Fungsi dan Grafik Diferensial dan Integral

Ukuran: px
Mulai penontonan dengan halaman:

Download "Fungsi dan Grafik Diferensial dan Integral"

Transkripsi

1 Studi Mandiri Fungsi dan Grafik Diferensial dan Integral oleh Sudaryatno Sudirham i

2 Hak cipta pada penulis, SUDIRHAM, SUDARYATNO Fungsi dan Grafik, Diferensial dan Integral Oleh: Sudaryatmo Sudirham Darpublic, Bandung fdg- edisi Juli Alamat pos: anayakan D-3, Bandung, 435. Fa: (6) () 5347 Sudaryatno Sudirham, Fungsi dan Grafik, Diferensial dan Integral

3 BAB 3 Integral () (Integral Tak Tentu) Dalam bab sebelumnya kita telah mengenal macam-macam perhitungan integral. Salah satu cara mudah untuk menghitung integral adalah dengan pendekatan numerik, walaupun cara ini memberikan hasil yang mengandung error. Namun error dalam pendekatan numerik bisa ditekan sampai pada batas-batas toleransi. Dalam bab ini kita akan melihat perhitungan integral tak tentu secara analitis dari macam-macam fungsi. 3.. Integral Fungsi Tetapan: a a a + karena da a Contoh: y Integral Fungsi Mononom: n n+ n n n arena dengan syarat n, maka + n+ 3 Contoh: y + 3 n m 3.3. Integral Fungsi Polinom ( + ) Polinom merupakan jumlah terbatas dari mononom. Integral suatu polinom sama dengan jumlah integral mononom yang menyusunnya. n m n m arena d( + ) + maka ( n + m n+ m+ ) + +, n+ m+ Soal-Soal : Carilah integral tak tentu berikut ini. 5 ( + 4) 4 4 dengan syarat n, m (+ 5) 3 ( ) 3

4 3.4. Integral Fungsi Pangkat Dari Fungsi: n n+ n Jika adalah polinom, maka + n+ n+ d n+ n mencari n. karena dengan syarat n. Formulasi ini digunakan untuk Contoh: Hitunglah y ( + ) Misalkan y (+ ) ita coba untuk meyakinkan hasil ini dengan hasil yang akan diperoleh jika polinom kita kuadratkan lebih dulu y ( ) (4 4 ) 3 Hasil perhitungan sama dengan hasil sebelumnya, Contoh: Hitunglah Misalkan + / 6. 3 y / / 3 y 3 / / Soal-Soal : Carilah integral tak tentu berikut ini. ( ) (3 ) + 4 Sudaryatno Sudirham, Fungsi dan Grafik, Diferensial dan Integral

5 3.5. Integral Fungsi Berpangkat -: arena d (ln ), maka ln +. Integrasi ini memecahkan masalah persyaratan n pada integrasi n. Contoh: Carilah integral y + Misalkan + y ln + ln( + ) + + Soal-Soal: Carilah integral tak tentu berikut ini Integral Fungsi Eksponensial: e arena de e maka e e + Soal-Soal: / 3 e e e + e e 3.7. Integral Tetapan Berpangkat Fungsi : a a arena da a ln a maka a + ln a Contoh: Carilah y 3 Misalkan 3 3 y 3 + ln 3 5

6 3.8. Integral Fungsi Trigonometri arena d sin cos maka cos sin + arena d cos sin maka sin cos+ Relasi diferensial dan integral fungsi trigonometri yang lain termuat dalam Tabel-3.. Contoh: Carilah integral tak tentu 6 Sudaryatno Sudirham, Fungsi dan Grafik, Diferensial dan Integral y sin Misalkan sin cos cos y sin Soal-Soal : Carilah integral tak tentu berikut ini. sin 4 cos(+ ) 4cos3. sin cos sin cos a sin cos. sin cos sin. cos 3.9. Integral Fungsi Hiperbolik arena d(sinh ) cosh maka cosh sinh + arena d(cosh ) sinh maka sinh cosh + Relasi diferensial dan integral fungsi hiperbolik yang lain termuat dalam Tabel-3.. Contoh: Carilah y cosh( + ) Misalkan + y cosh(+ ) cosh( ) sinh(+ ) + sinh +

7 Soal-Soal: Carilah integral berikut sinh sinh tanh cosh tanh 4 cosh 3.. Integral Menghasilkan Fungsi Trigonometri Inersi Integral fungsi-fungsi yang berbentuk, + dan setrusnya mulai nomer sampai 3, menghasilkan fungsi-fungsi trigonometri inersi. Contoh: Carilah y 4 Jika kita membuat pemisalan 4 maka 8 atau. alau pemisalan ini kita masukkan dalam persoalan 8 integral yang diberikan, kita akan mendapatkan bentuk / 8 yang tidak dapat diproses lebih lanjut persoalan integral tidak dapat ter-transformasi menjadi integral dalam peubah. Namun bentuk ini dapat kita transformasi menjadi bentuk 4 yang termuat dalam Tabel-3., yaitu nomer. ita misalkan yang akan memberikan atau. Persoalan integral kita menjadi y 4 yang menghasilkan y sin + sin () + Soal-Soal: Carilah integral tak tentu berikut ini , 7

8 3.9. Relasi Diferensial dan Integral Berikut ini daftar formula untuk deferensial beserta pasangan integralnya. Beberapa di antaranya perlu untuk diingat, misalnya formula sampai 9 dan 6, 7 yang sering kita temui. Tabel d ( k) k. k k 3. d + w) + dw 3. ( + dw) + dw n n 4. n n+ n 4. + C n n+ 5. d (ln ) 5. ln + 6. de e 6. e e + 7. da a ln a a 7. a + ln a 8. d(sin ) cos 8. cos sin + 9. d(cos) sin 9. sin cos+. d(tan ) sec. sec tan +. d(cot) csc. csc cot+. d(sec ) sec tan. sec tan sec+ 3. d(csc) csccot 3. csc cot csc+ 4. d(sinh ) cosh 4. cosh sinh + 5. d(cosh ) sinh 5. sinh cosh + 6. d(tanh ) sech 6. sec h tanh + 8 Sudaryatno Sudirham, Fungsi dan Grafik, Diferensial dan Integral

9 7. d(coth) csch 7. csch coth+ 8. d( sech) sech tanh 9. d( csch) cschcoth 8. sec h tanh sech+ 9. csch coth cosh+. d(sin ). sin +. d(cos ). cos +. d tan. + tan d cot 3. + cot d sec 4. sec +, > 5. d csc 5. csc +, > 6. d(sinh ) 6. sinh d (cosh ) 7. cosh + 8. d(tanh ) 8. tanh + jika < 9. d(coth ) 9. coth + jika > 3. d(sech ) 3. sech + 3. d(csch ) + 3. csch + + 9

10 Catatan Tentang Isi Tabel-3.. Dengan menggunakan relasi-relasi dalam Tabel-3. kita dapat melakukan proses integrasi fungsi-fungsi mencakup: Fungsi mononom dan polinom: Fungsi polinom berpangkat: Fungsi eponensial: e Fungsi trigonometri: cos sec tan csc cot. tetapi tidak: tan n a sin cot sec csc sec csc. Fungsi hiperbolik: cosh csc h sec h tanh csch coth. tetapi tidak: tanh coth sinh sec h sec h csc h. Integrasi fungsi aljabar yang menghasilkan fungsi trigonometri inersi dan fungsi hiperbolik inersi, seperti tetapi tidak mengintegrasi fungsi inersi seperti sin tan sinh. tanh Tabel-3. tidak memuat relasi integrasi fungsi-fungsi aljabar yang berbentuk a ± a dsb a + Sudaryatno Sudirham, Fungsi dan Grafik, Diferensial dan Integral

