Metode Statistika Pertemuan XII. Analisis Korelasi dan Regresi

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Metode Statistika Pertemuan XII. Analisis Korelasi dan Regresi"

Transkripsi

1 Metode Statstka Pertemua XII Aalss Korelas da Regres

2 Aalss Hubuga Jes/tpe hubuga Ukura Keterkata Skala pegukura varabel Pemodela Keterkata

3 Relatoshp vs Causal Relatoshp Tdak semua hubuga (relatoshp) berupa hubuga sebab-akbat Peetua suatu hubuga bersfat sebab-akbat memerluka well-argued posto dar bdag lmu terkat

4 Alat Aalss Keterkata Dtetuka oleh: 1. Skala pegukura data/varabel 2. Jes hubuga atar varabel Relatoshp Numerk Kategork Numerk Korelas Pearso, Spearma Tabel Rgkasa Kategork Tabel Rgkasa Spearma (ordal), Ch Square Causal relatoshp Y X Numerk Kategork Numerk Regres Ler ANOVA Kategork Regres Logstk Regres Logstk

5 Apa tu aalss regres? Apa bedaya dega korelas? Aalss Regres Aalss statstka yag memafaatka hubuga atara dua atau lebh peubah kuattatf sehgga salah satu peubah dapat dramalka dar peubah laya. Korelas megukur keerata HUBUNGAN LINEAR dar dua varabel

6 Korelas

7

8 Korelas r = 1 r = 0 r = 0 r = 0

9 Korelas

10 Koefse Korelas tdak meggambarka hubuga sebab akbat laya berksar atara -1 da 1 tada (+) / (-) arah hubuga (+) searah; (-) beralawaa arah Pearso s Coef of Correlato lear relatoshp Spearma Coef of Correlato (rak correlato) tred relatoshp

11 Koefse Korelas Pearso (r) 1 ) ( da 1 ) ( ) )( ( 2 2 y y S x x S y x y x y y x x S S S S r y x xy y x xy xy

12 Korelas!!!

13 Aalss Regres

14 Defs Lear : lear dalam parameter Sederhaa : haya satu peubah pejelas Bergada : lebh dar satu peubah pejelas

15 Regres Lear lear Hubuga parameter satu Smple Lear Regresso Peubah pejelas Multple Lear Regresso > satu o lear Regres o lear

16 ANALISIS REGRESI Hubuga Atar Peubah: Fugsoal (determstk) Y=f(X) ; msalya: Y=10X Statstk (stokastk) amata tdak jatuh pas pada kurva Ms: IQ vs Prestas, Berat vs Tgg, Doss Pupuk vs Produks Model regres lear sederhaa: Y 0 1 X ; 1,2,...,

17 Regres Maka 0 & 1? 0 adalah la Y ketka X = 0, sedagka 1 adalah perubaha la Y utuk setap perubaha 1 satua X.

18 Regres

19 Aalss Regres Pedugaa terhadap koefse regres: b 0 peduga bag 0 da b 1 peduga bag 1 b b 1 0 y xy b 1 x x 2 ( ( x)( x) Bagamaa Peguja terhadap model regres?? parsal (per koefse) uj-t bersama uj-f (Aova) 2 y) Metode Kuadrat Terkecl Bagamaa mela kesesuaa model?? R 2 (Koef. Determas: % keragama Y yag mampu djelaska oleh X)

20 Koefse Determas R 2 b 1 S S JK(Re gres) x 100% JK( Total) yy xy x 100% Koefse determas sebesar 80% mejelaska bahwa sebesar 80% keragama dar Y dapat djelaska oleh Xdalam hubuga ler, ssaya oleh faktor-faktor la

21 catata Y Syy Y X Sxx X X Y Sxy X Y Keteraga : Syy = Jumlah Kuadrat Terkoreks varabel Y Sxx = Jumlah Kuadrat Terkoreks varabel X Sxy = Jumlah Kuadrat Terkoreks varabel XY

22 Metoda Kuadrat Terkecl Pedugaa parameter pada regres ddapat dega memmumka jumlah kuadrat galat.

23 Keragama yag dapat djelaska da yag tdak dapat djelaska

24 Cotoh Data Percobaa dalam bdag lgkuga Apakah semak tua mobl semak besar juga ems HC yag dhaslka? Dambl cotoh 10 mobl secara acak, kemuda dcatat jarak tempuh yag sudah djala mobl (dalam rbu klometer) da dukur Ems HC-ya (dalam ppm) Jarak Ems Ems = Jarak

25 Aalss Regres Plot atara Ems Hc (ppm) dg Jarak Tempuh Mobl (rbu klometer) Ems Jarak

26 Aalss Regres Cotoh output regres dega Mtab (1) Regresso Aalyss (Ems Hc vs Jarak Tempuh Mobl) The regresso equato s Ems = Jarak Predctor Coef StDev T P Costat Jarak S = R-Sq = 90.3% R-Sq(adj) = 89.1% Aalyss of Varace Source DF SS MS F P Regresso Error Total Uusual Observatos Obs Jarak Ems Ft StDev Ft Resdual St Resd R R deotes a observato wth a large stadardzed resdual

27 Aalss Regres Bagamaa Peguja terhadap model regres?? parsal (per koefse) uj-t bersama uj-f (Aova) Bagamaa mela kesesuaa model?? R 2 Koef. Determas (% keragama Y yag mampu djelaska oleh X)

28 Uj Hpotess (Smulta) H 0 : 1 =0 vs H 1 : 1 0 ANOVA (Aalyss of Varace) Uj F 1 ( y y ) 2 1 ( yˆ y) 2 1 ( y yˆ ) 2 JK total = JK regres + JK galat Keragama total = keragama yag dapat djelaska oleh model + keragama yag tdak dapat djelaska oleh model Aova Sumber db JK KT F Regres 1 JKR KTR KTR/KTE Galat - 2 JKG KTG Total - 1 JKT F ~ F (1,-2)

29 JK(Regres) b 1 S JK Total Catata S yy JKG JK Total JK(Regres) xy KT (Regres) JK(Regres) db (Regres) KTG JKG db (G)

30 Uj Hpotess (parsal) H 0 : 1 0 vs H 1 : 1 >0 H 0 : 1 0 vs H 1 : 1 <0 atau atau Satu arah H 0 : 1 =0 vs H 1 : 1 0 dua arah Uj Parsal Statstk uj: T S b 1 b S 1 b 1 s ( ) KTG 2 x x Sxx 2 ( y ˆ y ) S yy b1 S s KTG 2 2 xy

