lebih terperinci

MODIFIKASI METODE RUNGE-KUTTA ORDE-4 KUTTA BERDASARKAN RATA-RATA HARMONIK TUGAS AKHIR. Oleh : EKA PUTRI ARDIANTI

MODIFIKASI METODE RUNGE-KUTTA ORDE-4 KUTTA BERDASARKAN RATA-RATA HARMONIK TUGAS AKHIR. Oleh : EKA PUTRI ARDIANTI MODIFIKASI METODE RUNGE-KUTTA ORDE-4 KUTTA BERDASARKAN RATA-RATA HARMONIK TUGAS AKHIR Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika Oleh : EKA PUTRI ARDIANTI

Lebih terperinci

MATEMATIKA TEKNIK 1 3 SKS TEKNIK ELEKTRO UDINUS

MATEMATIKA TEKNIK 1 3 SKS TEKNIK ELEKTRO UDINUS MATEMATIKA TEKNIK 1 3 SKS TEKNIK ELEKTRO UDINUS 1 BAB II FUNGSI LIMIT DAN KEKONTINUAN Sebelum dibahas mengenai fungsi kompleks, maka perlu dipelajari konsep-konsep topologi yang akan digunakan pada fungsi

Lebih terperinci

Fungsi Gamma. Pengantar Matematika Teknik Kimia. Muthia Elma

Fungsi Gamma. Pengantar Matematika Teknik Kimia. Muthia Elma Fungsi Gamma Pengantar Matematika Teknik Kimia Muthia Elma Fungsi Gamma Defenisi Merupakan salah satu fungsi khusus yang biasanya disajikan dalam pembahasan kalkulus tingkat lanjut Dalam aplikasinya fungsi

Lebih terperinci

VARIABEL KOMPLEKS SUMANANG MUHTAR GOZALI KBK ALJABAR & ANALISIS

VARIABEL KOMPLEKS SUMANANG MUHTAR GOZALI KBK ALJABAR & ANALISIS VARIABEL KOMPLEKS SUMANANG MUHTAR GOZALI KBK ALJABAR & ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2009 2 DAFTAR ISI DAFTAR ISI 2 1 Sistem Bilangan Kompleks (C) 1 1 Pendahuluan...............................

Lebih terperinci

PERSAMAAN DIFERENSIAL I PERSAMAAN DIFERENSIAL BIASA

PERSAMAAN DIFERENSIAL I PERSAMAAN DIFERENSIAL BIASA PERSAMAAN DIFERENSIAL I PERSAMAAN DIFERENSIAL BIASA Persamaan Diferensial Biasa 1. PDB Tingkat Satu (PDB) 1.1. Persamaan diferensial 1.2. Metode pemisahan peubah dan PD koefisien fungsi homogen 1.3. Persamaan

Lebih terperinci

PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - I

PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - I PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 1 - I 1. Pendahuluan Pengertian Persamaan Diferensial Metoda Penyelesaian -contoh Aplikasi 1 1.1. Pengertian Persamaan Differensial Secara Garis Besar Persamaan

Lebih terperinci

KALKULUS MULTIVARIABEL II

KALKULUS MULTIVARIABEL II Definisi KALKULUS MULTIVARIABEL II (Minggu ke-7) Andradi Jurusan Matematika FMIPA UGM Yogyakarta, Indonesia Definisi 1 Definisi 2 ontoh Soal Definisi Integral Garis Fungsi f K R 2 R di Sepanjang Kurva

Lebih terperinci

Bab 2 Daerah Euclid. 2.1 Struktur Daerah Euclid

Bab 2 Daerah Euclid. 2.1 Struktur Daerah Euclid Bab 2 Daerah Euclid Pada bab ini akan dijelaskan mengenai daerah Euclid beserta struktur lain yang terkait nya. Beberapa struktur aljabar tersebut selanjutnya akan digunakan untuk melihat struktur gelanggang

Lebih terperinci

TINJAUAN PUSTAKA. diketahui) dengan dua atau lebih peubah bebas dinamakan persamaan. Persamaan diferensial parsial memegang peranan penting di dalam

