BAB 2 LANDASAN TEORI

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 2 LANDASAN TEORI"

Transkripsi

1 BAB LANDASAN TEORI. Pegerta Regres Dalam kehdupa sehar-har, serg kta jumpa huuga atara satu varael terhadap satu atau leh varael. Seaga cotoh, esarya pedapata seseorag mempegaruh kosums, harga dar suatu arag mempegaruh permtaa da cotoh yag laya. Stud yag meyagkut masalah dkeal dega Aalsa Regres. Istlah regres pertama kal dperkealka oleh Sr Fracs Galto 8 9 dalam makalah yag erjudul Regresso Towed Medacrety Stature, yag memahas tetag model peramala, peaksra, atau pedugaa yag selajutya damaka regres, sehuuga dega peeltaya yag memadgka tgg ada aak lak-lak dega tgg ada ayahya. Galto meujukka ahwa tgg ada aak lak-lak dar ayah yag tgg setelah eerapa geeras cederug mudur regressed medekat la tegah populas. Dega kata la, aak lak-lak dar ayah yag adaya sagat tgg cederug leh pedek dar pada ayahya, sedagka aak lak-lak dar ayah yag adaya sagat pedek cederug leh Uverstas Sumatera Utara

2 tgg dar ayahya, Peemua dtuls dalam artkel yag erjudul : Famly Lkeess Stature Procee of Royal Socety, Lodo, Vol.0,886. Meurut pejelasaya ada suatu kecedruga utuk rata-rata aak dar orag tua dega tgg tertetu ergerak meuju la rata-rata dar seluruh populas,ars yag meujukka huuga terseut dseut Gars Regres. Hukum Regres Uversal dar Galto telah duktka oleh Karl Pearso dega megumpulka leh dar seru catata megea tgg dar aggota keluarga. Karl Pearso meemuka ahwa rata-rata tgg aak lak-lak kelompok orag tua yag tgg teryata leh kecl dar tgg ayahya da rata-rata tgg aak lak-lak dar kelompok oragtua yag pedek teryata leh esar dar pada tgg ayahya, jad seolah-olah semua aak lak-lak yag tgg da aak lak-lak yag pedek ergerak meuju ke rata-rata tgg dar seluruh aak lak-lak yag meurut Galto Regresso to Medocrty. Dar uraa d atas dapat dsmpulka ahwa pada umumya tgg aak megkut tgg orag tua ya. Jad prsp dasar yag harus dpeuh dalam memagu suatu persamaa regres adalah ahwa atara suatu varael tdak eas depedet varale dega varael-varael eas depedet varale laya memlk sfat huuga sea akat huuga kausaltas, ak ddasarka pada teor, hasl peelta seelumya, maupu yag ddasarka pada pejelasa logs tertetu dega tujua utuk meduga atau memperkraka la-la varael tdak eas erdasarka la-la tertetu dar varael eas. Uverstas Sumatera Utara

3 . Aalss Regres Ler Aalss regres regresso aalyss merupaka suatu tekk techque utuk memagu persamaa gars lurus da megguaka persamaa terseut utuk memuat perkraa predcto. Maso,996,Hal:89. Aalss regres tedr dar dua etuk yatu :. Aalss Regres Ler Sederhaa. Aalss Regres Ler Bergada Aalss regres sederhaa adalah etuk regres dega model yag ertujua utuk mempelajar huuga atara dua varael, yak varael depede tak eas da varael depede eas. Sedagka aalss regres ergada adalah etuk regres dega model yag memlk huuga atara satu varael depede dega dua atau leh varael depede. Varael depede adalah varael yag laya tergatug dega varael laya, sedagka varael depede adalah varael yag laya tergatug dar varael yag laya. Aalss regres dperguaka utuk meelaah huuga atara dua varael atau leh, terutama utuk meelusur pola huuga yag modelya elum dketahu dega ak, atau utuk megetahu agamaa varas dar eerapa varael Uverstas Sumatera Utara

4 depede mempegaruh varael depede dalam suatu feomea yag komplek. Jka,,,..., k adalah varael-varael depede da adalah varael depede, maka terdapat huuga fugsoal atara da, dmaa varas dar aka drg pula oleh varas dar. Jka duat secara matemats huuga tu dapat djaarka seaga erkut: Dmaa : f,,..., k, e adalah varael depede tak eas adalah varael depede eas e adalah varael resdu dsturace term.. Aalss Regres Ler Sederhaa Regres ler sederhaa dguaka utuk memperkraka huuga atara dua varael d maa haya terdapat satu varael/peuah eas da satu peuah tak eas. Dalam etuk persamaa, model regres sederhaa adalah : a dmaa: adalah varael terkat/tak eas depedet adalah varael eas depedet a adalah peduga ag tercept adalah peduga ag koefse regres Uverstas Sumatera Utara

5 Persamaa d atas dapat dguaka utuk meaksr la jka la a, da dketahu. Nla a pada persamaa terseut merupaka la yag dpotog oleh kurva ler pada sumu vertkal. Atau dega kata la, a adalah la jka 0. Nla adalah kemrga slope kurva lear yag meujukka esarya peruah la seaga akat dar peruah setap ut la. Besarya a da kosta sepajag kurva lear. Utuk persamaa regres ler sederhaa merupaka model matemats determstk determstc mathematcal model, sea apala la varael dketahu, maka la varael dapat dtetuka tapa megadug faktor kesalaha error... Aalss Regres Ler Bergada Utuk memperkraka la varael tak eas, aka leh ak apala kta kut memperhtugka varael-varael eas la yag kut mempegaruh la. dega demka dmlk huuga atara satu varael tdak eas dega eerapa varael la yag eas,, da,..., k. Utuk tulah dguaka regres lear ergada. Dalam pemahasa megea regres sederhaa, smol yag dguaka utuk varael easya adalah. Dalam regres ergada, persamaa regresya memlk leh dar satu varael eas maka perlu meamah tada laga pada setap varael terseut, dalam hal,,..., k. Secara umum persamaa regres ergada dapat dtuls seaga erkut : B 0 B B... B k k Utuk populas Uverstas Sumatera Utara

6 0... k k Utuk sampel Dega : : Varael Tak Beas Idepedet 0 :Kostata :,,..,,,....., k : Koefse Regres,,, k : Varael tak Beas Depedet : Galat taksra Error Persamaa erkut merupaka model matemats proalstk proalstc mathematcal model, atau dseut juga dega stlah model matemats stochastk stochastc mathematcal model. Dega megguaka persamaa jka varael sudah tertetu, la varael mash elum dapat dtetuka. I dseaka mash terdapatya faktor kesalaha error. Dalam peelta, dguaka eam varael yag terdr dar satu varael eas da lma varael yatu,,,,, Maka persamaa regres ergadaya adalah : 0 Uverstas Sumatera Utara

