Distribusi Sampel Sampling Distribution

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Distribusi Sampel Sampling Distribution"

Transkripsi

1 Chapter 5 Studet Lecture otes 5-1 Samplig Distributio Pegatar Distribusi mea Sampel dari ilai Rata-rata Distribusi mea Sampel dari ilai Proporsi Chap 5-1 Distribusi sampel adalah f() distribusi dari ratarata atau proporsi sampel yag diambil secara berulag-ulag ( kali) dari populasi. Ada sebayak rata-rata atau ilai proporsi Distribusi dari rata-rata atau proporsi tersebut yag disebut sebagai distribusi sampel (samplig distributio) Mea Media Mode Hal-2

2 Chapter 5 Studet Lecture otes 5-2 Sifat-sifat dari distribusi sampel tersebut dikeal dega Cetral Limit Theorem f() 1. Betuk distribusi dari rata-rata sampel aka medekati distrbusi ormal meskipu distribusi populasi tidak ormal. 2. Rata-rata dari rata-rata sampel sama dega rata-rata populasi (µ) 3. Stadar deviasi dari rata-rata sampel sama dega stadar deviasi populasi (σ) dibagi dega akar jumlah sampel. Dikeal dega istilah Stadard Error (SE) SE / Hal-3 Asumsi suatu populasi Besar Populatio =4 Radom variable,, adalah umur ilai : 18, 20, 22, 24 dalam tahu A B C D Hal-4

3 Chapter 5 Studet Lecture otes 5-3 (cotiued) i i i1 i 2 Distribusi Populasi 21 P() A B C D (18) (20) (22) (24) Uiform Distributio Hal-5 1 st 2 d Observatio Obs ,18 18,20 18,22 18, ,18 20,20 20,22 20, ,18 22,20 22,22 22, ,18 24,20 24,22 24,24 16 Sample diambil dg Replacemet Besar sampel =2 (cotiued) 16 Sample = 16 Mea 1st 2d Observatio Obs Hal-6

4 Chapter 5 Studet Lecture otes 5-4 Samplig Distributio of All Sample Meas (cotiued) 16 Sample Meas 1st 2d Observatio Obs P() Sample Meas Distributio =ormal (3) _ Hal-7 i i1 Samplig Distributios Summary Measures of Samplig Distributio i1 i (cotiued) = mea populasi (1) 2 SE..(2) Hal-8

5 Chapter 5 Studet Lecture otes 5-5 P().3.2 Perbadiga Populasi da Populatio = 4 Sample Meas Distributio = P() A B C D (18) (20) (22) (24) _ Hal-9 Distribusi Samplig Hal-10

6 Chapter 5 Studet Lecture otes 5-6 Distribusi Samplig x x x Distribusi probabilitas idividu SD x x x Distribusi probabilitas rata-rata sampel / SD / Hal-11 Cotoh: Samplig Distributio =2 25 P ? P P 2 / 25 2 / 25 P Stadardized ormal Distributio Hal-12

7 Chapter 5 Studet Lecture otes 5-7 Distribusi Probabilitas Idividu Cotoh 1. Lapora tahua RS Sayag Ibu meyataka bahwa ada sebayak 500 kelahira hidup selama setahu terakhir di RS tersebut. Rata-rata berat bada bayi adalah 3000 gram dega simpaga baku sebesar 500 gram. Distribusi berat bada bayi megikuti distribusi ormal. Bila Ada tertarik melihat data tersebut maka hituglah probabilitas utuk medapatka berat bayi sebagai berikut: a. Bayi dega berat bada bayi saat lahir lebih dari 3500 gram? b. Bayi dega berat bada bayi saat lahir atara 2500 s/d 3500 gram? c. Bayi dega berat bada bayi saat lahir 2000 s/d 2500 gram? d. Dias Kesehata di maa RS tersebut berada megataka bahwa ada sebesar 20% kelahira bayi BBLR (<2500 gram). Coba hitug apakah data RS tersebut memberika prevalesi kejadia BBLR lebih tiggi atau lebih redah dari lapora Dias Kesehata tersebut? x x x SD Hal-13 sebayak 500 kelahira hidup selama setahu terakhir di RS tersebut. Rata-rata berat bada bayi adalah 3000 gram dega simpaga baku sebesar 500 gram. Distribusi berat bada bayi megikuti distribusi ormal. Ada tertarik melihat data berat bada bayi di RS tersebut (Cotoh 1). Dega berdasarka perhituga besar sampel, Ada megambil sampel sebayak 49 kelahira hidup dari catata medis (medical record) di RS tersebut. Coba hitug berapa probabilitas Ada aka medapatka ilai rata-rata sampel Ada tersebut sebagai berikut: a. Kurag 2800 gram? b. Lebih dari 3150 gram? c. Atara 2900 gram sampai 3100 gram? d. Atara 2999 gram sampai 3001 gram (persis sama dega 3000 gram) x / x x SD / Hal-14

8 Chapter 5 Studet Lecture otes 5-8 Tiggi bada laki-laki muda berdistribusi ormal dega mea 60 ici da SD 10 ici. Suatu sampel diambil sebayak 25. Berapa kemugkia ratarata tiggi bada dari sampel tadi berkisar sbb: a. Atara 57 sampai 63 ici? b. Kurag 55 ici? x x x c. 64 ici atau lebih d. 74 ici atau lebih / SD / Hal-15 Distribusi Samplig 1 Diketahui: µ = 60 da σ=10 Sampel 25, Ditaya: P(mea atara 57 sampai 63 ici)? x = Lihat tabel arsir tegah 3 = p = (43,32%) 2 p = (43,32%) Total = (86,64%) Hal-16

9 Chapter 5 Studet Lecture otes 5-9 Populatio Proportios p Variabel Kategorik e.g.: Jeis Kelami Karakteristik proporsi populasi Estimasi proporsi sampel ps umber of successes sample size p Haya ada dua outcomes, distribusi biomial Hal-17 Proporsi Approximated by ormal distributio p 5 Mea: 1 p 5 ps Stadard error: Samplig Distributio P(p s ) p = populatio proportio p S p p 1 p p s Hal-18

10 Chapter 5 Studet Lecture otes 5-10 Proporsi ps p p S S p p 1 p p S Samplig Distributio Stadardized ormal Distributio 1 p S p S ps 0 Hal-19 Example: 200 p.4 P p S.43? ps p.43.4 S P ps.43 P P p.41.4 S 200 Samplig Distributio p S Stadardized ormal Distributio 1 ps.43 p 0.87 S Hal-20

