: XII (Dua Belas) Semua Program Studi. : Gisoesilo Abudi, S.Pd

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download ": XII (Dua Belas) Semua Program Studi. : Gisoesilo Abudi, S.Pd"

Transkripsi

1 R e f r e s h Program Diklat K e l a s M a t e r i Pegajar : M A T E M A T I K A : XII (Dua Belas) Semua Program Studi : S t a t i s t i k a : Gisoesilo Abudi, S.Pd Kajia Materi Peyampaia Data Diagram atau grafik Table distribusi frekuesi Istilah-istilah dalam tabel distribusi frekuesi atara lai sebagai berikut. Jagkaua/rage = data tertiggi data teredah (R = X maks X mi ). Bayakya kelas (atura Sturgess) K = +, log. Pajag kelas/iterval P = rage/bayakya kelas. Batasa kelas Batas atas kelas = ilai terbesar kelas tersebut Batas bawah kelas = ilai terkecil kelas tersebut 5. Tepia kelas Tepi atas kelas = batas atas + 0,5 Tepi bawah kelas = batas bawah 0,5. Titik tegah kelas = ilai tegah dari kelas tersebut X tt = (batas bawah + batas atas) : Ukura Pemusata Data Mea (rata-rata hitug) Media (ilai tegah) Me = ilai yag palig tegah setelah urut (jumlah data gajil) Utuk data geap ilai Me = dua data tegah jumlahka lalu dibagi Caraya : cari letak kelas Me. Letak Me = ke- Rumus Me = Keteraga : Tb = tepi bawah Fk = frekuesi komulatif sebelum kelas Me f = frekuesi kelas Me p = pajag iterval = bayak data Modus (serig mucul) Mo = ilai palig serig mucul Jumlah ilai modus : bisa satu ilai, lebih dari satu ilai, atau tidak ada modus Caraya : cari letak kelas Mo. Letak Mo = kelas frekuesi terbesar Rumus : Mo = = mea (rata-rata) = jumlah semua data = bayak data = jumlah dari perkalia frekuesi dg data = jumlah frekuesi

2 Keteraga : b = selisih frekuesi kelas modus dega kelas sebelumya b = selisih frekuesi kelas modus dega kelas berikutya Mea Geometri (rata-rata ukur) (RU = ) (log RU = ) Mea Harmois (RH = ) (RH = ) Ukura Peyebara Data Jagkaua / Rage R = X maks X mi R = Xt maks Xt mi Keteraga : X maks = data terbesar X mi = data terkecil Simpaga Rata-rata SR = SR = Simpaga Baku/Stadar Deviasi SD = Xt maks = ilai tegah terbesar Xt mi = ilai tegah terkecil Keteraga : SR = jagkaua SD = stadar deviasi Xi = ilai data = ilai selalu positif = jumlah dari selisih data dega mea yag dikuadratka SD = Variasi Variasi = kuadrat dari simpaga baku ( V = SD ) Nilai Baku (Z Score) Rumus : Z = Koefisie Variasi KV =,, Keteraga = ilai metah Kuartil Kuartil berarti membagi kelompok mejadi bagia. Didalam kuartil terdapat ilai yaitu :. Kuartil bawah (Q ). Kuartil tegah (Q ). Kuartil atas (Q ) Cara meghitug kuartil (a) Cari letak kuartil, letak Q i = data ke- dega i =,, da (b) Misal data ke- = data ke- + (ke-7 ke-) (a) Cari letak kuartil, letak Q i = ke- dega i =,, da

3 (b) Rumus Q i = Tb + Jagkaua semiiterkuartil Q d = (Q Q ) Jagkaua atar kuartil : (Q Q ) Desil Desil berarti membagi kelompok mejadi 0 bagia. Di dalam desil ada 9 ilai. Cara meghitug desil :, cari letak desil,letak D i = ke- ( + ) dega i =,, da 9 (a) Cari letak desil, letak D i = ke- (b) Rumus D i = Tb + Persetil Persetil berarti membagi kelompok mejadi 00 bagia. Didalam persetil terdapat 99 ilai. Cara mecari letak lagkahya sama dega kuartil da desil Pilihlah Salah Satu Jawaba yag palig bear!. Perbadiga 7.00 mahasiswa yag diterima pada empat pergurua tiggi digambarka sebagai diagram ligkara dibawah. Bayak yag diterima pada pergurua tiggi IV adalah = orag B..0 orag I C..880 orag IV 5 o D..90 orag 7 o II E..00 orag 90 o. Perhatika tabel! Nilai ujia Frekuesi a 0 Dalam tabel di atas, ilai rata-rata ujia itu adalah. Karea itu a =... 0 D. 0 B. 5 E. 0 C. 0. Nilai rata-rata ujia matematika dari 9 orag siswa adalah 5. Jika ilai Upik, seorag siswa laiya, digabugka dega kelompok tersebut, maka ilai rata-rata ke-0 orag siswa mejadi. Ii berarti ilai ujia Upik adalah =... 7 D. 90 B. 5 E. 9 C. 85. Media dari data di bawah adalah =... 55, B. 55,0 C. 5,5 D. 5,5 E. 5,0 Ukura Frekuesi Modus dari data pada tabel dibawah adalah =... 5,0 B.,0 C. 7,5 D. 8,0 E. 8,5 Ukura Frekuesi III Data 5, 8,,,, 5, 9. Kuartil atasya adalah... D. 9 B. 8 E.,5 C. 8,5 7. Kuartil bawah dari data yag tersaji pada tabel distribusi dibawah adalah =...,9 B., C., D., E.,0 Nilai Frekuesi Modus dari deret agka,,,,, 7, 7, 7, 9 adalah... da 7 D. 7 B. E. da 9 C Dari data : 8, 9, 7, 8, 5,, 7, 9, 0, 9, 9,. Mediaya adalah... D. 8,5 B. 7,5 E. 9 C Rata-rata dari data yag disajika dega histogram dibawah ii adalah... 5,5 B. 55,5 5 C. 55,8 D. 0, E. 0, Jagkaua atar kuartil data : 7,, 5,, 7, 5, 7, 8, 7,, 5, 8, 9, 7,, 9,, 5, adalah D