31 Uj Parsal (lajuta) Krtera Peolaka da Peermaa H 0 : (tergatug H1) Tolak Hpotess Nol (H 0 ) jka : thtug > t(, -2) atau Tolak Hpotess Nol (H 0 ) jka : thtug < - t(, -2) atau Tolak Hpotess Nol (H 0 ) jka : thtug > t(/2, -2)

32 Dskus (1) Berapa ems HC yag dhaslka jka jarak tempuh sektar 70 rbu km? 759,3 ppm Berapa ems HC yag dhaslka jka jarak tempuh sektar 110 rbu km? apakah hasl dugaa vald? Keapa? 974,9 ppm

33 Dskus (2) Berapa ems HC yag dhaslka jka jarak tempuh sektar 70 rbu km? Tetuka selag kepercayaa 95% bag ems HC jka waktu tempuhya sektar 70 rbu km? predctcto terval Tetuka selag kepercayaa 95% bag rata-rata ems HC jka waktu tempuhya sektar 70 rbu km? cofdece terval Lebh lebar maa selag terval atara predcto tervaldega cofdece terval? Keapa?

34 Ftted Le Plot Ems = Jarak Regresso 95% CI 95% PI S R-Sq 90.3% R-Sq(adj) 89.1% Ems Jarak

35 Dskus (3) Tetuka formula utuk predcto terval da cofdece terval!

36 Keterbatasa Korelas da Regres Lear Korelas da Regres Lear haya meggambarka hubuga yag lear Korelas da metode kuadrat terkecl pada regres lear tdak resste terhadap pecla Predks d luar selag la X tdak dperkeaka karea kurag akurat Hubuga atara dua varabel bsa dpegaruh oleh varabel la d luar model

37 All models are wrog, but some are useful (G. E. P. Box)

Analisis Regresi dan Korelasi

Analisis Regresi dan Korelasi Metode Statstka Pertemua III Aalss Regres da Korelas Pegatar Apa tu aalss regres? Apa edaya dega korelas? Aalss Regres Aalss statstka yag memafaatka huuga atara dua atau leh peuah kuattatf sehgga salah

Lebih terperinci

BAB 5. ANALISIS REGRESI DAN KORELASI

BAB 5. ANALISIS REGRESI DAN KORELASI BAB 5. ANALISIS REGRESI DAN KORELASI Tujua utama aalss regres adalah mecar ada tdakya hubuga ler atara dua varabel: Varabel bebas (X), yatu varabel yag mempegaruh Varabel terkat (Y), yatu varabel yag dpegaruh

Lebih terperinci

ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas:

ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas: ANALISIS REGRESI Pedahulua Aalss regres berkata dega stud megea ketergatuga satu peubah (peubah terkat) terhadap satu atau lebh peubah laya (peubah pejelas). Jka Y dumpamaka sebaga peubah terkat da X1,X,...,X

Lebih terperinci

11/10/2010 REGRESI LINEAR SEDERHANA DAN KORELASI TUJUAN

11/10/2010 REGRESI LINEAR SEDERHANA DAN KORELASI TUJUAN // REGRESI LINEAR SEDERHANA DAN KORELASI. Model Regres Lear. Peaksr Kuadrat Terkecl 3. Predks Nla Respos 4. Iferes Utuk Parameter-parameter Regres 5. Kecocoka Model Regres 6. Korelas Utrwe Mukhayar MA

Lebih terperinci

Metode Statistika Pertemuan XII. Analisis Korelasi dan Regresi

Metode Statistika Pertemuan XII. Analisis Korelasi dan Regresi Metode Statistika Pertemuan XII Analisis Korelasi dan Regresi Analisis Hubungan Jenis/tipe hubungan Ukuran Keterkaitan Skala pengukuran variabel Pemodelan Keterkaitan Relationship vs Causal Relationship

Lebih terperinci

Regresi Linier Sederhana Definisi Pengaruh

Regresi Linier Sederhana Definisi Pengaruh Regres Ler Sederhaa Dah Idra Baga Bostatstka da Kepeduduka Fakultas Kesehata Masyarakat Uverstas Arlagga Defs Pegaruh Jka terdapat varabel, msalka da yag data-dataya dplot sepert gambar dbawah 3 Defs Pegaruh

Lebih terperinci

BAB 2 LANDASAN TEORI. Istilah regresi pertama kali diperkenalkan oleh Francis Galton. Menurut Galton,

BAB 2 LANDASAN TEORI. Istilah regresi pertama kali diperkenalkan oleh Francis Galton. Menurut Galton, BAB LANDASAN TEORI Pegerta Regres Istlah regres pertama kal dperkealka oleh Fracs Galto Meurut Galto, aalss regres berkeaa dega stud ketergatuga dar suatu varabel yag dsebut varabel tak bebas (depedet

Lebih terperinci

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai BAB LANDASAN TEORI. Kosep Dasar Aalss Regres Aalss regres regressso aalyss merupaka suatu tekk utuk membagu persamaa da megguaka persamaa tersebut utuk membuat perkraa predcto. Dega demka, aalss regres

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu.

BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu. BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa yag varabel bebasya ( berpagkat palg tgg satu. Utuk regres ler sederhaa, regres ler haya melbatka dua varabel ( da. Persamaa regresya dapat dtulska

Lebih terperinci

Regresi & Korelasi Linier Sederhana. Gagasan perhitungan ditetapkan oleh Sir Francis Galton ( )

Regresi & Korelasi Linier Sederhana. Gagasan perhitungan ditetapkan oleh Sir Francis Galton ( ) Regres & Korelas Ler Sederhaa 1. Pedahulua Gagasa perhtuga dtetapka oleh Sr Fracs Galto (18-1911) Persamaa regres :Persamaa matematk yag memugkka peramala la suatu peubah takbebas (depedet varable) dar

Lebih terperinci

Analisis Korelasi dan Regresi

Analisis Korelasi dan Regresi Aalss Korelas da Regres Hazmra Yozza Izzat Rahm HG Jurusa Matematka FMIPA Uad LOGO www.themegaller.com LOGO Data varat Data dega dua varael Terhadap satu pegamata dlakuka pegukurapegamata terhadap varael

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa merupaka baga regres yag mecakup hubuga ler satu peubah acak tak bebas dega satu peubah bebas. Hubuga ler da dar satu populas dsebut gars regres

Lebih terperinci

LANGKAH-LANGKAH UJI HIPOTESIS DENGAN 2 (Untuk Data Nominal)