11 Chapter 5 Studet Lecture otes 5-11 Proporsi Suatu survei di Kabupate pada tahu 2005 melaporka bahwa prevalesi Aemia pada ibu hamil adalah sebesar 40%. Ada tertarik meeliti kejadia aemia ibu hamil di kabupate tersebut. Ada mecoba megambil sampel secara acak sebayak 100 ibu hamil di Kabupate tersebut. Berapa probabilitas Ada aka medapatka bahwa ibu hamil dega aemia sebagai berikut: a. Kurag dari 35% b. Lebih dari 45% c. Atara 35% s/d 45% Bila diambil sampel secara acak sebayak 400 ibu hamil di Kabupate tersebut. Berapa probabilitas aka medapatka bahwa ibu hamil dega aemia sebagai berikut: a. Kurag dari 35% b. Lebih dari 45% c. Atara 35% s/d 45% Hal-21 Distribusi Samplig 1 Diketahui: P = 40% da 1-P = 60% Sampel 100, Ditaya (c): P (atara 35% sampai 45%)? 35 40% 45 x 2 0,35 0,40 1 1,02 0,40*(1 0,40) Lihat tabel arsir tegah 3 0,45 0,40 1 1,02 0,40*(1 0,40) p = (34,61%) 2 p = (34,61%) Total = (69,22%) Hal-22

12 Chapter 5 Studet Lecture otes 5-12 Samplig from Fiite Sample Modify stadard error if sample size () is large relative to populatio size ( ).05 or /.05 Use fiite populatio correctio factor (fpc) Stadard error with FPC P S 1 p 1 p 1 Hal-23

Pengertian Estimasi Titik. Estimasi (Pendugaan) Estimasi (Pendugaan) Estimasi (Pendugaan) Populasi dan Sampel. Mean Proporsi

Pengertian Estimasi Titik. Estimasi (Pendugaan) Estimasi (Pendugaan) Estimasi (Pendugaan) Populasi dan Sampel. Mean Proporsi Chapter 6 Studet Lecture Notes 6-1 Hal-1 Hal-2 Estimasi (Pedugaa) Estimasi (Pedugaa) TOPIK Pegertia Estimasi Estimasi titik Nilai rata-rata populasi Nilai proporsi populasi Estimasi Iterval Estimasi iterval

Lebih terperinci

Distribusi Sampling merupakan distribusi teoritis (distribusi kemungkinan) dari semua hasil sampel yang mungkin, dengan ukuran sampel yang tetap N,

Distribusi Sampling merupakan distribusi teoritis (distribusi kemungkinan) dari semua hasil sampel yang mungkin, dengan ukuran sampel yang tetap N, DISTRIBUSI SAMLING opulasi da Sampel opulasi : totalitas dari semua objek/ idividu yg memiliki karakteristik tertetu, jelas da legkap yag aka diteliti Sampel : bagia dari populasi yag diambil melalui cara-cara

Lebih terperinci

Chapter 7 Student Lecture Notes 7-1

Chapter 7 Student Lecture Notes 7-1 Chapter 7 Studet Lecture Notes 7-1 DASAR-DASAR UJI Hipotesis: Hipo (di bawah) da Tesis (peryataa yag telah diuji) Hipotesis Statistik:suatu proposisi atau aggapa megeai parameter populasi yag dapat diuji

Lebih terperinci

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL BAB VIII MASAAH ESTIMASI SAT DAN DA SAMPE 8.1 Statistik iferesial Statistik iferesial suatu metode megambil kesimpula dari suatu populasi. Ada dua pedekata yag diguaka dalam statistik iferesial. Pertama,

Lebih terperinci

Proses Pendugaan. 95% yakin bahwa diantara 40 & 60. Mean X = 50. Mean,, tdk diketahui. Contoh Prentice-Hall, Inc. Chap. 7-1

Proses Pendugaan. 95% yakin bahwa diantara 40 & 60. Mean X = 50. Mean,, tdk diketahui. Contoh Prentice-Hall, Inc. Chap. 7-1 Proses Pedugaa Populasi Mea,, tdk diketahui Cotoh Acak Mea = 50 95% yaki bahwa diatara 40 & 60. Cotoh 1999 Pretice-Hall, Ic. Chap. 7-1 Pedugaa Parameter Populasi Meduga Parameter Populasi... Mea dg Statistik

Lebih terperinci

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi.

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi. Distribusi Samplig (Distribusi Pearika Sampel). Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

BAB 7 PEN P GUJ GU IAN HIPO P T O ES T A

BAB 7 PEN P GUJ GU IAN HIPO P T O ES T A BAB 7 PENGUJIAN HIPOTESA Meguji Rata-rata µ Umpamakalah kita mempuyai sebuah populasi berdistribusi ormal dega rata-rata µ da simpaga baku σ. Aka diuji megeai parameter rata-rata µ Utuk pasaga hipotesa

Lebih terperinci

Statistika Inferensial

Statistika Inferensial Cofidece Iterval Ara Fariza Statistika Iferesial Populasi Sampel Simpulka (estimasi) tetag parameter Medapatka statistik Estimasi: estimasi titik, estimasi iterval, uji hipotesa 2 1 Proses Estimasi Populasi

Lebih terperinci

STATISTIK PERTEMUAN VIII

STATISTIK PERTEMUAN VIII STATISTIK PERTEMUAN VIII Pegertia Estimasi Merupaka bagia dari statistik iferesi Estimasi = pedugaa, atau meaksir harga parameter populasi dega harga-harga statistik sampelya. Misal : suatu populasi yag

Lebih terperinci

BAB 6: ESTIMASI PARAMETER (2)

BAB 6: ESTIMASI PARAMETER (2) Bab 6: Estimasi Parameter () BAB 6: ESTIMASI PARAMETER (). ESTIMASI PROPORSI POPULASI Proporsi merupaka perbadiga atara terjadiya suatu peristiwa dega semua kemugkiaa peritiwa yag bisa terjadi. Besara

Lebih terperinci

BAB VII RANDOM VARIATE DISTRIBUSI DISKRET

BAB VII RANDOM VARIATE DISTRIBUSI DISKRET BAB VII RANDOM VARIATE DISTRIBUSI DISKRET Diskret radom variabel dapat diguaka utuk berbagai radom umber yag diambil dalam betuk iteger. Pola kebutuha ivetori (persediaa) merupaka cotoh yag serig diguaka

Lebih terperinci

Peubah Acak. Peubah Acak Diskrit dan Distribusi Peluang. Peubah Acak. Peubah Acak

Peubah Acak. Peubah Acak Diskrit dan Distribusi Peluang. Peubah Acak. Peubah Acak Peubah Acak Peubah Acak Diskrit da Distribusi Peluag Peubah Acak (Radom Variable): Sebuah keluara umerik yag merupaka hasil dari percobaa (eksperime) Utuk setiap aggota dari ruag sampel percobaa, peubah

Lebih terperinci

Distribusi Peluang BERBAGAI MACAM DISTRIBUSI SAMPEL. Distribusi Peluang 5/6/2012

Distribusi Peluang BERBAGAI MACAM DISTRIBUSI SAMPEL. Distribusi Peluang 5/6/2012 5/6/0 Distribusi Peluag BERBAGAI MACAM DISTRIBUSI SAMPEL Distribusi peluag, P( x), adalah kumpula pasaga ilai-ilai variabel acak Cotoh: Jika dua buah koi dilempar bersamaa. Kejadia bayakya mucul agka.