11 BAB 4 Integral (3) (Integral Tentu) 4.. Luas Sebagai Suatu Integral. Integral Tentu Integral tentu merupakan integral yang batas-batas integrasinya jelas. onsep dasar dari integral tertentu adalah luas bidang yang dipandang sebagai suatu limit. ita akan menghitung luas bidang yang dibatasi oleh suatu kura y f(), sumbu-, garis ertikal p, dan q, yaitu luas bagian yang diarsir pada Gb.4..a. Sebutlah luas bidang ini A pq. Bidang ini kita bagi dalam n segmen dan kita akan menghitung luas setiap segmen dan kemudian menjumlahkannya untuk memperoleh A pq. Jika penjumlahan luas segmen kita lakukan dengan menghitung luas segmen seperti tergambar pada Gb.4..b, kita akan memperoleh luas yang lebih kecil dari dari luas yang kita harapkan sebutlah jumlah luas segmen ini A pqb (jumlah luas segmen bawah). Jika penjumlahan luas segmen kita lakukan dengan menghitung luas segmen seperti tergambar pada Gb.4..c, kita akan memperoleh luas yang lebih besar dari dari luas yang kita harapkan sebutlah jumlah luas segmen ini A pqa (jumlah luas segmen atas). edua macam perhitungan tersebut di atas akan mengakibatkan terjadinya galat (error). Antara mereka ada selisih seperti digambarkan pada Gb.4..d. Jika k adalah suatu nilai di antara kedua batas segmen ke-k, yaitu antara k dan ( k + ), maka berlaku f ( ) f ( ) f ( + ) (4.) k k Jika pertidaksamaan (4.) dikalikan dengan k yang yang cukup kecil dan bernilai positif, maka f k ( k ) k f ( k ) k f ( k + ) k (4.)

12 y y f() (a) y p k k+ n q y f() (b) y p k k+ n q y f() (c) y p k k+ n q y f() (d) p k k+ n q Gb.4.. Menghitung luas bidang di bawah kura. Sudaryatno Sudirham, Fungsi dan Grafik, Diferensial dan Integral

13 Sekarang luas segmen di ruas kiri, tengah, dan kanan dari (4.) kita jumlahkan dari sampai n (yaitu sebanyak jumlah segmen yang kita buat), kita akan memperoleh n n n f ( k ) k f ( k ) k f ( k + ) k (4.3) k k k Ruas paling kiri adalah jumlah luas segmen bawah, A pqb ruas paling kanan adalah jumlah luas segmen atas, A pqa ruas yang di tengah adalah jumlah luas segmen pertengahan, kita namakan A n. Jelaslah bahwa A pqb An Apqa (4.4) Nilai A n dapat dipakai sebagai pendekatan pada luas bidang yang kita cari. Galat (error) yang terjadi sangat tergantung dari jumlah segmen, n. Jika n kita perbesar menuju tak hingga, seraya menjaga agar semua k menuju nol, maka luas bidang yang kita cari adalah A pq lim Apqb lim An lim Apqa (4.5) Jadi apabila kita menghitung limitnya, kita akan memperoleh nilai limit yang sama, apakah kita menggunakan penjumlahan segmen bawah, atau atas, atau pertengahannya. Limit yang sama ini disebut integral tertentu, dituliskan A f ( ) (4.6) q pq p Integral tertentu (4.6) ini terkait dengan integral tak tentu (9.) A pq q f ( ) F( ) ] F( q) F( p) (4.7) p q p Jadi untuk memperoleh limit bersama dari penjumlahan segmen bawah, penjumlahan segmen atas, maupun penjumlahan segmen pertengahan dari fungsi f() dalam rentang p q, kita cukup melakukan: a. integrasi untuk memperoleh F ( ) f ( ) b. masukkan batas atas q untuk mendapat F(q) c. masukkan batas bawah p untuk mendapat F(p) d. kurangkan perolehan batas bawah dari batas atas, F(q) F(p). 3

14 Walaupun dalam pembahasan di atas kita mengambil contoh fungsi yang bernilai positif dalam rentang p q, namun pembahasan itu berlaku pula untuk fungsi yang dalam rentang p q sempat bernilai negatif. ita hanya perlu mendefinisikan kembali apa yang disebut dengan A p dalam pembahasan sebelumnya. Pendefinisian yang baru ini akan berlaku umum, yaitu A p adalah luas bidang yang dibatasi oleh y f () dan sumbu- dari p sampai, yang merupakan jumlah luas bagian yang berada di atas sumbu- dikurangi dengan luas bagian yang di bawah sumbu-. Agar lebih jelas kita mengambil contoh pada Gb 4.. y 3 Gb.4.. ura y ita akan menghitung luas antara y 3 dan sumbu- dari 3 sampai +3. Bentuk kura diperlihatkan pada Gb.4. Di sini terlihat bahwa dari 3 sampai kura berada di atas sumbu- dan antara sampai +3 kura ada di bawah sumbu-. Untuk bagian yang di atas sumbu- kita mempunyai luas 4 3 A a ( ) (,5 54) 33,75 4 Sudaryatno Sudirham, Fungsi dan Grafik, Diferensial dan Integral 3 Untuk kura yang di bawah sumbu- kita dapatkan A b y ( ) 6 4,5 54 () 33,75 3

15 Luas yang kita cari adalah luas bagian yang berada di atas sumbu- dikurangi dengan luas bagian yang di bawah sumbu- A pq Aa Ab 33,75 ( 33,755) 67,5 Contoh ini menunjukkan bahwa dengan pengertian yang baru mengenai A p, formulasi A q p ( )) f ( ) F( q) F p tetap berlaku untuk kura yang memiliki bagian baik di atas maupun di bawah sumbu-. Dengan demikian maka untuk bentuk kura seperti pada Gb.4.3. kita dapatkan yang kita peroleh dari A pq A pq A + y q p + A A3 A4 ( )) f ( ) F( q) F p y f() p A A 4 A A 3 q Gb.4.3. ura memotong sumbu- di beberapa titik. 5

16 4.. Luas Bidang Di Antara Dua ura ita akan menghitung luas bidang di antara kura y f ( ) dan y f ( ) pada batas antara p dan q. ura yang kita hadapi sudah barang tentu harus kontinyu dalam rentang p q. ita tetapkan bahwa kura y f ( ) berada di atas y f ( ) meskipun mungkin mereka memiliki bagian-bagian yang berada di bawah sumbu-. Perhatikan Gb.4.4. Rentang p q kita bagi dalam n segmen, yang salah satunya diperlihatkan pada Gb.4.4. dengan batas kiri dan batas kanan (+ ), dimana ( q p) / n. y y A p p + q y Gb.4.4. Menghitung luas bidang antara dua kura. Luas segmen dapat didekati dengan A segmen { f ( ) f( ) } (4.8) yang jika kita jumlahkan seluruh segmen akan kita peroleh n q A segmen { f ( ) f( ) } (4.9) p Dengan membuat n menuju tak hingga sehingga menuju nol kita sampai pada suatu limit n q A pq lim Asegmen { f( ) f( ) } (4.) p ita akan melihat beberapa contoh Contoh : Jika y 4 dan y berapakah luas bidang antara y dan y dari p sampai q A pq ({ 4 ( ) } 6] 8 ( ) 3 6 Sudaryatno Sudirham, Fungsi dan Grafik, Diferensial dan Integral

17 Hasil ini dengan mudah dijakinkan menggunakan planimetri. Luas yang dicari adalah luas persegi panjang dengan lebar y y 6 dan panjang 5. Contoh : Jika y dan y 4 berpakah luas bidang yang dibatasi oleh y dan y. Terlebih dulu kita cari batas-batas integrasi yaitu nilai pada perpotongan antara y dan y. y y 4 p, q Perhatikan bahwa y adalah fungsi pangkat dua dengan titik puncak minimum yang berada pada posisi [,]. Oleh karena itu bagian kura y yang membatasi bidang yang akan kita cari luasnya, berada di di bawah y 4. 3 (4 ) A pq Jika kita terbalik dalam memandang posisi y terhadap y kita akan melakukan kesalahan: 3 * ( 4) A 4 pq Contoh 3: Jika y + dan y berapakah luas bidang yang dibatasi oleh y dan y. Terlebih dulu kita perhatikan karakter fungsi-fungsi ini. Fungsi y adalah fungsi kuadrat dengan titik puncak maksimum yang memotong sumbu-y di y. Fungsi y adalah garis lurus melalui titik asal [,] dengan kemiringan negatif, yang berarti ia menurun pada arah positif. Dengan demikian maka bagian kura y yang membatasi bidang yang akan kita cari luasnya berada di atas y. 7

