SOAL-SOAL SPMB 2006 MATEMATIKA DASAR (MAT DAS) 63 n, maka jumlah n suku. D n n 2. f n log3 log 4 log5... log n, maka f 2...

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "SOAL-SOAL SPMB 2006 MATEMATIKA DASAR (MAT DAS) 63 n, maka jumlah n suku. D n n 2. f n log3 log 4 log5... log n, maka f 2..."

Transkripsi

1 SOAL-SOAL SPMB 006 MATEMATIKA DASAR (MAT DAS). SPMB, MAT DAS, Regioal I, 006 Tiga bilaga membetuk suatu deret geometri aik. Jika jumlahya 6 da hasikaliya 6, maka rasio deretya adalah A. B. C. D. 4 E. 5. SPMB, MAT DAS, Regioal I, 006 Jika suku ke- dari deret geometri adalah u 6, maka jumlah suku pertamaya adalah A. C. E. 6 B. D.. SPMB, MAT DAS, Regioal I, 006 Jika jumlah 0 suku pertama deret aritmatika a a a a a... adalah 55, maka a A. B. C. 4. SPMB, MAT DAS, Regioal I, Jika D. E. 0 k f log log 4 log5... log, maka f A. 46 B. 48 C. 50 D. 5 E SPMB, MAT DAS, Regioal I, 006 y y y Bilaga log x, log x, log x k merupaka tiga suku beruruta dari deret aritmatika. Jika jumlah tiga bilaga itu adalah 6, maka x y A. B. C. 4 D. 5 E SPMB, MAT DAS, Regioal I, 006 Jika jumlah suku pertama deret aritmatika adalah, maka beda S deretya adalah A. B. C. 4 D. 5 E. 6. SPMB, MAT DAS, Regioal I, 006 Pada deret geometri uu Jika 5 9 u x, u x,da u 64, maka u A. 4 B. C. 8 D. 0 E. 8. SPMB, MAT DAS, Regioal I, 006 Husei Tampomas, Soal-soal Ujia Masuk Pergurua Tiggi.

2 Tabuga seseorag pada bula ke- selalu dua kali lipat tabuga pada bula ke(-),. Jika tabuga awalya Rp juta da setelah satu tahu mejadi Rp p juta, maka p memeuhi A. 000 p 000 C. 000 p 4000 E p 6000 B. 000 p 000 D p SPMB, MAT DAS, Regioal II, 006 Pada deret geometri uu Jika u u u5 9 da 6 u p u p, maka 4 A. p p p p C. p p p p E. 4 6 B. p p p p D. p p p 6 p 0. SPMB, MAT DAS, Regioal II, 006 Jika jumlah suku pertama deret aritmatika adalah p p p p. Jika suku S ke- adalah u, maka u u5 A. 0 B. C. 8 D. 4 E. 46. SPMB, MAT DAS, Regioal II, 006 Uag sebayak Rp juta dipijamka selama 8 tahu dega buga 9 % setiap tahu. Jika selama periode itu buga pijamaya juga dikeaka buga 9% setiap tahu, maka setelah 8 tahu pemijam harus megembalika sebayak A. B. Rp(,09) juta C. 8 Rp(,09) juta D. 9 Rp(,09) juta E. 8 Rp(,09) juta. SPMB, MAT DAS, Regioal II, Rp(,09) juta Jika jumlah suku pertama suatu deret geometri adalah S, maka suku ke-8 deret itu adalah A. 6 B. C. 8 D. 9 E. 0. SPMB, MAT DAS, Regioal II, 006 Seutas tali yag pajagya 0 cm dipotog 0 bagia sehigga pajag setiap bagia membetuk suku deret aritmatika yag beruruta. Jika suku deret yag terbesar adalah 0, maka selisih atara setiap potog tali adalah A. cm B.,5 cm C. cm D. 4 cm E. 5 cm 4. SPMB, MAT DAS, Regioal II, 006 Suku pertama suatu deret aritmatika adalah a da bedaya adalah b. Jika jumlah 0 suku pertama deret ii 0 5b, maka a da b memeuhi A. ab 0 C. ab 0 E. ab B. ab D. ab 5. SPMB, MAT DAS, Regioal III, 006 Husei Tampomas, Soal-soal Ujia Masuk Pergurua Tiggi.

3 Jika u log, maka u, maka a 0 A. 4 B. 56 C. 5 D. 60 E SPMB, MAT DAS, Regioal III, 006 Jumlah suku pertama deret log log8 log... adalah A. log C. B. log log log E. D. log. SPMB, MAT DAS, Regioal III, 006 Jumlah suku pertama deret aritmatika adalah S. Jika S 0, maka.. A. 89 B. 95 C. 0 D. 05 E SPMB, MAT DAS, Regioal III, 006 Jika jumlah suku pertama suatu deret geometri adalah rasio deretya adalah S, maka A. 6 B. C. D. E. 9. SPMB, MAT DAS, Regioal III, 006 Beda suatu deret aritmatika sama dega dua kali suku pertamaya. Jika suku ke-, ke-, ke-5, da ke- deret itu adalah empat suku beruruta dari suatu deret geometri, maka A. 0 B. 8 C. 6 D. 4 E. MATEMATIKA IPA (MAT IPA) 0. SPMB, MAT IPA, Regioal I, 006 Suku ke-5 suatu deret aritmatika sama dega kali suku ke- deret tersebut. Jika jumlah 4 suku pertama adalah 6, maka jumlah 0 suku pertama sama dega A. B. 48 C. 64 D. 96 E. 00. SPMB, MAT IPA, Regioal I, 006 Jumlah suatu deret geometri tak higga dega suku pertama a da rasio r dega 0r adalah S. Jika suku pertama tetap da rasio berubah mejadi r, maka jumlahya mejadi A. S r C. S r r E. S r Husei Tampomas, Soal-soal Ujia Masuk Pergurua Tiggi.

4 B. S r D. S r. SPMB, MAT IPA, Regioal I, 006 S x adalah jumlah 49 suku pertama deret aritmatika yag memiliki suku pertama adalah x, sedagka bedaya maka suku ke-0 deret tersebut adalah A. B. 4 C. D. 59 E. 8. SPMB, MAT IPA, Regioal I, 006 Si A kualiah di suatu pergurua tiggi selama 8 semester. Besar SPP yag harus dibayar pada setiap semester adalah Rp00.00 lebih besar dari pada SPP semester sebelumya. Jika pada semester ke-8 dia membayar SPP sebesar Rp , maka total SPP yag dibayar selama 8 semester adalah A. Rp C. Rp E. Rp B. Rp D. Rp SPMB, MAT IPA, Regioal II, 006 Diketahui sebuah deret aritmatika dega suku-suku yag berbeda da misalka jumlah lima puluh suku pertama adalah Jika x suku pertama, x suku kedua, da x5 suku kelima merupaka tiga suku pertama suatu deret geometri, maka hasil kali ketiga suku tersebut x xx5 adalah A. 64 B. 44 C. 6 D. 4 E SPMB, MAT IPA, Regioal II, 006 x x adalah akar-akar persamaa kuadrat, x x miimum. Jika x x x x, x x x a x a 0 dega merupaka suku ke- da suku ke-5 suatu deret geometri, maka suku pertama deret tersebut adalah A. B. 6 C. 48 D. E SPMB, MAT IPA, Regioal II, Jika x x x log cos log cos log cos..., maka utuk x 0, si xcos x A. C. E. B. D.. SPMB, MAT IPA, Regioal II, Husei Tampomas, Soal-soal Ujia Masuk Pergurua Tiggi.