Lebih terperinci

Sebaran Penarikan Contoh. Dept Statistika FMIPA IPB

Sebaran Penarikan Contoh. Dept Statistika FMIPA IPB Sebara Pearika Cotoh Dept Statistika FMIPA IPB Statistik: karakteristik umerik yag diperoleh dari data cotoh Dari sebuah populasi dapat diperoleh bayak cotoh acak. Dari setiap cotoh acak, dapat dihitug

Lebih terperinci

DISTRIBUSI SAMPLING (Distribusi Penarikan Sampel)

DISTRIBUSI SAMPLING (Distribusi Penarikan Sampel) DISTRIBUSI SAMPLING (Distribusi Pearika Sampel) I. PENDAHULUAN Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

Metode Statistika STK211/ 3(2-3)

Metode Statistika STK211/ 3(2-3) Metode Statistika STK211/ 3(2-3) Pertemua VI Sebara Pearika Cotoh Septia Rahardiatoro - STK IPB 1 Sebara Pearika Cotoh Megidetifikasi sebara suatu fugsi dari cotoh ketika diambil dari suatu populasi X

Lebih terperinci

JENIS PENDUGAAN STATISTIK

JENIS PENDUGAAN STATISTIK ENDUGAAN STATISTIK ENDAHULUAN Kosep pedugaa statistik diperluka utuk membuat dugaa dari gambara populasi. ada pedugaa statistik dibutuhka pegambila sampel utuk diaalisis (statistik sampel) yag ati diguaka

Lebih terperinci

BAB VII DISTRIBUSI SAMPLING DAN DESKRIPSI DATA

BAB VII DISTRIBUSI SAMPLING DAN DESKRIPSI DATA BAB VII DITRIBUI AMPLING DAN DEKRIPI DATA 7. Distribusi amplig (samplig distributio) amplig distributio adalah distribusi probabilitas dari suatu statistik. amplig distributio tergatug dari ukura populasi,

Lebih terperinci

x = μ...? 2 2 s = σ...? x x s = σ...?

x = μ...? 2 2 s = σ...? x x s = σ...? Pedugaa Parameter x 2 sx s = μ...? 2 = σ x...? = σ...? Peduga Parameter Peduga titik yaitu parameter populasi p diduga dega suatu besara statistik, misal: rata-rata, proporsi, ragam, dll Peduga Selag (Iterval)

Lebih terperinci

Distribusi Sampling (Distribusi Penarikan Sampel)

Distribusi Sampling (Distribusi Penarikan Sampel) Distribusi Samplig (Distribusi Pearika Sampel) 1. Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika Wed 6/0/3 ETIMAI (PENDUGAAN TATITIK) Ir. Tito Adi Dewato tatistika Deskriptif Iferesi Estimasi Uji Hipotesis Titik Retag Estimasi da Uji Hipotesis Dilakuka setelah peelitia dalam tahap pegambila suatu

Lebih terperinci

MINGGU KE-12 TEOREMA LIMIT PUSAT DAN TERAPANNYA

MINGGU KE-12 TEOREMA LIMIT PUSAT DAN TERAPANNYA MINGGU KE-12 TEOREMA LIMIT PUSAT DAN TERAPANNYA TEOREMA LIMIT PUSAT DAN TERAPANNYA Telah dikeal bahwa X 1, X 2...X sampel radom dari distribusi ormal dega mea µ da variasi σ 2, maka x µ σ/ atau xi µ σ

Lebih terperinci

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi Distribusi Samplig (Distribusi Pearika Sampel) 1. Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

Statistika Inferensia: Pendugaan Parameter. Dr. Kusman Sadik, M.Si Dept. Statistika IPB, 2015

Statistika Inferensia: Pendugaan Parameter. Dr. Kusman Sadik, M.Si Dept. Statistika IPB, 2015 Statistika Iferesia: Pedugaa Parameter Dr. Kusma Sadik, M.Si Dept. Statistika IPB, 05 Populasi : Parameter Sampel : Statistik Statistik merupaka PENDUGA bagi parameter populasi Pegetahua megeai distribusi

Lebih terperinci

Mata Kuliah: Statistik Inferensial

Mata Kuliah: Statistik Inferensial PENGUJIAN HIPOTESIS SAMPEL KECIL Prof. Dr. H. Almasdi Syahza, SE., MP Email: asyahza@yahoo.co.id DEFINISI Pegertia Sampel Kecil Sampel kecil yag jumlah sampel kurag dari 30, maka ilai stadar deviasi (s)

Lebih terperinci

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak:

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak: PENGUJIAN HIPOTESIS A. Lagkah-lagkah pegujia hipotesis Hipotesis adalah asumsi atau dugaa megeai sesuatu. Jika hipotesis tersebut tetag ilai-ilai parameter maka hipotesis itu disebut hipotesis statistik.