4 B. E. C.. Ditetuka data :, 7,,,,,, 5,, 8. Jagkaua semi atar kuartil adalah... 5,5 D.,5 B. E. C.,5. Diketahui =,5, = 5,0, =,0, = 7,5 da 5 = 8,0. Jika deviasi ratarata ilai tersebut diyataka dega rumus i dega i i, maka i deviasi rata-rata di atas adalah... 0 d., B. 0,9 e. C.,0. Simpaga baku data :, 5, 5, 5, 5,,,, 7, 7, 8, 8, adalah... d. B. e. C. 5. Ragam (varias) dari data,,, 5, 5,,, 7, 7, 8, 8, 9, adalah... B. C. 7 9 d. e Karea rata-rata ilai terlalu redah, maka semua ilai dikalika kemudia dikuragi 5. Akibatya... Rata-rata ilai mejadi 70 B. Rata-rata lai mejadi 5 C. Simpaga baku mejadi D. Simpaga baku mejadi 5 E. Media mejadi Lima orag karyawa A, B, C, D da E mempuyai pedapata sebagai berikut : Pedapata A sebesar pedapata E. Pedapata B lebih Rp ,00 dari Pedapata C lebih Rp ,00 dari Pedapata D kurag Rp ,00 dari E. Bila rata-rata pedapata kelima karyawa Rp ,00 maka pedapata karyawa D =... Rp ,00 d. Rp ,00 B. Rp ,00 e. Rp ,00 C. Rp ,00 8. Nilai rata-rata ulaga matematika dari 0 siswa adalah 7. Kemudia 5 oag siswa megikuti ulaga susula sehigga ilai rata-rata keseluruha mejadi,8. Nilairata-rata yag megikuti ulaga susula adalah..., d. 5, B.,5 e.,8 C. 5, 9. Nilai rata-rata Ulaga statistik kelas XII adalah 75. Jika simpaga bakuya 5, koefisie variasiya adalah... 7, d. 9 B. 7,5 e. 0 C Suatu kelompok mempuyai ilai rata-rata 5. Jika besarya modus 5,75 da stadart deviasi 5,, koefisie kemiriga kurva tersebut adalah... -,0 d.,0 B. -0, e. 7, C. 0,. Pada waktu ujia yag diikuti 50 siswa diperoleh rata-rata ilai ujia adalah 5 dega media 0 da simpaga baku Jawablah pertayaa dibawah ii dega sigkat da jelas!. Diketahui data,, 8,, 7, 8, 7, 9, 8, 7,. Tetuka ilai dari : a. Kuartil atas, tegah da bawah b. Jagkaua kuartil c. Simpaga kuartil. Data,,, telah disusu dari yag terkecil higga yag terbesar. Jika media da rata-rata hitug sama, tetuka rata-rataya!. Diketahui data ilai matematika seorag siswa kelas XI SMK dalam setahu adalah :,, 8,, 7, 8, 7, 9, 8, 7, hituglah : a. simpaga rata-rata b. ragam/varias c. simpaga baku. Histogram dibawah ii meyajika data berat bada (dalam kg) 0 orag siswa. Jika modus dari data tersebut adalah 9,5, hituglah ilai yag memeuhi! Berat bada 0 orag siswa

5 5. Pada suatu ujia yag diikuti 50 siswa diperoleh rata-rata, media, jagkaua da simpaga baku berturut-turut adalah 5, 0, 0 da 5. Oleh karea suatu hal, maka semua ilai dikalika, kemudia dikuragi 0. Hituglah rata-rata media, jagkaua, da simpaga baku setelah terjadi perubaha data! SELAMAT MENGERJAKAN GIN Di tegah segala kesulita, masih terbuka kesempata. Mausia tetap tidak aka kalah dalam perjuaga hidupya, kecuali dia sediri yag megaku kalah

UKURAN PEMUSATAN UKURAN PENYEBARAN

UKURAN PEMUSATAN UKURAN PENYEBARAN UKURAN PEMUSATAN DATA TUNGGAL DATA KELOMPOK. MEAN / RATA-RATA. MODUS 3. MEDIAN 4. KUARTIL. MEAN / RATA-RATA. MODUS 3. MEDIAN 4. KUARTIL UKURAN PENYEBARAN JANGKAUAN HAMPARAN RAGAM / VARIANS SIMPANGAN BAKU

Lebih terperinci

[RUMUS CEPAT MATEMATIKA]

[RUMUS CEPAT MATEMATIKA] http://meetabied.wordpress.com SMAN Boe-Boe, Luwu Utara, Sul-Sel Kita meilai diri kita dega megukur dari apa yag kita rasa mampu utuk kerjaka, orag lai megukur kita dega megukur dari adap yag telah kita

Lebih terperinci

STATISTIKA SMA (Bag.1)

STATISTIKA SMA (Bag.1) SMA - STATISTIKA SMA (Bag. A. DATA TUNGGAL. Ukura Pemusata : Terdapat ilai statistika yag dapat dimiliki oleh sekumpula data yag diperoleh yaitu : a. Rata-rata Rata-rata jumlah seluruh data bayakya data

Lebih terperinci

Statistika MAT 2 A. PENDAHULUAN NILAI MATEMATIKA B. PENYAJIAN DATA NILAI MATEMATIKA NILAI MATEMATIKA STATISTIKA. materi78.co.nr

Statistika MAT 2 A. PENDAHULUAN NILAI MATEMATIKA B. PENYAJIAN DATA NILAI MATEMATIKA NILAI MATEMATIKA STATISTIKA. materi78.co.nr materio.r Statistika A. PENDAHULUAN Statistika adalah ilmu yag mempelajari pegambila, peyajia, pegolaha, da peafsira data. Data terdiri dari dua jeis, yaitu data kualitatif (sifat) da data kuatitatif (agka).

Lebih terperinci

STATISTIKA MAT 2 NILAI MATEMATIKA NILAI MATEMATIKA NILAI MATEMATIKA A. PENDAHULUAN B. PENYAJIAN DATA. Diagram garis

STATISTIKA MAT 2 NILAI MATEMATIKA NILAI MATEMATIKA NILAI MATEMATIKA A. PENDAHULUAN B. PENYAJIAN DATA. Diagram garis materio.r A. PENDAHULUAN Statistika adalah ilmu yag mempelajari pegambila, peyajia, pegolaha, da peafsira data. Data terdiri dari dua jeis, yaitu data kualitatif (sifat) da data kuatitatif (agka). B. PENYAJIAN

Lebih terperinci

BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL)

BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) Setiap peelitia selalu berkeaa dega sekelompok data. Yag dimaksud kelompok disii adalah: Satu orag mempuyai sekelompok data, atau sekelompok orag mempuyai satu

Lebih terperinci

Statistika Deskriptif Ukuran Pemusatan dan Ukuran Penyebaran

Statistika Deskriptif Ukuran Pemusatan dan Ukuran Penyebaran Statistika Deskriptif Ukura Pemusata da Ukura Peyebara Ukura Pemusata Data Rata-rata Hitug Rata-rata hitug data tuggal: = x 1 + x 2 + x 3 + + x atau =. (1 : rata-rata hitug data tuggal (baca x-bar : bayakya

Lebih terperinci

RESPONSI 2 STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 2015

RESPONSI 2 STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 2015 RESPONSI STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 015 A. PENYAJIAN DAN PERINGKASAN DATA 1. PENYAJIAN DATA a. Sebutka tekik peyajia data utuk data kualitatif! Diagram kueh, diagram batag, distribusi

Lebih terperinci

Ukuran Pemusatan. Pertemuan 3. Median. Quartil. 17-Mar-17. Modus

Ukuran Pemusatan. Pertemuan 3. Median. Quartil. 17-Mar-17. Modus -Mar- Ukura Pemusata Pertemua STATISTIKA DESKRIPTIF Statistik deskripti adalah pegolaha data utuk tujua medeskripsika atau memberika gambara terhadap obyek yag diteliti dega megguaka sampel atau populasi.