18 Batas integrasi adalah nilai pada perpotongan kedua kura. y y + atau p q 3 ( ) A pq , Penerapan Integral Pembahasan di atas terfokus pada penghitungan luas bidang di bawah suatu kura. Demikian juga di bab sebelumnya. Hal tersebut dilakukan untuk memudahkan isualisasi. Dalam praktek kita tidak selalu menghitung luas melainkan menghitung berbagai besaran fisis yang berubah terhadap waktu misalnya. Perubahan besaran fisis ini dapat pula diisualisasi dengan membuat absis dengan satuan waktu dan ordinat dengan satuan besaran fisis yang dimaksud. Dengan demikian seolaholah kita menghitung luas bidang di bawah kura. Berikut ini dua contoh dalam kelistrikan. Contoh : Sebuah piranti menyerap daya W pada tegangan konstan V. Berapakah energi yang diserap oleh piranti ini selama 8 jam? Daya adalah laju perubahan energi. Jika daya diberi simbol p dan energi diberi simbol w, maka dw p yang memberikan w dt pdt Perhatikan bahwa peubah bebas di sini adalah waktu, t. alau batas bawah dari waktu kita buat, maka batas atasnya adalah 8, dengan satuan jam. Dengan demikian maka energi yang diserap selama 8 jam adalah w pdt dt t 8 Watt.hour [Wh],8 kilo Watt hour [kwh] 8 Sudaryatno Sudirham, Fungsi dan Grafik, Diferensial dan Integral

19 Contoh : Arus yang melalui suatu piranti berubah terhadap waktu sebagai i(t),5 t ampere. Berapakah jumlah muatan yang dipindahkan melalui piranti ini antara t sampai t 5 detik? Arus i adalah laju perubahan transfer muatan, q. dq i sehingga q dt idt Jumlah muatan yang dipindahkan dalam 5 detik adalah 5 5 5,5,5 q idt,5,65 tdt t coulomb 4.4. Pendekatan umerik Dalam pembahasan mengenai integral tentu, kita fahami bahwa langkahlangkah dalam menghitung suatu integral adalah:. Membagi rentang f() ke dalam n segmen agar proses perhitungan menjadi sederhana buat segmen yang sama lebar,.. Integral dalam rentang p q dari f() dihitung sebagai q n f ( ) lim f ( k ) k p k dengan f( k ) adalah nilai f() dalam interal k yang besarnya akan sama dengan nilai terendah dan tertinggi dalam segmen k jika menuju nol. Dalam aplikasi praktis, kita tentu bisa menetapkan suatu nilai sedemikian rupa sehingga jika kita mengambil f( k ) sama dengan nilai terendah ataupun tertinggi dalam k, hasil perhitungan akan lebih rendah ataupun lebih tinggi dari nilai yang diharapkan. Namun error yang terjadi masih berada dalam batas-batas toleransi yang dapat kita terima. Dengan cara ini kita mendekati secara numerik perhitungan suatu integral, dan kita dapat menghitung dengan bantuan komputer. Sebagai ilustrasi kita akan menghitung kembali luas bidang yang dibatasi oleh kura y 3 dengan sumbu- antara 3 dan +3. Lauas 9

20 ini telah dihitung dan menghasilkan A pq 67, 5. ali ini kita melakukan perhitungan pendekatan secara numerik dengan bantuan komputer. 3 3 A pq ( ) 3 arena yang akan kita hitung adalah luas antara kura dan sumbu-, maka bagian kura yang berada di bawah sumbu- harus dihitung sebagai positif. Jika kita mengambil nilai,5 maka rentang 3 3 akan terbagi dalam 4 segmen. Perhitungan menghasilkan A pq 4 ( k 3 k Error yang terjadi adalah sekitar,5%. k ) 67, ,4 Jika kita mengambil,5 maka rentang 3 3 akan terbagi dalam segmen. Perhitungan menghasilkan A pq ( k 3 k Error yang terjadi adalah sekitar,%. k ) 67, ,5 Jika kita masih mau menerima hasil perhitungan dengan error,%, maka hasil pendekatan numerik sebesar 67,4 cukup memadai. Perhitungan numerik di atas dilakukan dengan menghitung luas setiap segmen sebagai hasilkali nilai minimum ataupun nilai maksimum masing-masing segmen dengan. Satu alternatif lain untuk menghitung luas segmen adalah dengan melihatnya sebagai sebuah trapesium. Luas setiap segmen menjadi ( f ( min ) + f ( )) / Asegmen k kmaks (4.3) Perhitungan pendekatan numerik ini kita lakukan dengan bantuan komputer. ita bisa memanfaatkan program aplikasi yang ada, ataupun menggunakan spread sheet jika fungsi yang kita hadapi cukup sederhana. Sudaryatno Sudirham, Fungsi dan Grafik, Diferensial dan Integral

21 Referensi. Catatan-catatan penulis dalam kuliah matematika di Institut Teknologi Bandung, tahun , sebagai bahan utama tulisan dalam buku ini.. George B Thomas, Calculus And Analytic Geometry, addison Wesley, 956, buku pegangan dalam mengikuti kuliah matematika di ITB, tahun Sudaryatno Sudirham: Analisis Rangkaian Listrik, Penerbit ITB, ISBN ,. 4. Sudaryatno Sudirham: Analisis Rangkaian Elektrik, e-book,. 5. Sudaryatno Sudirham, Mengenal Sifat Material, e-book,.

Fungsi dan Grafik Diferensial dan Integral

Fungsi dan Grafik Diferensial dan Integral Sudaryatno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral ii Darpublic BAB 3 Integral () (Integral Tak Tentu) Dalam bab sebelumnya kita telah mengenal macam-macam perhitungan integral.

Lebih terperinci

Fungsi dan Grafik Diferensial dan Integral

Fungsi dan Grafik Diferensial dan Integral Sudaryatno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral ii Darpublic BAB 3 Integral () (Integral Tak Tentu) Dalam bab sebelumnya kita telah mengenal macam-macam perhitungan integral.

Lebih terperinci

Darpublic Nopember 2013 www.darpublic.com

Darpublic Nopember 2013 www.darpublic.com Darpublic Nopember 0 www.darpublic.com. Integral () (Integral Tak Tentu) Sudaryatno Sudirham Dalam bab sebelumnya kita telah mengenal macam-macam perhitungan integral. Salah satu cara mudah untuk menghitung

Lebih terperinci

Integral dan Persamaan Diferensial

Integral dan Persamaan Diferensial Sudaryatno Sudirham Studi Mandiri Integral dan Persamaan Diferensial ii Darublic BAB 3 Integral (3) (Integral Tentu) 3.. Luas Sebagai Suatu Integral. Integral Tentu Integral tentu meruakan integral yang

Lebih terperinci

Fungsi dan Grafik Diferensial dan Integral

Fungsi dan Grafik Diferensial dan Integral Sudaratno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral i Darpublic Hak cipta pada penulis, 00 SUDIRHAM, SUDARYATNO Fungsi dan Grafik, Diferensial dan Integral Oleh: Sudaratmo Sudirham

Lebih terperinci

Fungsi dan Grafik Diferensial dan Integral

Fungsi dan Grafik Diferensial dan Integral Sudaratno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral Darpublic Hak cipta pada penulis, SUDIRHAM, SUDARYATNO Fungsi dan Grafik, Diferensial dan Integral Oleh: Sudaratmo Sudirham Darpublic,

Lebih terperinci

Fungsi dan Grafik Diferensial dan Integral

Fungsi dan Grafik Diferensial dan Integral Sudaratno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral ii Darpublic BAB 9 Turunan Fungsi-Fungsi (1 (Fungsi Mononom, Fungsi Polinom 9.1. Pengertian Dasar Kita telah melihat bahwa apabila

Lebih terperinci

Sudaryatno Sudirham. Integral dan Persamaan Diferensial

Sudaryatno Sudirham. Integral dan Persamaan Diferensial Sudaratno Sudirham Integral dan Persamaan Diferensial Bahan Kuliah Terbuka dalam format pdf tersedia di www.buku-e.lipi.go.id dalam format pps beranimasi tersedia di www.ee-cafe.org Bahasan akan mencakup