7 Persamaa d atas dapat dapat dselesaka dega lma etuk yatu : Dmaa 0,,,,, merupaka koefse yag dtetuka erdasarka data hasl pegamata.. Uj Keerarta Regres Bergada Seelum persamaa regres yag dperoleh dguaka utuk memuat kesmpula terleh dahulu dperksa setdak-tdakya megea keleara da keerartaya. Pemerksaa dtempuh melalu peguja hpotess, dalam peguja hpotess ada eerapa hal yag dpertmagka :. Hpotess ol da hpotess alteratf yag dusulka. Daerah peermaa da peolaka serta tekk arah peguja oe taled atau two taled. Peetua la htug statstk. Meark kesmpula apakah meerma atau meolak hpotess yag dusulka Uj keerarta regres ler dlakuka utuk meyakka apakah regres eretuk lear, utuk tu dperluka dua macam jumlah kuadrat JK yatu Jumlah Uverstas Sumatera Utara

8 Kuadrat utuk regres yag dtuls JK reg da Jumlah Kuadrat utuk ssa resdu yag dtuls dega JK res. Jka x, x,..., x k k umum jumlah kuadrat-kuadrat terseut dapat dhtug dar : JK reg dega derajat keeasa dk k x y JK res x y... dega derajat keeasa dk k utuk sampel erukura. ^ k da y maka secara k x k y Dega demka uj keerarta regres ergada dapat dhtug dega : F htug JK res JK reg / k / k Dmaa statstk F yag meyear megkut dstrus F dega derajat keeasa pemlag V k da peyeut V k. Adapu lagkah-lagkah yag dlakuka utuk peguja hpotess atara la :. Ho : 0... k 0 Tdak terdapat huuga fugsoal yag sgfka atara varael eas dega varael tak eas. Ha : Mmal satu parameter koefse regres yag 0 k Uverstas Sumatera Utara

9 Terdapat huuga fugsoal yag sgfka atara varael eas dega varael tak eas. Plh taraf yag dgka. Htug statstk F htug dega megguaka persamaa. Nla F tael megguaka daftar tael F dega taraf sgfkas yatu F tael F α k, k. Krtera peguja : jka F htug F tael, maka Ho dtolak da Ha dterma. Sealkya Jka F htug F tael, maka Ho dterma da Ha dtolak.. Koefse Determas Koefse determas yag dsmolka dega R ertujua utuk megetahu seerapa esar kemampua varael-varael eas yag ada d dalam model persamaa regres ler ergada secara ersama-sama mejelaska varael tak eas. Nla R dkataka ak jka erada d atas 0, karea la R erksar atara 0 da. Pada umumya model regres ler ergada dapat dkataka layak dpaka utuk peelta, karea seaga esar varael depede djelaska oleh varael depede yag dguaka dalam model. Koefse determas dapat dhtug dar : R x y x y... k. x k y Uverstas Sumatera Utara

10 Sehgga rumus umum koefse determas yatu : JK R y reg Harga R dperoleh sesua dega varas yag djelaska oleh masg-masg varael yag tgg dalam regres. Hal megakatka varas yag djelaska peduga haya dseaka oleh varael yag erpegaruh saja.. Koefse Korelas Nla koefse korelas merupaka la yag dguaka utuk megukur kekuata keerata suatu huuga atarvarael. Koefse korelas asaya dsmolka dega r. Koefse korelas dapat drumuska seaga erkut: r { }{ } Utuk meghtug koefse korelas atara varael tak eas dega lma varael eas,,,, yatu : Uverstas Sumatera Utara

11 . Koefse korelas atara dega. Koefse korelas atara dega. Koefse korelas atara dega. Koefse korelas atara dega. Koefse korelas atara dega Koefse korelas memlk la atara - hgga. Sfat la koefse korelas adalah plus atau mus - yag meujuka arah korelas. Maka sfat korelas: r y { }{ } r y { }{ } r y { }{ } r y { }{ } r y { }{ } Uverstas Sumatera Utara

12 . Korelas postf erart jka varael megalam keaka maka varael juga megalam keaka atau jka varael megalam keaka maka varael juga megalam keaka. Korelas egatf - erart jka varael megalam keaka maka varael aka megalam peurua, atau jka varael megalam keaka maka varael aka megalam peurua Sfat korelas aka meetuka arah dar korelas. Utuk leh memudahka megetahu agamaa keerata korelas dapat dkelompokka seaga erkut :. 0,00 sampa dega 0,0 erart korelas memlk keerata sagat lemah.. 0, sampa dega 0,0 erart korelas memlk keerata lemah.. 0, sampa dega 0,70 erart korelas memlk keerata kuat.. 0,7 sampa dega 0,90 erart korelas memlk keerata sagat kuat.. 0,9 sampa dega 0,99 erart korelas memlk keerata sagat kuat sekal. 6. erart korelas sempura..6 Uj Keerarta Koefse Regres Ler Bergada Dalam uj keerarta regres ler gada telah dkataka ahwa seelum regres yag dperoleh dguaka utuk megaml kesmpula, terleh dahulu perlu Uverstas Sumatera Utara

13 dperksa megea keerarta regres tu seaga suatu kesatua da keerarta tap koefse regres. Utuk megetahu agamaa keerarta setap varael eas dalam regres, perlu dadaka peguja tersedr megea koefse-koefse regres. Msalka populas memlk model regres ler ergada : µ y. x. x... x 0... k k yag erdasarka seuah sampel acak erukura dtaksr oleh regres eretuk: ^ 0... k k Aka dlakuka peguja hpotess dalam etuk : Ho : 0,,,..., k H : 0,,,..., k Utuk meguj hpotess dguaka kekelrua aku taksra s y.... k, jumlah kaudrat-kuadrat x j dega x j j - j da koefse korelas gada atara masg-masg varael eas dega varael tak eas dalam regres yatu R. Dega esara-esara detuk kekelrua aku koefse yak: s y... k x R j s dmaa : s y.,,,... k ^ x j j - JK R y reg j Uverstas Sumatera Utara

14 Selajutya htug statstk : t s Dega krtera peguja : jka t > t tael, maka tolak H o da jka t < t tael, maka terma H o yag aka erdstrus t dega derajat keeasa dk -k- da t tael t -k-,/. Uverstas Sumatera Utara

BAB 2 LANDASAN TEORI. Regresi dalam statistika adalah salah satu metode untuk menentukan tingkat

BAB 2 LANDASAN TEORI. Regresi dalam statistika adalah salah satu metode untuk menentukan tingkat 0 BAB LANDASAN TEORI. Pegerta Regres Regres dalam statstka adalah salah satu metode utuk meetuka tgkat pegaruh suatu varael terhadap varael yag la. Varael yag pertama dseut dega ermacam-macam stlah: varael

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 0 BAB LANDASAN TEORI. Pegerta Regres da Korelas.. Pegerta Regres Regres adalah suatu metode statstka yag ergua utuk memerksa atau memodelka huuga datara varael-varael. Varael-varael terseut dega megguaka