5 Diketahui suatu deret aritmatika. Jumlah suku ke- da suku ke- adalah 6, hasilkali suku pertama da suku ke-5 adalah 9. Beda suku ke-5 da suku ke- adalah A. B. 5 C. D. E SPMB, MAT IPA, Regioal III, 006 Jumlah bilaga gajil dari 0 sampai 95 yag habis dibagi adalah A. 64 B. 6 C D. 66 E SPMB, MAT IPA, Regioal III, 006 Suku ke- suatu deret aritmatika adalah m. Jika suku ke-m adalah, maka suku ke-(m+) adalah A. m B. C. m D. m E. 0 5 Husei Tampomas, Soal-soal Ujia Masuk Pergurua Tiggi.

SOAL-SOAL. 1. UN A Jumlah n suku pertama deret aritmetika dinyatakan dengan S n n

SOAL-SOAL. 1. UN A Jumlah n suku pertama deret aritmetika dinyatakan dengan S n n Husei Tampomas, Barisa da Deret, 06 SOAL-SOAL. UN A 0 Jumlah suku pertama deret aritmetika diyataka dega S. Suku ke-0 A. B. C. 0 D. 8 E. 6. UN A, D7, da E8 0 Sebuah pabrik memproduksi barag jeis A pada

Lebih terperinci

SOAL-SOAL LATIHAN BARISAN DAN DERET ARITMETIKA DAN GEOMETRI UJIAN NASIONAL

SOAL-SOAL LATIHAN BARISAN DAN DERET ARITMETIKA DAN GEOMETRI UJIAN NASIONAL SOAL-SOAL LATIHAN BARISAN DAN DERET ARITMETIKA DAN GEOMETRI UJIAN NASIONAL Peserta didik memiliki kemampua memahami kosep pada topik barisa da deret aritmetika da geometri. Peserta didik memilki kemampua

Lebih terperinci

BARISAN DAN DERET. Bentuk deret Aritmatika: a, ( a + b ), ( a + 2b ) ( a + ( n 1 ) b a = suku pertama b = beda n = banyaknya suku.

BARISAN DAN DERET. Bentuk deret Aritmatika: a, ( a + b ), ( a + 2b ) ( a + ( n 1 ) b a = suku pertama b = beda n = banyaknya suku. BARISAN DAN DERET Bab 9 Deret Aritmatika (Deret Hitug) o o o Betuk deret Aritmatika: a, ( a + b ), ( a + b ) +...+ ( a + ( ) b a = suku pertama b = beda = bayakya suku Suku ke- : U = a + (-)b Jumlah suku

Lebih terperinci

BAB 12 BARISAN DAN DERET

BAB 12 BARISAN DAN DERET BAB 1 BARISAN DAN DERET TIPE 1: Jika dari barisa aritmetika diketahui suku ke-m adalah um u b. m Cotoh: Diketahui barisa aritmetika, suku ke-5 adalah 4 da suku ke-8 adalah 6. Tetuka beda barisa aritmetika

Lebih terperinci

BAB 6 NOTASI SIGMA, BARISAN DAN DERET

BAB 6 NOTASI SIGMA, BARISAN DAN DERET BAB 6 NOTASI SIGMA, BARISAN DAN DERET A RINGKASAN MATERI. Notasi Sigma Diberia suatu barisa bilaga, a, a,..., a. Lambag deret tersebut, yaitu: a = a + a +... + a a meyataa jumlah suu pertama barisa Sifat-sifat

Lebih terperinci

Projek. Contoh Menemukan Konsep Barisan dan Deret Geometri a. Barisan Geometri. Perhatikan barisan bilangan 2, 4, 8, 16,

Projek. Contoh Menemukan Konsep Barisan dan Deret Geometri a. Barisan Geometri. Perhatikan barisan bilangan 2, 4, 8, 16, Projek Himpulah miimal tiga masalah peerapa barisa da deret aritmatika dalam bidag fisika, tekologi iformasi, da masalah yata di sekitarmu. Ujilah berbagai kosep da atura barisa da deret aritmatika di

Lebih terperinci

DERET TAK HINGGA (INFITITE SERIES)

DERET TAK HINGGA (INFITITE SERIES) MATEMATIKA II DERET TAK HINGGA (INFITITE SERIES) sugegpb.lecture.ub.ac.id aada.lecture.ub.ac.id BARISAN Barisa merupaka kumpula suatu bilaga (atau betuk aljabar) yag disusu sehigga membetuk suku-suku yag

Lebih terperinci

-1- U n : suku ke-n barisan aritmetika a : suku pertama n : banyak suku b : beda/selisih

-1- U n : suku ke-n barisan aritmetika a : suku pertama n : banyak suku b : beda/selisih -- BARISAN DAN DERET PENGERTIAN BARISAN DAN DERET Bisa yaitu susua bilaga yag didapatka di pemetaa bilaga asli yag dihubugka dega tada,. Jika pada bisa tada, digati dega tada, maka disebut deret. Bisa

Lebih terperinci

Barisan Aritmetika dan deret aritmetika

Barisan Aritmetika dan deret aritmetika BARISAN DAN DERET BILANGAN Peyusu: Atmii Dhoruri, MS Kode: Jejag: SMP T/P: / A. Kompetesi yag diharapka. Meetuka suku ke- barisa aritmatika da barisa geometri. Meetuka jumlah suku pertama deret aritmatika

Lebih terperinci

theresiaveni.wordpress.com NAMA : KELAS :

theresiaveni.wordpress.com NAMA : KELAS : theresiaveiwordpresscom NAMA : KELAS : 1 theresiaveiwordpresscom BARISAN DAN DERET Barisa da deret dapat diguaka utuk memudahka peyelesaia perhituga, misalya buga bak, keaika produksi, da laba/rugi suatu

Lebih terperinci

MATEMATIKA BISNIS. OLEH: SRI NURMI LUBIS, S.Si GICI BUSSINESS SCHOOL BATAM

MATEMATIKA BISNIS. OLEH: SRI NURMI LUBIS, S.Si GICI BUSSINESS SCHOOL BATAM MATEMATIKA BISNIS OLEH: SRI NURMI LUBIS, S.Si GICI BUSSINESS SCHOOL BATAM BAB BARISAN DAN DERET A. BARISAN Barisa bilaga adalah susua bilaga yag diurutka meurut atura tertetu.betuk umum barisa bilaga a,

Lebih terperinci

Teorema Nilai Rata-rata

Teorema Nilai Rata-rata Nilai Kus Prihatoso April 27, 2012 Yogyakarta Nilai Suatu Fugsi Masih igatkah ada tetag ilai rata-rata dari sekmpula bilaga? Berapakah ilai rata-rata dari sebayak bilaga y 1, y 2,..., y? Nilai Suatu Fugsi

Lebih terperinci

BARISAN DAN DERET. Materi ke 1

BARISAN DAN DERET. Materi ke 1 BARISAN DAN DERET Materi ke 1 Pola Bilaga adalah? Susua bilaga yag disusu meurut atura tertetu. Cotoh : 1. Pola Bilaga Gajil 1, 3, 5,... 2. Pola Bilaga Geap 2, 4, 6,... PERHATIKAN SSNAN BILANGAN DI BAWAH

Lebih terperinci

MATEMATIKA EKONOMI 1 Deret. DOSEN Fitri Yulianti, SP, MSi.