Lebih terperinci

Fungsi dan Grafik Diferensial dan Integral

Fungsi dan Grafik Diferensial dan Integral Sudaratno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral i Darpublic Hak cipta pada penulis, 010 SUDIRHAM, SUDARYATNO Fungsi dan Grafik, Diferensial dan Integral Oleh: Sudaratmo Sudirham

Lebih terperinci

Diferensial dan Integral

Diferensial dan Integral Open Course Diferensial dan Integral Oleh: Sudaratno Sudirham Pengantar Setelah kita mempelajari fungsi dan grafik, ang merupakan bagian pertama dari kalkulus, berikut ini kita akan membahas bagian kedua

Lebih terperinci

Darpublic Nopember 2013

Darpublic Nopember 2013 Darpublic Nopember 1 www.darpublic.com 1. Turunan Fungsi Polinom 1.1. Pengertian Dasar Kita telah melihat bahwa apabila koordinat dua titik ang terletak pada suatu garis lurus diketahui, misalna [ 1, 1

Lebih terperinci

Fungsi dan Grafik Diferensial dan Integral

Fungsi dan Grafik Diferensial dan Integral Sudaratno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral ii Darpublic BAB Turunan Fungsi-Fungsi (3) (Fungsi-Fungsi Trigonometri, Trigonometri Inversi, Logaritmik, Eksponensial).. Turunan

Lebih terperinci

Sudaryatno Sudirham. Diferensiasi

Sudaryatno Sudirham. Diferensiasi Suaratno Suirham Diferensiasi Bahan Kuliah Terbuka alam format pf terseia i.buku-e.lipi.go.i alam format pps beranimasi terseia i.ee-cafe.org Pengertian-Pengertian 0-0 Kita telah melihat baha kemiringan

Lebih terperinci

11. Turunan Perkalian Fungsi, Pangkat Dari Fungsi, Fungsi Rasional, Fungsi Implisit

11. Turunan Perkalian Fungsi, Pangkat Dari Fungsi, Fungsi Rasional, Fungsi Implisit Darpublic Nopember 01.darpublic.com 11. Turunan erkalian Fungsi, angkat Dari Fungsi, Fungsi Rasional, Fungsi Implisit 11.1. Fungsi Yang Merupakan erkalian Dua Fungsi Misalkan kita memiliki dua fungsi,

Lebih terperinci

Fungsi dan Grafik Diferensial dan Integral

Fungsi dan Grafik Diferensial dan Integral Studi Mandiri Fungsi dan Grafik Diferensial dan Integral oleh Sudaratno Sudirham i Hak cita ada enulis, SUDIRHAM, SUDARYATNO Fungsi dan Grafik, Diferensial dan Integral Oleh: Sudaratmo Sudirham Darublic,

Lebih terperinci

Teknik Pengintegralan

Teknik Pengintegralan Jurusan Matematika 13 Nopember 2012 Review Rumus-rumus Integral yang Dikenal Pada beberapa subbab sebelumnya telah dijelaskan beberapa integral dari fungsi-fungsi tertentu. Berikut ini diberikan sebuah

Lebih terperinci

Sudaryatno Sudirham. Studi Mandiri. Diferensiasi. Darpublic

Sudaryatno Sudirham. Studi Mandiri. Diferensiasi. Darpublic Sudaratno Sudirham Studi Mandiri Diferensiasi ii Darpublic BAB Turunan Fungsi-Fungsi () (Fungsi Perkalian Fungsi, Fungsi Pangkat Dari Fungsi, Fungsi Rasional, Fungsi Implisit).1. Fungsi Yang Merupakan

Lebih terperinci

Gambar 1. Gradien garis singgung grafik f

Gambar 1. Gradien garis singgung grafik f D. URAIAN MATERI 1. Definisi dan Rumus-rumus Turunan Fungsi a. Definisi Turunan Sala satu masala yang mendasari munculnya kajian tentang turunan adala gradien garis singgung. Peratikan Gambar 1. f(c +

Lebih terperinci

FUNGSI DAN GRAFIK DIFERENSIAL DAN INTEGRAL

FUNGSI DAN GRAFIK DIFERENSIAL DAN INTEGRAL FUNGSI DAN GRAFIK DIFERENSIAL DAN INTEGRAL Sudaryatno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral darpublic Studi Mandiri Fungsi dan Grafik Diferensial dan Integral oleh Sudaryatno

Lebih terperinci

LEMBAR KERJA SISWA 1. : Menggunakan Konsep Limit Fungsi Dan Turunan Dalam Pemecahan Masalah

LEMBAR KERJA SISWA 1. : Menggunakan Konsep Limit Fungsi Dan Turunan Dalam Pemecahan Masalah BAB V T U R U N A N 1. Menentukan Laju Perubaan Nilai Fungsi. Menggunakan Aturan Turunan Fungsi Aljabar 3. Menggunakan Rumus Turunan Fungsi Aljabar 4. Menentukan Persamaan Garis Singgung Kurva 5. Fungsi

Lebih terperinci

FUNGSI. Berdasarkan hubungan antara variabel bebas dan terikat, fungsi dibedakan dua: fungsi eksplisit dan fungsi implisit.

FUNGSI. Berdasarkan hubungan antara variabel bebas dan terikat, fungsi dibedakan dua: fungsi eksplisit dan fungsi implisit. FUNGSI Fungsi merupakan hubungan antara dua variabel atau lebih. Variabel dibedakan :. Variabel bebas yaitu variabel yang besarannya dpt ditentukan sembarang, mis:,, 6, 0 dll.. Variabel terikat yaitu variabel

Lebih terperinci

TURUNAN FUNGSI (DIFERENSIAL)

TURUNAN FUNGSI (DIFERENSIAL) TURUNAN FUNGSI (DIFERENSIAL) A. Pengertian Derivatif (turunan) suatu fungsi. Perhatikan grafik fungsi f( (pengertian secara geometri) ang melalui garis singgung. f( f( f(+ Q [( +, f ( + ] f( P (, f ( )

Lebih terperinci

Aturan dasar pengintegralan Integral fungsi rasional Integral parsial Integral trigonometri Substitusi yang merasionalkan Strategi pengintegralan

Aturan dasar pengintegralan Integral fungsi rasional Integral parsial Integral trigonometri Substitusi yang merasionalkan Strategi pengintegralan Aturan dasar pengintegralan Integral fungsi rasional Integral parsial Integral trigonometri Substitusi yang merasionalkan Strategi pengintegralan Kemampuan yang diinginkan: kejelian melihat bentuk soal

Lebih terperinci

Rencana Pembelajaran

Rencana Pembelajaran Learning Outcome Rencana Pembelajaran Setelah mengikuti proses pembelajaran ini, diharapkan mahasiswa dapat ) Menentukan nilai turunan suatu fungsi di suatu titik ) Menentukan nilai koefisien fungsi sehingga

Lebih terperinci

Matematika Dasar FUNGSI DAN GRAFIK

Matematika Dasar FUNGSI DAN GRAFIK FUNGSI DAN GRAFIK Suatu pengaitan dari himpunan A ke himpunan B disebut fungsi bila mengaitkan setiap anggota dari himpunan A dengan tepat satu anggota dari himpunan B. Notasi : f : A B f() y Himpunan

Lebih terperinci

DERIVATIVE (continued)

DERIVATIVE (continued) DERIVATIVE (continued) (TURUNAN) Kus Prihantoso Krisnawan December 9 th, 2011 Yogyakarta Turunan Latihan Turunan Latihan sin (cos 1 x) = cos (sin 1 x) = sec (tan 1 x) = tan (sec 1 x) = 1 x 2 1 x 2 1 +

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Aljabar dapat didefinisikan sebagai manipulasi dari simbol-simbol. Secara

BAB II TINJAUAN PUSTAKA. Aljabar dapat didefinisikan sebagai manipulasi dari simbol-simbol. Secara 4 BAB II TINJAUAN PUSTAKA A. Aljabar Definisi II.A.: Aljabar (Wahyudin, 989:) Aljabar dapat didefinisikan sebagai manipulasi dari simbol-simbol. Secara historis aljabar dibagi menjadi dua periode waktu,

Lebih terperinci

FUNGSI VARIABEL KOMPLEKS. Oleh: Endang Dedy

FUNGSI VARIABEL KOMPLEKS. Oleh: Endang Dedy FUNGSI VARIABEL KOMPLEKS Oleh: Endang Dedy Diskusikan! Sistem Bilangan Kompleks 1 Perhatikan definisi berikut: Bilangan kompleks adalah suatu bilangan yang didefinisikan dengan =+iy,, y R dan i 1.Coba

Lebih terperinci

BAB VII. FUNGSI TRANSEDEN. Perhatikan adanya kesenjangan tentang turunan berikut.