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI. Pegerta Regres Regres dalam statstka adalah salah satu metode utuk meetuka tgkat pegaruh suatu varael terhadap varael ag la. Varael ag pertama dseut dega ermacam-macam stlah: varael

Lebih terperinci

BAB 2 LANDASAN TEORI. Istilah regresi pertama kali diperkenalkan oleh Francis Galton. Menurut Galton,

BAB 2 LANDASAN TEORI. Istilah regresi pertama kali diperkenalkan oleh Francis Galton. Menurut Galton, BAB LANDASAN TEORI Pegerta Regres Istlah regres pertama kal dperkealka oleh Fracs Galto Meurut Galto, aalss regres berkeaa dega stud ketergatuga dar suatu varabel yag dsebut varabel tak bebas (depedet

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI. Defes Aalss Korelas da Regres a Aalss Korelas adalah metode statstka yag dguaka utuk meetuka kuatya atau derajat huuga lear atara dua varael atau leh. Semak yata huuga ler gars lurus,

Lebih terperinci

BAB 2. Tinjauan Teoritis

BAB 2. Tinjauan Teoritis BAB Tjaua Teorts.1 Regres Lear Sederhaa Regres lear adalah alat statstk yag dperguaka utuk megetahu pegaruh atara satu atau beberapa varabel terhadap satu buah varabel. Varabel yag mempegaruh serg dsebut

Lebih terperinci

BAB 2 LANDASAN TEORI. disebut dengan bermacam-macam istilah: variabel penjelas, variabel

BAB 2 LANDASAN TEORI. disebut dengan bermacam-macam istilah: variabel penjelas, variabel BAB LANDASAN TEORI.1 Pegerta Regres Regres dalam statstka adalah salah satu metode utuk meetuka tgkat pegaruh suatu varabel terhadap varabel yag la. Varabel yag pertama dsebut dega bermacam-macam stlah:

Lebih terperinci

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai BAB LANDASAN TEORI. Kosep Dasar Aalss Regres Aalss regres regressso aalyss merupaka suatu tekk utuk membagu persamaa da megguaka persamaa tersebut utuk membuat perkraa predcto. Dega demka, aalss regres

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu.

BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu. BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa yag varabel bebasya ( berpagkat palg tgg satu. Utuk regres ler sederhaa, regres ler haya melbatka dua varabel ( da. Persamaa regresya dapat dtulska

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 1 Pegerta Regres Istlah regres pertama kal dperkealka oleh Fracs Galto Meurut Galto, aalss regres berkeaa dega stud ketergatuga dar suatu varabel yag dsebut tak bebas depedet varable,

Lebih terperinci

LANGKAH-LANGKAH UJI HIPOTESIS DENGAN 2 (Untuk Data Nominal)

LANGKAH-LANGKAH UJI HIPOTESIS DENGAN 2 (Untuk Data Nominal) LANGKAH-LANGKAH UJI HIPOTESIS DENGAN (Utuk Data Nomal). Merumuska hpotess (termasuk rumusa hpotess statstk). Data hasl peelta duat dalam etuk tael slag (tael frekues oservas) 3. Meetuka krtera uj atau

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa merupaka baga regres yag mecakup hubuga ler satu peubah acak tak bebas dega satu peubah bebas. Hubuga ler da dar satu populas dsebut gars regres

Lebih terperinci

BAB 5. ANALISIS REGRESI DAN KORELASI

BAB 5. ANALISIS REGRESI DAN KORELASI BAB 5. ANALISIS REGRESI DAN KORELASI Tujua utama aalss regres adalah mecar ada tdakya hubuga ler atara dua varabel: Varabel bebas (X), yatu varabel yag mempegaruh Varabel terkat (Y), yatu varabel yag dpegaruh

Lebih terperinci

Analisis Korelasi dan Regresi

Analisis Korelasi dan Regresi Aalss Korelas da Regres Hazmra Yozza Izzat Rahm HG Jurusa Matematka FMIPA Uad LOGO www.themegaller.com LOGO Data varat Data dega dua varael Terhadap satu pegamata dlakuka pegukurapegamata terhadap varael

Lebih terperinci

BAB 2 LANDASAN TEORI. Analisis regresi adalah suatu proses memperkirakan secara sistematis tentang apa yang paling

BAB 2 LANDASAN TEORI. Analisis regresi adalah suatu proses memperkirakan secara sistematis tentang apa yang paling BAB LANDASAN TEORI Kosep Dasar Aalss Regres Aalss regres adalah suatu proses memperkraka secara sstemats tetag apa yag palg mugk terjad dmasa yag aka datag berdasarka formas yag sekarag dmlk agar memperkecl

Lebih terperinci

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM 1 Megetahu perhtuga persamaa regres ler Meggambarka persamaa regres ler ke dalam dagram pecar TEORI PENUNJANG Persamaa Regres adalah persamaa matematka

Lebih terperinci

Analisis Regresi dan Korelasi

Analisis Regresi dan Korelasi Metode Statstka Pertemua III Aalss Regres da Korelas Pegatar Apa tu aalss regres? Apa edaya dega korelas? Aalss Regres Aalss statstka yag memafaatka huuga atara dua atau leh peuah kuattatf sehgga salah

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. regresi berkenaan dengan studi ketergantungan antara dua atau lebih variabel yaitu

BAB 2 TINJAUAN TEORITIS. regresi berkenaan dengan studi ketergantungan antara dua atau lebih variabel yaitu BAB TINJAUAN TEORITIS. Pegerta Aalsa Regres Istlah regres pertama kal dperkealka oleh Fracs Galto. Meurutya, aalss regres berkeaa dega stud ketergatuga atara dua atau lebh varabel yatu varabel yag meeragka

Lebih terperinci

BAB II TINJAUAN TEORITIS. Statistik merupakan cara cara tertentu yang digunakan dalam mengumpulkan,

BAB II TINJAUAN TEORITIS. Statistik merupakan cara cara tertentu yang digunakan dalam mengumpulkan, BAB II TINJAUAN TEORITIS.1 Kosep Dasar Statstka Statstk merupaka cara cara tertetu yag dguaka dalam megumpulka, meyusu atau megatur, meyajka, megaalsa da member terpretas terhadap sekumpula data, sehgga

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. Statistik merupakan cara cara tertentu yang digunakan dalam mengumpulkan,

BAB 2 TINJAUAN TEORITIS. Statistik merupakan cara cara tertentu yang digunakan dalam mengumpulkan, BAB TINJAUAN TEORITIS 1 Kosep Dasar Statstka Statstk merupaka cara cara tertetu yag dguaka dalam megumpulka, meyusu atau megatur, meyajka, megaalsa da member terpretas terhadap sekumpula data, sehgga kumpula

Lebih terperinci

ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas:

ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas: ANALISIS REGRESI Pedahulua Aalss regres berkata dega stud megea ketergatuga satu peubah (peubah terkat) terhadap satu atau lebh peubah laya (peubah pejelas). Jka Y dumpamaka sebaga peubah terkat da X1,X,...,X

Lebih terperinci

Regresi Linier Sederhana Definisi Pengaruh

Regresi Linier Sederhana Definisi Pengaruh Regres Ler Sederhaa Dah Idra Baga Bostatstka da Kepeduduka Fakultas Kesehata Masyarakat Uverstas Arlagga Defs Pegaruh Jka terdapat varabel, msalka da yag data-dataya dplot sepert gambar dbawah 3 Defs Pegaruh

Lebih terperinci

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu KORELASI 1 D dua kta tdak dapat hdup sedr, tetap memerluka hubuga dega orag la. Hubuga tu pada umumya dlakuka dega maksud tertetu sepert medapat kergaa pajak, memperoleh kredt, memjam uag, serta mta pertologa/batua

Lebih terperinci

menyelesaikan permasalahan dalan penulisan.

menyelesaikan permasalahan dalan penulisan. BAB 5 : IMPLEMENTASI SISTEM Ba n mengurakan proses pengolahan data dengan program yang akan dgunakan yatu SPSS yang memantu dalam menyelesakan permasalahan dalan penulsan. BAB 6 : KESIMPULAN DAN SARAN

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Sampa saat, model Regres da model Aalss Varas telah dpadag sebaga dua hal ag tdak berkata. Meskpu merupaka pedekata ag umum dalam meeragka kedua cara pada taraf permulaa,

Lebih terperinci

Regresi Linier Sederhana dan Korelasi (3 sesi)

Regresi Linier Sederhana dan Korelasi (3 sesi) Regre Ler Sederhaa da Korela (3 e) Duu oleh Sgt Nugroho Uverta Begkulu Pegerta Regre merupaka tekk tattka ag dguaka utuk mempelajar huuga fugoal dar atu atau eerapa peuah ea (peuah ag mempegaruh) terhadap

Lebih terperinci

BAB 2 LANDASAN TEORI. Istilah regresi diperkenalkan oleh seorang yang bernama Francis Gulton dalam

BAB 2 LANDASAN TEORI. Istilah regresi diperkenalkan oleh seorang yang bernama Francis Gulton dalam BAB LANDASAN TEORI Pegerta Regres da Korelas Pegerta Regres Istlah regres dpereala oleh seorag yag erama Fracs Gulto dalam maalah erjudul regresso towerd medacraty heredtary stature Meurut hasl peelta

Lebih terperinci

II. TINJAUAN PUSTAKA. variabel. Dalam regresi sederhana dikaji dua variabel, sedangkan dalam regresi

II. TINJAUAN PUSTAKA. variabel. Dalam regresi sederhana dikaji dua variabel, sedangkan dalam regresi 3 II. TINJAUAN PUSTAKA. Aalss Regres Aalss regres merupaka salah satu metode statstka ag dguaka utuk mempelajar da megukur huuga statstk ag terjad atara dua atau leh varael. Dalam regres sederhaa dkaj

Lebih terperinci

REGRESI & KORELASI LINIER SEDERHANA

REGRESI & KORELASI LINIER SEDERHANA 1. Pedahulua REGRESI & KORELASI LINIER SEDERHANA Gagasa perhtuga dtetapka oleh Sr Fracs Galto (18-1911) Persamaa regres :Persamaa matematk ag memugkka peramala la suatu peubah takbebas (depedet varable)

Lebih terperinci

11/10/2010 REGRESI LINEAR SEDERHANA DAN KORELASI TUJUAN

11/10/2010 REGRESI LINEAR SEDERHANA DAN KORELASI TUJUAN // REGRESI LINEAR SEDERHANA DAN KORELASI. Model Regres Lear. Peaksr Kuadrat Terkecl 3. Predks Nla Respos 4. Iferes Utuk Parameter-parameter Regres 5. Kecocoka Model Regres 6. Korelas Utrwe Mukhayar MA

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. melakukan smash sebelum dan sesudah latihan power otot lengan adalah sebagai

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. melakukan smash sebelum dan sesudah latihan power otot lengan adalah sebagai BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4. Deskrps Peelta Berdasarka hasl peelta, d peroleh data megea kemempua sswa melakuka smash sebelum da sesudah latha power otot lega adalah sebaga berkut : Tabel.

Lebih terperinci

BAB 2 LANDASAN TEORI. Istilah regresi diperkenalkan oleh seorang yang bernama Francis Gulton dalam

BAB 2 LANDASAN TEORI. Istilah regresi diperkenalkan oleh seorang yang bernama Francis Gulton dalam BAB LANDASAN TEORI Pengertan Regres Istlah regres dperkenalkan oleh seorang yang ernama Francs Gulton dalam makalah erjudul Regresson Towerd Medacraty n Heredtary Stature Menurut hasl peneltan elau, meskpun

Lebih terperinci

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten BAB III METODE PENELITIAN 3. Tempat da Waktu Peelta 3.. Tempat Tempat peelta dlaksaaka d SMP Neger 4 Tlamuta Kabupate Boalemo pada sswa kelas VIII. 3.. Waktu Peelta dlaksaaka dalam waktu 3 bula yatu dar

Lebih terperinci

Jawablah pertanyaan berikut dengan ringkas dan jelas menggunakan bolpoin. Total nilai 100. A. ISIAN SINGKAT (Poin 20) 2

Jawablah pertanyaan berikut dengan ringkas dan jelas menggunakan bolpoin. Total nilai 100. A. ISIAN SINGKAT (Poin 20) 2 M 81 STTISTIK DSR SEMESTER II 11/1 KK STTISTIK, FMIP IT SOLUSI UJIN TENGH SEMESTER (UTS) Sabtu, 1 Me 1, Pukul 9. 1.4 WI (1 met) Kelas 1. Pegajar: Udjaa S. Pasarbu/Rr. Kura Novta Sar, Kelas. Pegajar: Utrwe

Lebih terperinci

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan dilapangan SMP Negeri 11 Tamalate

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan dilapangan SMP Negeri 11 Tamalate BAB III METODE PENELITIAN 3. Tempat Da Waktu Peelta a. Tempat Tempat peelta dlaksaaka dlapaga SMP Neger Tamalate. Waktu Waktu pelaksaaa peelta dlaksaaka dmula dar keluara surat z meelt. 3. Defs Operasoal

Lebih terperinci

PENGARUH MODAL KERJA TERHADAP PENDAPATAN PENGRAJIN INDUSTRI KECIL TEMPE DI DESA SAMBAK KECAMATAN KAJORAN KABUPATEN MAGELANG