TINJAUAN PUSTAKA. diketahui) dengan dua atau lebih peubah bebas dinamakan persamaan. Persamaan diferensial parsial memegang peranan penting di dalam II. TINJAUAN PUSTAKA 2.1 Persamaan Diferensial Parsial Persamaan yang mengandung satu atau lebih turunan parsial suatu fungsi (yang diketahui) dengan dua atau lebih peubah bebas dinamakan persamaan diferensial

Lebih terperinci

BAB I PENDAHULUAN. Kompetensi

BAB I PENDAHULUAN. Kompetensi BAB I PENDAHULUAN Kompetensi Mahasiswa diharapkan 1. Memiliki kesadaran tentang manfaat yang diperoleh dalam mempelajari materi kuliah persamaan diferensial. 2. Memahami konsep-konsep penting dalam persamaan

Lebih terperinci

BAB IV PERSAMAAN TAKHOMOGEN

BAB IV PERSAMAAN TAKHOMOGEN BAB IV PERSAMAAN TAKHOMOGEN Kompetensi Mahasiswa mampu 1. Menentukan selesaian khusus PD tak homogen dengan metode koefisien tak tentu 2. Menentukan selesaian khusus PD tak homogen dengan metode variasi

Lebih terperinci

DEFINISI TIPE RIEMANN UNTUK INTEGRAL LEBESGUE 1. Drajad Maknawi 2 dan Muslich 3 Jurusan Matematika FMIPA UNS. Abstrak

DEFINISI TIPE RIEMANN UNTUK INTEGRAL LEBESGUE 1. Drajad Maknawi 2 dan Muslich 3 Jurusan Matematika FMIPA UNS. Abstrak DEFINISI TIPE RIEMANN UNTUK INTEGRAL LEBESGUE 1 An-2 1. PENDAHULUAN Drajad Maknawi 2 dan Muslich 3 Jurusan Matematika FMIPA UNS Abstrak Tujuan dari tulisan ini adalah membahas tentang integral Lebesgue

Lebih terperinci

Metode elemen batas untuk menyelesaikan masalah perpindahan panas

Metode elemen batas untuk menyelesaikan masalah perpindahan panas Metode elemen batas untuk menyelesaikan masalah perpindahan panas Imam Solekhudin 1 Jurusan Matematika FMIPA UGM Yogyakarta, imams@ugm.ac.id Abstrak. Permasalahan perpindahan panas keadaan stasioner dimodelkan

Lebih terperinci

Kalkulus Multivariabel I

Kalkulus Multivariabel I Maksimum, Minimum, dan Statistika FMIPA Universitas Islam Indonesia Titik Kritis Misalkan p = (x, y) adalah sebuah titik peubah dan p 0 = (x 0, y 0 ) adalah sebuah titik tetap pada bidang berdimensi dua

Lebih terperinci

BAB I PENDAHULUAN. Kompetensi

BAB I PENDAHULUAN. Kompetensi BAB I PENDAHULUAN Kompetensi Mahasiswa diharapkan 1. Memiliki kesadaran tentang manfaat yang diperoleh dalam mempelajari materi kuliah persamaan diferensial. 2. Memahami konsep-konsep penting dalam persamaan

Lebih terperinci

KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia

KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN DEPARTEMEN TEKNIK KIMIA Universitas Indonesia BAB II. FUNGSI, LIMIT, DAN KEKONTINUAN Fungsi dan Operasi pada Fungsi Beberapa Fungsi Khusus Limit dan Limit

Lebih terperinci

Kuliah 2: FUNGSI MULTIVARIABEL. Indah Yanti

Kuliah 2: FUNGSI MULTIVARIABEL. Indah Yanti Kuliah 2: FUNGSI MULTIVARIABEL Indah Yanti Definisi Dasar Perhatikan fungsi f: A R n R m : x f x n = m = 1 fungsi bernilai riil satu variabel n = 1, m > 1 fungsi bernilai vektor satu variabel n > 1, m