Lebih terperinci

DISTRIBUSI SAMPLING. Oleh : Dewi Rachmatin

DISTRIBUSI SAMPLING. Oleh : Dewi Rachmatin DISTRIBUSI SAMPLING Oleh : Dewi Rachmati Distribusi Rata-rata Misalka sebuah populasi berukura higga N dega parameter rata-rata µ da simpaga baku. Dari populasi ii diambil sampel acak berukura, jika tapa

Lebih terperinci

UKURAN LOKASI DAN DISPERSI

UKURAN LOKASI DAN DISPERSI Uiversitas Gadjah Mada Fakultas Tekik Departeme Tekik Sipil da Ligkuga UKURAN LOKASI DAN DISPERSI Statistika da Probabilitas Statistical Measures Commo statistical measures Measure of cetral tedecy Mea

Lebih terperinci

Sampling Process and Sampling Distribution Inference : Point and Interval Estimates. Pertemuan 2

Sampling Process and Sampling Distribution Inference : Point and Interval Estimates. Pertemuan 2 Samplig Process ad Samplig Distributio Iferece : Poit ad Iterval Estimates Pertemua 1 CAKUPAN MATERI: Pemahama tetag Samplig Sampel Acak Sederhaa (Simple Radom Samplig SRS) Estimasi Titik (Poit Estimatio)

Lebih terperinci

3/27/2013. Ali Muhson, M.Pd. Jenisnya. Uji Beda Rata-rata. Uji z Uji t. Uji Beda Proporsi. Uji z. (c) 2013 by Ali Muhson 2

3/27/2013. Ali Muhson, M.Pd. Jenisnya. Uji Beda Rata-rata. Uji z Uji t. Uji Beda Proporsi. Uji z. (c) 2013 by Ali Muhson 2 3/7/03 Ali Muhso, M.Pd. Jeisya Uji Beda Rata-rata Uji z Uji t Uji Beda Proorsi Uji z (c) 03 by Ali Muhso 3/7/03 Jeis Uji Beda Rata-rata dua kelomok Dua Kelomok Salig Bebas (Ideedet Samles): Uji z utuk

Lebih terperinci

BAB IV. METODE PENELITlAN. Rancangan atau desain dalam penelitian ini adalah analisis komparasi, dua

BAB IV. METODE PENELITlAN. Rancangan atau desain dalam penelitian ini adalah analisis komparasi, dua BAB IV METODE PENELITlAN 4.1 Racaga Peelitia Racaga atau desai dalam peelitia ii adalah aalisis komparasi, dua mea depede (paired sample) yaitu utuk meguji perbedaa mea atara 2 kelompok data. 4.2 Populasi

Lebih terperinci

9 Departemen Statistika FMIPA IPB

9 Departemen Statistika FMIPA IPB Supleme Resposi Pertemua ANALISIS DATA KATEGORIK (STK351 9 Departeme Statistika FMIPA IPB Pokok Bahasa Sub Pokok Bahasa Referesi Waktu Pegatar Aalisis utuk Data Respo Kategorik Data respo kategorik Sebara

Lebih terperinci

A. Pengertian Hipotesis

A. Pengertian Hipotesis PENGUJIAN HIPOTESIS A. Pegertia Hipotesis Hipotesis statistik adalah suatu peryataa atau dugaa megeai satu atau lebih populasi Ada macam hipotesis:. Hipotesis ol (H 0 ), adalah suatu hipotesis dega harapa

Lebih terperinci

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto Tue 0/04/3 ETIMAI (PENDUGAAN TATITIK) Ir. Tito Adi Dewato Estimasi : salah satu cara megemukaka peryataa iduktif (meyataka karakteristik populasi dega meggu aka karakteristik yag didapat dari cuplika).

Lebih terperinci

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan REGRESI LINIER DAN KORELASI Variabel dibedaka dalam dua jeis dalam aalisis regresi: Variabel bebas atau variabel prediktor -> variabel yag mudah didapat atau tersedia. Dapat diyataka dega X 1, X,, X k

Lebih terperinci

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI Utuk lebih memahami megeai etropi, pada bab ii aka diberika perhituga etropi utuk beberapa distribusi diskrit da kotiu. 3. Distribusi Diskrit Pada sub bab ii dibahas

Lebih terperinci

BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL)

BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) Setiap peelitia selalu berkeaa dega sekelompok data. Yag dimaksud kelompok disii adalah: Satu orag mempuyai sekelompok data, atau sekelompok orag mempuyai satu

Lebih terperinci

PENGUJIAN HIPOTESA BAB 7

PENGUJIAN HIPOTESA BAB 7 PENGUJIAN IPOTESA BAB 7 Pedahulua ipotesis ( upo : lemah, Thesis : peryataa ) Diartika :. Peryataa yag masih lemah kebearaya da perlu dibuktika. Dugaa yag sifatya masih semetara ipotesis ii perlu utuk

Lebih terperinci

III BAHAN DAN METODE PENELITIAN. memelihara itik Damiaking murni di Kampung Teras Toyib Desa Kamaruton

III BAHAN DAN METODE PENELITIAN. memelihara itik Damiaking murni di Kampung Teras Toyib Desa Kamaruton III BAHAN DAN METODE PENELITIAN 3.1 Baha da Alat Peelitia 3.1.1 Telur Tetas Itik Damiakig Baha yag diguaka dalam peelitia ii adalah telur tetas itik Damiakig berasal dari iduk yag dipelihara secara ekstesif

Lebih terperinci

Analisa Data Statistik. Ratih Setyaningrum, MT

Analisa Data Statistik. Ratih Setyaningrum, MT Aalisa Data tatistik Ratih etyaigrum, MT Referesi Agoes oehiaie, Ph.D Daftar Isi Iferesi tatistik Hipotesa tatistik : Kosep Umum Hipotesa statistik adalah sebuah klaim/peryataa atau cojecture tetag populasi.

Lebih terperinci

Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya PENS. Probability and Random Process. Topik 10. Regresi

Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya PENS. Probability and Random Process. Topik 10. Regresi Program Pasca Sarjaa Terapa Politekik Elektroika Negeri Surabaya Probability ad Radom Process Topik 10. Regresi Prima Kristalia Jui 015 1 Outlie 1. Kosep Regresi Sederhaa. Persamaa Regresi Sederhaa 3.

Lebih terperinci

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP STATISTICS Haug N. Prasetyo Week 11 PENDAHULUAN Regresi da korelasi diguaka utuk megetahui hubuga dua atau lebih kejadia (variabel) yag dapat diukur secara matematis. Ada dua hal yag diukur atau diaalisis,

Lebih terperinci

IV METODE PENELITIAN 4.1 Lokasi dan waktu 4.2. Jenis dan Sumber Data 4.3 Metode Pengumpulan Data

IV METODE PENELITIAN 4.1 Lokasi dan waktu 4.2. Jenis dan Sumber Data 4.3 Metode Pengumpulan Data IV METODE PENELITIAN 4.1 Lokasi da waktu Peelitia ii dilakuka di PD Pacet Segar milik Alm Bapak H. Mastur Fuad yag beralamat di Jala Raya Ciherag o 48 Kecamata Cipaas, Kabupate Ciajur, Propisi Jawa Barat.