PENGARUH MODAL KERJA TERHADAP PENDAPATAN PENGRAJIN INDUSTRI KECIL TEMPE DI DESA SAMBAK KECAMATAN KAJORAN KABUPATEN MAGELANG PENGARUH MODAL KERJA TERHADAP PENDAPATAN PENGRAJIN INDUSTRI KECIL TEMPE DI DESA SAMBAK KECAMATAN KAJORAN KABUPATEN MAGELANG Asa Kurat Peddka Ekoom, FKIP Uverstas Muhammadah Purworejo asachaca8@ahoo.com

Lebih terperinci

Regresi & Korelasi Linier Sederhana. Gagasan perhitungan ditetapkan oleh Sir Francis Galton ( )

Regresi & Korelasi Linier Sederhana. Gagasan perhitungan ditetapkan oleh Sir Francis Galton ( ) Regres & Korelas Ler Sederhaa 1. Pedahulua Gagasa perhtuga dtetapka oleh Sr Fracs Galto (18-1911) Persamaa regres :Persamaa matematk yag memugkka peramala la suatu peubah takbebas (depedet varable) dar

Lebih terperinci

* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES

* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES * PENYAJIAN DATA Secara umum, ada dua cara peyaja data, yatu : 1. Tabel atau daftar. Grafk atau dagram Macam-macam daftar yag dkeal : a. Daftar bars kolom b. Daftar kotges c. Daftar dstrbus frekues Sedagka

Lebih terperinci

Pendahuluan. Relasi Antar Variabel. Relasi Antar Variabel. Relasi Antar Variabel 4/6/2015. Oleh : Fauzan Amin

Pendahuluan. Relasi Antar Variabel. Relasi Antar Variabel. Relasi Antar Variabel 4/6/2015. Oleh : Fauzan Amin 4/6/015 Oleh : Fauza Am Se, 06 Aprl 015 GDL 11 (07.30-10.50) Pedahulua Aalsa regres dguaka utuk mempelajar da megukur hubuga statstk ag terjad atara dua atau lebh varbel. Dalam regres sederhaa dkaj dua

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI. Pengertan Regres Regres pertama kal dgunakan seaga konsep statstka oleh Sr Francs Galton (8 9). Belau memperkenalkan model peramalan, penaksran, atau pendugaan, ang selanjutna dnamakan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengertan Regres Regres pertama kal dpergunakan sebaga konsep statstka oleh Sr Francs Galton (1822 1911). Belau memperkenalkan model peramalan, penaksran, atau pendugaan, yang

Lebih terperinci

Regresi & Korelasi Linier Sederhana

Regresi & Korelasi Linier Sederhana Regres & Korelas Ler Sederhaa. Pedahulua Gagasa perhtuga dtetapka oleh Sr Fracs Galto (8-9) Persamaa regres :Persamaa matematk ag memugkka peramala la suatu peubah takbebas (depedet varable) dar la peubah

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI. Tjau Teorts.. Teor Produks Teor produks merupaka aalsa megea agamaa seharusa seorag pegusaha atau produse, dalam tekolog tertetu memlh da megkomaska eraga macam faktor produks utuk

Lebih terperinci

INTERPOLASI. FTI-Universitas Yarsi

INTERPOLASI. FTI-Universitas Yarsi BAB VI INTERPOLASI FTI-Uverstas Yars Pedahulua Bla dketahu taulas ttk-ttk (y seaga erkut (yag dalam hal rumus ugs y ( tdak dketahu secara eksplst: Htug taksra la y utuk 3.8! FTI-Uverstas Yars Persoala

Lebih terperinci

ANALISIS KORELASI DAN REGRESI (LINEAR)

ANALISIS KORELASI DAN REGRESI (LINEAR) ANALISIS KORELASI DAN REGRESI (LINEAR) Hubuga atara dua kejada dapat dyataka dega hubuga dua varabel Apabla dua varabel da mempuya hubuga, maka la varabel yag sudah dketahu dapat dperguaka utuk memperkraka/meaksr.

Lebih terperinci

REGRESI LINIER SEDERHANA

REGRESI LINIER SEDERHANA MODUL REGRESI LINIER SEDERHANA Dsusu oleh : I MADE YULIARA Jurusa Fska Fakultas Matematka Da Ilmu Pegetahua Alam Uverstas Udayaa Tahu 016 Kata Pegatar Puj syukur saya ucapka ke hadapa Tuha Yag Maha Kuasa

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA 4 II. TINJAUAN PUSTAKA. Pecla.. Defs Pecla Meurut Fergus 96, pecla ddefska seaga suatu data ag mempag dar sekumpula data ag la. Meurut Barett 98, pecla adalah pegamata ag tdak megkut seaga esar pla da

Lebih terperinci

REGRESI & KORELASI LINIER SEDERHANA

REGRESI & KORELASI LINIER SEDERHANA . Pedahulua REGRESI & KORELASI LINIER SEDERHANA Gagasa perhtuga dtetapka oleh Sr Fracs Galto (8-9) Persamaa regres :Persamaa matematk ag memugkka peramala la suatu peubah takbebas (depedet varable) dar

Lebih terperinci

REGRESI SEDERHANA Regresi

REGRESI SEDERHANA Regresi P a g e REGRESI SEDERHANA.. Regres Istlah regres dkemukaka utuk pertama kal oleh seorag atropolog da ahl meteorology Fracs Galto dalam artkelya Famly Lkeess Stature pada tahu 886. Ada juga sumber la yag

Lebih terperinci

TEKNIK SAMPLING. Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Universitas Andalas

TEKNIK SAMPLING. Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Universitas Andalas TEKNIK SAMPLING Hazmra Yozza Izzat Rahm HG Jurusa Matematka FMIPA Uverstas Adalas Defs Suatu cotoh gerombol adalah suatu cotoh acak sederhaa dmaa setap ut pearka cotoh adalah kelompok atau gerombol dar

Lebih terperinci

Uji Statistika yangb digunakan dikaitan dengan jenis data

Uji Statistika yangb digunakan dikaitan dengan jenis data Uj Statstka yagb dguaka dkata dega jes data Jes Data omal Ordal Iterval da Raso Uj Statstka Koefse Kotges Rak Spearma Kedall Tau Korelas Parsal Kedall Tau Koefse Kokordas Kedall W Pearso Korelas Gada Korelas

Lebih terperinci

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS Se, 19 Desember 016 100 met [ Boleh membuka buku Tdak boleh memaka komputer ] SOAL 1 [SO A-3, BOBOT NILAI 40%] Hasl pegukura sampel d beberapa sekolah da

Lebih terperinci

BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI

BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI 9.1. Dstrbus Kotu Dstrbus memlk sfat kotu dmaa data yag damat berjala secara kesambuga da tdak terputus. Maksudya adalah bahwa data yag damat tersebut tergatug

