MATEMATIKA. Sesi INTEGRAL VOLUME A. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR B. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR TERHADAP SUMBU-X

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "MATEMATIKA. Sesi INTEGRAL VOLUME A. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR B. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR TERHADAP SUMBU-X"

Transkripsi

1 MATEMATIKA KELAS XII - KURIKULUM GABUNGAN 6 Sesi N INTEGRAL VOLUME A. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR Apliksi integrl erikutn dlh menentukn volume end ng memiliki sumu putr. Contoh endn dlh tung, kerucut, dn ol. Hn sj pemhsn kn leih lus lgi, itu meliputi semu end-end ng memiliki sumu putr. Perhtikn gmr erikut ini! Volume end-end terseut tidk dpt dihitung dengn cr rumus segimn tung, kerucut, tu ol. Volume end-end terseut dpt dihitung dengn mudh menggunkn integrl. Setip end putr memiliki entuk sisi lengkung ng simetris. Setip sisi lengkung terseut dpt dintkn tu didekti dengn sutu fungsi pd idng krtesius. Fungsi-fungsi terseut kn mementuk derh ng kn diputr pd sutu sumu putr, isn sumu- tu sumu-. B. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR TERHADAP SUMBU-X Sutu derh ng diputr terhdp sumu- kn mementuk end ng memiliki sumu putr di sumu-. Untuk menghitung volume end terseut perhtikn ilustrsi erikut:

2 = = f() = f() = π f( ) d Untuk menghitung volume end erongg perhtikn ilustrsi erikut: = f() = f() = g() = g() π f ( ) g ( ) d CONTOH SOAL. Perhtikn gmr erikut! Bil derh di smping diputr terhdp sumu seesr 6. Mk esr volume end putrn dlh... =

3 Jw: Bentuk end hsil putrnn = f() = π f() d π( ) d π9 d π( 9) π stun volume Kren end putrn erentuk tung, volumen dpt dihitung jug dengn menggunkn rumus volume tung. r = πr t V = π( ) π stun volume t =. Perhtikn gmr erikut! Bil derh di smping diputr terhdp sumu, mk esr volume end putr ng terjdi dlh... Jw: Bentuk end putrn = = f() = π d d π π f() 6 π stun volume

4 Kren end putrn erentuk kerucut, mk volumen jug dpt dihitung pul dengn rumus volume kerucut. t = r = πr t V = π( ) 6 π stun volume. Volume end putr dri sutu derh ng ditsi oleh = +, sumu, dn < <, il diputr terhdp sumu seesr 6 dlh... Jw: Gmr = f() = + - π f() ( ) d π + d π + ( ) V = π 8 7 π stun volume. Volume end putr dri sutu derh ng ditsi oleh =, sumu, dn = dlh...

5 Jw: Plot titik = X Y 9 Gmr = f() = π f() = ( ) d V π d π d π V = π stun volume. Perhtikn gmr erikut! Volume end putr derh di smping il diputr terhdp sumu seesr 6 dlh... 9 =

6 Jw: Gmr = f() = 9 A = g() = 9 Titik A dlh perpotongn = dn = 9, kn dicri sis titik A dengn sustitusi = = 9 = + Mk sis A dlh sehingg ( ) π g() f() ( ) π 8 d π 8 d V = π 97 π stun volume 6. Perhtikn gmr erikut! Bil derh di smping diputr terhdp sumu seesr 6, mk esr volume end putrn dlh... Jw: = = Bentuk end hsil putrnn = = f() = = g() = 6

7 Bts ts: = f() =, Bts wh: = g() = Bts kiri: =, Bts knn: sis titik potong = dn = =, itu: = = = = ( )= = = Mk π f() g() d π ( ) ( ) d π d V = π ( ) ( ) π stun volume 7. Volume end putr dri derh ng ditsi oleh kurv =, =, =, dn = diputr mengelilingi sumu sejuh 6 dlh... Jw: Plot titik = tu = Plot titik = tu = X Y X Y