Lebih terperinci

UKURAN PEMUSATAN DATA

UKURAN PEMUSATAN DATA Malim Muhammad, M.Sc. UKURAN PEMUSATAN DATA J U R U S A N A G R O T E K N O L O G I F A K U L T A S P E R T A N I A N U N I V E R S I T A S M U H A M M A D I Y A H P U R W O K E R T O DEFINISI UKURAN PEMUSATAN

Lebih terperinci

STATISTIKA DAN PELUANG BAB III STATISTIKA

STATISTIKA DAN PELUANG BAB III STATISTIKA Matematika Kelas IX Semester BAB Statistika STATISTIKA DAN PELUANG BAB III STATISTIKA A. Statistika Pegertia Statistika Statistika adalah ilmu yag mempelajari cara pegumpula, peyusua, pegolaha, da aalisis

Lebih terperinci

PERSIAPAN UTS MATH 11 IPS BHS. = 92 ü

PERSIAPAN UTS MATH 11 IPS BHS. = 92 ü PRSIAPAN UTS MATH IPS BHS. Jagkaua dari 4, 42, 2, 0, 4, 62, 8,, 60, 2, 4, 48,, 44,, 7 adalah.... J = 62 2 = 7 ü 2. Jika rataa 4, 0, 22, m, 6 adalah 8 maka a =... 4 + 0 + 22 + m + 6 8 = 0 = m + 62 m = 28

Lebih terperinci

Jika dibandingkan dengan bulan sebelumnyakenaikan curah hujan terbesar terjadi pada bulan A. Oktober D. Januari B. November E. Februari C.

Jika dibandingkan dengan bulan sebelumnyakenaikan curah hujan terbesar terjadi pada bulan A. Oktober D. Januari B. November E. Februari C. Page of. Diatara data berikut, yag merupaka data kualitatif adalah Tiggi hotel-hotel di Yogyakarta B. Bayakya mobil yag melewati jala Mawar C. Kecepata sepeda motor per jam D. Luas huta di Sumatra E. Meigkatya

Lebih terperinci

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu BAB 4 UKURAN PENYEBARAN DATA Pada Bab sebelumya kita telah mempelajari beberapa ukura pemusata data, yaitu ukura yag memberika iformasi tetag bagaimaa data-data ii megumpul atau memusat Pada bagia Bab

Lebih terperinci

b. Penyajian data kelompok Contoh: Berat badan 30 orang siswa tercatat sebagai berikut:

b. Penyajian data kelompok Contoh: Berat badan 30 orang siswa tercatat sebagai berikut: Statistik da Peluag A. Statistik Statistik adalah metode ilmiah yag mempelajari cara pegumpula, peyusua, pegolaha, da aalisis data, serta cara pegambila kesimpula berdasarka data-data tersebut. Data ialah

Lebih terperinci

UKURAN TENDENSI SENTRAL

UKURAN TENDENSI SENTRAL BAB 3 UKURAN TENDENSI SENTRAL Kompetesi Mampu mejelaska da megaalisis kosep dasar ukura tedesi setral. Idikator 1. Mejelaska da megaalisis mea.. Mejelaska da megaalisis media. 3. Mejelaska da megaalisis

Lebih terperinci

Kuliah 3.Ukuran Pemusatan Data

Kuliah 3.Ukuran Pemusatan Data Kuliah 3.Ukura Pemusata Data Mata Kuliah Statistika Dr. Ir. Rita Rostika MP. Prodi Perikaa Fakultas Perikaa da Ilmu Kelauta Uiversitas Padjadjara Cotet (1) modus Media Rata-rata Telada peerapa Cotet (2)

Lebih terperinci

PERTEMUAN 3 CARA MEMBUAT TABEL DISTRIBUSI FREKUENSI UKURAN PEMUSATAN DATA

PERTEMUAN 3 CARA MEMBUAT TABEL DISTRIBUSI FREKUENSI UKURAN PEMUSATAN DATA PERTEMUAN 3 CARA MEMBUAT TABEL DISTRIBUSI FREKUENSI UKURAN PEMUSATAN DATA Cara Peyajia Data dega Tabel Distribusi Frekuesi Distribusi Frekuesi adalah data yag disusu dalam betuk kelompok baris berdasarka

Lebih terperinci

A. PENGERTIAN DISPERSI

A. PENGERTIAN DISPERSI UKURAN DISPERSI A. PENGERTIAN DISPERSI Ukura diperi atau ukura variai atau ukura peyimpaga adalah ukura yag meyataka eberapa jauh peyimpaga ilai-ilai data dari ilaiilai puatya atau ukura yag meyataka eberapa

Lebih terperinci

Statistik (statistics)

Statistik (statistics) Matematika-Fisika-Kimia Jadi Mudah & Meyeagka R Statistik (statistics) Modul Pelatiha Guru soal-soal yag dijelaska. Rataa ilai ulaga dari 4 orag murid sama dega 6. Jika ilai dari dua orag murid tidak disertaka

Lebih terperinci

Telp. / Fax (0362) PO.BOX : 236

Telp. / Fax (0362) PO.BOX : 236 Judul Modul : Statistika Bidag Studi Keahlia : Sei Kerajia da Pariwisata Kelas / Semester : XII / Gajil Tahu Pelajara : 017 / 01 Sekolah Meegah Kejurua Negeri 1 Sukasada ( SMK Negeri 1 Sukasada ) Alamat

Lebih terperinci

Kompetisi Statistika Tingkat SMA

Kompetisi Statistika Tingkat SMA . Arya da Bombom melakuka tos koikoi yag seimbag yag mempuyai sisi, agka da gambar Arya melakuka tos terhadap 6 koi, sedagka Bombom melakuka tos terhadap koi, maka peluag Arya medapatka hasil tos muka

Lebih terperinci

BAB 5 UKURAN DISPERSI

BAB 5 UKURAN DISPERSI BAB 5 UKURAN DISPERSI A. Ukura Dispersi Meurut Hasa (011 : 101) ukura dispersi atau ukura variasi atau ukura peyimpaga adalah ukura yag meyataka seberapa jauh peyimpaga ilai-ilai data dari ilai-ilai pusatya

Lebih terperinci

SOAL-SOAL. 1. UN A Jumlah n suku pertama deret aritmetika dinyatakan dengan S n n

SOAL-SOAL. 1. UN A Jumlah n suku pertama deret aritmetika dinyatakan dengan S n n Husei Tampomas, Barisa da Deret, 06 SOAL-SOAL. UN A 0 Jumlah suku pertama deret aritmetika diyataka dega S. Suku ke-0 A. B. C. 0 D. 8 E. 6. UN A, D7, da E8 0 Sebuah pabrik memproduksi barag jeis A pada

Lebih terperinci

STATISTIKA. A. Tabel Langkah untuk mengelompokkan data ke dalam tabel distribusi frekuensi data berkelompok/berinterval: a. Rentang/Jangkauan (J)

STATISTIKA. A. Tabel Langkah untuk mengelompokkan data ke dalam tabel distribusi frekuensi data berkelompok/berinterval: a. Rentang/Jangkauan (J) STATISTIKA A. Tabel Lagkah utuk megelompokka data ke dalam tabel dstrbus frekues data berkelompok/berterval: a. Retag/Jagkaua (J) J X maks X m b. Bayak kelas (k) Megguaka atura Sturgess, yatu k,. log c.