Lebih terperinci

ANALISIS INDEKS DISTURBANCES STORM TIME DENGAN KOMPONEN H GEOMAGNET

ANALISIS INDEKS DISTURBANCES STORM TIME DENGAN KOMPONEN H GEOMAGNET Prosdg Semar Nasoal Peelta, Peddka da Peerapa MIPA Fakultas MIPA, Uverstas Neger Yogyakarta, 6 Me 9 ANALISIS INDEKS DISTURBANCES STORM TIME DENGAN KOMPONEN H GEOMAGNET Sty Rachyay Pusat Pemafaata Sas Atarksa,

Lebih terperinci

METODE BUCKLEY-JAMES UNTUK ESTIMASI MODEL REGRESI LINIER PADA DATA TERSENSOR KANAN

METODE BUCKLEY-JAMES UNTUK ESTIMASI MODEL REGRESI LINIER PADA DATA TERSENSOR KANAN Statstka, Vol. 6, No. 1, Me 2018 METODE BUCKLEY-JAMES UNTUK ESTIMASI MODEL REGRESI LINIER PADA DATA TERSENSOR KANAN Muhammad Bayu Nrwaa Sekolah Tgg Ilmu Kesehata Muhammadyah Kudus Emal : mrwaa@stkesmuhkudus.ac.d

Lebih terperinci

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS Tgg tekaa [m] UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS Se, 11 Desember 017 100 met [ Boleh membuka buku Tdak boleh memaka komputer ] SOAL 1 [SO A-3, BOBOT NILAI 50%] Sebuah PDAM melakuka pegukura

Lebih terperinci

BAB 2 LANDASAN TEORI. Universitas Sumatera Utara

BAB 2 LANDASAN TEORI. Universitas Sumatera Utara BAB LANDASAN TEORI Unverstas Sumatera Utara . Pengertan Regres Istlah regres pertama kal dperkenalkan oleh Francs Galtom. Menurut Galtom, analss regres erkenaan dengan stud ketergantungan dar satu varael

Lebih terperinci

PEMODELAN STATISTIKA DENGAN TRANSFORMASI BOX COX

PEMODELAN STATISTIKA DENGAN TRANSFORMASI BOX COX JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 3, 8-7, Desemer 4, ISSN : 4-858 PEMODELAN STATISTIKA DENGAN TRANSFORMASI BO CO Dw Ispryat Staf Pegajar Jurusa Matematka Fakultas MIPA UNDIP Semarag Astrak Aalss

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1 Pedahulua Sebelum membahas megea prosedur peguja hpotess, terlebh dahulu aka djelaska beberapa teor da metode yag meujag utuk mempermudah pembahasa. Adapu teor da metode tersebut

Lebih terperinci

UKURAN GEJALA PUSAT DAN UKURAN LETAK

UKURAN GEJALA PUSAT DAN UKURAN LETAK UKURAN GEJALA PUSAT DAN UKURAN LETAK MODUL 4 UKURAN GEJALA PUSAT DAN UKURAN LETAK. Pedahulua Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu persoala, bak megea sampel atau pu

Lebih terperinci

XI. ANALISIS REGRESI KORELASI

XI. ANALISIS REGRESI KORELASI I ANALISIS REGRESI KORELASI Aalss regres mempelajar betuk hubuga atara satu atau lebh peubah bebas dega satu peubah tak bebas dalam peelta peubah bebas basaya peubah yag dtetuka oelh peelt secara bebas

Lebih terperinci

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu BAB II LADASA TEORI Dalam pegambla sampel dar suatu populas, dperluka suatu tekk pegambla sampel yag tepat sesua dega keadaa populas tersebut. Sehgga sampel yag dperoleh adalah sampel yag dapat mewakl

Lebih terperinci

BAB 2 LANDASAN TEORI. Universitas Sumatera Utara

BAB 2 LANDASAN TEORI. Universitas Sumatera Utara BAB 2 LANDASAN TEORI 2.1 Pengertan Analsa Regres Dalam kehdupan sehar-har, serng kta jumpa hubungan antara satu varabel terhadap satu atau lebh varabel yang lan. Sebaga contoh, besarnya pendapatan seseorang

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Metode penelitian sangat diperlukan dalam sebuah penelitian untuk

BAB III METODOLOGI PENELITIAN. Metode penelitian sangat diperlukan dalam sebuah penelitian untuk BAB III METODOLOGI PENELITIAN A. Metode Peelta Metode peelta sagat dperluka dalam sebuah peelta utuk memaham suatu objek peelta da utuk medapatka sejumlah formas tetag masalah pokok yag aka dpecahka. Ada

Lebih terperinci

III. METODE PENELITIAN. yang hidup dan berguna bagi masyarakat, maupun bagi peneliti sendiri

III. METODE PENELITIAN. yang hidup dan berguna bagi masyarakat, maupun bagi peneliti sendiri III. METODE PEELITIA A. Metodolog Peelta Metodolog peelta adalah cara yag dlakuka secara sstemats megkut atura-atura, recaaka oleh para peeltutuk memecahka permasalaha yag hdup da bergua bag masyarakat,

Lebih terperinci

PEMODELAN STATISTIKA DENGAN TRANSFORMASI BOX COX

PEMODELAN STATISTIKA DENGAN TRANSFORMASI BOX COX Vol. 7. No. 3, 8-7, Desemer 4, ISSN : 4-858 PEMODELAN STATISTIKA DENGAN TRANSFORMASI BO CO Dw Ispryat Staf Pegajar Jurusa Matematka Fakultas MIPA UNDIP Semarag Astrak Aalss regres adalah salah satu tekk

Lebih terperinci

TINJAUAN PUSTAKA Evaluasi Pengajaran

TINJAUAN PUSTAKA Evaluasi Pengajaran TINJAUAN PUSTAKA Evaluas Pegajara Evaluas adalah suatu proses merecaaka, memperoleh da meyedaka formas yag sagat dperluka utuk membuat alteratf- alteratf keputusa. Dalam hubuga dega kegata pegajara evaluas

Lebih terperinci

SUM BER BELA JAR Menerap kan aturan konsep statistika dalam pemecah an masalah INDIKATOR MATERI TUGAS

SUM BER BELA JAR Menerap kan aturan konsep statistika dalam pemecah an masalah INDIKATOR MATERI TUGAS C. Pembelajara 3 1. Slabus N o STANDA R KOMPE TENSI KOMPE TENSI DASAR INDIKATOR MATERI TUGAS BUKTI BELAJAR KON TEN INDIKA TOR WAK TU SUM BER BELA JAR Meerap ka atura kosep statstka dalam pemecah a masalah

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel

BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel BAB I PENDAHULUAN 1.1 Statstka Deskrptf da Statstka Iferesal Dewasa d berbaga bdag lmu da kehdupa utuk memaham/megetahu sesuatu dperluka dat Sebaga cotoh utuk megetahu berapa bayak rakyat Idoesa yag memerluka

Lebih terperinci

Metode Statistika Pertemuan XII. Analisis Korelasi dan Regresi

Metode Statistika Pertemuan XII. Analisis Korelasi dan Regresi Metode Statstka Pertemua XII Aalss Korelas da Regres Aalss Hubuga Jes/tpe hubuga Ukura Keterkata Skala pegukura varabel Pemodela Keterkata Relatoshp vs Causal Relatoshp Tdak semua hubuga (relatoshp) berupa