Lebih terperinci

BARISAN BILANGAN REAL

BARISAN BILANGAN REAL BAB 2 BARISAN BILANGAN REAL Di sekolah menengah barisan diperkenalkan sebagai kumpulan bilangan yang disusun menurut pola tertentu, misalnya barisan aritmatika dan barisan geometri. Biasanya barisan dan

Lebih terperinci

Matematika I: APLIKASI TURUNAN. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 70

Matematika I: APLIKASI TURUNAN. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 70 Matematika I: APLIKASI TURUNAN Dadang Amir Hamzah 2015 Dadang Amir Hamzah Matematika I Semester I 2015 1 / 70 Outline 1 Maksimum dan Minimum Dadang Amir Hamzah Matematika I Semester I 2015 2 / 70 Outline

Lebih terperinci

DASAR-DASAR TEORI RUANG HILBERT

DASAR-DASAR TEORI RUANG HILBERT DASAR-DASAR TEORI RUANG HILBERT Herry P. Suryawan 1 Geometri Ruang Hilbert Definisi 1.1 Ruang vektor kompleks V disebut ruang hasilkali dalam jika ada fungsi (.,.) : V V C sehingga untuk setiap x, y, z

Lebih terperinci

Mata Kuliah :: Matematika Rekayasa Lanjut Kode MK : TKS 8105 Pengampu : Achfas Zacoeb

Mata Kuliah :: Matematika Rekayasa Lanjut Kode MK : TKS 8105 Pengampu : Achfas Zacoeb Mata Kuliah :: Matematika Rekayasa Lanjut Kode MK : TKS 8105 Pengampu : Achfas Zacoeb Sesi XII Differensial e-mail : zacoeb@ub.ac.id www.zacoeb.lecture.ub.ac.id Hp. 081233978339 PENDAHULUAN Persamaan diferensial

Lebih terperinci

Persamaan Diferensial Biasa

Persamaan Diferensial Biasa Persamaan Diferensial Biasa Pendahuluan, Persamaan Diferensial Orde-1 Toni Bakhtiar Departemen Matematika IPB September 2012 Toni Bakhtiar (m@thipb) PDB September 2012 1 / 37 Pendahuluan Konsep Dasar Beberapa

Lebih terperinci

ANALISIS AKIBAT INTEGRAL CAUCHY Ricky Antonius, Helmi, Yudhi INTISARI

ANALISIS AKIBAT INTEGRAL CAUCHY Ricky Antonius, Helmi, Yudhi INTISARI Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 07, No. 1 (2018), hal 41-46. ANALISIS AKIBAT INTEGRAL CAUCHY Ricky Antonius, Helmi, Yudhi INTISARI Analisis kompleks salah satu cabang matematika

Lebih terperinci

Persamaan Diferensial

Persamaan Diferensial TKS 4003 Matematika II Persamaan Diferensial Konsep Dasar dan Pembentukan (Differential : Basic Concepts and Establishment ) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan

Lebih terperinci

FUNGSI REGULAR. Endang Cahya M.A 1 Jurusan Matematika FMIPA ITB Jl. Ganesa 10, Bandung, Indonesia

FUNGSI REGULAR. Endang Cahya M.A 1 Jurusan Matematika FMIPA ITB Jl. Ganesa 10, Bandung, Indonesia FUNGSI REGULAR Endang Cahya M.A Jurusan Matematika FMIPA ITB Jl. Ganesa 0, Bandung, 403-Indonesia Abstrak Tulisan ini membahas bagaimana mengkonstruksi sebuah fungsi Regular dari suatu fungsi panharmonik,

Lebih terperinci

BAB II FUNGSI ANALITIK

BAB II FUNGSI ANALITIK BAB II FUNGSI ANALITIK Sekarang kita akan mempelajari ungsi dari variabel kompleks dan pengembanganna dalam teori dierensial. Sebagai awal dari bab ini kita mulai dari ungsi analitik, ang mana sangat berperan

Lebih terperinci

Bilangan Riil, Nilai Mutlak, Fungsi

Bilangan Riil, Nilai Mutlak, Fungsi Bilangan Riil, Nilai Mutlak, Fungsi Kalkulus Dasar - Kimia Mohammad Mahfuzh Shiddiq Universitas Lambung Mangkurat September 13, 2016 M.Mahfuzh S. () kalkulus dasar September 13, 2016 1 / 20 Sistem Bilangan