MATEMATIKA EKONOMI 1 Deret. DOSEN Fitri Yulianti, SP, MSi. MATEMATIKA EKONOMI 1 Deret DOSEN Fitri Yuliati, SP, MSi. Deret Deret ialah ragkaia bilaga yag tersusu secara teratur da memeuhi kaidah-kaidah tertetu. Bilaga-bilaga yag merupaka usur da pembetuk sebuah

Lebih terperinci

[RUMUS CEPAT MATEMATIKA] http://meetabied.wordpress.com

[RUMUS CEPAT MATEMATIKA] http://meetabied.wordpress.com http://meetabied.wordpress.com SMAN Boe-Boe, Luwu Utara, Sul-Sel Setiap pria da waita sukses adalah pemimpipemimpi besar. Mereka berimajiasi tetag masa depa mereka, berbuat sebaik mugki dalam setiap hal,

Lebih terperinci

SMA NEGERI 5 BEKASI UJIAN SEKOLAH

SMA NEGERI 5 BEKASI UJIAN SEKOLAH PEMERINTAH KOTA BEKASI DINAS PENDIDIKAN SMA NEGERI BEKASI Jl. Gamprit Jatiwarigi Asri Podok Gede -88 UJIAN SEKOLAH TAHUN PELAJARAN / L E M B A R S O A L Mata Pelajara : Matematika Kelas/Program : IPA Hari/Taggal

Lebih terperinci

Barisan Dan Deret Arimatika

Barisan Dan Deret Arimatika Barisa Da Deret Arimatika A. Barisa Aritmatika Niko etera memiliki sebuah peggaris ukura 0 cm. Ia megamati bilaga-bilaga pada peggarisya ii. Bilaga-bilaga tersebut beruruta 0, 1,, 3,, 0. etiap bilaga beruruta

Lebih terperinci

PREDIKSI SOAL ULANGAN AKHIR SEMESTER GENAP KELAS IX SMP NEGERI 196 JAKARTA. Jawab : Nilai dari. Jawab :.3.3 = 27

PREDIKSI SOAL ULANGAN AKHIR SEMESTER GENAP KELAS IX SMP NEGERI 196 JAKARTA. Jawab : Nilai dari. Jawab :.3.3 = 27 PREDIKSI SOAL ULANGAN AKHIR SEMESTER GENAP KELAS IX SMP NEGERI 9 JAKARTA No. Idikator Soal Prediksi Soal Peserta didik dapat meyataka betuk pecaha aljabar yag pembilag da peyebutya berpagkat egatif mejadi

Lebih terperinci

Hendra Gunawan. 12 Februari 2014

Hendra Gunawan. 12 Februari 2014 MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2013/2014 12 Februari 2014 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 82 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg

Lebih terperinci

log b = b logb Soal-Soal dan Pembahasan Matematika Dasar SBMPTN - SNMPTN 2012 Tanggal Ujian: 12 Juni 2012 Jawab: BAB II Logaritma

log b = b logb Soal-Soal dan Pembahasan Matematika Dasar SBMPTN - SNMPTN 2012 Tanggal Ujian: 12 Juni 2012 Jawab: BAB II Logaritma Soal-Soal da Pembahasa Matematika Dasar SBMPTN - SNMPTN 01 Taggal Ujia: 1 Jui 01 1. Jika a da b adalah bilaga bulat positip yag memeuhi a b = 0-19, maka ilai a + b adalah... A. 3 C. 19 E. 3 B. 7 D. 1 BAB

Lebih terperinci

Matematika Dasar : BARISAN DAN DERET

Matematika Dasar : BARISAN DAN DERET Matematika Dasar : BARISAN DAN DERET. Suku ke-n pada barisan, 6, 0, 4, bisa dinyatakan dengan (A) Un = n (B) Un = 6n 4 (C) Un = 4n + (D) Un = 4n (E) Un = n + 4. Suku ke-5 pada barisan, 0, 7, 4,.. (A) 65

Lebih terperinci

i adalah indeks penjumlahan, 1 adalah batas bawah, dan n adalah batas atas.

i adalah indeks penjumlahan, 1 adalah batas bawah, dan n adalah batas atas. 4 D E R E T Kosep deret merupaka kosep matematika yag cukup populer da aplikatif khusuya dalam kasus-kasus yag meyagkut perkembaga da pertumbuha suatu gejala tertetu. Apabila perkembaga atau pertumbuha

Lebih terperinci

log b = b logb Soal-Soal dan Pembahasan Matematika Dasar SNMPTN 2012 Tanggal Ujian: 12 Juni 2012 Jawab: BAB II Logaritma

log b = b logb Soal-Soal dan Pembahasan Matematika Dasar SNMPTN 2012 Tanggal Ujian: 12 Juni 2012 Jawab: BAB II Logaritma Soal-Soal da Pembahasa Matematika Dasar SNMPTN 01 Taggal Ujia: 1 Jui 01 1. Jika a da b adalah bilaga bulat positip yag memeuhi a b 0-19, maka ilai a + b adalah... A. 3 C. 19 E. 3 B. 7 D. 1 BAB I Perpagkata

Lebih terperinci

MATEMATIKA EKONOMI (Deret)

MATEMATIKA EKONOMI (Deret) LOGO MATEMATIKA EKONOMI (Deret) DOSEN FEBRIYANTO, SE., MM. www.febriyato79.wordpress.com MATEMATIKA EKONOMI Matematika Ekoomi memberika pemahama ilmu megeai kosep matematika dalam bidag bisis da ekoomi.