LANGKAH-LANGKAH UJI HIPOTESIS DENGAN 2 (Untuk Data Nominal) LANGKAH-LANGKAH UJI HIPOTESIS DENGAN (Utuk Data Nomal). Merumuska hpotess (termasuk rumusa hpotess statstk). Data hasl peelta duat dalam etuk tael slag (tael frekues oservas) 3. Meetuka krtera uj atau

Lebih terperinci

Regresi & Korelasi Linier Sederhana

Regresi & Korelasi Linier Sederhana Regres & Korelas Ler Sederhaa. Pedahulua Gagasa perhtuga dtetapka oleh Sr Fracs Galto (8-9) Persamaa regres :Persamaa matematk ag memugkka peramala la suatu peubah takbebas (depedet varable) dar la peubah

Lebih terperinci

Penarikan Contoh Gerombol (Cluster Sampling) Departemen Statistika FMIPA IPB

Penarikan Contoh Gerombol (Cluster Sampling) Departemen Statistika FMIPA IPB Pearka Cotoh Gerombol (Cluster Samplg) Departeme Statstka FMIPA IPB Radom samplg (Revew) Smple radom samplg Stratfed radom samplg Rato, regresso, ad dfferece estmato Systematc radom samplg Cluster radom

Lebih terperinci

Uji Statistika yangb digunakan dikaitan dengan jenis data

Uji Statistika yangb digunakan dikaitan dengan jenis data Uj Statstka yagb dguaka dkata dega jes data Jes Data omal Ordal Iterval da Raso Uj Statstka Koefse Kotges Rak Spearma Kedall Tau Korelas Parsal Kedall Tau Koefse Kokordas Kedall W Pearso Korelas Gada Korelas

Lebih terperinci

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu KORELASI 1 D dua kta tdak dapat hdup sedr, tetap memerluka hubuga dega orag la. Hubuga tu pada umumya dlakuka dega maksud tertetu sepert medapat kergaa pajak, memperoleh kredt, memjam uag, serta mta pertologa/batua

Lebih terperinci

REGRESI & KORELASI LINIER SEDERHANA

REGRESI & KORELASI LINIER SEDERHANA . Pedahulua REGRESI & KORELASI LINIER SEDERHANA Gagasa perhtuga dtetapka oleh Sr Fracs Galto (8-9) Persamaa regres :Persamaa matematk ag memugkka peramala la suatu peubah takbebas (depedet varable) dar

Lebih terperinci

Jawablah pertanyaan berikut dengan ringkas dan jelas menggunakan bolpoin. Total nilai 100. A. ISIAN SINGKAT (Poin 20) 2

Jawablah pertanyaan berikut dengan ringkas dan jelas menggunakan bolpoin. Total nilai 100. A. ISIAN SINGKAT (Poin 20) 2 M 81 STTISTIK DSR SEMESTER II 11/1 KK STTISTIK, FMIP IT SOLUSI UJIN TENGH SEMESTER (UTS) Sabtu, 1 Me 1, Pukul 9. 1.4 WI (1 met) Kelas 1. Pegajar: Udjaa S. Pasarbu/Rr. Kura Novta Sar, Kelas. Pegajar: Utrwe

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 1 Pegerta Regres Istlah regres pertama kal dperkealka oleh Fracs Galto Meurut Galto, aalss regres berkeaa dega stud ketergatuga dar suatu varabel yag dsebut tak bebas depedet varable,

Lebih terperinci

Pendugaan Parameter Regresi. Itasia & Y Angraini, Dep Statistika FMIPA - IPB

Pendugaan Parameter Regresi. Itasia & Y Angraini, Dep Statistika FMIPA - IPB Pendugaan Parameter Regres Menduga gars regres Menduga gars regres lner sederhana = menduga parameter-parameter regres β 0 dan β 1 : Penduga parameter yang dhaslkan harus merupakan penduga yang bak Software

Lebih terperinci

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM 1 Megetahu perhtuga persamaa regres ler Meggambarka persamaa regres ler ke dalam dagram pecar TEORI PENUNJANG Persamaa Regres adalah persamaa matematka

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. Statistik merupakan cara cara tertentu yang digunakan dalam mengumpulkan,

BAB 2 TINJAUAN TEORITIS. Statistik merupakan cara cara tertentu yang digunakan dalam mengumpulkan, BAB TINJAUAN TEORITIS 1 Kosep Dasar Statstka Statstk merupaka cara cara tertetu yag dguaka dalam megumpulka, meyusu atau megatur, meyajka, megaalsa da member terpretas terhadap sekumpula data, sehgga kumpula

Lebih terperinci

REGRESI & KORELASI LINIER SEDERHANA

REGRESI & KORELASI LINIER SEDERHANA 1. Pedahulua REGRESI & KORELASI LINIER SEDERHANA Gagasa perhtuga dtetapka oleh Sr Fracs Galto (18-1911) Persamaa regres :Persamaa matematk ag memugkka peramala la suatu peubah takbebas (depedet varable)

Lebih terperinci

ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS

ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS = 1 + + + + k k + u PowerPot Sldes baa Rohmaa Educato Uverst of Idoesa 007 Laboratorum Ekoom & Koperas Publshg Jl. Dr. Setabud

Lebih terperinci

BAB 2. Tinjauan Teoritis

BAB 2. Tinjauan Teoritis BAB Tjaua Teorts.1 Regres Lear Sederhaa Regres lear adalah alat statstk yag dperguaka utuk megetahu pegaruh atara satu atau beberapa varabel terhadap satu buah varabel. Varabel yag mempegaruh serg dsebut

Lebih terperinci

Metode Statistika STK211/ 3(2-3)

Metode Statistika STK211/ 3(2-3) Metode Statistika STK211/ 3(2-3) Pertemuan XIII Analisis Regresi Septian Rahardiantoro - STK IPB 1 Definisi Analisis statistika yang memanfaatkan hubungan sebab akibat antara dua atau lebih peubah kuantitatif

Lebih terperinci

Analisis Regresi 2. Mendeteksi pencilan dan penanganannya

Analisis Regresi 2. Mendeteksi pencilan dan penanganannya Analss Regres Pokok Bahasan : Mendeteks penclan dan penanganannya TUJUAN INSTRUKSIONAL KHUSUS : Mahasswa dapat mendeteks adanya penclan pada regres lner berganda Penclan Penclan adalah pengamatan yang

Lebih terperinci

BAB 2 LANDASAN TEORI. Analisis regresi adalah suatu proses memperkirakan secara sistematis tentang apa yang paling