BAB VII. FUNGSI TRANSEDEN. Perhatikan adanya kesenjangan tentang turunan berikut. 64 BAB VII. FUNGSI TRANSEDEN 7.. Fungsi Logaritma Asli Perhatikan adanya kesenjangan tentang turunan berikut. D ( 3 /3) D ( /) D () 0 D (???) - D (- - ) - D (- - /3) -3 Definisi: Fungsi logaritma asli

Lebih terperinci

A B A B. ( a ) ( b )

A B A B. ( a ) ( b ) BAB. FUNGSI A. Relasi dan Fungsi Misalkan A dan B dua himpunan tak kosong. Relasi T dari himpunan A ke B adalah himpunan bagian dari A B. Jadi relasi A ke B merupakan himpunan (,y), dengan pada himpunan

Lebih terperinci

KALKULUS 1 HADI SUTRISNO. Pendidikan Matematika STKIP PGRI Bangkalan. Hadi Sutrisno/P.Matematika/STKIP PGRI Bangkalan

KALKULUS 1 HADI SUTRISNO. Pendidikan Matematika STKIP PGRI Bangkalan. Hadi Sutrisno/P.Matematika/STKIP PGRI Bangkalan KALKULUS 1 HADI SUTRISNO 1 Pendidikan Matematika STKIP PGRI Bangkalan BAB I PENDAHULUAN A. Sistem Bilangan Real Untuk mempelajari kalkulus kita terlebih dahulu perlu memahami bahasan tentang sistem bilangan

Lebih terperinci

Fungsi dan Grafik Diferensial dan Integral

Fungsi dan Grafik Diferensial dan Integral Sudaratno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral Darpublic Hak cipta pada penulis, SUDIRHAM, SUDARYATNO Fungsi dan Grafik, Diferensial dan Integral Oleh: Sudaratmo Sudirham Darpublic,

Lebih terperinci

Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f.

Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f. Pertemuan ke 8 GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(,y): y = f(), D f } disebut grafik fungsi f. Grafik metode yang paling umum untuk menyatakan hubungan antara dua himpunan yaitu dengan menggunakan

Lebih terperinci

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. Menjelaskan cara penyelesaian soal dengan

Lebih terperinci

1 Sistem Bilangan Real

1 Sistem Bilangan Real Learning Outcome Rencana Pembelajaran Setelah mengikuti proses pembelajaran ini, diharapkan mahasiswa dapat ) Menentukan solusi pertidaksamaan aljabar ) Menyelesaikan pertidaksamaan dengan nilai mutlak

Lebih terperinci

INTEGRASI Matematika Industri I

INTEGRASI Matematika Industri I INTEGRASI TIP FTP UB Pokok Bahasan Pendahuluan Fungsi dari suatu fungsi linear Integral berbentuk Integrasi hasilkali Integrasi per bagian Integrasi dengan pecahan parsial Integrasi fungsi-fungsi trigonometris

Lebih terperinci

Bab 3 Fungsi Elementer

Bab 3 Fungsi Elementer Bab 3 Fungsi Elementer Bab 3 ini direncanakan akan disampaikan dalam 3 kali pertemuan, dengan perincian sebagai berikut: (1) Pertemuan I: Fungsi Eksponensial dan sifat-sifatnya, Fungsi Trigonometri. ()

Lebih terperinci

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran.

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran. 4 INTEGRAL Definisi 4.0. Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika untuk setiap D. F () f() Fungsi integral tak tentu f dinotasikan dengan f ( ) d dan f () dinamakan

Lebih terperinci

FUNGSI HIPERBOLIK Matematika

FUNGSI HIPERBOLIK Matematika FUNGSI HIPERBOLIK FTP UB Pokok Bahasan Pendahuluan Grafik dari fungsi hiperbolik Menentukan nilai fungsi hiperbolik Fungsi hiperbolik invers Bentuk log dari fungsi hiperbolik invers Identitas hiperbolik

Lebih terperinci

Fakultas Teknik UNY Jurusan Pendidikan Teknik Otomotif INTEGRASI FUNGSI. 0 a b X A. b A = f (X) dx a. Penyusun : Martubi, M.Pd., M.T.

Fakultas Teknik UNY Jurusan Pendidikan Teknik Otomotif INTEGRASI FUNGSI. 0 a b X A. b A = f (X) dx a. Penyusun : Martubi, M.Pd., M.T. Kode Modul MAT. TKF 20-03 Fakultas Teknik UNY Jurusan Pendidikan Teknik Otomotif INTEGRASI FUNGSI Y Y = f (X) 0 a b X A b A = f (X) dx a Penyusun : Martubi, M.Pd., M.T. Sistem Perencanaan Penyusunan Program

Lebih terperinci

Sudaryatno Sudirham. Studi Mandiri. Diferensiasi. Darpublic

Sudaryatno Sudirham. Studi Mandiri. Diferensiasi. Darpublic Suaratno Suirham Stui Maniri Diferensiasi ii Darpublic BAB 3 Turunan Fungsi-Fungsi (3 (Fungsi-Fungsi Trigonometri, Trigonometri Inersi, Logaritmik, Eksponensial 3.. Turunan Fungsi Trigonometri Jika maka

Lebih terperinci

KALKULUS INTEGRAL 2013

KALKULUS INTEGRAL 2013 KALKULUS INTEGRAL 0 PENDAHULUAN A. DESKRIPSI MATA KULIAH Isi pokok mata kuliah ini memuat pemahaman tentang: () Anti turunan: pengertian anti turunan, teorema-teorema, dan teknik anti turunan, () Integral

Lebih terperinci

integral = 2 . Setiap fungsi ini memiliki turunan ( ) = adalah ( ) = 6 2.

integral = 2 . Setiap fungsi ini memiliki turunan ( ) = adalah ( ) = 6 2. integral 13.1 PENGERTIAN INTEGRAL Untuk itu, coba tentukan turunan fungsi berikut. Perhatikan bahwa fungsi ini memiliki bentuk umum 6 2. Jadi, turunan fungsi = 2 =2 3. Setiap fungsi ini memiliki turunan

Lebih terperinci

6 FUNGSI LINEAR DAN FUNGSI

6 FUNGSI LINEAR DAN FUNGSI 6 FUNGSI LINEAR DAN FUNGSI KUADRAT 5.1. Fungsi Linear Pada Bab 5 telah dijelaskan bahwa fungsi linear merupakan fungsi yang variabel bebasnya paling tinggi berpangkat satu. Bentuk umum fungsi linear adalah

Lebih terperinci

TURUNAN FUNGSI. dy (y atau f (x) atau ) dx. Hal-hal yang perlu diingat untuk menyelesaikan turunan fungsi aljabar adalah :

TURUNAN FUNGSI. dy (y atau f (x) atau ) dx. Hal-hal yang perlu diingat untuk menyelesaikan turunan fungsi aljabar adalah : TURUNAN FUNGSI dy (y atau f () atau ) d Hal-hal yang perlu diingat untuk menyelesaikan turunan fungsi aljabar adalah :. ( a + b) = ( a + ab + b ). ( a b) = ( a ab + b ) m n m n. a = a 4. a m = a m m m.