Lebih terperinci

Sistem Bilangan Kompleks (Bagian Ketiga)

Sistem Bilangan Kompleks (Bagian Ketiga) Sistem Bilaga Kompleks (Bagia Ketiga) Supama Jurusa Matematika, FMIPA UGM Yogyakarta 55281, INDONESIA Email:maspomo@yahoo.com, supama@ugm.ac.id (Pertemua Miggu III) Outlie 1 Akar Bilaga Kompleks 2 Akar

Lebih terperinci

JURUSAN PENDIDIKAN MATEMATA FPMIPA - UNIVERSITAS PENDIDKAN INDONESIA

JURUSAN PENDIDIKAN MATEMATA FPMIPA - UNIVERSITAS PENDIDKAN INDONESIA JURUSAN PENDIDIKAN MATEMATA FPMIPA - UNIVERSITAS PENDIDKAN INDONESIA 1 MINGGU KE- POKOK DAN SUB POKOK BAHASAN TUJUAN INSTRUKSIONAL UMUM (TIU) SATUAN ACARA PERKULIAHAN MATAKULIAH : FUNGSI KOMPLEKS (3 SKS)

Lebih terperinci

BAB II PERSAMAAN DIFERENSIAL ORDE SATU

BAB II PERSAMAAN DIFERENSIAL ORDE SATU BAB II PERSAMAAN DIFERENSIAL ORDE SATU Kompetensi Mahasiswa diharapkan: 1. Mengenali bentuk PD orde satu dengan variabel terpisah dan tak terpisah.. Dapat mengubah bentuk PD tak terpisah menjadi terpisah

Lebih terperinci

Aljabar Linier Elementer. Kuliah 26

Aljabar Linier Elementer. Kuliah 26 Aljabar Linier Elementer Kuliah 26 Materi Kuliah Transformasi Linier Umum Kernel dan Range 10/11/2014 Yanita, Matematika FMIPA Unand 2 Transformasi Linier Umum Definisi Misalkan V dan W adalah ruang vektor

Lebih terperinci

MA5032 ANALISIS REAL

MA5032 ANALISIS REAL (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. August 16, 2011 Pada bab ini anda diasumsikan telah mengenal dengan cukup baik bilangan asli, bilangan bulat, dan bilangan

Lebih terperinci

Bab II Fungsi Kompleks

Bab II Fungsi Kompleks Bab II Fungsi Kompleks Variabel kompleks z secara fisik ditentukan oleh dua variabel lain, yakni bagian realnya x dan bagian imajinernya y, sehingga dituliskan z z(x,y). Oleh sebab itu fungsi variabel

Lebih terperinci

: D C adalah fungsi kompleks dengan domain riil

: D C adalah fungsi kompleks dengan domain riil BAB 4. INTEGRAL OMPLES 4. Integral Garis ompleks Misalkan ( : D adalah fungsi kompleks dengan domain riil b D [ a, b], maka integral (, dimana ( x( + iy( dapat dengan mudah a b dihitung, yaitu a i contoh

Lebih terperinci

II. TINJAUAN PUSTAKA ( ) ( ) ( ) Asalkan limit ini ada dan bukan atau. Jika limit ini memang ada, dikatakan ( ) ( ) ( ) ( )

II. TINJAUAN PUSTAKA ( ) ( ) ( ) Asalkan limit ini ada dan bukan atau. Jika limit ini memang ada, dikatakan ( ) ( ) ( ) ( ) II. TINJAUAN PUSTAKA 2.1 Definisi Turunan Turunan sebuah fungsi f adalah fungsi lain (dibaca f aksen ) yang nilainya pada sebarang bilangan c adalah Asalkan limit ini ada dan bukan. Jika limit ini memang

Lebih terperinci

Kuliah 3: TURUNAN. Indah Yanti

Kuliah 3: TURUNAN. Indah Yanti Kuliah 3: TURUNAN Indah Yanti Turunan Parsial DEFINISI Misalkan fungsi f: A R, dengan A R n adalah himpunan buka. Untuk setiap x = (x 1,..., x n ) A dan setiap j = 1,..., n limit f x j x 1,, x n f x 1,,

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Matematika selaku ilmu menalar logis tumbuh berkembang secara mandiri, akan tetapi banyak diterapkan dalam ilmu-ilmu lain. Persamaan integral merupakan salah

Lebih terperinci

FUNGSI BESSEL. 1. PERSAMAAN DIFERENSIAL BESSEL Fungsi Bessel dibangun sebagai penyelesaian persamaan diferensial.