Lebih terperinci

Barisan, Deret, dan Notasi Sigma

Barisan, Deret, dan Notasi Sigma Barisa, Deret, da Notasi Sigma B A B 5 A. Barisa da Deret Aritmetika B. Barisa da Deret Geometri C. Notasi Sigma da Iduksi Matematika D. Aplikasi Barisa da Deret Sumber: http://jsa007.tripod.com Saat megedarai

Lebih terperinci

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi 6. Pecacaha Lajut Relasi Rekuresi Relasi rekuresi utuk dereta {a } adalah persamaa yag meyataka a kedalam satu atau lebih suku sebelumya, yaitu a 0, a,, a -, utuk seluruh bilaga bulat, dega 0, dimaa 0

Lebih terperinci

SOAL DAN SOLUSI MATEMATIKA IPA UJIAN NASIONAL BARISAN DAN DERET

SOAL DAN SOLUSI MATEMATIKA IPA UJIAN NASIONAL BARISAN DAN DERET SOAL DAN SOLUSI MATEMATIKA IPA UJIAN NASIONAL 01 01 BARISAN DAN DERET 1 UN 01 Setas tali dipotog mejadi bagia sehigga pajag potoga-potoga tali tersebt membetk barisa geometri Jika pajag tali terpedek 6

Lebih terperinci

1 4 A. 1 D. 4 B. 2 E. -5 C. 3 A.

1 4 A. 1 D. 4 B. 2 E. -5 C. 3 A. . Seorag pedagag membeli barag utuk dijual seharga Rp. 0.000,00. Bila pedagag tersebut meghedaki utug 0 %, maka barag tersebut harus dijual dega harga A. Rp. 00.000,00 D. Rp. 600.000,00 B. Rp. 00.000,00

Lebih terperinci

LOGO MATEMATIKA BISNIS (Deret)

LOGO MATEMATIKA BISNIS (Deret) LOGO MATEMATIKA BISNIS (Deret) DOSEN FEBRIYANTO, SE., MM. www.febriyato79.wordpress.com 1 MATEMATIKA BISNIS Matematika Bisis memberika pemahama ilmu megeai kosep matematika dalam bidag bisis. Sehigga suatu

Lebih terperinci

PEMBAHASAN SALAH SATU PAKET SOAL UN MATEMATIKA SMA PROGRAM IPS TAHUN PELAJARAN 2012/2013

PEMBAHASAN SALAH SATU PAKET SOAL UN MATEMATIKA SMA PROGRAM IPS TAHUN PELAJARAN 2012/2013 http://asyikyabelajar.wordpress.com PEMBAHAAN ALAH ATU PAKET OAL UN MATEMATIKA MA PROGRAM IP TAHUN PELAJARAN 0/0. Igkara dari peryataa emua makhluk hidup memerluka air da oksige adalah... A. emua makhluk

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2016/2017 3 Februari 2017 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg Batas

Lebih terperinci

Solusi Pengayaan Matematika

Solusi Pengayaan Matematika Solusi Pegayaa Matematika Edisi 11 Maret Peka Ke-, 2007 Nomor Soal: 101-110 101. Bilaga desimal 0,7777 diyataka dalam hasil bagi bilaga rasioal sebagai a b, dega a da b relatif prima. Nilai dari ab A.

Lebih terperinci

III BAB BARISAN DAN DERET. Tujuan Pembelajaran. Pengantar

III BAB BARISAN DAN DERET. Tujuan Pembelajaran. Pengantar BAB III BARISAN DAN DERET Tujua Pembelajara Setelah mempelajari materi bab ii, Ada diharapka dapat:. meetuka suku ke- barisa da jumlah suku deret aritmetika da geometri,. meracag model matematika dari

Lebih terperinci

x = 16 Jadi, banyak pekerja yang harus ditambahkan = = 4 orang.

x = 16 Jadi, banyak pekerja yang harus ditambahkan = = 4 orang. SOAL N MATEMATIKA SMK KELOMPOK PARIWISATA, SENI DAN KERAJINAN, TEKNOLOGI KERMAHTANGGAAN, PEKERJAAN SOSIAL, DAN ADMINISTRASI PERKANTORAN PAKET KC-F TAHN PELAJARAN /. Ekstrakurikuler pramuka suatu SMK aka

Lebih terperinci

UNIVERSITAS GUNADARMA POLA, BARISAN DAN DERET BILANGAN BAHAN AJAR. Oleh : Muhammad Imron H. Modul Barisan dan Deret Hal. 1

UNIVERSITAS GUNADARMA POLA, BARISAN DAN DERET BILANGAN BAHAN AJAR. Oleh : Muhammad Imron H. Modul Barisan dan Deret Hal. 1 BAHAN AJAR POLA, BARISAN DAN DERET BILANGAN Oleh : Muhammad Imo H 0 Modul Baisa da Deet Hal. BARISAN DAN DERET A. POLA BILANGAN. Pegetia Baisa Bilaga Baisa bilaga adalah uuta bilaga-bilaga dega atua tetetu.

Lebih terperinci

Barisan ini adalah contoh dari barisan aritmatika U 1. ialah barisan aritmatika,jika: -U 2. =.= U n

Barisan ini adalah contoh dari barisan aritmatika U 1. ialah barisan aritmatika,jika: -U 2. =.= U n BARIAN DAN DERET A. BARIAN DAN DERET ARITMATIKA I. TJAN etelah mempelaji topik siswa dapat:. Meetuka suku ke suatu bisa itmatika. Meetuka rumus suku ke di bisa itmatika. Meetuka suku pertama da beda suatu

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 010 TIM OLIMPIADE MATEMATIKA INDONESIA 0 Prestasi itu diraih buka didapat!!! SOLUSI SOAL Bidag Matematika Disusu oleh : Eddy Hermato, ST Olimpiade Matematika Tk

Lebih terperinci

1. Ingkaran dari kalimat Jika koruptor tidak dapat ditangkap, maka rakyat tidak percaya kepada aparat hukum adalah...

1. Ingkaran dari kalimat Jika koruptor tidak dapat ditangkap, maka rakyat tidak percaya kepada aparat hukum adalah... . Igkara dari kalimat Jika koruptor tidak dapat ditagkap, maka rakyat tidak percaya kepada aparat hukum adalah... A. Jika koruptor dapat ditagkap, maka rakyat percaya kepada aparat hukum B. Jika koruptor

Lebih terperinci

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang 5. DERET

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang 5. DERET Pertemua 7. BAHAN AJAR ANALISIS REAL Matematika STKIP Tuaku Tambusai Bagkiag 5. da kekovergeaya 5. DERET Diberika sebuah barisa a, dapat didefeisika barisa bilaga real S N dega S N := N a = a + a 2 +...