Lebih terperinci

DIFERENSIAL (Derivatif) A. Simbol Deferensial Jika ada Persamaan y = 3x, maka simbol dari. atau ditulis

DIFERENSIAL (Derivatif) A. Simbol Deferensial Jika ada Persamaan y = 3x, maka simbol dari. atau ditulis DIFERENSIAL (Derivatif) A. Simbol Deferensial Jika ada Persamaan y = 3, maka simbol dari Turunan pertama y 1 atau Turunan kea y 11 atau d( ) B. Rumus Dasar Deferensial Jika y = n maka d (3) atau ditulis

Lebih terperinci

Catatan Kuliah MA1123 Kalkulus Elementer I

Catatan Kuliah MA1123 Kalkulus Elementer I Catatan Kuliah MA1123 Kalkulus Elementer I Oleh Hendra Gunawan, Ph.D. Departemen Matematika ITB Sasaran Belajar Setelah mempelajari materi Kalkulus Elementer I, mahasiswa diharapkan memiliki (terutama):

Lebih terperinci

BAB IV DIFFERENSIASI

BAB IV DIFFERENSIASI BAB IV DIFFERENSIASI 4. Garis singgung Garis singgung adalah garis yang menyinggung suatu titik tertentu pada suatu kurva. Pengertian garis singgung tersebut dapat dilihat pada Gambar 4.. Akan tetapi jika

Lebih terperinci

Bab 16. LIMIT dan TURUNAN. Motivasi. Limit Fungsi. Fungsi Turunan. Matematika SMK, Bab 16: Limit dan Turunan 1/35

Bab 16. LIMIT dan TURUNAN. Motivasi. Limit Fungsi. Fungsi Turunan. Matematika SMK, Bab 16: Limit dan Turunan 1/35 Bab 16 Grafik LIMIT dan TURUNAN Matematika SMK, Bab 16: Limit dan 1/35 Grafik Pada dasarnya, konsep limit dikembangkan untuk mengerjakan perhitungan matematis yang melibatkan: nilai sangat kecil; Matematika

Lebih terperinci

Turunan Fungsi. h asalkan limit ini ada.

Turunan Fungsi. h asalkan limit ini ada. Turunan Fungsi q Definisi Turunan Fungsi Misalkan fungsi f terdefinisi pada selang terbuka I yang memuat a. Turunan pertama fungsi f di =a ditulis f (a) didefinisikan dengan f ( a h) f ( a) f '( a) lim

Lebih terperinci

3. Turunan Fungsi Trigonometri, Trigonometri Inversi, Logaritmik, Eksponensial

3. Turunan Fungsi Trigonometri, Trigonometri Inversi, Logaritmik, Eksponensial Darpublic Nopember 03.arpublic.com 3. Turunan Fungsi Trigonometri, Trigonometri Inversi, Logaritmik, Eksponensial 3.. Turunan Fungsi Trigonometri Jika sin maka sin sin( + ) sin sin cos + cos sin sin Untuk

Lebih terperinci

Fungsi dan Grafik Diferensial dan Integral

Fungsi dan Grafik Diferensial dan Integral Sudaratno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral i Darpublic Hak cipta pada penulis, 1 SUDIRHAM, SUDARYATNO Fungsi dan Grafik, Diferensial dan Integral Oleh: Sudaratmo Sudirham

Lebih terperinci

digunakan untuk menyelesaikan integral seperti 3

digunakan untuk menyelesaikan integral seperti 3 Bab Teknik Pengintegralan BAB TEKNIK PENGINTEGRALAN Rumus-rumus dasar integral tak tertentu yang diberikan pada bab hanya dapat digunakan untuk mengevaluasi integral dari fungsi sederhana dan tidak dapat

Lebih terperinci

1. Pengertian Tentang Fungsi dan Grafik

1. Pengertian Tentang Fungsi dan Grafik Darpublic Oktober 3 www.darpublic.com. Pengertian Tentang Fungsi dan Grafik Fungsi Apabila suatu besaran memiliki nilai ang tergantung dari nilai besaran lain, maka dikatakan bahwa besaran tersebut merupakan

Lebih terperinci

FUNGSI Matematika Industri I

FUNGSI Matematika Industri I FUNGSI TIP FTP UB Pokok Bahasan Memproses bilangan Komposisi fungsi dari fungsi Jenis fungsi Fungsi trigonometrik Fungsi eksponensial dan logaritmik Fungsi ganjil dan fungsi genap Pokok Bahasan Memproses

Lebih terperinci

DEFFERNSIAL atau TURUNAN FUNGSI ALJABAR

DEFFERNSIAL atau TURUNAN FUNGSI ALJABAR DEFFERNSIAL atau TURUNAN FUNGSI ALJABAR A. Pengertian Turunan dari fungsi y f () Laju rata-rata perubahan fungsi dalam interval antara a dan a h adalah : y f( a h) f( a) f ( a h) f( a) = = (dengan syarat

Lebih terperinci

Bab 5 Turunan Fungsi. Definisi. Ilustrasi. Misalkan D menyatakan operator turunan. Pernyataan tentang turunan suatu fungsi. dapat ditulis sebagai;

Bab 5 Turunan Fungsi. Definisi. Ilustrasi. Misalkan D menyatakan operator turunan. Pernyataan tentang turunan suatu fungsi. dapat ditulis sebagai; Bab Turunan Fungsi Deinisi d Misalkan D menyatakan operator turunan. Pernyataan tentang turunan suatu ungsi d dapat ditulis sebagai; d d D d d Atau dideinisikan juga sebagai y 0 lim Gambar Pengertian tentang

Lebih terperinci

(a) (b) Gambar 1. garis singgung

(a) (b) Gambar 1. garis singgung BAB. TURUNAN Sebelm membahas trnan, terlebih dahl ditinja tentang garis singgng pada sat krva. A. Garis singgng Garis singgng adalah garis yang menyinggng sat titik tertent pada sat krva. Pengertian garis

Lebih terperinci

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran.

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran. 4 INTEGRAL Definisi 4. Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika untuk setiap D. F () f() Fungsi integral tak tentu f dinotasikan dengan f ( ) d dan f () dinamakan

Lebih terperinci

TEKNIK PENGINTEGRALAN

TEKNIK PENGINTEGRALAN TEKNIK PENGINTEGRALAN Departemen Matematika FMIPA IPB Bogor, 202 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 202 / 2 Topik Bahasan Pendahuluan 2 Manipulasi Integran 3 Integral Parsial 4 Dekomposisi

Lebih terperinci

FUNGSI TRIGONOMETRI, FUNGSI EKSPONEN, FUNGSI LOGARITMA

FUNGSI TRIGONOMETRI, FUNGSI EKSPONEN, FUNGSI LOGARITMA FUNGSI TRIGONOMETRI, FUNGSI EKSPONEN, FUNGSI LOGARITMA Makalah Ini Disusun Guna Memenuhi Tugas Mata Kuliah Kalkulus Dosen Pengampu : Muhammad Istiqlal, M.Pd. Disusun Oleh:. Mukhammad Rif an Alwi (070600).

Lebih terperinci

Persamaan dan Pertidaksamaan Linear

Persamaan dan Pertidaksamaan Linear MATERI POKOK Persamaan dan Pertidaksamaan Linear MATERI BAHASAN : A. Persamaan Linear B. Pertidaksamaan Linear Modul.MTK X 0 Kalimat terbuka adalah kalimat matematika yang belum dapat ditentukan nilai

Lebih terperinci

Ringkasan Materi Kuliah Bab II FUNGSI

Ringkasan Materi Kuliah Bab II FUNGSI Ringkasan Materi Kuliah Bab II FUNGSI. FUNGSI REAL, FUNGSI ALJABAR, DAN FUNGSI TRIGONOMETRI. TOPIK-TOPIK YANG BERKAITAN DENGAN FUNGSI.3 FUNGSI KOMPOSISI DAN FUNGSI INVERS. FUNGSI REAL, FUNGSI ALJABAR,

Lebih terperinci

BAB VI. FUNGSI TRANSENDEN

BAB VI. FUNGSI TRANSENDEN BAB VI. FUNGSI TRANSENDEN Fungsi Logaritma Natural Fungsi Balikan (Invers) Fungsi Eksponen Natural Fungsi Eksponen Umum an Fungsi Logaritma Umum Masalah Laju Perubahan Seerhana Fungsi Trigonometri Balikan

Lebih terperinci

Fungsi dan Grafik Diferensial dan Integral

Fungsi dan Grafik Diferensial dan Integral Sudaryatno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral 2 Darpublic BB 7 Gabungan Fungsi Sinus 7.1. Fungsi Sinus Dan Cosinus Banyak peristiwa terjadi secara siklis sinusoidal, seperti

Lebih terperinci

Analisis Rangkaian Listrik Di Kawasan Waktu

Analisis Rangkaian Listrik Di Kawasan Waktu Sudaryatno Sudirham Analisis Rangkaian Listrik Di Kawasan Waktu Sudaryatno Sudirham, Analisis Rangkaian Listrik () BAB 4 Model Piranti Pasif Suatu piranti mempunyai karakteristik atau perilaku tertentu.