Lebih terperinci

Jurnal Matematika Murni dan Terapan Vol. 4 No.2 Desember 2010: ANALISIS REGRESI LINEAR BERGANDA DENGAN SATU VARIABEL BONEKA (DUMMY VARIABLE)

Jurnal Matematika Murni dan Terapan Vol. 4 No.2 Desember 2010: ANALISIS REGRESI LINEAR BERGANDA DENGAN SATU VARIABEL BONEKA (DUMMY VARIABLE) Jural Matematka Mur da Terapa Vol. 4 No. esember : 4 - ANALISIS REGRESI LINEAR BERGANA ENGAN SATU VARIABEL BONEKA (UMMY VARIABLE Tat Krsawardha Nur Salam da ew Aggra Program Stud Matematka Uverstas Lambug

Lebih terperinci

Uji Modifikasi Peringkat Bertanda Wilcoxon Untuk Masalah Dua Sampel Berpasangan 1 Wili Solidayah 2 Siti Sunendiari 3 Lisnur Wachidah

Uji Modifikasi Peringkat Bertanda Wilcoxon Untuk Masalah Dua Sampel Berpasangan 1 Wili Solidayah 2 Siti Sunendiari 3 Lisnur Wachidah Prosdg Statstka ISSN 40-45 Uj Modfkas Pergkat Bertada Wlcoxo Utuk Masalah Dua Sampel Berpasaga 1 Wl Soldayah St Suedar 3 Lsur Wachdah 1, Statstka, Fakultas MIPA, Uverstas Islam Badug, Jl. Tamasar No. 1

Lebih terperinci

ANALISIS REGRESI. . Berdasarkan sample acak, persamaan regresi populasi (1) akan ditaksir, ini dilakukan dengan jalan menaksir parameter-parameter 1

ANALISIS REGRESI. . Berdasarkan sample acak, persamaan regresi populasi (1) akan ditaksir, ini dilakukan dengan jalan menaksir parameter-parameter 1 ANALII REGREI. PENDAHULUAN Jka kta memlk data yag terdr atas dua atau lebh varabel, adalah sewajarya utuk suatu cara bagamaa varabel-varabel tersebut berhubuga. Hubuga yag dperoleh pada umumya dyataka

Lebih terperinci

Analisis Regresi. Oleh : Dewi Rachmatin

Analisis Regresi. Oleh : Dewi Rachmatin Aalss Regres Oleh : Dew Rachmat Pedahulua Dalam peelta basaya dguaka suatu model atau hubuga fugsoal atara peubah. Dega model kta berusaha memaham, meeragka, megedalka da kemuda mempredkska kelakua sstem

Lebih terperinci

S2 MP Oleh ; N. Setyaningsih

S2 MP Oleh ; N. Setyaningsih S2 MP Oleh ; N. Setyagsh MATERI PERTEMUAN 1-3 (1)Pedahulua pera statstka dalam peelta ; (2)Peyaja data : dalam betuk (a) tabel da (b) dagram; (3) ukura tedes setaral da ukura peympaga (4)dstrbus ormal

Lebih terperinci

3. METODOLOGI PENELITIAN

3. METODOLOGI PENELITIAN 3. METODOLOGI PENELITIAN 3.1 Waktu da Tempat Peelta dlakuka mula taggal 13 Me sampa dega 19 Agustus 007d perara Teluk Lasogko, Kabupate Buto, Sulawes Teggara. Lokas dplh dega pertmbaga bahwa perara merupaka

Lebih terperinci

REGRESI LINEAR SEDERHANA

REGRESI LINEAR SEDERHANA REGRESI LINEAR SEDERHANA MODUL Dra. Sr Pagest, S.U. PENDAHULUAN A alss regres merupaka aalss statstk yag mempelajar ubuga atara dua varabel atau leb. Dalam aalss regres lear dasumska berlakuya betuk ubuga

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Pengertan Regres Regres pertama kal dgunakan sebaga konsep statstka oleh Sr Francs Galton (18 1911).Belau memperkenalkan model peramalan, penaksran, atau pendugaan, yang selanjutnya

Lebih terperinci

FMDAM (2) TOPSIS TOPSIS TOPSIS. Charitas Fibriani

FMDAM (2) TOPSIS TOPSIS TOPSIS. Charitas Fibriani FMDAM (2) Chartas Fbra Techque for Order Preferece by Smlarty to Ideal Soluto () ddasarka pada kosep dmaa alteratf terplh yag terbak tdak haya memlk jarak terpedek dar solus deal postf, amu juga memlk

Lebih terperinci

Penarikan Contoh Acak Sederhana (Simple Random Sampling)

Penarikan Contoh Acak Sederhana (Simple Random Sampling) Pearka Cotoh Acak Sederhaa (Smple Radom Samplg) Defs Jka sebuah cotoh berukura dambl dar suatu populas sedemka rupa sehgga setap cotoh berukura ag mugk memlk peluag sama utuk terambl, maka prosedur tu

Lebih terperinci

PEMBELAJARAN 4 ANALISIS REGRESI KORELASI

PEMBELAJARAN 4 ANALISIS REGRESI KORELASI PEMBELAJARAN ANALISIS REGRESI KORELASI Kompetes Dasar Mahasswa memaham tetag aalss regres korelas, serta mampu megguakaya utuk megaalss data kuattatf Idkator pecapaa Mahasswa dapat: a Mejelaska, meghtug

Lebih terperinci

BAB 2 LANDASAN TEORI. yang akan terjadi pada masa yang akan datang dengan waktu yang relative lama.

BAB 2 LANDASAN TEORI. yang akan terjadi pada masa yang akan datang dengan waktu yang relative lama. BAB 2 LANDASAN TEORI 2.1 Pegerta Peramala Peramala ( forecastg ) adalah kegata memperkraka atau mempredkska apa yag aka terjad pada masa yag aka datag dega waktu yag relatve lama. Sedagka ramala adalah

Lebih terperinci

ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS

ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS = 1 + + + + k k + u PowerPot Sldes baa Rohmaa Educato Uverst of Idoesa 007 Laboratorum Ekoom & Koperas Publshg Jl. Dr. Setabud

Lebih terperinci

SOLUSI TUGAS I HIMPUNAN

SOLUSI TUGAS I HIMPUNAN Program Stud S1 Tekk Iformatka Fakultas Iformatka, Telkom Uversty SOLUSI TUGAS I HIMPUNAN Matematka Dskrt (MUG2A3) Halama 1 dar 6 Soal 1 Tetukalah eleme-eleme dar hmpua berkut! 2 x x adalah blaga real