Lebih terperinci

BAB V ANALISA PEMECAHAN MASALAH

BAB V ANALISA PEMECAHAN MASALAH 89 BAB V ANALISA PEMECAHAN MASALAH Dalam upaya mearik kesimpula da megambil keputusa, diperluka asumsi-asumsi da perkiraa-perkiraa. Secara umum hipotesis statistik merupaka peryataa megeai distribusi probabilitas

Lebih terperinci

Modifikasi Statistik Uji-T pada Test Inferensia Mean Mereduksi Pengaruh Keasimetrikan Populasi Menggunakan Ekspansi Cornish-Fisher

Modifikasi Statistik Uji-T pada Test Inferensia Mean Mereduksi Pengaruh Keasimetrikan Populasi Menggunakan Ekspansi Cornish-Fisher Statistika, Vol. No., 97 0 Nopember 0 Modifikasi Statistik Uji-T pada Test Iferesia Mea Mereduksi Pegaruh Keasimetrika Populasi Megguaka Ekspasi Corish-Fisher Joko Riyoo Staf.Pegajar Fakultas Tekologi

Lebih terperinci

BAB III MATERI DAN METODE. Ettawa Berdasarkan Bobot Lahir dan Bobot Sapih Cempe di Satuan Kerja

BAB III MATERI DAN METODE. Ettawa Berdasarkan Bobot Lahir dan Bobot Sapih Cempe di Satuan Kerja 8 BAB III MATERI DAN METODE Peelitia tetag Pedugaa Keuggula Pejata Kambig Peraaka Ettawa Berdasarka Bobot Lahir da Bobot Sapih Cempe di Satua Kerja Sumberejo Kedal dilakuka di Satua Kerja Sumberejo Kedal.

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN A. Tujua Peelitia Peelitia ii bertujua utuk megetahui apakah terdapat perbedaa hasil belajar atara pegguaa model pembelajara Jigsaw dega pegguaa model pembelajara Picture ad Picture

Lebih terperinci

PERTEMUAN 5-MPC 2 PRAKTIK. Oleh: Adhi Kurniawan SEKOLAH TINGGI ILMU STATISTIK

PERTEMUAN 5-MPC 2 PRAKTIK. Oleh: Adhi Kurniawan SEKOLAH TINGGI ILMU STATISTIK PERTEMUAN 5-MPC 2 PRAKTIK Oleh: Adhi Kuriawa SEKOLAH TINGGI ILMU STATISTIK Uequal Cluster Samplig Misalka satu gugus sampel yag berukura cluster yag ditarik dari N cluster secara simple radom samplig wor.

Lebih terperinci

PERTEMUAN 4-MPC 2 PRAKTIK. Oleh: Adhi Kurniawan SEKOLAH TINGGI ILMU STATISTIK

PERTEMUAN 4-MPC 2 PRAKTIK. Oleh: Adhi Kurniawan SEKOLAH TINGGI ILMU STATISTIK PERTEUAN 4-PC 2 PRAKTIK Oleh: Adhi Kuriawa SEKOLAH TINGGI ILU STATISTIK Aalysis Of Variace (ANOVA) Utuk Cluster Samplig Aova Utuk Data Sampel Source Betwee Cluster Withi Cluster Degree s of Freedom 1 (

Lebih terperinci

Distribusi Sampel, Likelihood dan Penaksir

Distribusi Sampel, Likelihood dan Penaksir BAB 1 Distribusi Sampel, Likelihood da Peaksir 1.1 Sampel Acak Misalka X 1, X 2,..., X sampel acak berukura (radom sample of size ). Fugsi peluag -variat ya adalah f X1,X 2,,X (x 1, x 2,..., x ) = f Xi

Lebih terperinci

Kuliah : Rekayasa Hidrologi II TA : Genap 2015/2016 Dosen : 1. Novrianti.,MT. Novrianti.,MT_Rekayasa Hidrologi II 1

Kuliah : Rekayasa Hidrologi II TA : Genap 2015/2016 Dosen : 1. Novrianti.,MT. Novrianti.,MT_Rekayasa Hidrologi II 1 Kuliah : Rekayasa Hidrologi II TA : Geap 2015/2016 Dose : 1. Novriati.,MT 1 Materi : 1.Limpasa: Limpasa Metoda Rasioal 2. Uit Hidrograf & Hidrograf Satua Metoda SCS Statistik Hidrologi Metode Gumbel Metode

Lebih terperinci

Pertemuan Ke-11. Teknik Analisis Komparasi (t-test)_m. Jainuri, M.Pd

Pertemuan Ke-11. Teknik Analisis Komparasi (t-test)_m. Jainuri, M.Pd Pertemua Ke- Komparasi berasal dari kata compariso (Eg) yag mempuyai arti perbadiga atau pembadiga. Tekik aalisis komparasi yaitu salah satu tekik aalisis kuatitatif yag diguaka utuk meguji hipotesis tetag

Lebih terperinci

Pendugaan Parameter. Debrina Puspita Andriani /

Pendugaan Parameter. Debrina Puspita Andriani    / Pedugaa Parameter 7 Debria Puspita Adriai E-mail : debria.ub@gmail.com / debria@ub.ac.id Outlie Pedahulua Pedugaa Titik Pedugaa Iterval Pedugaa Parameter: Kasus Sampel Rataa Populasi Pedugaa Parameter:

Lebih terperinci

BAB III METODE PENELITIAN Penelitian ini dilakukan di kelas X SMA Muhammadiyah 1 Pekanbaru. semester ganjil tahun ajaran 2013/2014.

BAB III METODE PENELITIAN Penelitian ini dilakukan di kelas X SMA Muhammadiyah 1 Pekanbaru. semester ganjil tahun ajaran 2013/2014. BAB III METODE PENELITIAN A. Waktu da Tempat Peelitia Peelitia dilaksaaka dari bula Agustus-September 03.Peelitia ii dilakuka di kelas X SMA Muhammadiyah Pekabaru semester gajil tahu ajara 03/04. B. Subjek

Lebih terperinci

TINJAUAN PUSTAKA Pengertian

TINJAUAN PUSTAKA Pengertian TINJAUAN PUSTAKA Pegertia Racaga peelitia kasus-kotrol di bidag epidemiologi didefiisika sebagai racaga epidemiologi yag mempelajari hubuga atara faktor peelitia dega peyakit, dega cara membadigka kelompok

Lebih terperinci

Distribusi Pendekatan (Limiting Distributions)

Distribusi Pendekatan (Limiting Distributions) Distribusi Pedekata (Limitig Distributios) Ada 3 tekik utuk meetuka distribusi pedekata: 1. Tekik Fugsi Distribusi Cotoh 2. Tekik Fugsi Pembagkit Mome Cotoh 3. Tekik Teorema Limit Pusat Cotoh Fitriai Agustia,