Lebih terperinci

Analisis Rangkaian Listrik Di Kawasan s

Analisis Rangkaian Listrik Di Kawasan s Sudaryatno Sudirham Analisis Rangkaian Listrik Di Kawasan s Sudaryatno Sudirham, Analisis Rangkaian Listrik () BAB 4 Tanggapan Frekuensi Rangkaian Orde Pertama Sebagaimana kita ketahui, kondisi operasi

Lebih terperinci

15. TURUNAN (DERIVATIF)

15. TURUNAN (DERIVATIF) 5. TURUNAN (DERIVATIF) A. Rumus-Rumus Turunan Fungsi Aljabar dan Trigonometri Untuk u dan v adalah fungsi dari x, dan c adalah konstanta, maka:. y = u + v, y = u + v. y = c u, y = c u. y = u v, y = v u

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Fungsi Dua Peubah

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Fungsi Dua Peubah Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Fungsi Dua Peubah [MA114] Sistem Koordinat Kuadran II Kuadran I P(,) z P(,,z) Kuadran III Kuadran IV R (Bidang) Oktan 1 R 3 (Ruang) 7/6/007

Lebih terperinci

Fungsi dan Grafik Diferensial dan Integral

Fungsi dan Grafik Diferensial dan Integral Sudaratno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral ii Darpublic BAB 5 Bangun Geometris 5.1. Persamaan Kurva Persamaan suatu kurva secara umum dapat kita tuliskan sebagai F (, )

Lebih terperinci

III HASIL DAN PEMBAHASAN

III HASIL DAN PEMBAHASAN 7 III HASIL DAN PEMBAHASAN 3. Analisis Metode Dala penelitian ini akan digunakan etode hootopi untuk enyelesaikan persaaan Whitha-Broer-Koup (WBK), yaitu persaaan gerak bagi perabatan gelobang pada perairan

Lebih terperinci

(A) 3 (B) 5 (B) 1 (C) 8

(A) 3 (B) 5 (B) 1 (C) 8 . Turunan dari f ( ) = + + (E) 7 + +. Turunan dari y = ( ) ( + ) ( ) ( + ) ( ) ( + ) ( + ) ( + ) ( ) ( + ) (E) ( ) ( + ) 7 5 (E) 9 5 9 7 0. Jika f ( ) = maka f () = 8 (E) 8. Jika f () = 5 maka f (0) +

Lebih terperinci

Kalkulus 2. Teknik Pengintegralan ke - 1. Tim Pengajar Kalkulus ITK. Institut Teknologi Kalimantan. Januari 2018

Kalkulus 2. Teknik Pengintegralan ke - 1. Tim Pengajar Kalkulus ITK. Institut Teknologi Kalimantan. Januari 2018 Kalkulus 2 Teknik Pengintegralan ke - 1 Tim Pengajar Kalkulus ITK Institut Teknologi Kalimantan Januari 2018 Tim Pengajar Kalkulus ITK (Institut Teknologi Kalimantan) Kalkulus 2 Januari 2018 1 / 36 Daftar

Lebih terperinci

FUNGSI DAN MODEL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 63

FUNGSI DAN MODEL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 63 FUNGSI DAN MODEL Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 63 Topik Bahasan 1 Fungsi 2 Jenis-jenis Fungsi 3 Fungsi Baru dari Fungsi Lama 4

Lebih terperinci

Sudaryatno Sudirham ing Utari. Mengenal Sudaryatno S & Ning Utari, Mengenal Sifat-Sifat Material (1)

Sudaryatno Sudirham ing Utari. Mengenal Sudaryatno S & Ning Utari, Mengenal Sifat-Sifat Material (1) Sudaryatno Sudirham ing Utari Mengenal Sifat-Sifat Material (1) 13-2 Sudaryatno S & Ning Utari, Mengenal Sifat-Sifat Material (1) A 13 Sistem Multifasa Pengertian tentang fasa telah kita singgung dalam

Lebih terperinci

DASAR-DASAR MATLAB. Seperti bahasa pemrograman lainnnya, MATLAB JUGA memiliki metode dan symbol tersendiri dalam penulisan syntax-nya.

DASAR-DASAR MATLAB. Seperti bahasa pemrograman lainnnya, MATLAB JUGA memiliki metode dan symbol tersendiri dalam penulisan syntax-nya. DASAR-DASAR MATLAB Seperti bahasa pemrograman lainnnya, MATLAB JUGA memiliki metode dan symbol tersendiri dalam penulisan syntax-nya. Dalam pemrograman MATLAB dikenal hanya dua tipe data, yaitu Numeric

Lebih terperinci

Fungsi dan Grafik Diferensial dan Integral

Fungsi dan Grafik Diferensial dan Integral Sudaratno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral Darpublic ii BAB 3 Gabungan Fungsi Linier Fungsi-fungsi linier banak digunakan untuk membuat model dari perubahan-perubahan besaran

Lebih terperinci

TURUNAN. Bogor, Departemen Matematika FMIPA-IPB. (Departemen Matematika FMIPA-IPB) Kalkulus: Turunan Bogor, / 50

TURUNAN. Bogor, Departemen Matematika FMIPA-IPB. (Departemen Matematika FMIPA-IPB) Kalkulus: Turunan Bogor, / 50 TURUNAN Departemen Matematika FMIPA-IPB Bogor, 2012 (Departemen Matematika FMIPA-IPB) Kalkulus: Turunan Bogor, 2012 1 / 50 Topik Bahasan 1 Pendahuluan 2 Turunan Fungsi 3 Tafsiran Lain Turunan 4 Kaitan

Lebih terperinci

LIMIT FUNGSI. A. Menentukan Limit Fungsi Aljabar A.1. Limit x a Contoh A.1: Contoh A.2 : 2 4)

LIMIT FUNGSI. A. Menentukan Limit Fungsi Aljabar A.1. Limit x a Contoh A.1: Contoh A.2 : 2 4) LIMIT FUNGSI A. Menentukan Limit Fungsi Aljabar A.. Limit a Contoh A.:. ( ) 3 Contoh A. : 4 ( )( ) ( ) 4 Latihan. Hitunglah nilai it fungsi-fungsi berikut ini. a. (3 ) b. ( 4) c. ( 4) d. 0 . Hitunglah

Lebih terperinci

FUNGSI dan LIMIT. 1.1 Fungsi dan Grafiknya

FUNGSI dan LIMIT. 1.1 Fungsi dan Grafiknya FUNGSI dan LIMIT 1.1 Fungsi dan Grafiknya Fungsi : suatu aturan yang menghubungkan setiap elemen suatu himpunan pertama (daerah asal) tepat kepada satu elemen himpunan kedua (daerah hasil) fungsi Daerah

Lebih terperinci

APLIKASI TURUNAN ALJABAR. Tujuan Pembelajaran. ) kemudian menyentuh bukit kedua pada titik B(x 2

APLIKASI TURUNAN ALJABAR. Tujuan Pembelajaran. ) kemudian menyentuh bukit kedua pada titik B(x 2 Kurikulum 3/6 matematika K e l a s XI APLIKASI TURUNAN ALJABAR Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Dapat menerapkan aturan turunan aljabar untuk

Lebih terperinci

perpindahan, kita peroleh persamaan differensial berikut :

perpindahan, kita peroleh persamaan differensial berikut : 1.1 Pengertian Persamaan Differensial Banyak sekali masalah terapan (dalam ilmu teknik, ilmu fisika, biologi, kimia, sosial, dan lain-lain), yang telah dirumuskan dengan model matematika dalam bentuk persamaan

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Persamaan Diferensial Orde II

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Persamaan Diferensial Orde II Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Persamaan Diferensial Orde II [MA4] PDB Orde II Bentuk umum : y + p(x)y + g(x)y = r(x) p(x), g(x) disebut koefisien jika r(x) = 0, maka Persamaan

Lebih terperinci

MATEMATIKA DASAR TAHUN 1987

MATEMATIKA DASAR TAHUN 1987 MATEMATIKA DASAR TAHUN 987 MD-87-0 Garis singgung pada kurva y di titik potong nya dengan sumbu yang absisnya positif mempunyai gradien 0 MD-87-0 Titik potong garis y + dengan parabola y + ialah P (5,

Lebih terperinci

Kelompok Mata Kuliah : MKU Program Studi/Program : Pendidikan Teknik Elektro/S1 Status Mata Kuliah : Wajib Prasyarat : - : Aip Saripudin, M.T.