BAB 2 LANDASAN TEORI. Analisis regresi adalah suatu proses memperkirakan secara sistematis tentang apa yang paling BAB LANDASAN TEORI Kosep Dasar Aalss Regres Aalss regres adalah suatu proses memperkraka secara sstemats tetag apa yag palg mugk terjad dmasa yag aka datag berdasarka formas yag sekarag dmlk agar memperkecl

Lebih terperinci

BAB II TINJAUAN TEORITIS. Statistik merupakan cara cara tertentu yang digunakan dalam mengumpulkan,

BAB II TINJAUAN TEORITIS. Statistik merupakan cara cara tertentu yang digunakan dalam mengumpulkan, BAB II TINJAUAN TEORITIS.1 Kosep Dasar Statstka Statstk merupaka cara cara tertetu yag dguaka dalam megumpulka, meyusu atau megatur, meyajka, megaalsa da member terpretas terhadap sekumpula data, sehgga

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI. Defes Aalss Korelas da Regres a Aalss Korelas adalah metode statstka yag dguaka utuk meetuka kuatya atau derajat huuga lear atara dua varael atau leh. Semak yata huuga ler gars lurus,

Lebih terperinci

Y = f(x1, X2,..., Xp) + error (2.1) = komp. sistematik + komp. non-sistematik dugaan Y = f(x1, X2,..., Xp) (2.2)

Y = f(x1, X2,..., Xp) + error (2.1) = komp. sistematik + komp. non-sistematik dugaan Y = f(x1, X2,..., Xp) (2.2) Bab. MODEL REGRESI LINEAR SEDERHANA Oleh Bambag Juada Pegerta Model & Tujua Pemodela Perumusa masalah Model Model: Abstraks realtas dlm pers matematka Model ekoometrka: model statstk yg mecakup error Y

Lebih terperinci

Pendahuluan. Relasi Antar Variabel. Relasi Antar Variabel. Relasi Antar Variabel 4/6/2015. Oleh : Fauzan Amin

Pendahuluan. Relasi Antar Variabel. Relasi Antar Variabel. Relasi Antar Variabel 4/6/2015. Oleh : Fauzan Amin 4/6/015 Oleh : Fauza Am Se, 06 Aprl 015 GDL 11 (07.30-10.50) Pedahulua Aalsa regres dguaka utuk mempelajar da megukur hubuga statstk ag terjad atara dua atau lebh varbel. Dalam regres sederhaa dkaj dua

Lebih terperinci

REGRESI LINIER SEDERHANA

REGRESI LINIER SEDERHANA MODUL REGRESI LINIER SEDERHANA Dsusu oleh : I MADE YULIARA Jurusa Fska Fakultas Matematka Da Ilmu Pegetahua Alam Uverstas Udayaa Tahu 016 Kata Pegatar Puj syukur saya ucapka ke hadapa Tuha Yag Maha Kuasa

Lebih terperinci

STATISTIK. Ukuran Gejala Pusat Ukuran Letak Ukuran Simpangan, Dispersi dan Variasi Momen, Kemiringan, dan Kurtosis

STATISTIK. Ukuran Gejala Pusat Ukuran Letak Ukuran Simpangan, Dispersi dan Variasi Momen, Kemiringan, dan Kurtosis STATISTIK Ukura Gejala Pusat Ukura Letak Ukura Smpaga, Dspers da Varas Mome, Kemrga, da Kurtoss Notas Varabel dyataka dega huruf besar Nla dar varabel dyataka dega huruf kecl basaya dtuls Tmes New Roma

Lebih terperinci

Analisis Regresi 1. Diagnosa Model Melalui Pemeriksaan Sisaan dan Identifikasi Pengamatan Berpengaruh. Pokok Bahasan :

Analisis Regresi 1. Diagnosa Model Melalui Pemeriksaan Sisaan dan Identifikasi Pengamatan Berpengaruh. Pokok Bahasan : Analss Regres Pokok Bahasan : Dagnosa Model Melalu Pemerksaan Ssaan dan Identfkas Pengamatan Berpengaruh Itasa & Y Angran Dep. Statstka FMIPA-IPB Ssaan Ssaan adalah menympangnya nla amatan y terhadap dugaan

Lebih terperinci

III BAHAN/OBJEK DAN METODE PENELITIAN. Objek yang digunakan dalam penelitian ini adalah 50 ekor sapi Pasundan

III BAHAN/OBJEK DAN METODE PENELITIAN. Objek yang digunakan dalam penelitian ini adalah 50 ekor sapi Pasundan III BAHAN/OBJEK DAN METODE PENELITIAN 3.1. Baha da Alat Peelta 3.1.1. Baha Peelta Objek yag dguaka dalam peelta adalah 50 ekor sap Pasuda jata da beta dewasa dega umur -3 tahu da tdak butg utuk meghdar

Lebih terperinci

3 Departemen Statistika FMIPA IPB

3 Departemen Statistika FMIPA IPB Supleme Respos Pertemua ANALISIS DATA KATEGORIK (STK51) Departeme Statstka FMIPA IPB Pokok Bahasa Sub Pokok Bahasa Referes Waktu U potess Tga Cotoh atau Lebh U Kruskal-Walls (aalss ragam satu-arah berdasarka

Lebih terperinci

XI. ANALISIS REGRESI KORELASI

XI. ANALISIS REGRESI KORELASI I ANALISIS REGRESI KORELASI Aalss regres mempelajar betuk hubuga atara satu atau lebh peubah bebas dega satu peubah tak bebas dalam peelta peubah bebas basaya peubah yag dtetuka oelh peelt secara bebas

Lebih terperinci

L A T I H A N S O A L A N R E G 1 Muhamad Ferdiansyah, S. Stat.

L A T I H A N S O A L A N R E G 1 Muhamad Ferdiansyah, S. Stat. L A T I H A N S O A L A N R E G Muhamad Ferdiasyah, S. Stat. *Saya saraka utuk mecoba sediri baru lihat jawabaya **Jawaba saya BELUM TENTU BENAR karea saya mausia biasa. Silaka dikosultasika jika ada jawaba

Lebih terperinci

Analisis Korelasi dan Regresi. Dr. Kusman Sadik, M.Si Dept. Statistika IPB

Analisis Korelasi dan Regresi. Dr. Kusman Sadik, M.Si Dept. Statistika IPB Analisis Korelasi dan Regresi Dr. Kusman Sadik, M.Si Dept. Statistika IPB - 015 1 Hubungan Dua Peubah atau Lebih PEUBAH KASUS PENGUMPULAN DATA JENIS HUBUNGANNYA 1.Dosis pupuk.banyaknya padi yg dihasilkan

Lebih terperinci

Regresi Linear Sederhana dan Korelasi

Regresi Linear Sederhana dan Korelasi Regres Lnear Sederhana dan Korelas 1. Model Regres Lnear. Penaksr Kuadrat Terkecl 3. Predks Nla Respons 4. Inferens Untuk Parameter-parameter Regres 5. Kecocokan Model Regres 6. Korelas Utrwen Mukhayar

Lebih terperinci

* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES

* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES * PENYAJIAN DATA Secara umum, ada dua cara peyaja data, yatu : 1. Tabel atau daftar. Grafk atau dagram Macam-macam daftar yag dkeal : a. Daftar bars kolom b. Daftar kotges c. Daftar dstrbus frekues Sedagka

Lebih terperinci

ANALISIS REGRESI Teori dan Aplikasinya. Jerry D.T. Purnomo, Ph.D.