FUNGSI BESSEL. 1. PERSAMAAN DIFERENSIAL BESSEL Fungsi Bessel dibangun sebagai penyelesaian persamaan diferensial. FUNGSI BESSEL 1. PERSAMAAN DIFERENSIAL BESSEL Fungsi Bessel dibangun sebagai penyelesaian persamaan diferensial. x 2 y ''+xy'+(x 2 - n 2 )y = 0, n ³ 0 (1) yang dinamakan persamaan diferensial Bessel. Penyelesaian

Lebih terperinci

Matematika I: Turunan. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 61

Matematika I: Turunan. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 61 Matematika I: Turunan Dadang Amir Hamzah 2015 Dadang Amir Hamzah Matematika I Semester I 2015 1 / 61 Outline 1 Garis Singgung Dadang Amir Hamzah Matematika I Semester I 2015 2 / 61 Outline 1 Garis Singgung

Lebih terperinci

Variabel Banyak Bernilai Real 1 / 1

Variabel Banyak Bernilai Real 1 / 1 Fungsi Variabel Banyak Bernilai Real Turunan Parsial dan Turunan Wono Setya Budhi KK Analisis dan Geometri, FMIPA ITB Variabel Banyak Bernilai Real 1 / 1 Turunan Parsial dan Turunan Usaha pertama untuk

Lebih terperinci

Matematika I: Turunan. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 75

Matematika I: Turunan. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 75 Matematika I: Turunan Dadang Amir Hamzah 2015 Dadang Amir Hamzah Matematika I Semester I 2015 1 / 75 Outline 1 Garis Singgung Dadang Amir Hamzah Matematika I Semester I 2015 2 / 75 Outline 1 Garis Singgung

Lebih terperinci

METODE GARIS SINGGUNG DALAM MENENTUKAN HAMPIRAN INTEGRAL TENTU SUATU FUNGSI PADA SELANG TERTUTUP [, ]

METODE GARIS SINGGUNG DALAM MENENTUKAN HAMPIRAN INTEGRAL TENTU SUATU FUNGSI PADA SELANG TERTUTUP [, ] METODE GARIS SINGGUNG DALAM MENENTUKAN HAMPIRAN INTEGRAL TENTU SUATU FUNGSI PADA SELANG TERTUTUP [, ] Zulfaneti dan Rahimullaily* Program Studi Pendidikan Matematika STKIP PGRI Sumbar Abstract: There is

Lebih terperinci

BAB I BILANGAN KOMPLEKS

BAB I BILANGAN KOMPLEKS BAB I BILANGAN KOMPLEKS. Pengertian Bilangan Kompleks Pada awal perkuliahan bilangan real (R), kita telah mempelajari bilangan real beserta sifat-sifatnya. Sekarang kita akan melanjutkan perkuliahan pada

Lebih terperinci

FUNGSI EVANS, SIFAT-SIFAT DAN APLIKASINYA PADA PELACAKAN NILAI EIGEN DARI MASALAH STURM-LIOUVILLE

FUNGSI EVANS, SIFAT-SIFAT DAN APLIKASINYA PADA PELACAKAN NILAI EIGEN DARI MASALAH STURM-LIOUVILLE Jurnal Matematika UNAND Vol. 4 No. Hal. 23 3 ISSN : 233 29 c Jurusan Matematika FMIPA UNAND FUNGSI EVANS, SIFAT-SIFAT DAN APLIKASINYA PADA PELACAKAN NILAI EIGEN DARI MASALAH STURM-LIOUVILLE HILDA FAHLENA,