Lebih terperinci

Statistika dibagi menjadi dua, yaitu: 1. Statistika Deskriftif 2. Statistik Inferensial Penarikan kesimpulan dapat dilakukan dengan dua cara, yaitu:

Statistika dibagi menjadi dua, yaitu: 1. Statistika Deskriftif 2. Statistik Inferensial Penarikan kesimpulan dapat dilakukan dengan dua cara, yaitu: Peaksira Parameter Statistika dibagi mejadi dua yaitu:. Statistika Deskriftif 2. Statistik Iferesial Pearika kesimpula dapat dilakuka dega dua cara yaitu:. Peaksira Parameter 2. Pegujia Hipotesis Peaksira

Lebih terperinci

III. METODOLOGI PENELITIAN. diinginkan. Menurut Arikunto (1991 : 3) penelitian eksperimen adalah suatu

III. METODOLOGI PENELITIAN. diinginkan. Menurut Arikunto (1991 : 3) penelitian eksperimen adalah suatu III. METODOLOGI PENELITIAN A. Metode Peelitia Metode peelitia merupaka suatu cara tertetu yag diguaka utuk meeliti suatu permasalaha sehigga medapatka hasil atau tujua yag diigika. Meurut Arikuto (99 :

Lebih terperinci

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu BAB 4 UKURAN PENYEBARAN DATA Pada Bab sebelumya kita telah mempelajari beberapa ukura pemusata data, yaitu ukura yag memberika iformasi tetag bagaimaa data-data ii megumpul atau memusat Pada bagia Bab

Lebih terperinci

III. BAHAN DAN METODE. Penelitian ini dilaksanakan pada bulan April 2014 di BBPTU-HPT Baturraden,

III. BAHAN DAN METODE. Penelitian ini dilaksanakan pada bulan April 2014 di BBPTU-HPT Baturraden, III. BAHAN DAN METODE A. Waktu da Tempat Peelitia Peelitia ii dilaksaaka pada bula April 014 di BBPTU-HPT Baturrade, Purwokerto. B. Baha da Alat Peelitia Baha peelitia ii yaitu rekordig produksi susu laktasi

Lebih terperinci

BAB 2 TINJAUAN TEORI

BAB 2 TINJAUAN TEORI BAB 2 TINJAUAN TEORI 2.1 ISTILAH KEENDUDUKAN 2.1.1 eduduk eduduk ialah orag atatu idividu yag tiggal atau meetap pada suatu daerah tertetu dalam jagka waktu yag lama. 2.1.2 ertumbuha eduduk ertumbuha peduduk

Lebih terperinci

Penyelesaian: Variables Entered/Removed a. a. Dependent Variable: Tulang b. All requested variables entered.

Penyelesaian: Variables Entered/Removed a. a. Dependent Variable: Tulang b. All requested variables entered. 2. Pelajari data dibawah ii, tetuka depede da idepede variabel serta : a) Hitug Sum of Square for Regressio (X) b) Hitug Sum of Square for Residual c) Hitug Meas Sum of Square for Regressio (X) d) Hitug

Lebih terperinci

Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai

Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai PENGUJIAN HIPOTESIS Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai ilai-ilai parameter populasi,

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di SMA Negeri 1 Way Jepara Kabupaten Lampung Timur

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di SMA Negeri 1 Way Jepara Kabupaten Lampung Timur III. METODOLOGI PENELITIAN A. Lokasi da Waktu Peelitia Peelitia ii dilakuka di SMA Negeri Way Jepara Kabupate Lampug Timur pada bula Desember 0 sampai dega Mei 03. B. Populasi da Sampel Populasi dalam

Lebih terperinci

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI IPA SMA Negeri I

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI IPA SMA Negeri I 7 III. METODOLOGI PENELITIAN A. Populasi da Sampel Peelitia Populasi dalam peelitia ii adalah semua siswa kelas XI IPA SMA Negeri I Kotaagug Tahu Ajara 0-03 yag berjumlah 98 siswa yag tersebar dalam 3

Lebih terperinci

SEBARAN t dan SEBARAN F

SEBARAN t dan SEBARAN F SEBARAN t da SEBARAN F 1 Tabel uji t disebut juga tabel t studet. Sebara t pertama kali diperkealka oleh W.S. Gosset pada tahu 1908. Saat itu, Gosset bekerja pada perusahaa bir Irladia yag melarag peerbita

Lebih terperinci

MODUL BEBERAPA MACAM SEBARAN TEORITIS

MODUL BEBERAPA MACAM SEBARAN TEORITIS BEBERAPA MACAM SEBARAN TEORITIS MODUL 7 BEBERAPA MACAM SEBARAN TEORITIS Pedahulua Dibedaka sebara probabilitas yag diskrit dega sebara yag kotiyu Keduaya bukalah sebara yag berasal dari pegalama, melaika

Lebih terperinci

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X Pedugaa Selag: Metode Pivotal Lagkah-lagkahya 1. Adaika X1, X,..., X adalah cotoh acak dari populasi dega fugsi kepekata f( x; ), da parameter yag tidak diketahui ilaiya. Adaika T adalah peduga titik bagi..

Lebih terperinci

III BAHAN DAN METODE PENELITIAN

III BAHAN DAN METODE PENELITIAN 27 III BAHAN DAN METODE PENELITIAN 3.1 Baha Peelitia 3.1.1 Objek Peelitia Objek yag diguaka dalam peelitia ii adalah kuda Sumba (Sadelwood) betia da jata berjumlah 30 ekor dega umur da berat yag relatif

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. Sebagai hasil penelitian dalam pembuatan modul Rancang Bangun

BAB IV HASIL DAN PEMBAHASAN. Sebagai hasil penelitian dalam pembuatan modul Rancang Bangun 47 BAB IV HASIL DAN PEMBAHASAN Sebagai hasil peelitia dalam pembuata modul Racag Bagu Terapi Ifra Merah Berbasis ATMega8 dilakuka 30 kali pegukura da perbadiga yaitu pegukura timer/pewaktu da di badigka

Lebih terperinci

Haryoso Wicaksono, S.Si., M.M., M.Kom. 8

Haryoso Wicaksono, S.Si., M.M., M.Kom. 8 Seragam (Uiform) [D1] : Fugsi probabilita Uiform utuk semua ilai. Dimaa merupaka bayakya 1 f ( ) obyek da diasumsika memiliki sifat yag sama. Biomial [D2] : Sifat percobaa Biomial : Percobaa dilakuka dalam

Lebih terperinci

Statistika MAT 2 A. PENDAHULUAN NILAI MATEMATIKA B. PENYAJIAN DATA NILAI MATEMATIKA NILAI MATEMATIKA STATISTIKA. materi78.co.nr

Statistika MAT 2 A. PENDAHULUAN NILAI MATEMATIKA B. PENYAJIAN DATA NILAI MATEMATIKA NILAI MATEMATIKA STATISTIKA. materi78.co.nr materio.r Statistika A. PENDAHULUAN Statistika adalah ilmu yag mempelajari pegambila, peyajia, pegolaha, da peafsira data. Data terdiri dari dua jeis, yaitu data kualitatif (sifat) da data kuatitatif (agka).