Lebih terperinci

BARISAN DAN DERET. Bentuk deret Aritmatika: a, ( a + b ), ( a + 2b ) ( a + ( n 1 ) b a = suku pertama b = beda n = banyaknya suku.

BARISAN DAN DERET. Bentuk deret Aritmatika: a, ( a + b ), ( a + 2b ) ( a + ( n 1 ) b a = suku pertama b = beda n = banyaknya suku. BARISAN DAN DERET Bab 9 Deret Aritmatika (Deret Hitug) o o o Betuk deret Aritmatika: a, ( a + b ), ( a + b ) +...+ ( a + ( ) b a = suku pertama b = beda = bayakya suku Suku ke- : U = a + (-)b Jumlah suku

Lebih terperinci

BAB V ANALISA PEMECAHAN MASALAH

BAB V ANALISA PEMECAHAN MASALAH 89 BAB V ANALISA PEMECAHAN MASALAH Dalam upaya mearik kesimpula da megambil keputusa, diperluka asumsi-asumsi da perkiraa-perkiraa. Secara umum hipotesis statistik merupaka peryataa megeai distribusi probabilitas

Lebih terperinci

Ukuran tendensi sentral merupakan setiap pengukuran aritmatika yang ditujukan untuk menggambarkan suatu nilai yang mewakili nilai pusat atau nilai

Ukuran tendensi sentral merupakan setiap pengukuran aritmatika yang ditujukan untuk menggambarkan suatu nilai yang mewakili nilai pusat atau nilai Ukura tedesi setral merupaka setiap pegukura aritmatika yag ditujuka utuk meggambarka suatu ilai yag mewakili ilai pusat atau ilai setral dari suatu gugus data (himpua pegamata). UKURAN DATA 2 Macam-Macam

Lebih terperinci

MODUL PENDALAMAN MATERI ESENSIAL DAN SULIT MATA PELAJARAN : MATEMATIKA ASPEK : STATISTIKA

MODUL PENDALAMAN MATERI ESENSIAL DAN SULIT MATA PELAJARAN : MATEMATIKA ASPEK : STATISTIKA MODUL PENDALAMAN MATERI ESENSIAL DAN SULIT MATA PELAJARAN : MATEMATIKA ASPEK : STATISTIKA STANDAR KOMPETENSI LULUSAN Memahami kosep dalam statistika, serta meerapkaya dalam pemecaha masalah. INDIKATOR

Lebih terperinci

BARISAN DAN DERET. Materi ke 1

BARISAN DAN DERET. Materi ke 1 BARISAN DAN DERET Materi ke 1 Pola Bilaga adalah? Susua bilaga yag disusu meurut atura tertetu. Cotoh : 1. Pola Bilaga Gajil 1, 3, 5,... 2. Pola Bilaga Geap 2, 4, 6,... PERHATIKAN SSNAN BILANGAN DI BAWAH

Lebih terperinci

STATISTIKA A. Definisi Umum B. Tabel Distribusi Frekuensi

STATISTIKA A. Definisi Umum B. Tabel Distribusi Frekuensi STATISTIKA A. Des Umum. Pegerta statstk Statstk adalah kumpula akta yag berbetuk agka da dsusu dalam datar atau tabel yag meggambarka suatu persoala. Cotoh: statstk kurs dolar Amerka, statstk pertumbuha

Lebih terperinci

DISTRIBUSI SAMPLING. Oleh : Dewi Rachmatin

DISTRIBUSI SAMPLING. Oleh : Dewi Rachmatin DISTRIBUSI SAMPLING Oleh : Dewi Rachmati Distribusi Rata-rata Misalka sebuah populasi berukura higga N dega parameter rata-rata µ da simpaga baku. Dari populasi ii diambil sampel acak berukura, jika tapa

Lebih terperinci

REGRESI LINIER GANDA

REGRESI LINIER GANDA REGRESI LINIER GANDA Secara umum, data hasil pegamata Y bisa terjadi karea akibat variabelvariabel bebas,,, k. Aka ditetuka hubuga atara Y da,,, k sehigga didapat regresi Y atas,,, k amu masih meujukka

Lebih terperinci

MODUL IRISAN KERUCUT

MODUL IRISAN KERUCUT MATERI MODUL 1 : IRISAN KERUCUT Stadar Kompetesi : Meerapka Kosep Irisa Kerucut dalam memecaha masalah Kompetesi Dasar : 1. Meyelesaika model matematika dari masalah yag berkaita dega ligkara. Meyelesaika

Lebih terperinci

MATEMATIKA BISNIS. OLEH: SRI NURMI LUBIS, S.Si GICI BUSSINESS SCHOOL BATAM

MATEMATIKA BISNIS. OLEH: SRI NURMI LUBIS, S.Si GICI BUSSINESS SCHOOL BATAM MATEMATIKA BISNIS OLEH: SRI NURMI LUBIS, S.Si GICI BUSSINESS SCHOOL BATAM BAB BARISAN DAN DERET A. BARISAN Barisa bilaga adalah susua bilaga yag diurutka meurut atura tertetu.betuk umum barisa bilaga a,

Lebih terperinci

Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Unand

Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Unand TEKIK SAMPLIG PCA SEDERHAA Hazmira Yozza Izzati Rahmi HG Jurusa Matematika FMIPA Uad Defiisi : Jika suatu cotoh berukura diambil dari suatu populasi berukura sedemikia rupa sehigga setiap kemugkia cotoh

Lebih terperinci

x = 16 Jadi, banyak pekerja yang harus ditambahkan = = 4 orang.

x = 16 Jadi, banyak pekerja yang harus ditambahkan = = 4 orang. SOAL N MATEMATIKA SMK KELOMPOK PARIWISATA, SENI DAN KERAJINAN, TEKNOLOGI KERMAHTANGGAAN, PEKERJAAN SOSIAL, DAN ADMINISTRASI PERKANTORAN PAKET KC-F TAHN PELAJARAN /. Ekstrakurikuler pramuka suatu SMK aka

Lebih terperinci

Soal dan Pembahasan. Ujian Nasional Matematika Teknik SMK matematikamenyenangkan.com

Soal dan Pembahasan. Ujian Nasional Matematika Teknik SMK matematikamenyenangkan.com Soal da Pembahasa jia Nasioal 06 Matematika Tekik SMK matematikameyeagka.com . pqr Betuk sederhaa dari p q r A. p 8 q r adalah... B. p q 0 r 0 D. p q 0 r 0 C. p 8 q r 0 E. p 6 q r Igat rumus berikut m

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di MTs Muhammadiyah 1 Natar Lampung Selatan.

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di MTs Muhammadiyah 1 Natar Lampung Selatan. 9 III. METODOLOGI PENELITIAN A. Populasi Da Sampel Peelitia ii dilaksaaka di MTs Muhammadiyah Natar Lampug Selata. Populasiya adalah seluruh siswa kelas VIII semester geap MTs Muhammadiyah Natar Tahu Pelajara

Lebih terperinci

BAB IV PEMBAHASAN DAN ANALISIS

BAB IV PEMBAHASAN DAN ANALISIS BAB IV PEMBAHASAN DAN ANALISIS 4.1. Pembahasa Atropometri merupaka salah satu metode yag dapat diguaka utuk meetuka ukura dimesi tubuh pada setiap mausia. Data atropometri yag didapat aka diguaka utuk

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 36 BAB III METODE PENELITIAN A. Racaga Peelitia 1. Pedekata Peelitia Peelitia ii megguaka pedekata kuatitatif karea data yag diguaka dalam peelitia ii berupa data agka sebagai alat meetuka suatu keteraga.