Lebih terperinci

PATH-CONNECTED SPACE

PATH-CONNECTED SPACE PATH-CONNECTED SPACE (LINTASAN TERHUBUNG) A. LINTASAN Misal I = [0,1] adalah interval unit tutup. Lintasan dari titik a sampai titik b dalam ruang topologi X adalah fungsi kontinu f : I X dengan f(0) =

Lebih terperinci

Ruang Hasil Kali Dalam

Ruang Hasil Kali Dalam Ruang Hasil Kali Dalam Hasil Kali Dalam dan Norm Wono Setya Budhi KKAG FMIPA ITB v 0.1 Maret 2015 Wono Setya Budhi (KKAG FMIPA ITB) Ruang Hasil Kali Dalam v 0.1 Maret 2015 1 / 12 Pada bab ini kita akan

Lebih terperinci

2 BARISAN BILANGAN REAL

2 BARISAN BILANGAN REAL 2 BARISAN BILANGAN REAL Di sekolah menengah barisan diperkenalkan sebagai kumpulan bilangan yang disusun menurut "pola" tertentu, misalnya barisan aritmatika dan barisan geometri. Biasanya barisan dan

Lebih terperinci

BAB II PERSAMAAN DIFERENSIAL ORDE SATU

BAB II PERSAMAAN DIFERENSIAL ORDE SATU BAB II PERSAMAAN DIFERENSIAL ORDE SATU Kompetensi Mahasiswa diharapkan: 1. Mengenali bentuk PD orde satu dengan variabel terpisah dan tak terpisah.. Dapat mengubah bentuk PD tak terpisah menjadi terpisah

Lebih terperinci

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang Pertemuan 2. BAHAN AJAR ANALISIS REAL Matematika STKIP Tuanku Tambusai Bangkinang 0. Bilangan Real 0. Bilangan Real sebagai bentuk desimal Pada pembahasan berikutnya kita diasumsikan telah mengetahui dengan

Lebih terperinci

Bab 1 Sistem Bilangan Kompleks

Bab 1 Sistem Bilangan Kompleks Bab 1 Sistem Bilangan Kompleks Bab 1 ini direncanakan akan disampaikan dalam 3 kali pertemuan, dengan perincian sebagai berikut: (1) Pertemuan I: Pengertian bilangan kompleks, Sifat-sifat aljabat, dan

Lebih terperinci

Matematika I : Limit. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 79

Matematika I : Limit. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 79 Matematika I : Limit Dadang Amir Hamzah 2015 Dadang Amir Hamzah Matematika I Semester I 2015 1 / 79 Outline 1 limit Introduction to Limit Rigorous Study of Limits Limit Theorem Limit Involving Trigonometric

Lebih terperinci

OTORISASI Pengembang RP Koordinator RMK Koordinator PRODI Moh. Januar Ismail B., S.Si., M.Si. Moh. Januar Ismail B., S.Si., M.Si.

OTORISASI Pengembang RP Koordinator RMK Koordinator PRODI Moh. Januar Ismail B., S.Si., M.Si. Moh. Januar Ismail B., S.Si., M.Si. INSTITUT TEKNOLOGI KALIMANTAN JURUSAN MATEMATIKA DAN TEKNOLOGI INFORMASI PROGRAM STUDI MATEMATIKA SILABUS MATA KULIAH KODE Rumpun MK BOBOT (sks) SEMESTER Tgl Penyusunan Fungsi Peubah Kompleks MA 1222 Analisis

Lebih terperinci

13. Aplikasi Transformasi Fourier

13. Aplikasi Transformasi Fourier 13. plikasi ransformasi Fourier Misal adalah operator linear pada fungsi yang terdefinisi pada R dengan sifat: jika [f(x] = g(x, maka [f(x + s] = g(x + s untuk setiap s R. Maka, fungsi f(x = e ax (a C

Lebih terperinci

UNIVERSITAS GADJAH MADA. Bahan Ajar:

UNIVERSITAS GADJAH MADA. Bahan Ajar: UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Gedung Jurusan Matematika, Yogyakarta - 55281 Bahan Ajar: BAB POKOK BAHASAN

Lebih terperinci

PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A

PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A PENGANTAR MATEMATIKA TEKNIK 1 By : Suthami A MATEMATIKA TEKNIK 1??? MATEMATIKA TEKNIK 1??? MATEMATIKA TEKNIK Matematika sebagai ilmu dasar yang digunakan sebagai alat pemecahan masalah di bidang keteknikan

Lebih terperinci

LUAS DAERAH DI BAWAH KURVA SUATU FUNGSI

LUAS DAERAH DI BAWAH KURVA SUATU FUNGSI LUAS DAERAH DI BAWAH KURVA SUATU FUNGSI Afrizal, S.Pd, M.PMat Matematika MAN Kampar Juli 2010 Afrizal, S.Pd, M.PMat (Matematika) Luas Daerah Dibawah Kurva Juli 2010 1 / 29 Outline Outline 1 Limit dan Turunan

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Integral merupakan salah satu konsep penting dalam matematika dan banyak aplikasinya. Dalam kehidupan sehari-hari integral dapat diaplikasikan dalam berbagai

Lebih terperinci

Misal, dan diberikan sebarang, terdapat sehingga untuk setiap

Misal, dan diberikan sebarang, terdapat sehingga untuk setiap PROGRAM STUDI PENDIDIKAN MATEMATIKA FKIP UNMUH PONOROGO PENYELESAIAN SOAL UJIAN AKHIR SEMESTER GENAP TA 2012/2013 Mata Ujian : Analisis Real 1 Tipe Soal : Reguler Dosen : Dr. Julan HERNADI Waktu : 90 menit

Lebih terperinci

Kalkulus Variasi. Syarat Cukup, Masalah Kalkulus Variasi dengan Horizon Takhingga. Toni Bakhtiar. Departemen Matematika IPB.

Kalkulus Variasi. Syarat Cukup, Masalah Kalkulus Variasi dengan Horizon Takhingga. Toni Bakhtiar. Departemen Matematika IPB. Kalkulus Variasi Syarat Cukup, Masalah Kalkulus Variasi dengan Horizon Takhingga Toni Bakhtiar Departemen Matematika IPB Februari 2014 tbakhtiar@ipb.ac.id (IPB) MAT332 Kontrol Optimum Februari 2014 1 /

Lebih terperinci

METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR ABSTRACT

METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR ABSTRACT METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR Birmansyah 1, Khozin Mu tamar 2, M. Natsir 2 1 Mahasiswa Program Studi S1 Matematika

Lebih terperinci

RENCANA KEGIATAN PERKULIAHAN Kode Mata Kuliah : MAA 526 Nama Mata Kuliah : Analisis Fungsional

RENCANA KEGIATAN PERKULIAHAN Kode Mata Kuliah : MAA 526 Nama Mata Kuliah : Analisis Fungsional Ming gu ke RENCANA KEGIATAN PERKULIAHAN Kode Mata Kuliah : MAA 56 Nama Mata Kuliah : Analisis Fungsional T o p i k S u b T o p i k 1. Ruang Banach - Ruang metrik - Ruang vektor bernorm - Barisan di ruang

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab II ini dibahas teori-teori pendukung yang digunakan untuk pembahasan selanjutnya yaitu tentang Persamaan Nonlinier, Metode Newton, Aturan Trapesium, Rata-rata Aritmatik dan

Lebih terperinci

OPERATOR PADA RUANG BARISAN TERBATAS

OPERATOR PADA RUANG BARISAN TERBATAS OPERATOR PADA RUANG BARISAN TERBATAS Muslim Ansori *,Tiryono 2, Suharsono S 2,Dorrah Azis 2 Jurusan Matematika FMIPA Universitas Lampung,2 Jln. Soemantri Brodjonegoro No Bandar Lampung email: ansomath@yahoo.com