ANALISIS REGRESI Teori dan Aplikasinya. Jerry D.T. Purnomo, Ph.D. ANALISIS REGRESI Teor dan Aplkasnya Jerry D.T. Purnomo, Ph.D. Pendahuluan (/3) Msalnya suatu perusahaan ngn merencanakan produks, perusahaan n memerlukan nformas tentang penjualan agar tdak terjad over

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. regresi berkenaan dengan studi ketergantungan antara dua atau lebih variabel yaitu

BAB 2 TINJAUAN TEORITIS. regresi berkenaan dengan studi ketergantungan antara dua atau lebih variabel yaitu BAB TINJAUAN TEORITIS. Pegerta Aalsa Regres Istlah regres pertama kal dperkealka oleh Fracs Galto. Meurutya, aalss regres berkeaa dega stud ketergatuga atara dua atau lebh varabel yatu varabel yag meeragka

Lebih terperinci

X a, TINJAUAN PUSTAKA

X a, TINJAUAN PUSTAKA PENELITIAN SEBELUMNYA Statstka Deskrptf TINJAUAN PUSTAKA TINJAUAN STATISTIKA Uj Idepedes Uj depedes dguak utuk megetahu adaya hubuga atara dua varabel (Agrest, 1990). H 0 : tdak ada hubuga atara varabel

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. melakukan smash sebelum dan sesudah latihan power otot lengan adalah sebagai

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. melakukan smash sebelum dan sesudah latihan power otot lengan adalah sebagai BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4. Deskrps Peelta Berdasarka hasl peelta, d peroleh data megea kemempua sswa melakuka smash sebelum da sesudah latha power otot lega adalah sebaga berkut : Tabel.

Lebih terperinci

TINJAUAN PUSTAKA Evaluasi Pengajaran

TINJAUAN PUSTAKA Evaluasi Pengajaran TINJAUAN PUSTAKA Evaluas Pegajara Evaluas adalah suatu proses merecaaka, memperoleh da meyedaka formas yag sagat dperluka utuk membuat alteratf- alteratf keputusa. Dalam hubuga dega kegata pegajara evaluas

Lebih terperinci

ANALISIS REGRESI REGRESI NONLINEAR REGRESI LINEAR REGRESI KUADRATIK REGRESI LINEAR SEDERHANA REGRESI LINEAR BERGANDA REGRESI KUBIK

ANALISIS REGRESI REGRESI NONLINEAR REGRESI LINEAR REGRESI KUADRATIK REGRESI LINEAR SEDERHANA REGRESI LINEAR BERGANDA REGRESI KUBIK REGRESI NON LINIER ANALISIS REGRESI REGRESI LINEAR REGRESI NONLINEAR REGRESI LINEAR SEDERHANA REGRESI LINEAR BERGANDA REGRESI KUADRATIK REGRESI KUBIK Membentuk gars lurus Membentuk Gars Lengkung Regres

Lebih terperinci

Suhu (X) Gula yang Dihasilkan (Y)

Suhu (X) Gula yang Dihasilkan (Y) Regresi Liear Sederhaa da Korelasi MA 208 Statistika Dasar Sei, 27 April 2009 2008 by USP & RFU Dose : Udjiaa S. Pasaribu Utriwei i Mukhaiyar Model Regresi Liear Tujua :. Meetuka/meaksir parameter-parameter

Lebih terperinci

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS Tgg tekaa [m] UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS Se, 11 Desember 017 100 met [ Boleh membuka buku Tdak boleh memaka komputer ] SOAL 1 [SO A-3, BOBOT NILAI 50%] Sebuah PDAM melakuka pegukura

Lebih terperinci

Regresi Linier Sederhana dan Korelasi (3 sesi)

Regresi Linier Sederhana dan Korelasi (3 sesi) Regre Ler Sederhaa da Korela (3 e) Duu oleh Sgt Nugroho Uverta Begkulu Pegerta Regre merupaka tekk tattka ag dguaka utuk mempelajar huuga fugoal dar atu atau eerapa peuah ea (peuah ag mempegaruh) terhadap

Lebih terperinci

Analisis Regresi. Oleh : Dewi Rachmatin

Analisis Regresi. Oleh : Dewi Rachmatin Aalss Regres Oleh : Dew Rachmat Pedahulua Dalam peelta basaya dguaka suatu model atau hubuga fugsoal atara peubah. Dega model kta berusaha memaham, meeragka, megedalka da kemuda mempredkska kelakua sstem

Lebih terperinci

PEMBELAJARAN 4 ANALISIS REGRESI KORELASI

PEMBELAJARAN 4 ANALISIS REGRESI KORELASI PEMBELAJARAN ANALISIS REGRESI KORELASI Kompetes Dasar Mahasswa memaham tetag aalss regres korelas, serta mampu megguakaya utuk megaalss data kuattatf Idkator pecapaa Mahasswa dapat: a Mejelaska, meghtug

Lebih terperinci

Independent Var. Dependent Var. Test. Nominal Interval Independent t-test, ANOVA. Nominal Nominal Cross Tabs, Chi Square, dan Koefisien Kontingensi

Independent Var. Dependent Var. Test. Nominal Interval Independent t-test, ANOVA. Nominal Nominal Cross Tabs, Chi Square, dan Koefisien Kontingensi Independent Var. Dependent Var. Test Nomnal Interval Independent t-test, ANOVA Nomnal Nomnal Cross Tabs, Ch Square, dan Koefsen Kontngens Nomnal Ordnal Mann Whtney, Kolmogorov- Smrnow, Kruskall Walls Ordnal