Lebih terperinci

i adalah indeks penjumlahan, 1 adalah batas bawah, dan n adalah batas atas.

i adalah indeks penjumlahan, 1 adalah batas bawah, dan n adalah batas atas. 4 D E R E T Kosep deret merupaka kosep matematika yag cukup populer da aplikatif khusuya dalam kasus-kasus yag meyagkut perkembaga da pertumbuha suatu gejala tertetu. Apabila perkembaga atau pertumbuha

Lebih terperinci

Kuliah : Rekayasa Hidrologi II TA : Genap 2015/2016 Dosen : 1. Novrianti.,MT. Novrianti.,MT_Rekayasa Hidrologi II 1

Kuliah : Rekayasa Hidrologi II TA : Genap 2015/2016 Dosen : 1. Novrianti.,MT. Novrianti.,MT_Rekayasa Hidrologi II 1 Kuliah : Rekayasa Hidrologi II TA : Geap 2015/2016 Dose : 1. Novriati.,MT 1 Materi : 1.Limpasa: Limpasa Metoda Rasioal 2. Uit Hidrograf & Hidrograf Satua Metoda SCS Statistik Hidrologi Metode Gumbel Metode

Lebih terperinci

1 4 A. 1 D. 4 B. 2 E. -5 C. 3 A.

1 4 A. 1 D. 4 B. 2 E. -5 C. 3 A. . Seorag pedagag membeli barag utuk dijual seharga Rp. 0.000,00. Bila pedagag tersebut meghedaki utug 0 %, maka barag tersebut harus dijual dega harga A. Rp. 00.000,00 D. Rp. 600.000,00 B. Rp. 00.000,00

Lebih terperinci

SOAL-SOAL LATIHAN BARISAN DAN DERET ARITMETIKA DAN GEOMETRI UJIAN NASIONAL

SOAL-SOAL LATIHAN BARISAN DAN DERET ARITMETIKA DAN GEOMETRI UJIAN NASIONAL SOAL-SOAL LATIHAN BARISAN DAN DERET ARITMETIKA DAN GEOMETRI UJIAN NASIONAL Peserta didik memiliki kemampua memahami kosep pada topik barisa da deret aritmetika da geometri. Peserta didik memilki kemampua

Lebih terperinci

1 n MODUL 5. Peubah Acak Diskret Khusus

1 n MODUL 5. Peubah Acak Diskret Khusus ODUL 5 Peubah Acak Diskret Khusus Terdapat beberapa peubah acak diskret khusus yag serig mucul dalam aplikasi. Peubah Acak Seragam ( Uiform) Bila X suatu peubah acak diskret dimaa setiap eleme dari X mempuyai

Lebih terperinci

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP STATISTICS Haug N. Prasetyo Week 11 PENDAHULUAN Regresi da korelasi diguaka utuk megetahui hubuga dua atau lebih kejadia (variabel) yag dapat diukur secara matematis. Ada dua hal yag diukur atau diaalisis,

Lebih terperinci

BAB III METODE PENELITIAN. penelitian ini adalah penelitian diskriptif kuantitatif. Dalam hal ini peneliti akan

BAB III METODE PENELITIAN. penelitian ini adalah penelitian diskriptif kuantitatif. Dalam hal ini peneliti akan BAB III METODE PENELITIAN A. Jeis Peelitia Berdasarka pertayaa peelitia yag peeliti ajuka maka jeis peelitia ii adalah peelitia diskriptif kuatitatif. Dalam hal ii peeliti aka mediskripsika kemampua relatig,

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 010 TIM OLIMPIADE MATEMATIKA INDONESIA 0 Prestasi itu diraih buka didapat!!! SOLUSI SOAL Bidag Matematika Disusu oleh : Eddy Hermato, ST Olimpiade Matematika Tk

Lebih terperinci

UKURAN PEMUSATAN DATA

UKURAN PEMUSATAN DATA BAB 3 UKURAN PEMUSATAN DATA Misalka kita mempuyai data metah dalam betuk array X 1, X 2,, X. Pada Bab ii kita aka mempelajari beberapa ukura yag dapat memberika iformasi tetag bagaimaa data-data ii megumpul

Lebih terperinci

Projek. Contoh Menemukan Konsep Barisan dan Deret Geometri a. Barisan Geometri. Perhatikan barisan bilangan 2, 4, 8, 16,

Projek. Contoh Menemukan Konsep Barisan dan Deret Geometri a. Barisan Geometri. Perhatikan barisan bilangan 2, 4, 8, 16, Projek Himpulah miimal tiga masalah peerapa barisa da deret aritmatika dalam bidag fisika, tekologi iformasi, da masalah yata di sekitarmu. Ujilah berbagai kosep da atura barisa da deret aritmatika di

Lebih terperinci

METODOLOGI PENELITIAN. Penelitian ini telah dilakukan di Desa Koto Perambahan Kecamatan Kampar

METODOLOGI PENELITIAN. Penelitian ini telah dilakukan di Desa Koto Perambahan Kecamatan Kampar III. METODOLOGI PENELITIAN 3.. Tempat da Waktu Peelitia Peelitia ii telah dilakuka di Desa Koto Perambaha Kecamata Kampar Timur Kabupate Kampar. Waktu pelaksaaa peelitia ii sekitar 3 bula yaki Bula Oktober-Desember

Lebih terperinci

SMA NEGERI 5 BEKASI UJIAN SEKOLAH

SMA NEGERI 5 BEKASI UJIAN SEKOLAH PEMERINTAH KOTA BEKASI DINAS PENDIDIKAN SMA NEGERI BEKASI Jl. Gamprit Jatiwarigi Asri Podok Gede -88 UJIAN SEKOLAH TAHUN PELAJARAN / L E M B A R S O A L Mata Pelajara : Matematika Kelas/Program : IPA Hari/Taggal

Lebih terperinci

ANALISIS STATISTIK. tentang PENGERTIAN STATISTIK, PENGERTIAN STATISTIKA, MACAM-MACAM DATA, DISTRIBUSI FREKUENSI DAN GRAFIKNYA,

ANALISIS STATISTIK. tentang PENGERTIAN STATISTIK, PENGERTIAN STATISTIKA, MACAM-MACAM DATA, DISTRIBUSI FREKUENSI DAN GRAFIKNYA, ANALISIS STATISTIK tetag PENGERTIAN STATISTIK, PENGERTIAN STATISTIKA, MACAM-MACAM DATA, DISTRIBUSI FREKUENSI DAN GRAFIKNYA, UKURAN PEMUSATAN, UKURAN PENYEBARAN (FRAKTIL) DAN UKURAN DISPERSI DISUSUN OLEH

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang 1 BAB 1 PENDAHULUAN 1.1 Latar Belakag Risiko adalah suatu yag selalu dihubugka dega kemugkia terjadiya sesuatu yag merugika yag tidak terduga da tidak diharapka atau peyimpaga atara tigkat pegembalia yag

Lebih terperinci

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi.