Lebih terperinci

BARISAN TAK HINGGA DAN DERET TAK HINGGA

BARISAN TAK HINGGA DAN DERET TAK HINGGA BARIAN TAK HINGGA DAN DERET TAK HINGGA Bajar/Barisa Tak Higga Barisa tak higga { } adalah suatu fugsi dari dimaa daerah domaiya adalah himpua bilaga bulat positif (bilaga asli). Cotoh: Bila.. maka fugsi

Lebih terperinci

Soal-soal Latihan: jika Misalkan n adalah bilangan genap. Buktikan bahwa

Soal-soal Latihan: jika Misalkan n adalah bilangan genap. Buktikan bahwa Soal-soal Latiha:. Misalka kita aka meyusu kata-kata yag dibetuk dari huru-huru dalam kata SIMALAKAMA, jika a. huru S mucul setelah huru K (misalya, ALAMAKSIM). b. huru A mucul berdekata. c. tidak memuat

Lebih terperinci

BARISAN DAN DERET TAK BERHINGGA

BARISAN DAN DERET TAK BERHINGGA MATERI KULIAH a 1 Kalkulus Lajut BARISAN DAN DERET TAK BERHINGGA Sahid, MSc. FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA 010 BARISAN DAN DERET DI SMA: BARISAN & DERET ARITMETIKA

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret Program Perkuliaha Dasar Umum Sekolah Tiggi Tekologi Telkom Barisa da Deret Barisa Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) a Fugsi tersebut

Lebih terperinci

Solusi Pengayaan Matematika Edisi 9 Maret Pekan Ke-1, 2015 Nomor Soal: 81-90

Solusi Pengayaan Matematika Edisi 9 Maret Pekan Ke-1, 2015 Nomor Soal: 81-90 Slusi Pegayaa Matematika disi Maret Peka Ke-, 0 Nmr Sal: -0. ari titik da pada ligkara, garis siggug P da Q digambarka sama, seperti diperlihatka pada gambar. uktika bahwa membagi PQ sama pajag. Q P Perpajag

Lebih terperinci

1. Ubahlah bentuk kuadrat di bawah ini menjadi bentuk

1. Ubahlah bentuk kuadrat di bawah ini menjadi bentuk OPERASI ALJABAR. Ubahlah betuk kuadrat di bawah ii mejadi betuk ( a b) c 4 8 4 4 0 4. Uraika betuk di bawah ii ( 5)( ) [ ]( )( )( ) [ ]( ) ( ) ( ). Tetuka ilai a, b, da c, jika ( )( 4 )( ) = a b c 6 (

Lebih terperinci

PEMBEKALAN OSN-2011 SMP STELA DUCE I YOGYAKARTA MATA PELAJARAN: MATEMATIKA Pemateri: Murdanu

PEMBEKALAN OSN-2011 SMP STELA DUCE I YOGYAKARTA MATA PELAJARAN: MATEMATIKA Pemateri: Murdanu Pemateri: Murdau 1 BAGIAN A 1. Carilah dua bilaga yag hasilkali da jumlahya berilai sama!. Carilah dua bilaga yag perbadiga da selisihya berilai sama! 3. Diketahui: ab = 84, bc = 76, ac = 161. Berapakah

Lebih terperinci

Sumber: Art & Gallery. 6. Menerapkan konsep barisan dan deret dalam pemecahan masalah

Sumber: Art & Gallery. 6. Menerapkan konsep barisan dan deret dalam pemecahan masalah Sumber: Art & Gallery Stadar Kompetesi 6. Meerapka kosep barisa da deret dalam pemecaha masalah Kompetesi Dasar 6. Megidetifikasi pola, barisa, da deret bilaga 6. Meerapka kosep barisa da deret aritmatika

Lebih terperinci

Induksi matematik untuk memecahkan problema deret dan bilangan bulat bentuk kuadrat sempurna

Induksi matematik untuk memecahkan problema deret dan bilangan bulat bentuk kuadrat sempurna Iduksi matematik utuk memecahka problema deret da bilaga bulat betuk kuadrat sempura Oleh: Sutopo Jurusa Fisika FMIPA UM sutopo@fisika.um.ac.id Ditulis pada sekitar bula Februari 2011. Diuggah pada 3 Desember

Lebih terperinci

BARISAN DAN DERET. a = suku pertama (U 1 ) n = banyaknya suku b = beda/selisih = U 2 U 1 = U 3 U 2

BARISAN DAN DERET. a = suku pertama (U 1 ) n = banyaknya suku b = beda/selisih = U 2 U 1 = U 3 U 2 www.plusido.wodpess.com BARIAN DAN DERET A. Baisa Baisa adalah uuta bilaga yag memiliki atua tetetu. etiap bilaga pada baisa disebut suku baisa yag dipisahka dega lambag, (koma). Betuk umum baisa:,,,,

Lebih terperinci

ISIAN SINGKAT! 1. Diberikan hasil kali digit digit dari n harus sama dengan 25

ISIAN SINGKAT! 1. Diberikan hasil kali digit digit dari n harus sama dengan 25 head office : Kompleks Sawaga Permai Blok A5 No.1A, Sawaga, Depok 16511 Telp.01-951 1160. cotact perso : 0-878787-1-8585 / 081-8691-10 Bidag Studi Kode Berkas Waktu : Matematika : MA-L01 (solusi) : 90

Lebih terperinci

BAB VI BARISAN TAK HINGGA DAN DERET TAK HINGGA

BAB VI BARISAN TAK HINGGA DAN DERET TAK HINGGA BAB VI BARIAN TAK HINGGA DAN DERET TAK HINGGA Bajar/Barisa Tak Higga Barisa tak higga { },,,,, adalah suatu fugsi dari dimaa daerah domaiya adalah himpua bilaga bulat positif (bilaga asli). Cotoh: Bila,,,..,

Lebih terperinci

Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1

Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1 Barisa Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 9/0/06 Matematika Barisa Tak Higga Secara sederhaa, barisa merupaka susua dari bilaga bilaga yag urutaya berdasarka bilaga

Lebih terperinci

BARISAN DAN DERET. Bentuk umum suku ke-n barisan aritmatika U n = a + (n 1)b dengan

BARISAN DAN DERET. Bentuk umum suku ke-n barisan aritmatika U n = a + (n 1)b dengan iap N Matematika BARIAN DAN DERET A. Baisa Baisa adalah uuta bilaga yag memiliki atua tetetu. etiap bilaga pada baisa disebut suku baisa yag dipisahka dega lambag, (koma). Betuk umum baisa:,,,, dega: suku

Lebih terperinci

BARISAN DAN DERET. Nurdinintya Athari (NDT)

BARISAN DAN DERET. Nurdinintya Athari (NDT) BARISAN DAN DERET Nurdiitya Athari (NDT) BARISAN Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) = a Fugsi tersebut dikeal sebagai barisa bilaga

Lebih terperinci

a = suku pertama (U 1 ) n = banyaknya suku b = beda/selisih = U 2 U 1 = U 3 U 2

a = suku pertama (U 1 ) n = banyaknya suku b = beda/selisih = U 2 U 1 = U 3 U 2 BARIAN DAN DERET A. Baisa Baisa adalah uuta bilaga yag memiliki atua tetetu. etiap bilaga pada baisa disebut suku baisa yag dipisahka dega lambag, (koma). Betuk umum baisa:,,,, dega: suku petama suku kedua

Lebih terperinci

Model Pertumbuhan BenefitAsuransi Jiwa Berjangka Menggunakan Deret Matematika

Model Pertumbuhan BenefitAsuransi Jiwa Berjangka Menggunakan Deret Matematika Prosidig Semirata FMIPA Uiversitas Lampug, 0 Model Pertumbuha BeefitAsurasi Jiwa Berjagka Megguaka Deret Matematika Edag Sri Kresawati Jurusa Matematika FMIPA Uiversitas Sriwijaya edagsrikresawati@yahoocoid