Lebih terperinci

ANALISIS REGRESI 1. Pokok Bahasan : REGRESI LINIER SEDERHANA

ANALISIS REGRESI 1. Pokok Bahasan : REGRESI LINIER SEDERHANA ANALISIS REGRESI 1 Pokok Bahasan : REGRESI LINIER SEDERHANA Deskrps Model Macam-macam Model Regres Model Regres 1 peubah penjelas > 1 peubah penjelas Sederhana Berganda Lner Non Lner Lner Non Lner Polnom

Lebih terperinci

STK511 Analisis Statistika. Pertemuan 10 Analisis Korelasi & Regresi (1)

STK511 Analisis Statistika. Pertemuan 10 Analisis Korelasi & Regresi (1) STK511 Analisis Statistika Pertemuan 10 Analisis Korelasi & Regresi (1) Analisis Hubungan Jenis/tipe hubungan Ukuran Keterkaitan Skala pengukuran peubah Pemodelan Keterkaitan anang kurnia (anangk@apps.ipb.ac.id)

Lebih terperinci

BAB 2 LANDASAN TEORI. disebut dengan bermacam-macam istilah: variabel penjelas, variabel

BAB 2 LANDASAN TEORI. disebut dengan bermacam-macam istilah: variabel penjelas, variabel BAB LANDASAN TEORI.1 Pegerta Regres Regres dalam statstka adalah salah satu metode utuk meetuka tgkat pegaruh suatu varabel terhadap varabel yag la. Varabel yag pertama dsebut dega bermacam-macam stlah:

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 0 BAB LANDASAN TEORI. Pegerta Regres da Korelas.. Pegerta Regres Regres adalah suatu metode statstka yag ergua utuk memerksa atau memodelka huuga datara varael-varael. Varael-varael terseut dega megguaka

Lebih terperinci

MATA KULIAH PERANCANGAN PERCOBAAN (*) **

MATA KULIAH PERANCANGAN PERCOBAAN (*) ** MATA KULIAH PERANCANGAN PERCOBAAN (*) ** MATERI PERKULIAHAN No. Materi 1 Review Statistika Dasar 2 Pengenalan Perancangan Percobaan 3 Percobaan Faktor Tunggal dalam RAL 4 Percobaan Faktor Tunggal RKLT

Lebih terperinci

Penarikan Contoh Acak Sederhana (Simple Random Sampling)

Penarikan Contoh Acak Sederhana (Simple Random Sampling) Pearka Cotoh Acak Sederhaa (Smple Radom Samplg) Defs Jka sebuah cotoh berukura dambl dar suatu populas sedemka rupa sehgga setap cotoh berukura ag mugk memlk peluag sama utuk terambl, maka prosedur tu

Lebih terperinci

BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL. Masalah regresi invers dengan bentuk linear dapat dijumpai dalam

BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL. Masalah regresi invers dengan bentuk linear dapat dijumpai dalam BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL 3. Pegerta Masalah regres vers dega betuk lear dapat djumpa dalam berbaga bdag kehdupa, dataraya dalam bdag ekoom, kesehata, fska, kma

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1 Pedahulua Sebelum membahas megea prosedur peguja hpotess, terlebh dahulu aka djelaska beberapa teor da metode yag meujag utuk mempermudah pembahasa. Adapu teor da metode tersebut

Lebih terperinci

REGRESI SEDERHANA Regresi

REGRESI SEDERHANA Regresi P a g e REGRESI SEDERHANA.. Regres Istlah regres dkemukaka utuk pertama kal oleh seorag atropolog da ahl meteorology Fracs Galto dalam artkelya Famly Lkeess Stature pada tahu 886. Ada juga sumber la yag

Lebih terperinci

LOGO ANALISIS REGRESI LINIER

LOGO ANALISIS REGRESI LINIER LOGO ANALISIS REGRESI LINIER BERGANDA Hazmra Yozza Jur. Maemaka FMIPA Uv. Adalas KOMPETENSI megdefkaska model regres ler bergada dalam oas aljabar basa maupu oas marks da asumsya medapaka model regres

Lebih terperinci

ANALISIS PEUBAH PREDIKTOR YANG MEMUAT KESALAHAN PENGUKURAN DENGAN REGRESI ORTOGONAL

ANALISIS PEUBAH PREDIKTOR YANG MEMUAT KESALAHAN PENGUKURAN DENGAN REGRESI ORTOGONAL Prosdg Semar Nasoal Peelta, Peddka da Peerapa MIPA, Fakultas MIPA, Uverstas Neger Yogyakarta, 4 Me ANALISIS PEUBAH PREDIKTOR YANG MEMUAT KESALAHAN PENGUKURAN DENGAN REGRESI ORTOGONAL Ksmat Jurusa Peddka

Lebih terperinci

Analisis Regresi 1. Pokok Bahasan : Diagnosa Model Melalui Pemeriksaan Sisaan dan Identifikasi Pengamatan Berpengaruh

Analisis Regresi 1. Pokok Bahasan : Diagnosa Model Melalui Pemeriksaan Sisaan dan Identifikasi Pengamatan Berpengaruh Analss Regres 1 Pokok Bahasan : Dagnosa Model Melalu Pemerksaan Ssaan dan Identfkas Pengamatan Berpengaruh Ssaan Ssaan adalah menympangnya nla amatan y terhadap dugaan nla harapannya E[Y x] E[Y x] y b

Lebih terperinci

Model Regresi Berganda

Model Regresi Berganda Model Regres Berganda Huungan lnear (dlm parameter) antara peuah tak eas & atau leh peuah eas Intersep-Y Populas Slope Populas Random Error Y 0 p p Ŷ 0 p p e Peuah tak eas (Respons) utk sampel Peuah eas

Lebih terperinci

*Corresponding Author:

*Corresponding Author: Prosdg Semar Sas da Tekolog FMIPA Umul Vol. No. Jul 0, Samarda, Idoesa ISSN : - 0 STRUCTURAL EQUATION MODELLING DENGAN PENDEKATAN PARTIAL LEAST SQUARE (Stud Kasus: Pegaruh Locus of Cotrol, Self Effcacy,

Lebih terperinci

MODUL ANALISIS REGRESI DAN KORELASI

MODUL ANALISIS REGRESI DAN KORELASI ANALISIS REGRESI DAN KORELASI MODUL 13 ANALISIS REGRESI DAN KORELASI Dalam kehdupa sehar-har, sergkal djumpa hubuga atara suatu varabel dega satu atau lebh varabel la. D dalam bdag pertaa sebaga cotoh,

Lebih terperinci

S2 MP Oleh ; N. Setyaningsih

S2 MP Oleh ; N. Setyaningsih S2 MP Oleh ; N. Setyagsh MATERI PERTEMUAN 1-3 (1)Pedahulua pera statstka dalam peelta ; (2)Peyaja data : dalam betuk (a) tabel da (b) dagram; (3) ukura tedes setaral da ukura peympaga (4)dstrbus ormal

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel

BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel BAB I PENDAHULUAN 1.1 Statstka Deskrptf da Statstka Iferesal Dewasa d berbaga bdag lmu da kehdupa utuk memaham/megetahu sesuatu dperluka dat Sebaga cotoh utuk megetahu berapa bayak rakyat Idoesa yag memerluka

Lebih terperinci

Penyelesaian: Variables Entered/Removed a. a. Dependent Variable: Tulang b. All requested variables entered.