Lebih terperinci

BAB 2 PERSAMAAN DAN PERTIDAKSAMAAN LINEAR

BAB 2 PERSAMAAN DAN PERTIDAKSAMAAN LINEAR BAB 2 PERSAMAAN DAN PERTIDAKSAMAAN LINEAR MATERI A. Persamaan dan Pertidaksamaan Nilai Mutlak A. PERSAMAAN DAN PERTIDAKSAMAAN YANG MEMUAT NILAI MUTLAK Dalam matematika, sesuatu yang nilainya selalu positif

Lebih terperinci

9. Teori Aproksimasi

9. Teori Aproksimasi 44 Hendra Gunawan 9 Teori Aproksimasi Mulai bab ini tema kita adalah aproksimasi fungsi dan interpolasi Diberikan sebuah fungsi f, baik secara utuh ataupun hanya beberapilai di titik-titik tertentu saja,

Lebih terperinci

BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL

BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL Pendahuluan Persamaan diferensial adalah persamaan yang memuat diferensial Kita akan membahas tentang Persamaan Diferensial Biasa yaitu

Lebih terperinci

FUNGSI DELTA DIRAC. Marwan Wirianto 1) dan Wono Setya Budhi 2)

FUNGSI DELTA DIRAC. Marwan Wirianto 1) dan Wono Setya Budhi 2) INTEGRAL, Vol. 1 No. 1, Maret 5 FUNGSI DELTA DIRAC Marwan Wirianto 1) dan Wono Setya Budhi ) 1) Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Katolik Parahyangan, Bandung

Lebih terperinci

Matematika Teknik I. Prasyarat : Kalkulus I, Kalkulus II, Aljabar Vektor & Kompleks

Matematika Teknik I. Prasyarat : Kalkulus I, Kalkulus II, Aljabar Vektor & Kompleks Kode Mata Kuliah : TE 318 SKS : 3 Matematika Teknik I Prasarat : Kalkulus I, Kalkulus II, Aljabar Vektor & Kompleks Tujuan : Mahasiswa memahami permasalahan teknik dalam bentuk PD atau integral, serta

Lebih terperinci

Persamaan Diferensial: Pengertian, Asal Mula dan Penyelesaian

Persamaan Diferensial: Pengertian, Asal Mula dan Penyelesaian Modul 1 Persamaan Diferensial: Pengertian, Asal Mula dan Penyelesaian Drs. Sardjono, S.U. M PENDAHULUAN odul 1 ini berisi uraian tentang persamaan diferensial, yang mencakup pengertian-pengertian dalam

Lebih terperinci

Bab II Konsep Dasar Metode Elemen Batas

Bab II Konsep Dasar Metode Elemen Batas Bab II Konsep Dasar Metode Elemen Batas II.1 II.1.1 Kalkulus Dasar Teorema Gradien Misal menyatakan domain pada ruang dimensi dua dan menyatakan batas i x + j 2 2 x 2 + 2 2 elanjutnya, penentuan integral

Lebih terperinci

Catatan Kuliah MA1123 Kalkulus Elementer I

Catatan Kuliah MA1123 Kalkulus Elementer I Catatan Kuliah MA1123 Kalkulus Elementer I Oleh Hendra Gunawan, Ph.D. Departemen Matematika ITB Sasaran Belajar Setelah mempelajari materi Kalkulus Elementer I, mahasiswa diharapkan memiliki (terutama):

Lebih terperinci

LEMBAR AKTIVITAS SISWA FUNGSI KOMPOSISI DAN INVERS FUNGSI Yang bukan merupakan fungsi nomor: Contoh: 1. y = f(x) g(x) 2. y = f(x) Syarat: f(x) 0

LEMBAR AKTIVITAS SISWA FUNGSI KOMPOSISI DAN INVERS FUNGSI Yang bukan merupakan fungsi nomor: Contoh: 1. y = f(x) g(x) 2. y = f(x) Syarat: f(x) 0 Nama Siswa Kelas LEMBAR AKTIVITAS SISWA FUNGSI KOMPOSISI DAN INVERS FUNGSI Yang bukan merupakan fungsi nomor: : : Kompetensi Dasar (KURIKULUM 2013): 3.2 Memahami konsep fungsi dan menerapkan operasi aljabar

Lebih terperinci