Lebih terperinci

I. DERET TAKHINGGA, DERET PANGKAT

I. DERET TAKHINGGA, DERET PANGKAT I. DERET TAKHINGGA, DERET PANGKAT. Pedahulua Pembahasa tetag deret takhigga sebagai betuk pejumlaha suku-suku takhigga memegag peraa petig dalam fisika. Pada bab ii aka dibahas megeai pegertia deret da

Lebih terperinci

SOAL PENYISIHAN =. a. 11 b. 12 c. 13 d. 14 e. 15

SOAL PENYISIHAN =. a. 11 b. 12 c. 13 d. 14 e. 15 SOAL PENYISIHAN Petujuk pegerjaa soal : Jumlah soal 0 soal Piliha Gada da Uraia Utuk piliha gada diberi peilaia bear +, salah -, tidak diisi 0 Lama pegerjaa soal adalah 0 meit Kalau berai, silaka pilih

Lebih terperinci

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3 BAB XII. SUKU BANYAK A = a Pegertia: f(x) = a x + a x + a x + + a x +a adalah suku bayak (poliom) dega : - a, a, a,.,a, a, a 0 adalah koefisiekoefisie suku bayak yag merupaka kostata real dega a 0 - a

Lebih terperinci

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3 SUKU BANYAK A Pegertia: f(x) x + a 1 x 1 + a 2 x 2 + + a 2 +a 1 adalah suku bayak (poliom) dega : - a, a 1, a 2,.,a 2, a 1, a 0 adalah koefisiekoefisie suku bayak yag merupaka kostata real dega a 0 - a

Lebih terperinci

UKURAN PEMUSATAN DATA

UKURAN PEMUSATAN DATA Malim Muhammad, M.Sc. UKURAN PEMUSATAN DATA J U R U S A N A G R O T E K N O L O G I F A K U L T A S P E R T A N I A N U N I V E R S I T A S M U H A M M A D I Y A H P U R W O K E R T O DEFINISI UKURAN PEMUSATAN

Lebih terperinci

21. BARISAN DAN DERET

21. BARISAN DAN DERET 2. BARISAN DAN DERET A. BARISAN ARITMETIKA DAN GEOMETRI U, U 2, U 3,,U n adalah barisan suatu bilangan yang memiliki ciri khusus sebagai berikut Barisan Ciri utama Rumus suku ke-n Suku tengah Sisipan k

Lebih terperinci

ARTIKEL. Menentukan rumus Jumlah Suatu Deret dengan Operator Beda. Markaban Maret 2015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN

ARTIKEL. Menentukan rumus Jumlah Suatu Deret dengan Operator Beda. Markaban Maret 2015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN ARTIKEL Meetuka rumus Jumlah Suatu Deret dega Operator Beda Markaba 191115198801005 Maret 015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN PUSAT PENGEMBANGAN DAN PEMBERDAYAAN PENDIDIK DAN TENAGA KEPENDIDIKAN

Lebih terperinci

DERET Matematika Industri 1

DERET Matematika Industri 1 DERET TIP FP UB Pokok Bahasa Barisa Deret Deret aritmetik Deret geometrik Deret pagkat dari bilaga-bilaga asli Deret tak berhigga Nilai-ilai limit Deret koverge da deret diverge Uji kovergesi Deret secara

Lebih terperinci

Antiremed Kelas 09 Matematika

Antiremed Kelas 09 Matematika Antiremed Kelas 09 Matematika Deret Bilangan - Latihan Soal Doc. Name: AR09MAT0613 Version: 2013-10 halaman 1 01a Berapakah nilai deret aritmatika di bawah (A) 1 + 2 + 3 + 4 + + 100 01b Berapakah nilai

Lebih terperinci

NAMA : KELAS : LEMBAR AKTIVITAS SISWA BARISAN DAN DERET 1. Beda Barisan Aritmatika. b =.. RUMUS SUKU KE N: King s Learning Be Smart Without Limits

NAMA : KELAS : LEMBAR AKTIVITAS SISWA BARISAN DAN DERET 1. Beda Barisan Aritmatika. b =.. RUMUS SUKU KE N: King s Learning Be Smart Without Limits NAMA : KELAS : LEMBAR AKTIVITAS SISWA BARISAN DAN DERET 1 A. PENGERTIAN BARISAN DAN DERET Barisan bilangan adalah kelompok bilangan yang tersusun menurut aturan (pola) tertentu. Deret bilangan adalah penjumlahan

Lebih terperinci

1) Perhatikan bentuk di bawah: U 1 U 2 U 3 U 4 U n 2, 5, 8, 11, dengan: U 3 = suku

1) Perhatikan bentuk di bawah: U 1 U 2 U 3 U 4 U n 2, 5, 8, 11, dengan: U 3 = suku NAMA : KELAS : LEMBAR AKTIVITAS SISWA BARISAN DAN DERET 1 A. PENGERTIAN BARISAN DAN DERET Barisan bilangan adalah kelompok bilangan yang tersusun menurut aturan (pola) tertentu. Deret bilangan adalah penjumlahan

Lebih terperinci

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa istilah, definisi serta konsep-konsep yang

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa istilah, definisi serta konsep-konsep yang II. LANDASAN TEORI Pada bab ii aka diberika beberapa istilah, defiisi serta kosep-kosep yag medukug dalam peelitia ii. 2.1 Kosep Dasar Teori Graf Berikut ii aka diberika kosep dasar teori graf yag bersumber

Lebih terperinci

BARISAN DAN DERET. U n = suku ke-n Contoh: Barisan bilangan asli, bilangan genap, bilangan ganjil, dan lain-lain.

BARISAN DAN DERET. U n = suku ke-n Contoh: Barisan bilangan asli, bilangan genap, bilangan ganjil, dan lain-lain. BARIAN DAN DERET A. Barisa Barisa adalah uruta bilaga yag memilii atura tertetu. etiap bilaga pada barisa disebut suu barisa yag dipisaha dega lambag, (oma). Betu umum barisa:,, 3, 4,, dega: = suu pertama

Lebih terperinci

K13 Revisi Antiremed Kelas 11 Matematika Wajib

K13 Revisi Antiremed Kelas 11 Matematika Wajib K13 Revisi Antiremed Kelas 11 Matematika Wajib Baris dan Deret Aritmatika - Latihan Soal Ulangan Doc. Name: RK13AR11MATWJB0603 Version : 2016-11 halaman 1 01. Suku ke-20 pada barisan 3, 9, 15, 21,. Adalah

Lebih terperinci

III PEMBAHASAN. λ = 0. Ly = 0, maka solusi umum dari persamaan diferensial (3.3) adalah

III PEMBAHASAN. λ = 0. Ly = 0, maka solusi umum dari persamaan diferensial (3.3) adalah III PEMBAHASAN Pada bagia ii aka diformulasika masalah yag aka dibahas. Solusi masalah aka diselesaika dega Metode Dekomposisi Adomia. Selajutya metode ii aka diguaka utuk meyelesaika model yag diyataka

Lebih terperinci

PR ONLINE MATA UJIAN : MATEMATIKA XII IPA (KODE: A01) 5b Dengan merasionalkan penyebut, bentuk sederhana dari 5 2

PR ONLINE MATA UJIAN : MATEMATIKA XII IPA (KODE: A01) 5b Dengan merasionalkan penyebut, bentuk sederhana dari 5 2 PR ONLINE MATA UJIAN : MATEMATIKA XII IPA (KODE: A0).. a bc Bentuk sederhana dari 9. a b c c a b. (C) ab c a b c a c b ac b. Dengan merasionalkan penyebut, bentuk sederhana dari. (C). (E).. (D). 7 9 log.