Penyelesaian: Variables Entered/Removed a. a. Dependent Variable: Tulang b. All requested variables entered. 2. Pelajari data dibawah ii, tetuka depede da idepede variabel serta : a) Hitug Sum of Square for Regressio (X) b) Hitug Sum of Square for Residual c) Hitug Meas Sum of Square for Regressio (X) d) Hitug

Lebih terperinci

Nama : INDRI SUCI RAHMAWATI NIM : ANALISIS REGRESI SESI 01 HAL

Nama : INDRI SUCI RAHMAWATI NIM : ANALISIS REGRESI SESI 01 HAL Nama : INDRI SUCI RAHMAWATI NIM : 2015-32-005 ANALISIS REGRESI SESI 01 HAL. 86-88 Latiha 2 Pelajari data dibawah ii, tetuka depede da idepede variabel serta : a. Hitug Sum of Square for Regressio (X) b.

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Sampa saat, model Regres da model Aalss Varas telah dpadag sebaga dua hal ag tdak berkata. Meskpu merupaka pedekata ag umum dalam meeragka kedua cara pada taraf permulaa,

Lebih terperinci

RANCANGAN ACAK KELOMPOK TAK LENGKAP (Incomplete Block Design) Dr.Ir. I Made Sumertajaya, M.Si Departemen Statistika-FMIPA IPB 2007

RANCANGAN ACAK KELOMPOK TAK LENGKAP (Incomplete Block Design) Dr.Ir. I Made Sumertajaya, M.Si Departemen Statistika-FMIPA IPB 2007 RANCANGAN ACAK KELOMPOK TAK LENGKAP (Incomplete Block Desgn) Dr.Ir. I Made Sumertajaya, M.S Departemen Statstka-FMIPA IPB 007 Revew Rancangan Acak Kelompok Kta ngn membandngkan t perlakuan Pengelompokan

Lebih terperinci

3. METODOLOGI PENELITIAN

3. METODOLOGI PENELITIAN 3. METODOLOGI PENELITIAN 3.1 Waktu da Tempat Peelta dlakuka mula taggal 13 Me sampa dega 19 Agustus 007d perara Teluk Lasogko, Kabupate Buto, Sulawes Teggara. Lokas dplh dega pertmbaga bahwa perara merupaka

Lebih terperinci

STATISTIKA A. Definisi Umum B. Tabel Distribusi Frekuensi

STATISTIKA A. Definisi Umum B. Tabel Distribusi Frekuensi STATISTIKA A. Des Umum. Pegerta statstk Statstk adalah kumpula akta yag berbetuk agka da dsusu dalam datar atau tabel yag meggambarka suatu persoala. Cotoh: statstk kurs dolar Amerka, statstk pertumbuha

Lebih terperinci

MODEL REGRESI POISSON (Studi Kasus : Jumlah Kematian Ibu yang Terjadi di Kota Bengkulu) ( )

MODEL REGRESI POISSON (Studi Kasus : Jumlah Kematian Ibu yang Terjadi di Kota Bengkulu) ( ) MODEL REGRESI POISSON (Stud Kasus : Jumlah Kemata Ibu yag Terjad d Kota Begkulu) Herla 1, Sgt Nugroho, da Jose Rzal 1 Alum Jurusa Matematka Fakultas MIPA Uverstas Begkulu Staf Pegajar Jurusa Matematka

Lebih terperinci

ANALISIS REGRESI. . Berdasarkan sample acak, persamaan regresi populasi (1) akan ditaksir, ini dilakukan dengan jalan menaksir parameter-parameter 1

ANALISIS REGRESI. . Berdasarkan sample acak, persamaan regresi populasi (1) akan ditaksir, ini dilakukan dengan jalan menaksir parameter-parameter 1 ANALII REGREI. PENDAHULUAN Jka kta memlk data yag terdr atas dua atau lebh varabel, adalah sewajarya utuk suatu cara bagamaa varabel-varabel tersebut berhubuga. Hubuga yag dperoleh pada umumya dyataka

Lebih terperinci

POLIGON TERBUKA TERIKAT SEMPURNA

POLIGON TERBUKA TERIKAT SEMPURNA MODUL KULIAH ILMU UKUR TANAH POLIGON TERBUKA TERIKAT SEMPURNA Pegerta : peetua azmuth awal da akhr, peetuat kesalaha peutup sudut,koreks sudut, kesalaha lear da koreks lear kearah sumbu X da Y, Peetua

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi dalam statistika adalah salah satu metode untuk menentukan tingkat

BAB 2 LANDASAN TEORI. Regresi dalam statistika adalah salah satu metode untuk menentukan tingkat 0 BAB LANDASAN TEORI. Pegerta Regres Regres dalam statstka adalah salah satu metode utuk meetuka tgkat pegaruh suatu varael terhadap varael yag la. Varael yag pertama dseut dega ermacam-macam stlah: varael

Lebih terperinci

Statistika Deskriptif

Statistika Deskriptif Statstka Deskrptf Statstka Deskrptf Statstka deskrptf (descrptve statstcs) berkata dega peerapa metode statstk utuk megumpulka, megolah, meyajka, da megaalss data kuattatf secara deskrptf. Statstka Deskrptf

Lebih terperinci

Analisis Regresi Linear Sederhana

Analisis Regresi Linear Sederhana Analss Regres Lnear Sederhana Al Muhson Pendahuluan Menggunakan metode statstk berdasarkan data yang lalu untuk mempredks konds yang akan datang Menggunakan pengalaman, pernyataan ahl dan surve untuk mempredks

Lebih terperinci

II. TINJAUAN PUSTAKA. variabel. Dalam regresi sederhana dikaji dua variabel, sedangkan dalam regresi

II. TINJAUAN PUSTAKA. variabel. Dalam regresi sederhana dikaji dua variabel, sedangkan dalam regresi 3 II. TINJAUAN PUSTAKA. Aalss Regres Aalss regres merupaka salah satu metode statstka ag dguaka utuk mempelajar da megukur huuga statstk ag terjad atara dua atau leh varael. Dalam regres sederhaa dkaj