Lebih terperinci

STATISTIKA SMA (Bag.1)

STATISTIKA SMA (Bag.1) SMA - STATISTIKA SMA (Bag. A. DATA TUNGGAL. Ukura Pemusata : Terdapat ilai statistika yag dapat dimiliki oleh sekumpula data yag diperoleh yaitu : a. Rata-rata Rata-rata jumlah seluruh data bayakya data

Lebih terperinci

BAB IV ANALISIS HIDROLOGI DAN PERHITUNGANNYA

BAB IV ANALISIS HIDROLOGI DAN PERHITUNGANNYA BAB IV ANALII HIDROLOGI DAN PERHITUNGANNYA 4.1. TINJAUAN UMUM Dalam merecaaka ormalisasi sugai, aalisis yag petig perlu ditijau adalah aalisis hidrologi. Aalisis hidrologi diperluka utuk meetuka besarya

Lebih terperinci

MATERI DAN METODE. Penelitian ini telah dilakukan selama 1 bulan, dimulai pada awal bulan

MATERI DAN METODE. Penelitian ini telah dilakukan selama 1 bulan, dimulai pada awal bulan III. MATERI DAN METODE 3.. Tempat da Waktu Peelitia ii telah dilakuka selama bula, dimulai pada awal bula eptember 03 di Kecamata Kuala Kampar Kabupate Pelalawa Provisi Riau. 3.. Materi Peelitia Baha yag

Lebih terperinci

Pemilihan Model Terbaik

Pemilihan Model Terbaik Pemiliha Model Terbaik Hazmira Yozza Jur. Matematika FMIPA Uiv. Adalas Jadi bayak model yag mugki dibetuk Var. Bebas :,, 3 Model Maa Yag Mampu Mewakili Data 3,, 3, 3,, 3 + model akar, log, hasil kali,

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Lokasi da objek peelitia Lokasi peelitia dalam skripsi ii adalah area Kecamata Pademaga, alasa dalam pemiliha lokasi ii karea peulis bertempat tiggal di lokasi tersebut sehigga

Lebih terperinci

MODUL BEBERAPA MACAM SEBARAN TEORITIS BEBERAPA MACAM SEBARAN TEORITIS

MODUL BEBERAPA MACAM SEBARAN TEORITIS BEBERAPA MACAM SEBARAN TEORITIS MODUL 7 BEBERAPA MACAM SEBARAN TEORITIS Pedahulua Dibedaka sebara probabilitas yag diskrit dega sebara yag kotiyu Keduaya bukalah sebara yag berasal dari pegalama, melaika berasal dari pertimbaga-pertimbaga

Lebih terperinci

BAB 5 UKURAN DISPERSI

BAB 5 UKURAN DISPERSI BAB 5 UKURAN DISPERSI A. Ukura Dispersi Meurut Hasa (011 : 101) ukura dispersi atau ukura variasi atau ukura peyimpaga adalah ukura yag meyataka seberapa jauh peyimpaga ilai-ilai data dari ilai-ilai pusatya

Lebih terperinci

BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan

BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan BAB III METODE PENELITAN. Tempat Da Waktu Peelitia Peelitia dilakuka di SMP Negeri Batudaa Kab. Gorotalo dega subject Peelitia adalah siswa kelas VIII. Pemiliha SMP Negeri Batudaa Kab. Gorotalo. Adapu

Lebih terperinci

Penarikan Sampel Acak Sederhana

Penarikan Sampel Acak Sederhana Tekik Samplig Pearika Sampel Acak Sederhaa Hazmira Yozza- Jur. Matematika Uad 17/11/014 Tujua Pearika Sampel Megambil kesimpula megeai populasi berdasarka iformasi yag terkadug pada sampel Ukura sampel

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN A. Subjek Peelitia Peelitia ii dilaksaaka di kawasa huta magrove, yag berada pada muara sugai Opak di Dusu Baros, Kecamata Kretek, Kabupate Batul. Populasi dalam peelitia ii adalah

Lebih terperinci

Pendugaan Parameter. Selang Kepercayaan = Konfidensi Interval = Confidence Interval

Pendugaan Parameter. Selang Kepercayaan = Konfidensi Interval = Confidence Interval Pedugaa Parameter. Pedahulua Pedugaa Parameter Popoulai dilakuka dega megguaka ilai Statitik Sampel Mial :. x diguaka ebagai peduga bagi. diguaka ebagai peduga bagi 3. p atau p diguaka ebagai peduga bagi

Lebih terperinci

1. Pendahuluan. Materi 3 Pengujuan Hipotesis

1. Pendahuluan. Materi 3 Pengujuan Hipotesis Materi 3 Pegujua Hiotesis. Pedahulua Hiotesis eryataa yag meruaka edugaa berkaita dega ilai suatu arameter oulasi (satu atau lebih oulasi) Kebeara suatu hiotesis diuji dega megguaka statistik samel hiotesis

Lebih terperinci

mempunyai sebaran yang mendekati sebaran normal. Dalam hal ini adalah PKM (penduga kemungkinan maksimum) bagi, ˆ ˆ adalah simpangan baku dari.

mempunyai sebaran yang mendekati sebaran normal. Dalam hal ini adalah PKM (penduga kemungkinan maksimum) bagi, ˆ ˆ adalah simpangan baku dari. Selag Kepercayaa Cotoh Besar Jika ukura cotoh (sample size) besar, maka meurut Teorema Limit Pusat, bayak statistik megikuti/mempuyai sebara yag medekati ormal (dapat diaggap ormal). Artiya jika adalah

Lebih terperinci

A. PENGERTIAN DISPERSI

A. PENGERTIAN DISPERSI UKURAN DISPERSI A. PENGERTIAN DISPERSI Ukura diperi atau ukura variai atau ukura peyimpaga adalah ukura yag meyataka eberapa jauh peyimpaga ilai-ilai data dari ilaiilai puatya atau ukura yag meyataka eberapa

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang. Universitas Sumatera Utara