Lebih terperinci

BAB II CICILAN DAN BUNGA MAJEMUK

BAB II CICILAN DAN BUNGA MAJEMUK BAB II CICILAN DAN BUNGA MAJEMUK 2.1. Buga Majemuk Ada sedikit perbedaa atara suku buga tuggal da suku buga majemuk. Pada suku buga tuggal, besarya buga B = Mp tidak perah digabugka dega modal M. Sebalikya

Lebih terperinci

Kalkulus Rekayasa Hayati DERET

Kalkulus Rekayasa Hayati DERET Kalkulus Rekayasa Hayati DERET 1 Isi Bab Pedahulua Barisa tak-higga Deret tak-higga Deret Positif : Uji kekovergea Deret Gati Tada Deret Pagkat Deret Taylor da Maclauri 2 Kompetesi Dasar Setelah megikuti

Lebih terperinci

: XII (Dua Belas) Semua Program Studi. : Gisoesilo Abudi, S.Pd

: XII (Dua Belas) Semua Program Studi. : Gisoesilo Abudi, S.Pd R e f r e s h Program Diklat K e l a s M a t e r i Pegajar : M A T E M A T I K A : XII (Dua Belas) Semua Program Studi : S t a t i s t i k a : Gisoesilo Abudi, S.Pd Kajia Materi Peyampaia Data Diagram

Lebih terperinci

BARISAN DAN DERET. U t = 2 1 (a + U 2k 1 ), U n = ar n 1 U t = a Un

BARISAN DAN DERET. U t = 2 1 (a + U 2k 1 ), U n = ar n 1 U t = a Un BARISAN DAN DERET A. BARISAN ARITMETIKA DAN GEOMETRI U 1, U 2, U 3,,U n adalah barisan suatu bilangan yang memiliki ciri khusus sebagai berikut Barisan Ciri utama Rumus suku ke-n Suku tengah Sisipan k

Lebih terperinci

Modul 1. (Pertemuan 1 s/d 3) Deret Takhingga

Modul 1. (Pertemuan 1 s/d 3) Deret Takhingga Modul. (Pertemua s/d ) Deret Takhigga. Deret Tidak Terhigga. Pembicaraa kita sekarag deret pada umumya. Deret yag bayakya suku tak terbatas disebut deret tak higga, otasi : Masalah pokok pada deret tak

Lebih terperinci

METODE NUMERIK TKM4104. Kuliah ke-2 DERET TAYLOR DAN ANALISIS GALAT

METODE NUMERIK TKM4104. Kuliah ke-2 DERET TAYLOR DAN ANALISIS GALAT METODE NUMERIK TKM4104 Kuliah ke- DERET TAYLOR DAN ANALISIS GALAT DERET TAYLOR o Deret Taylor adalah alat yag utama utuk meuruka suatu metode umerik. o Deret Taylor bergua utuk meghampiri ugsi ke dalam

Lebih terperinci

BARISAN DAN DERET. 05/12/2016 Matematika Teknik 1 1

BARISAN DAN DERET. 05/12/2016 Matematika Teknik 1 1 BARISAN DAN DERET 05//06 Matematika Tekik BARISAN Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 05//06 Matematika Tekik Barisa Tak Higga Secara sederhaa, barisa merupaka

Lebih terperinci

RESPONSI 2 STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 2015

RESPONSI 2 STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 2015 RESPONSI STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 015 A. PENYAJIAN DAN PERINGKASAN DATA 1. PENYAJIAN DATA a. Sebutka tekik peyajia data utuk data kualitatif! Diagram kueh, diagram batag, distribusi

Lebih terperinci

CONTOH SOAL UAN BARIS DAN DERET

CONTOH SOAL UAN BARIS DAN DERET CONTOH SOAL UAN BARIS DAN DERET 1. Dari suatu barisan aritmetika, suku ketiga adalah 36, jumlah suku kelima dan ketujuh adalah 144. Jumlah sepuluh suku pertama deret tersebut adalah. a. 840 b. 660 c. 640

Lebih terperinci

Sistem Bilangan Kompleks (Bagian Ketiga)

Sistem Bilangan Kompleks (Bagian Ketiga) Sistem Bilaga Kompleks (Bagia Ketiga) Supama Jurusa Matematika, FMIPA UGM Yogyakarta 55281, INDONESIA Email:maspomo@yahoo.com, supama@ugm.ac.id (Pertemua Miggu III) Outlie 1 Akar Bilaga Kompleks 2 Akar

Lebih terperinci

p q r sesuai sifat operasi hitung bentuk pangkat

p q r sesuai sifat operasi hitung bentuk pangkat Adi Nuhidayat, S.Pd PEMBAHASAN SALAH SATU PAKET SOAL UN MATEMATIKA SMK KELOMPOK PARIWISATA, SENI DAN KERAJINAN, TEKNOLOGI KERUMAHTANGGAAN, PEKERJAAN SOSIAL, DAN ADMINISTRASI PERKANTORAN TAHUN PELAJARAN

Lebih terperinci

SOAL MATEMATIKA IPA UJIAN NASIONAL BARISAN DAN DERET

SOAL MATEMATIKA IPA UJIAN NASIONAL BARISAN DAN DERET SOAL MATEMATIKA IPA UJIAN NASIONAL 2014 2013 BARISAN DAN DERET 1. UN 2014 Seutas tali dipotong menjadi 5 bagian sehingga panjang potongan-potongan tali tersebut membentuk barisan geometri. Jika panjang

Lebih terperinci

KARTU SOAL PILIHAN GANDA

KARTU SOAL PILIHAN GANDA 4. Menggunakan konsep barisan dan deret dalam pemecahan masalah 4.1 Menentukan suku ke-n barisan dan jumlah n suku deret aritmetika dan geometri Barisan dan deret aritmatika Siswa dapat menentukan nilai

Lebih terperinci

BARISAN FIBONACCI DAN BILANGAN PHI

BARISAN FIBONACCI DAN BILANGAN PHI BARISAN FIBONACCI DAN BILANGAN PHI Fiboacci Matematikawa terbesar pada abad pertegaha adalah Leoardo dari Pisa, Italia (80 0). Ia lebih dikeal dega ama Fibo-acci. Artiya, aak Boaccio. Meara Pisa yag terkeal

Lebih terperinci

KALKULUS 4. Dra. D. L. Crispina Pardede, DEA. SARMAG TEKNIK MESIN

KALKULUS 4. Dra. D. L. Crispina Pardede, DEA. SARMAG TEKNIK MESIN KALKULUS Dra. D. L. Crispia Pardede DEA. SARMAG TEKNIK MESIN KALKULUS - SILABUS. Deret Fourier.. Fugsi Periodik.2. Fugsi Geap da Gajil.3. Deret Trigoometri.. Betuk umum Deret Fourier.. Kodisi Dirichlet.6.