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi. Distribusi Samplig (Distribusi Pearika Sampel). Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

BAB III PROSEDUR PENELITIAN. Metode penelitian yang digunakan dalam penelitian ini adalah metode

BAB III PROSEDUR PENELITIAN. Metode penelitian yang digunakan dalam penelitian ini adalah metode 8 BAB III PROSEDUR PENELITIAN A. Metode Peelitia Metode peelitia yag diguaka dalam peelitia ii adalah metode ex post facto. Ada dua variabel dalam proses peelitia ii yaitu variabel bebas (variabel ) adalah

Lebih terperinci

Barisan Dan Deret Arimatika

Barisan Dan Deret Arimatika Barisa Da Deret Arimatika A. Barisa Aritmatika Niko etera memiliki sebuah peggaris ukura 0 cm. Ia megamati bilaga-bilaga pada peggarisya ii. Bilaga-bilaga tersebut beruruta 0, 1,, 3,, 0. etiap bilaga beruruta

Lebih terperinci

DERET TAK HINGGA (INFITITE SERIES)

DERET TAK HINGGA (INFITITE SERIES) MATEMATIKA II DERET TAK HINGGA (INFITITE SERIES) sugegpb.lecture.ub.ac.id aada.lecture.ub.ac.id BARISAN Barisa merupaka kumpula suatu bilaga (atau betuk aljabar) yag disusu sehigga membetuk suku-suku yag

Lebih terperinci

STATISTIKA EKONOMI 1. Makalah. Untuk Memenuhi Nilai Mata Kuliah Statistik 1

STATISTIKA EKONOMI 1. Makalah. Untuk Memenuhi Nilai Mata Kuliah Statistik 1 STATISTIKA EKONOMI 1 Makalah Utuk Memeuhi Nilai Mata Kuliah Statistik 1 Disusu oleh : Tria Nigrum Rohmawati PRODI AKUNTANSI FAKULTAS EKONOMI UNIVERSITAS PAMULANG Jala Surya Kecaa Nomor 1, Pamulag 1 KATA

Lebih terperinci

theresiaveni.wordpress.com NAMA : KELAS :

theresiaveni.wordpress.com NAMA : KELAS : theresiaveiwordpresscom NAMA : KELAS : 1 theresiaveiwordpresscom BARISAN DAN DERET Barisa da deret dapat diguaka utuk memudahka peyelesaia perhituga, misalya buga bak, keaika produksi, da laba/rugi suatu

Lebih terperinci

Distribusi Sampling (Distribusi Penarikan Sampel)

Distribusi Sampling (Distribusi Penarikan Sampel) Distribusi Samplig (Distribusi Pearika Sampel) 1. Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

E-learning matematika, GRATIS

E-learning matematika, GRATIS Peyusu Editor : Dra. Yuli Wiarsih ; Ismudari Puspitasari, S.Pd. : Drs. Keto Susato, M.Si. M.T. ; Istijab, S.H. M.Hum. Imam Idra Guawa, S.Si. STATISTIK DAN STATISTIKA Bayak persoala diyataka da diatat dalam

Lebih terperinci

- Yadi Nurhayadi - M O D U L S T A T I S T I K A BAB 2 DISTRIBUSI FREKUENSI

- Yadi Nurhayadi - M O D U L S T A T I S T I K A BAB 2 DISTRIBUSI FREKUENSI - Yadi Nurhayadi - M O D U L S T A T I S T I K A BAB DISTRIBUSI FREKUENSI A. Review Pelajara SMA A. Pegumpula Data. Peelitia lapaga (Pegamata Lagsug). Wawacara (Iterview). Agket (Kuisioer) 4. Berdasarka

Lebih terperinci

BAB IV. METODE PENELITlAN. Rancangan atau desain dalam penelitian ini adalah analisis komparasi, dua

BAB IV. METODE PENELITlAN. Rancangan atau desain dalam penelitian ini adalah analisis komparasi, dua BAB IV METODE PENELITlAN 4.1 Racaga Peelitia Racaga atau desai dalam peelitia ii adalah aalisis komparasi, dua mea depede (paired sample) yaitu utuk meguji perbedaa mea atara 2 kelompok data. 4.2 Populasi

Lebih terperinci

BAB 7 MOMEN, KEMIRINGAN DAN KERUNCINGAN

BAB 7 MOMEN, KEMIRINGAN DAN KERUNCINGAN BAB 7 MOMEN, KEMIRINGAN DAN KERUNCINGAN A. Mome Misalka diberika variable x dega harga- harga : x, x,., x. Jika A = sebuah bilaga tetap da r =,,, maka mome ke-r sekitar A, disigkat m r, didefiisika oleh

Lebih terperinci

ARTIKEL. Menentukan rumus Jumlah Suatu Deret dengan Operator Beda. Markaban Maret 2015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN

ARTIKEL. Menentukan rumus Jumlah Suatu Deret dengan Operator Beda. Markaban Maret 2015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN ARTIKEL Meetuka rumus Jumlah Suatu Deret dega Operator Beda Markaba 191115198801005 Maret 015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN PUSAT PENGEMBANGAN DAN PEMBERDAYAAN PENDIDIK DAN TENAGA KEPENDIDIKAN

Lebih terperinci

BAB II STUDI LITERATUR

BAB II STUDI LITERATUR BAB II STUDI LITERATUR.1. Distribusi Frekuesi Distribusi frekuesi adalah pegelompoka data kedalam beberapa kategori yag meujukka bayak data dalam setiap kategori da setiap data tidak dapat dimasukka dua

Lebih terperinci

METODOLOGI PENELITIAN. penggunaan metode penelitian. Oleh karena itu, metode yang akan digunakan

METODOLOGI PENELITIAN. penggunaan metode penelitian. Oleh karena itu, metode yang akan digunakan 47 III. METODOLOGI PENELITIAN A. Metodelogi Peelitia Keberhasila dalam suatu peelitia sagat ditetuka oleh ketepata pegguaa metode peelitia. Oleh karea itu, metode yag aka diguaka haruslah sesuai dega data

Lebih terperinci

Bab. Pola Bilangan, Barisan, dan Deret. A. Pola Bilangan B. Barisan Bilangan C. Deret Bilangan

Bab. Pola Bilangan, Barisan, dan Deret. A. Pola Bilangan B. Barisan Bilangan C. Deret Bilangan Bab Sumber: www.medeciepharmacie.uiv-fcomte.fr Pola Bilaga, Barisa, da Deret Pola bilaga, barisa, da deret merupaka materi baru yag aka kamu pelajari pada bab ii. Terdapat beberapa masalah yag peyelesaiaya

Lebih terperinci

--Fisheries Data Analysis-- Perbandingan ragam. By. Ledhyane Ika Harlyan. Faculty of Fisheries and Marine Science Brawijaya University

--Fisheries Data Analysis-- Perbandingan ragam. By. Ledhyane Ika Harlyan. Faculty of Fisheries and Marine Science Brawijaya University --Fisheries Data Aalysis-- Perbadiga ragam By. Ledhyae Ika Harlya Faculty of Fisheries ad Marie Sciece Brawijaya Uiversity Tujua Istruksioal Khusus Mahasiswa dapat megguaka aalisis statistika sederhaa