BAB I PENDAHULUAN. 1.1 Latar Belakang. Universitas Sumatera Utara BAB I PENDAHULUAN 1.1 Latar Belakag Salah satu pera da fugsi statistik dalam ilmu pegetahua adalah sebagai. alat aalisis da iterpretasi data kuatitatif ilmu pegetahua, sehigga didapatka suatu kesimpula

Lebih terperinci

UKURAN PEMUSATAN UKURAN PENYEBARAN

UKURAN PEMUSATAN UKURAN PENYEBARAN UKURAN PEMUSATAN DATA TUNGGAL DATA KELOMPOK. MEAN / RATA-RATA. MODUS 3. MEDIAN 4. KUARTIL. MEAN / RATA-RATA. MODUS 3. MEDIAN 4. KUARTIL UKURAN PENYEBARAN JANGKAUAN HAMPARAN RAGAM / VARIANS SIMPANGAN BAKU

Lebih terperinci

: XII (Dua Belas) Semua Program Studi. : Gisoesilo Abudi, S.Pd

: XII (Dua Belas) Semua Program Studi. : Gisoesilo Abudi, S.Pd R e f r e s h Program Diklat K e l a s M a t e r i Pegajar : M A T E M A T I K A : XII (Dua Belas) Semua Program Studi : S t a t i s t i k a : Gisoesilo Abudi, S.Pd Kajia Materi Peyampaia Data Diagram

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini dilaksanakan di halaman Pusat Kegiatan Olah Raga (PKOR) Way Halim Bandar Lampung pada bulan Agustus 2011.

III. METODE PENELITIAN. Penelitian ini dilaksanakan di halaman Pusat Kegiatan Olah Raga (PKOR) Way Halim Bandar Lampung pada bulan Agustus 2011. III. METODE PENELITIAN A. Tempat da Waktu Peelitia Peelitia ii dilaksaaka di halama Pusat Kegiata Olah Raga (PKOR) Way Halim Badar Lampug pada bula Agustus 2011. B. Objek da Alat Peelitia Objek peelitia

Lebih terperinci

BAB 3 METODE PENELITIAN

BAB 3 METODE PENELITIAN BAB 3 METODE PENELITIAN 3.1 Metode Pegumpula Data Dalam melakuka sebuah peelitia dibutuhka data yag diguaka sebagai acua da sumber peelitia. Disii peulis megguaka metode yag diguaka utuk melakuka pegumpula

Lebih terperinci

Ukuran Pemusatan. Pertemuan 3. Median. Quartil. 17-Mar-17. Modus

Ukuran Pemusatan. Pertemuan 3. Median. Quartil. 17-Mar-17. Modus -Mar- Ukura Pemusata Pertemua STATISTIKA DESKRIPTIF Statistik deskripti adalah pegolaha data utuk tujua medeskripsika atau memberika gambara terhadap obyek yag diteliti dega megguaka sampel atau populasi.

Lebih terperinci

PERCOBAAN 4 VARIABEL ACAK DAN DISTRIBUSI PROBABILITASNYA

PERCOBAAN 4 VARIABEL ACAK DAN DISTRIBUSI PROBABILITASNYA PERCOBAAN 4 VARIABEL ACAK DAN DISTRIBUSI PROBABILITASNYA 4.. Tujua : Setelah melaksaaka praktikum ii mahasiswa diharapka mampu : Membedaka data berdasarka jeis variabelya Mapatka mea da varias dari distribusi

Lebih terperinci

PENAKSIRAN. Penaksiran Titik. Selang Kepercayaan untuk VARIANSI. MA2181 ANALISIS DATA Utriweni Mukhaiyar 17 Oktober 2011

PENAKSIRAN. Penaksiran Titik. Selang Kepercayaan untuk VARIANSI. MA2181 ANALISIS DATA Utriweni Mukhaiyar 17 Oktober 2011 PENAKSIRAN Peaksira Titik Peaksira Selag Selag Kepercayaa utuk RATAAN Selag Kepercayaa utuk VARIANSI MA8 ANALISIS DATA Utriwei Mukhaiyar 7 Oktober 0 Metode Peaksira Peaksira Titik Peaksira Selag Nilai

Lebih terperinci

METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc.

METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc. METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/0 SUGENG00 Copyright 996-98 Dale Caregie & Associates, Ic. Kesalaha ERROR: Selisih atara ilai perkiraa dega ilai eksakilai

Lebih terperinci

III BAHAN DAN METODE PENELITIAN. Ternak yang digunakan dalam penelitian ini adalah kuda berjumlah 25

III BAHAN DAN METODE PENELITIAN. Ternak yang digunakan dalam penelitian ini adalah kuda berjumlah 25 18 III BAHAN DAN METODE PENELITIAN 3.1 Baha Peelitia 3.1.1 Objek Peelitia Terak yag diguaka dalam peelitia ii adalah kuda berjumlah 25 ekor terdiri dari 5 jata da 20 betia dega umur berkisar atara 10 15

Lebih terperinci

Pedahulua Pedugaa Parameter Pedugaa Parameter Populai dilakuka dega megguaka ilai Statitik Sampel, Mial :. x diguaka ebagai peduga bagi µ. diguaka ebagai peduga bagi σ 3. p atau p$ diguaka ebagai peduga

Lebih terperinci

1 n MODUL 5. Peubah Acak Diskret Khusus

1 n MODUL 5. Peubah Acak Diskret Khusus ODUL 5 Peubah Acak Diskret Khusus Terdapat beberapa peubah acak diskret khusus yag serig mucul dalam aplikasi. Peubah Acak Seragam ( Uiform) Bila X suatu peubah acak diskret dimaa setiap eleme dari X mempuyai

Lebih terperinci

1 Departemen Statistika FMIPA IPB

1 Departemen Statistika FMIPA IPB Supleme Resposi Pertemua ANALISIS DATA KATEGORIK (STK351) 1 Departeme Statistika FMIPA IPB Pokok Bahasa Sub Pokok Bahasa Referesi Waktu Metode Noparametrik Skala Pegukura Metode Noparameterik Uji Hipotesis

Lebih terperinci

Jika dibandingkan dengan bulan sebelumnyakenaikan curah hujan terbesar terjadi pada bulan A. Oktober D. Januari B. November E. Februari C.

Jika dibandingkan dengan bulan sebelumnyakenaikan curah hujan terbesar terjadi pada bulan A. Oktober D. Januari B. November E. Februari C. Page of. Diatara data berikut, yag merupaka data kualitatif adalah Tiggi hotel-hotel di Yogyakarta B. Bayakya mobil yag melewati jala Mawar C. Kecepata sepeda motor per jam D. Luas huta di Sumatra E. Meigkatya

Lebih terperinci