Kelompok Mata Kuliah : MKU Program Studi/Program : Pendidikan Teknik Elektro/S1 Status Mata Kuliah : Wajib Prasyarat : - : Aip Saripudin, M.T. DESKRIPSI MATA KULIAH TK-301 Matematika: S1, 3 SKS, Semester I Mata kuliah ini merupakan kuliah dasar. Selesai mengikuti perkuliahan ini mahasiswa diharapkan mampu memahami konsep-konsep matematika dan

Lebih terperinci

FT UNIVERSITAS SURABAYA VARIABEL KOMPLEKS SUGATA PIKATAN. Bab V Aplikasi

FT UNIVERSITAS SURABAYA VARIABEL KOMPLEKS SUGATA PIKATAN. Bab V Aplikasi Bab V Aplikasi Selain aplikasi yang sudah diperkenalkan di bab I, teori variabel kompleks masih memiliki banyak ragam aplikasi lainnya. Beberapa di antaranya akan dibahas di dalam bab ini. Perhitungan

Lebih terperinci

APLIKASI INTEGRAL 1. LUAS DAERAH BIDANG

APLIKASI INTEGRAL 1. LUAS DAERAH BIDANG Bahan ajar Kalkulus Integral 9 APLIKASI INTEGRAL. LUAS DAERAH BIDANG Misalkan f() kontinu pada a b, dan daerah tersebut dibagi menjadi n sub interval h, h,, h n yang panjangnya,,, n (anggap n ), ambil

Lebih terperinci

Hendra Gunawan. 4 September 2013

Hendra Gunawan. 4 September 2013 MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 4 September 2013 Latihan (Kuliah yang Lalu) 1. Tentukan daerah asal dan daerah nilai fungsi 2 f(x) = 1 x. sudah dijawab 2. Gambar grafik fungsi

Lebih terperinci

BAGIAN 1 SINTAK DASAR MATLAB

BAGIAN 1 SINTAK DASAR MATLAB BAGIAN 1 SINTAK DASAR MATLAB Pada bagian 1 ini, akan diuraikan tentang bagaimana mendefinisikan data, operasi data dan teknik mengakses data pada Matlab. Untuk lebih memahami, pembaca sebaiknya mecobanya

Lebih terperinci

Kompetensi Dasar Tujuan Pembelajaran

Kompetensi Dasar Tujuan Pembelajaran BAB 7 LIMIT FUNGSI Kompetensi Dasar Siswa dapat menjelaskan it fungsi di satu titik dan di tak hingga beserta teknis perhitungannya. Menggunakan sifat it fungsi untuk menghitung bentuk tak tentu fungsi

Lebih terperinci

Turunan Fungsi. Penggunaan Konsep dan Aturan Turunan ; Penggunaan Turunan untuk Menentukan Karakteristik Suatu Fungsi

Turunan Fungsi. Penggunaan Konsep dan Aturan Turunan ; Penggunaan Turunan untuk Menentukan Karakteristik Suatu Fungsi 8 Penggunaan Konsep dan Aturan Turunan ; Penggunaan Turunan untuk Menentukan Karakteristik Suatu Fungsi ; Model Matematika dari Masala yang Berkaitan dengan ; Ekstrim Fungsi Model Matematika dari Masala

Lebih terperinci

Respect, Professionalism, & Entrepreneurship. Pengantar Kalkulus. Pertemuan - 1

Respect, Professionalism, & Entrepreneurship. Pengantar Kalkulus. Pertemuan - 1 Mata Kuliah Kode SKS : Kalkulus : CIV-101 : 3 SKS Pengantar Kalkulus Pertemuan - 1 Kemampuan Akhir ang Diharapkan : Mahasiswa mampu menjelaskan sistem bilangan real Mahasiswa mampu menelesaikan pertaksamaan

Lebih terperinci

Sudaryatno Sudirham. Studi Mandiri. Fungsi dan Grafik. Darpublic

Sudaryatno Sudirham. Studi Mandiri. Fungsi dan Grafik. Darpublic Sudaratno Sudirham Studi Mandiri Fungsi dan Grafik ii Darpublic BAB 1 Pengertian Tentang Fungsi dan Grafik 1.1. Fungsi Apabila suatu besaran memiliki nilai ang tergantung dari nilai besaran lain, maka

Lebih terperinci

Sudaryatno Sudirham. Aritmatika Interval

Sudaryatno Sudirham. Aritmatika Interval Sudaryatno Sudirham Aritmatika Interval Kata Pengantar Dalam praktik rekayasa dijumpai operasi matematika yang melibatkan bilangan-bilangan dalam interval. Dalam keadaan demikian kita dihadapkan pada operasi-operasi

Lebih terperinci

MAT 602 DASAR MATEMATIKA II

MAT 602 DASAR MATEMATIKA II MAT 60 DASAR MATEMATIKA II Disusun Oleh: Dr. St. Budi Waluya, M. Sc Jurusan Pendidikan Matematika Program Pascasarjana Unnes 1 HIMPUNAN 1. Notasi Himpunan. Relasi Himpunan 3. Operasi Himpunan A B : A B

Lebih terperinci

FUNGSI-FUNGSI INVERS

FUNGSI-FUNGSI INVERS FUNGSI-FUNGSI INVERS Logaritma, Eksponen, Trigonometri Invers Departemen Matematika FMIPA IPB Bogor, 202 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 202 / 49 Topik Bahasan Fungsi Satu ke Satu 2

Lebih terperinci

INTISARI KALKULUS 2. Penyusun: Drs. Warsoma Djohan M.Si. Open Source. Not For Commercial Use

INTISARI KALKULUS 2. Penyusun: Drs. Warsoma Djohan M.Si. Open Source. Not For Commercial Use INTISARI KALKULUS 2 Penyusun: Drs. Warsoma Djohan M.Si. Program Studi Matematika - FMIPA Institut Teknologi Bandung Januari 200 Pengantar Kalkulus & 2 merupakan matakuliah wajib tingkat pertama bagi semua

Lebih terperinci

Analisis Rangkaian Listrik Di Kawasan s

Analisis Rangkaian Listrik Di Kawasan s Sudaryatno Sudirham Analisis Rangkaian Listrik Di Kawasan s Sudaryatno Sudirham, Analisis Rangkaian Listrik () BAB 5 Tanggapan Frekuensi Rangkaian Orde Ke-Dua 5.1. Rangkaian Orde Kedua Dengan Pole Riil

Lebih terperinci

FUNGSI LOGARITMA ASLI

FUNGSI LOGARITMA ASLI D.. = D.. = D.. = = 0 D.. = D.. = D.. = 3 FUNGSI LOGARITMA ASLI Definisi Fungsi logaritma asli, dinyatakan oleh ln, didefinisikan sebagai ln = (Daerah asalnya adalah R). t dt, > 0 Turunan Logaritma Asli

Lebih terperinci

HUBUNGAN ANTARA DIFFERENSIAL DAN INTEGRAL

HUBUNGAN ANTARA DIFFERENSIAL DAN INTEGRAL HUBUNGAN ANTARA DIFFERENSIAL DAN INTEGRAL Dra.Sri Rejeki Dwi Putranti, M.Kes. Fakultas Teknik - Universitaas Yos Soedarso Surabaya Email : riccayusticia@gmail.com Abstrak Hubungan antara Differensial dan

Lebih terperinci