Lebih terperinci

Distribusi Sampling merupakan distribusi teoritis (distribusi kemungkinan) dari semua hasil sampel yang mungkin, dengan ukuran sampel yang tetap N,

Distribusi Sampling merupakan distribusi teoritis (distribusi kemungkinan) dari semua hasil sampel yang mungkin, dengan ukuran sampel yang tetap N, DISTRIBUSI SAMLING opulasi da Sampel opulasi : totalitas dari semua objek/ idividu yg memiliki karakteristik tertetu, jelas da legkap yag aka diteliti Sampel : bagia dari populasi yag diambil melalui cara-cara

Lebih terperinci

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan REGRESI LINIER DAN KORELASI Variabel dibedaka dalam dua jeis dalam aalisis regresi: Variabel bebas atau variabel prediktor -> variabel yag mudah didapat atau tersedia. Dapat diyataka dega X 1, X,, X k

Lebih terperinci

UKURAN LOKASI DAN DISPERSI

UKURAN LOKASI DAN DISPERSI Uiversitas Gadjah Mada Fakultas Tekik Departeme Tekik Sipil da Ligkuga UKURAN LOKASI DAN DISPERSI Statistika da Probabilitas Statistical Measures Commo statistical measures Measure of cetral tedecy Mea

Lebih terperinci

SOAL-JAWAB MATEMATIKA PEMINATAN STATISTIKA. 6 cm, 7 cm, 6 cm, 4 cm, 6 cm, 3 cm, 7 cm, 6 cm, 5 cm, 8 cm.

SOAL-JAWAB MATEMATIKA PEMINATAN STATISTIKA. 6 cm, 7 cm, 6 cm, 4 cm, 6 cm, 3 cm, 7 cm, 6 cm, 5 cm, 8 cm. SOAL-JAWAB MATEMATIKA PEMINATAN STATISTIKA Soal Diberika data egukura sebagai berikut: 6 cm, 7 cm, 6 cm, 4 cm, 6 cm, 3 cm, 7 cm, 6 cm, 5 cm, 8 cm. Tetukalah: a) Modus b) Media c) Kuartil bawah Urutka data

Lebih terperinci

Barisan, Deret, dan Notasi Sigma

Barisan, Deret, dan Notasi Sigma Barisa, Deret, da Notasi Sigma B A B 5 A. Barisa da Deret Aritmetika B. Barisa da Deret Geometri C. Notasi Sigma da Iduksi Matematika D. Aplikasi Barisa da Deret Sumber: http://jsa007.tripod.com Saat megedarai

Lebih terperinci

KALKULUS 4. Dra. D. L. Crispina Pardede, DEA. SARMAG TEKNIK MESIN

KALKULUS 4. Dra. D. L. Crispina Pardede, DEA. SARMAG TEKNIK MESIN KALKULUS Dra. D. L. Crispia Pardede DEA. SARMAG TEKNIK MESIN KALKULUS - SILABUS. Deret Fourier.. Fugsi Periodik.2. Fugsi Geap da Gajil.3. Deret Trigoometri.. Betuk umum Deret Fourier.. Kodisi Dirichlet.6.

Lebih terperinci

Barisan Aritmetika dan deret aritmetika

Barisan Aritmetika dan deret aritmetika BARISAN DAN DERET BILANGAN Peyusu: Atmii Dhoruri, MS Kode: Jejag: SMP T/P: / A. Kompetesi yag diharapka. Meetuka suku ke- barisa aritmatika da barisa geometri. Meetuka jumlah suku pertama deret aritmatika

Lebih terperinci

DISTRIBUSI SAMPLING (Distribusi Penarikan Sampel)

DISTRIBUSI SAMPLING (Distribusi Penarikan Sampel) DISTRIBUSI SAMPLING (Distribusi Pearika Sampel) I. PENDAHULUAN Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

SOAL DAN PEMBAHASAN TRY OUT MATEMATIKA SMP/MTS KABUPATEN LEMBATA TAHUN PELAJARAN 2014/2015

SOAL DAN PEMBAHASAN TRY OUT MATEMATIKA SMP/MTS KABUPATEN LEMBATA TAHUN PELAJARAN 2014/2015 SOAL DAN PEMBAHASAN TRY OUT MATEMATIKA SMP/MTS KABUPATEN LEMBATA TAHUN PELAJARAN 4/5 3. Hasil dari 3 : adalah... 4 4 A. B. C. 7 D. 5 3 3 3 5 3 : = : 4 4 4 4 3 4 5 = 4 3 5 = 6 55 = 8 = 5 = 3. Dalam try

Lebih terperinci

PETA KONSEP RETURN dan RISIKO PORTOFOLIO

PETA KONSEP RETURN dan RISIKO PORTOFOLIO PETA KONSEP RETURN da RISIKO PORTOFOLIO RETURN PORTOFOLIO RISIKO PORTOFOLIO RISIKO TOTAL DIVERSIFIKASI PORTOFOLIO DENGAN DUA AKTIVA PORTOFOLIO DENGAN BANYAK AKTIVA DEVERSIFIKASI DENGAN BANYAK AKTIVA DEVERSIFIKASI

Lebih terperinci

BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan

BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan BAB III METODE PENELITAN. Tempat Da Waktu Peelitia Peelitia dilakuka di SMP Negeri Batudaa Kab. Gorotalo dega subject Peelitia adalah siswa kelas VIII. Pemiliha SMP Negeri Batudaa Kab. Gorotalo. Adapu

Lebih terperinci

UJIAN TENGAH SEMESTER STATISTIKA

UJIAN TENGAH SEMESTER STATISTIKA UJIAN TENGAH SEMESTER STATISTIKA Sei, 5 Jui 9 Ope Book meit ATATAN Dr. Ir. Istiarto, M.Eg. Soal ujia ii utuk dikerjaka sediri tapa kerjasama dega orag lai. Tidak ada pegawasa oleh petugas jaga selama ujia

Lebih terperinci

REGRESI DAN KORELASI

REGRESI DAN KORELASI REGRESI DAN KORELASI Pedahulua Dalam kehidupa sehari-hari serig ditemuka masalah/kejadia yagg salig berkaita satu sama lai. Kita memerluka aalisis hubuga atara kejadia tersebut Dalam bab ii kita aka membahas

Lebih terperinci

BAB 1 STATISTIKA RINGKASAN MATERI

BAB 1 STATISTIKA RINGKASAN MATERI BAB STATISTIKA A RINGKASAN MATERI. Pegerta Data adalah kumpula keteraga-keteraga atau catata-catata megea suatu kejada, dapat berupa blaga, smbol, sat atau kategor. Masg-masg keteraga dar data dsebut datum.

Lebih terperinci

Modul Kuliah statistika

Modul Kuliah statistika Modul Kuliah statistika Dose: Abdul Jamil, S.Kom., MM SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER MUHAMMADIYAH JAKARTA Bab 2 Populasi da Sampel 2.1 Populasi Populasi merupaka keseluruha pegamata

Lebih terperinci

TATAP MUKA III UKURAN PEMUSATAN DATA (MEAN, MEDIAN DAN MODUS) Fitri Yulianti, SP. Msi.