Lebih terperinci

2.2.3 Ukuran Dispersi

2.2.3 Ukuran Dispersi 3 Ukura Dspers Yag aka dbahas ds adalah smpaga baku da varas karea dua ukura dspers yag palg serg dguaka Hubuga atara smpaga baku dega varas adalah Varas = Kuadrat dar Smpaga baku otas yag umum dguaka

Lebih terperinci

BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL. Masalah regresi invers dengan bentuk linear dapat dijumpai dalam

BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL. Masalah regresi invers dengan bentuk linear dapat dijumpai dalam BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL 3. Pegerta Masalah regres vers dega betuk lear dapat djumpa dalam berbaga bdag kehdupa, dataraya dalam bdag ekoom, kesehata, fska, kma

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA. Peahulua Dalam bab aka membahas megea teor-teor tetag statstka oparametrk, korelas parsal tau Keall a korelas parsal meurut Ebuh GU a Oeka ICA.. Statstka Noparametrk Istlah oparametrk

Lebih terperinci

3 Departemen Statistika FMIPA IPB

3 Departemen Statistika FMIPA IPB Supleme Respos Pertemua ANALISIS DATA KATEGORIK (STK51) Departeme Statstka FMIPA IPB Pokok Bahasa Sub Pokok Bahasa Referes Waktu U potess Tga Cotoh atau Lebh U Kruskal-Walls (aalss ragam satu-arah berdasarka

Lebih terperinci

ANALISA GARIS KEINGINAN PERGERAKAN DI KABUPATEN BOLAANG MONGONDOW UTARA

ANALISA GARIS KEINGINAN PERGERAKAN DI KABUPATEN BOLAANG MONGONDOW UTARA Jural Ilmah MEDIA ENGINEERING Vol., No., Jul 0 ISSN 087-9334 (96-0) ANALISA GARIS KEINGINAN PERGERAKAN DI KABUPATEN BOLAANG MONGONDOW UTARA Johas E. Lolog Dose Jurusa Spl Fakultas Tekk Uverstas Sam Ratulag

Lebih terperinci

REGRESI DAN INTERPOLASI

REGRESI DAN INTERPOLASI http://starto.sta.ugm.ac.d REGRESI DAN INTERPOLASI Curve Fttg Curve Fttg http://starto.sta.ugm.ac.d Acua Chapra, S.C., Caale R.P., 99, Numercal Methods or Egeers, d Ed., McGraw-Hll Book Co., New York.

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini dilaksanakan di SMAN 1 Terusan Nunyai. Populasi dalam penelitian

III. METODE PENELITIAN. Penelitian ini dilaksanakan di SMAN 1 Terusan Nunyai. Populasi dalam penelitian 3 III. METODE PENELITIAN A. Populas da Sampel Peelta dlaksaaka d SMAN Teusa Nuya. Populas dalam peelta adalah seluuh sswa kelas X SMAN Teusa Nuya semeste geap tahu pelajaa / yag bejumlah lma kelas. Kemampua

Lebih terperinci

BAB 6 PRINSIP INKLUSI DAN EKSKLUSI

BAB 6 PRINSIP INKLUSI DAN EKSKLUSI BB 6 PRINSIP INKLUSI DN EKSKLUSI Pada baga aka ddskuska topk berkutya yatu eumeras yag damaka Prsp Iklus da Eksklus. Kosep dalam bab merupaka perluasa de dalam Dagram Ve beserta oepras rsa da gabuga, amu

Lebih terperinci

PENDAHULUAN Metode numerik merupakan suatu teknik atau cara untuk menganalisa dan menyelesaikan masalah masalah di dalam bidang rekayasa teknik dan

PENDAHULUAN Metode numerik merupakan suatu teknik atau cara untuk menganalisa dan menyelesaikan masalah masalah di dalam bidang rekayasa teknik dan Aalsa Numerk Baha Matrkulas PENDAHULUAN Metode umerk merupaka suatu tekk atau cara utuk megaalsa da meyelesaka masalah masalah d dalam bdag rekayasa tekk da sa dega megguaka operas perhtuga matematk Masalah-masalah

Lebih terperinci

STATISTICAL STUDENT OF IST AKPRIND

STATISTICAL STUDENT OF IST AKPRIND STATISTICAL STUDNT OF IST AKPRIND Sekretarat : Jl. Bmasakt No:3 Pegok Yogakarta 55 Tlp. 74 54454 -mal : statstkasta@ahoo.com Blog : http://sssta.wordpress.com/ Aalss Regres Lses Dokume: Coprght sssta.wordpress.com

Lebih terperinci

Bab II Teori Pendukung

Bab II Teori Pendukung Bab II Teor Pedukug.. asar Statstka Utuk keperlua peaksra outstadg clams lablty, pegetahua dalam statstka mead hal yag petg. asar statstka yag dguaka dalam tess atara la :. strbus ormal Sebuah peubah acak

Lebih terperinci

BAB 2 LANDASAN TEORITIS. yang akan terjadi pada masa yang akan datang dengan waktu yang relatif lama.

BAB 2 LANDASAN TEORITIS. yang akan terjadi pada masa yang akan datang dengan waktu yang relatif lama. BAB 2 LANDASAN TEORITIS 2.1 Pegerta Peramala Peramala ( forecastg ) adalah kegata memperkraka atau mempredkska apa yag aka terjad pada masa yag aka datag dega waktu yag relatf lama. Sedagka ramala adalah

Lebih terperinci

MODUL ANALISIS REGRESI DAN KORELASI

MODUL ANALISIS REGRESI DAN KORELASI ANALISIS REGRESI DAN KORELASI MODUL 13 ANALISIS REGRESI DAN KORELASI Dalam kehdupa sehar-har, sergkal djumpa hubuga atara suatu varabel dega satu atau lebh varabel la. D dalam bdag pertaa sebaga cotoh,

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN III. METODE PENELITIAN 3.. Jes da Sumer Data Dalam peelta, data yag dguaka adalah jes data sekuder, yatu data PDRB sektor-sektor ekoom meurut lapaga usaha d Provs DKI Jakarta dar tahu 993-2006. Peuls megguaka

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Aalisis Regresi Istilah regresi pertama kali diperkealka oleh seorag ahli yag berama Facis Galto pada tahu 1886. Meurut Galto, aalisis regresi berkeaa dega studi ketergatuga dari suatu

Lebih terperinci

BAB 5 BARISAN DAN DERET KOMPLEKS. Secara esensi, pembahasan tentang barisan dan deret komlpeks sama dengan barisan dan deret real.

BAB 5 BARISAN DAN DERET KOMPLEKS. Secara esensi, pembahasan tentang barisan dan deret komlpeks sama dengan barisan dan deret real. BAB 5 BARIAN DAN DERET KOMPLEK ecara eses, pembahasa tetag barsa da deret komlpeks sama dega barsa da deret real. 5. Barsa Barsa merupaka sebuah fugs dega doma berupa hmpua blaga asl N. ebuah barsa kompleks

Lebih terperinci