Lebih terperinci

ANUITAS. 9/19/2012 MK. Aktuaria Darmanto,S.Si.

ANUITAS. 9/19/2012 MK. Aktuaria Darmanto,S.Si. ANUITAS 9/19/2012 MK. Aktuaria Darmato,S.Si. 1 OVERVIEW Auitas adl suatu pembayara dalam jumlah tertetu, yag dilakuka setiap selag waktu da lama tertetu, secara berkelajuta. Suatu auitas yg pasti dilakuka

Lebih terperinci

Bab. Barisan dan Deret. Di unduh dari: (www.bukupaket.com) Sumber buku : (bse.kemdikbud.go.id)

Bab. Barisan dan Deret. Di unduh dari: (www.bukupaket.com) Sumber buku : (bse.kemdikbud.go.id) Bab IV Barisa da Deret 53 Tujua Pembelajara Setelah mempelajari bab ii, diharapka kalia dapat. mejelaska ciri barisa aritmetika da barisa geometri;. merumuska suku ke da jumlah suku deret aritmetika da

Lebih terperinci

Kompetisi Statistika Tingkat SMA

Kompetisi Statistika Tingkat SMA . Arya da Bombom melakuka tos koikoi yag seimbag yag mempuyai sisi, agka da gambar Arya melakuka tos terhadap 6 koi, sedagka Bombom melakuka tos terhadap koi, maka peluag Arya medapatka hasil tos muka

Lebih terperinci

Statistika Deskriptif Ukuran Pemusatan dan Ukuran Penyebaran

Statistika Deskriptif Ukuran Pemusatan dan Ukuran Penyebaran Statistika Deskriptif Ukura Pemusata da Ukura Peyebara Ukura Pemusata Data Rata-rata Hitug Rata-rata hitug data tuggal: = x 1 + x 2 + x 3 + + x atau =. (1 : rata-rata hitug data tuggal (baca x-bar : bayakya

Lebih terperinci

Uji Komptensi. 2. Tentukan jumlah semua bilangan-bilangan bulat di antara 100 dan 200 yang habis dibagi 5

Uji Komptensi. 2. Tentukan jumlah semua bilangan-bilangan bulat di antara 100 dan 200 yang habis dibagi 5 Uji Komptensi Barisan dan Deret "Aljabar Linear Elementer". Diketahui barisan 84,80,77,... Suku ke-n akan menjadi 0 bila n =... Tentukan jumlah semua bilangan-bilangan bulat di antara 00 dan 00 yang habis

Lebih terperinci

KARTU SOAL URAIAN. KOMPETENSI DASAR (KD): 4.1 Menentukan suku ke-n barisan dan jumlah n suku deret aritmatika dan geometri

KARTU SOAL URAIAN. KOMPETENSI DASAR (KD): 4.1 Menentukan suku ke-n barisan dan jumlah n suku deret aritmatika dan geometri . Siswa dapat menentukan suku pertama, beda/rasio, rumus suku ke-n dan suku ke-n, jika diberikan barisan bilangannya NO. SOAL: 31 Tentukan suku pertama, beda atau rasio, rumus suku ke-n, dan suku ke-10

Lebih terperinci

HALAMAN Dengan definisi limit barisan buktikan limit berikut ini : = 0. a. lim PENYELESAIAN : jadi terbukti bahwa lim = 0 = 5. b.

HALAMAN Dengan definisi limit barisan buktikan limit berikut ini : = 0. a. lim PENYELESAIAN : jadi terbukti bahwa lim = 0 = 5. b. Didowload dari ririez.blog.us.ac.id HALAMAN 36 37 5. Dega defiisi limit barisa buktika limit berikut ii : a. lim = 0 lim 1 2 + 3 = 0 > 0 h 1 = 2 + 3 0 = 1 2 + 3 1 2 1 2 1 2 < jadi terbukti bahwa lim =

Lebih terperinci

Himpunan. Himpunan 3/28/2012. Semesta Pembicaraan Semua mobil di Indonesia

Himpunan. Himpunan 3/28/2012. Semesta Pembicaraan Semua mobil di Indonesia Himpua Suatu himpua atau gugus adalah merupaka sekumpula obyek. Pada umumya aggota dari gugus tersebut memiliki suatu sifat yag sama. Suatu himpua bagia atau aak gugus merupaka sekumpula obyek yag aggotaya

Lebih terperinci

STATISTIKA SMA (Bag.1)

STATISTIKA SMA (Bag.1) SMA - STATISTIKA SMA (Bag. A. DATA TUNGGAL. Ukura Pemusata : Terdapat ilai statistika yag dapat dimiliki oleh sekumpula data yag diperoleh yaitu : a. Rata-rata Rata-rata jumlah seluruh data bayakya data

Lebih terperinci

DISTRIBUSI SAMPLING. Oleh : Dewi Rachmatin

DISTRIBUSI SAMPLING. Oleh : Dewi Rachmatin DISTRIBUSI SAMPLING Oleh : Dewi Rachmati Distribusi Rata-rata Misalka sebuah populasi berukura higga N dega parameter rata-rata µ da simpaga baku. Dari populasi ii diambil sampel acak berukura, jika tapa

Lebih terperinci

CATATAN KULIAH #12&13 Bunga Majemuk

CATATAN KULIAH #12&13 Bunga Majemuk CATATAN KULIAH #12&13 Buga Majemuk 10.1 Pedahulua Pada pembahasa sebelumya diasumsika bahwa P atau ilai pokok pembayara tidak megalami perubaha dari awal higga akhir sehigga ilai buga selalu dihitug dari

Lebih terperinci

Buku Padua Belajar Maajeme Keuaga Chapter 0 KONSEP NILAI WAKTU UANG. Pegertia. Nilai Uag meurut waktu, berarti uag hari ii lebih baik / berharga dari pada ilai uag dimasa medatag pada harga omial yag sama.

Lebih terperinci

Definisi Integral Tentu

Definisi Integral Tentu Defiisi Itegral Tetu Bila kita megedarai kedaraa bermotor (sepeda motor atau mobil) selama 4 jam dega kecepata 50 km / jam, berapa jarak yag ditempuh? Tetu saja jawabya sagat mudah yaitu 50 x 4 = 200 km.

Lebih terperinci