TATAP MUKA III UKURAN PEMUSATAN DATA (MEAN, MEDIAN DAN MODUS) Fitri Yulianti, SP. Msi. TATAP MUKA III UKURAN PEMUSATAN DATA (MEAN, MEDIAN DAN MODUS) Ftr Yulat, SP. Ms. UKURAN DATA Ukura data Ukura Pemusata data Ukura letak data Ukura peyebara data Mea Meda Jagkaua Meda Kuartl Jagkaua atar

Lebih terperinci

Ilustrasi. Statistik dan Statistika. Data nilai ujian Statistik Dasar dari 15 mahasiswa Program Studi tertentu semester ganjil tahun 2008:

Ilustrasi. Statistik dan Statistika. Data nilai ujian Statistik Dasar dari 15 mahasiswa Program Studi tertentu semester ganjil tahun 2008: Ilustrasi Data ilai ujia Statistik Dasar dari 5 mahasiswa Program Studi tertetu semester gajil tahu 008: 87 37 59 49 69 95 83 87 39 95 83 76 83 6 46 Statdas, Februari 009. Populasi da Sampel. Statistik

Lebih terperinci

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi 6. Pecacaha Lajut Relasi Rekuresi Relasi rekuresi utuk dereta {a } adalah persamaa yag meyataka a kedalam satu atau lebih suku sebelumya, yaitu a 0, a,, a -, utuk seluruh bilaga bulat, dega 0, dimaa 0

Lebih terperinci

log b = b logb Soal-Soal dan Pembahasan Matematika Dasar SNMPTN 2012 Tanggal Ujian: 12 Juni 2012 Jawab: BAB II Logaritma

log b = b logb Soal-Soal dan Pembahasan Matematika Dasar SNMPTN 2012 Tanggal Ujian: 12 Juni 2012 Jawab: BAB II Logaritma Soal-Soal da Pembahasa Matematika Dasar SNMPTN 01 Taggal Ujia: 1 Jui 01 1. Jika a da b adalah bilaga bulat positip yag memeuhi a b 0-19, maka ilai a + b adalah... A. 3 C. 19 E. 3 B. 7 D. 1 BAB I Perpagkata

Lebih terperinci

BARISAN FIBONACCI DAN BILANGAN PHI

BARISAN FIBONACCI DAN BILANGAN PHI BARISAN FIBONACCI DAN BILANGAN PHI Fiboacci Matematikawa terbesar pada abad pertegaha adalah Leoardo dari Pisa, Italia (80 0). Ia lebih dikeal dega ama Fibo-acci. Artiya, aak Boaccio. Meara Pisa yag terkeal

Lebih terperinci

III BAB BARISAN DAN DERET. Tujuan Pembelajaran. Pengantar

III BAB BARISAN DAN DERET. Tujuan Pembelajaran. Pengantar BAB III BARISAN DAN DERET Tujua Pembelajara Setelah mempelajari materi bab ii, Ada diharapka dapat:. meetuka suku ke- barisa da jumlah suku deret aritmetika da geometri,. meracag model matematika dari

Lebih terperinci

BAB 1 PENDAHULUAN. A. Hakikat Statistika. 1. Asal Kata. Kata statistika berasal dari kata status atau statista yang berarti negara

BAB 1 PENDAHULUAN. A. Hakikat Statistika. 1. Asal Kata. Kata statistika berasal dari kata status atau statista yang berarti negara BAB PEDAHULUA A Hakikat Statistika Asal Kata Kata statistika berasal dari kata status atau statista yag berarti egara Tulisa Aristoteles Politeia meguraika keadaa dari 58 egara yaki sumber dari kata statistika

Lebih terperinci

PEMBAHASAN SALAH SATU PAKET SOAL UN MATEMATIKA SMA PROGRAM IPS TAHUN PELAJARAN 2012/2013

PEMBAHASAN SALAH SATU PAKET SOAL UN MATEMATIKA SMA PROGRAM IPS TAHUN PELAJARAN 2012/2013 http://asyikyabelajar.wordpress.com PEMBAHAAN ALAH ATU PAKET OAL UN MATEMATIKA MA PROGRAM IP TAHUN PELAJARAN 0/0. Igkara dari peryataa emua makhluk hidup memerluka air da oksige adalah... A. emua makhluk

Lebih terperinci

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika Wed 6/0/3 ETIMAI (PENDUGAAN TATITIK) Ir. Tito Adi Dewato tatistika Deskriptif Iferesi Estimasi Uji Hipotesis Titik Retag Estimasi da Uji Hipotesis Dilakuka setelah peelitia dalam tahap pegambila suatu

Lebih terperinci

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI Utuk lebih memahami megeai etropi, pada bab ii aka diberika perhituga etropi utuk beberapa distribusi diskrit da kotiu. 3. Distribusi Diskrit Pada sub bab ii dibahas

Lebih terperinci

SOAL-SOAL SPMB 2006 MATEMATIKA DASAR (MAT DAS) 63 n, maka jumlah n suku. D n n 2. f n log3 log 4 log5... log n, maka f 2...

SOAL-SOAL SPMB 2006 MATEMATIKA DASAR (MAT DAS) 63 n, maka jumlah n suku. D n n 2. f n log3 log 4 log5... log n, maka f 2... SOAL-SOAL SPMB 006 MATEMATIKA DASAR (MAT DAS). SPMB, MAT DAS, Regioal I, 006 Tiga bilaga membetuk suatu deret geometri aik. Jika jumlahya 6 da hasikaliya 6, maka rasio deretya adalah A. B. C. D. 4 E. 5.

Lebih terperinci

III. MATERI DAN METODE. a. Penelitian ini menggunakan 68 ekor kambing peranakan etawa ( PE) (31. ukur, tongkat ukur dan timbangan.

III. MATERI DAN METODE. a. Penelitian ini menggunakan 68 ekor kambing peranakan etawa ( PE) (31. ukur, tongkat ukur dan timbangan. III. MATERI DAN METODE 3.1. Waktu da Tempat Peelitia Peelitia ii telah dilaksaaka pada Bula Oktober sampai November 013 di peteraka yag ada di Kota Pekabaru. 3.. Materi Peelitia a. Peelitia ii megguaka

Lebih terperinci

1. Ingkaran dari kalimat Jika koruptor tidak dapat ditangkap, maka rakyat tidak percaya kepada aparat hukum adalah...

1. Ingkaran dari kalimat Jika koruptor tidak dapat ditangkap, maka rakyat tidak percaya kepada aparat hukum adalah... . Igkara dari kalimat Jika koruptor tidak dapat ditagkap, maka rakyat tidak percaya kepada aparat hukum adalah... A. Jika koruptor dapat ditagkap, maka rakyat percaya kepada aparat hukum B. Jika koruptor

Lebih terperinci

Definisi Integral Tentu

Definisi Integral Tentu Defiisi Itegral Tetu Bila kita megedarai kedaraa bermotor (sepeda motor atau mobil) selama 4 jam dega kecepata 50 km / jam, berapa jarak yag ditempuh? Tetu saja jawabya sagat mudah yaitu 50 x 4 = 200 km.

Lebih terperinci