Lebih terperinci

Nama : INDRI SUCI RAHMAWATI NIM : ANALISIS REGRESI SESI 01 HAL

Nama : INDRI SUCI RAHMAWATI NIM : ANALISIS REGRESI SESI 01 HAL Nama : INDRI SUCI RAHMAWATI NIM : 2015-32-005 ANALISIS REGRESI SESI 01 HAL. 85-88 Latiha 1 Pelajari data dibawah ii, tetuka depede da idepedet variabel serta a. Hitug Sum of for Regressio (X) b. Hitug

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah BAB 1 PENDAHULUAN 1.1 Latar Belakag Masalah Regres merupaka suatu metode statstka yag dguaka utuk meyeldk pola hubuga atara dua atau lebh varabel.betuk atau pola hubuga varabelvarabel tersebut dapat ddetfkas

Lebih terperinci

UKURAN GEJALA PUSAT DAN UKURAN LETAK

UKURAN GEJALA PUSAT DAN UKURAN LETAK UKURAN GEJALA PUSAT DAN UKURAN LETAK MODUL 4 UKURAN GEJALA PUSAT DAN UKURAN LETAK. Pedahulua Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu persoala, bak megea sampel atau pu

Lebih terperinci

ANALISIS REGRESI DAN KORELASI

ANALISIS REGRESI DAN KORELASI MODUL KULIAH ANALISIS REGRESI DAN KORELASI Oleh: Drs. I WAYAN SANTIYASA, M.Si JURUSAN ILMU KOMPUTER FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS UDAYANA 016 RANCANGAN AKTIVITAS TUTORIAL (RAT)

Lebih terperinci

BAB III PERSAMAAN PANAS DIMENSI SATU

BAB III PERSAMAAN PANAS DIMENSI SATU BAB III PERSAMAAN PANAS DIMENSI SAU Pada baga sebelumya, kta telah membahas peerapa metoda Ruge-Kutta orde 4 utuk meyelesaka masalah la awal dar persamaa dferesal basa orde. Pada bab, kta aka melakuka

Lebih terperinci

NORM VEKTOR DAN NORM MATRIKS

NORM VEKTOR DAN NORM MATRIKS NORM VEKTOR DN NORM MTRIK umaag Muhtar Gozal UNIVERIT PENDIDIKN INDONEI. Pedahulua Jka kta membcaraka topk ruag vektor maka cotoh sederhaa yag dapat kta ambl adalah ruag Eucld R. D ruag kta medefska pajag

Lebih terperinci

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten BAB III METODE PENELITIAN 3. Tempat da Waktu Peelta 3.. Tempat Tempat peelta dlaksaaka d SMP Neger 4 Tlamuta Kabupate Boalemo pada sswa kelas VIII. 3.. Waktu Peelta dlaksaaka dalam waktu 3 bula yatu dar

Lebih terperinci

REGRESI DAN KORELASI LINEAR SEDERHANA. Regresi Linear

REGRESI DAN KORELASI LINEAR SEDERHANA. Regresi Linear REGRESI DAN KORELASI LINEAR SEDERHANA Regres Lnear Tujuan Pembelajaran Menjelaskan regres dan korelas Menghtung dar persamaan regres dan standard error dar estmas-estmas untuk analss regres lner sederhana

Lebih terperinci

METODE PENELITIAN. Kota Bogor. Kecamatan Bogor Barat. Purposive. Kelurahan Cilendek Barat RW 05 N1= 113. Cluster random sampling.

METODE PENELITIAN. Kota Bogor. Kecamatan Bogor Barat. Purposive. Kelurahan Cilendek Barat RW 05 N1= 113. Cluster random sampling. METODE PENELITIAN Desa, Tempat da Waktu Peelta Peelta megguaka desa cross sectoal study. Lokas peelta d Kota Bogor. Pemlha lokas peelta secara purposve dega pertmbaga merupaka salah satu kecamata dega

Lebih terperinci

TEKNIK SAMPLING. Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Universitas Andalas

TEKNIK SAMPLING. Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Universitas Andalas TEKNIK SAMPLING Hazmra Yozza Izzat Rahm HG Jurusa Matematka FMIPA Uverstas Adalas Defs Suatu cotoh gerombol adalah suatu cotoh acak sederhaa dmaa setap ut pearka cotoh adalah kelompok atau gerombol dar

Lebih terperinci

ANALISIS KORELASI DAN REGRESI (LINEAR)

ANALISIS KORELASI DAN REGRESI (LINEAR) ANALISIS KORELASI DAN REGRESI (LINEAR) Hubuga atara dua kejada dapat dyataka dega hubuga dua varabel Apabla dua varabel da mempuya hubuga, maka la varabel yag sudah dketahu dapat dperguaka utuk memperkraka/meaksr.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA. Peahulua Dalam bab aka membahas megea teor-teor tetag statstka oparametrk, korelas parsal tau Keall a korelas parsal meurut Ebuh GU a Oeka ICA.. Statstka Noparametrk Istlah oparametrk

Lebih terperinci

STK511 Analisis Statistika. Pertemuan 8 ANOVA (2)

STK511 Analisis Statistika. Pertemuan 8 ANOVA (2) STK5 Analss Statstka Pertemuan 8 ANOVA () 8. ANOVA () Dagnoss Model Hpotess Klasfkas satu arah : Y atau Y j j j j Klasfkas dua arah : Yj j j??? Pengaruh perlakuan: H 0 : = 0 H : palng sedkt ada satu dmana

Lebih terperinci

Pencilan. Pencilan adalah pengamatan yang nilai mutlak sisaannya jauh lebih besar daripada sisaan-sisaan lainnya

Pencilan. Pencilan adalah pengamatan yang nilai mutlak sisaannya jauh lebih besar daripada sisaan-sisaan lainnya Pencilan Pencilan adalah pengamatan yang nilai mutlak sisaannya jauh lebih besar daripada sisaan-sisaan lainnya Bisa jadi terletak pada tiga atau empat simpangan baku atau lebih jauh lagi dari rata-rata

Lebih terperinci

BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI

BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI 9.1. Dstrbus Kotu Dstrbus memlk sfat kotu dmaa data yag damat berjala secara kesambuga da tdak terputus. Maksudya adalah bahwa data yag damat tersebut tergatug

Lebih terperinci