8 Gmr kurv Bts ts: = f() =, Bts wh: = g() =. Bts kiri: =, Bts knn: =. ( ) π f() g() d π ( ) π = + V π d d 6 = + + V π 8 stun ume π vol π 8. Volume end putr dri derh ng ditsi oleh kurv = sin, = cos, 6 il diputr terhdp sumu seesr 6 dlh... Jw: Plot titik = sin Plot titik = cos X Y X Y 8

9 Gmr kurv = cos = sin Bts kiri: =, Bts knn: = o. Bts ts: = f() = cos, Bts wh: = g() = sin π f() g() d π cos sin d π ( ) ( ) cos d = V π sin V = sin6 π vo π stun l ume C. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR TERHADAP SUMBU-Y Sutu derh ng diputr terhdp sumu- kn mementuk end ng memiliki sumu putr di sumu-. Untuk menghitung volume end terseut perhtikn ilustrsi erikut: = f() π f() d 9

10 Untuk menghitung volume end erongg perhtikn ilustrsi erikut: = f() = g() π f () g () d CONTOH SOAL. Perhtikn gmr erikut! Bil derh rsirn pd gmr di smping diputr terhdp sumu seesr 6, mk esr volume end putrn dlh... Jw: Bts knn: = = = f( ) =, Bts kiri: = Bts ts: =, Bts wh: = = Mk π f() π d d π π stun volume

11 . Perhtikn gmr erikut! + = 9 Derh di smping diputr 6 mengelilingi sumu. Volume end putr ng terjdi dlh... stun volume. Jw: Bts knn: + 9 = + 9 = 9 = f() = 9 9 Bts kiri: gris mellui (, ) dn titik potong elips dengn sumu. Mencri titik potong elips dengn sumu ( = ), itu: + =, = 9 = =± Mk gris mellui (, ) dn (, ), itu + = = g() = Bts wh: =, Bts ts: =. Mk ( ) π f() g( ) d π ( 9 9 ) ( ) d ( ) π + 8 d π + π stun volume. Volume end putr ng terjdi jik derh ng ditsi kurv =, gris+ =, dn sumu diputr stu putrn mengelilingi sumu dlh...

12 Jw: Gmr kurv + = = Bts knn: + = tu = f() =, Bts kiri: = tu = g() = Bts wh: sumu, =, Bts ts: ordint titik potong = dn + =, itu: = = = + = ( + ) ( ) = tu = Mk ( ) π f( ) g() d ( ) π ( ) ( ) d ( ) π + d π + π stun volume D. BENDA-BENDA PUTAR YANG PUTARANNYA TIDAK SESUAI JENIS FUNGSINYA Normln sutu derh ng ditsi oleh fungsi- kn diputr terhdp sumu-, egitupul sutu derh ng ditsi oleh fungsi- kn diputr terhdp sumu-. Sutu derh ng ditsi oleh fungsi- il diputr terhdp sumu, volume end putrn dpt dihitung dengn cr, itu:

13 . Menguh fungsi- ( = f()) menjdi fungsi- ( = f()). Kemudin dikerjkn dengn rumus putrn terhdp sumu. Akn tetpi, tidk semu fungsi- is diuh menjdi fungsi-, seperti fungsi ng tidk stu-stu. Mk untuk mencri volumen dpt menggunkn cr ng kedu.. Menggunkn metode selimut tung. Metode ini digunkn untuk menghitung volume end putr ng jenis fungsi dn sumu putrn ered. Rumusn segi erikut: π f() g() d ( ) CONTOH SOAL. Perhtikn gmr erikut! = ( ) = Volume end putr dri derh rsirn il diputr terhdp sumu seesr 6 dlh... Jw: Kren = ( ) ukn fungsi stu-stu mk kit kn gunkn metode selimut tung. Bts-ts Kiri: = Knn: titik potong = ( ) dn = = ( ) = + = = ( )= = dn =

14 Ats: = f() = Bwh: = g() = ( ) Mk ( ) π f() g() d π d π ( ( ) ) ( ) d π 9π stun volume LATIHAN SOAL. Perhtikn gmr erikut! = Volume end putr dri derh di smping il diputr terhdp sumu dlh... A. B. 8 7 π 9 7 π

15 C. D. E. 7 π 8 7 π 7 π. Perhtikn gmr erikut! = = Volume derh rsirn il diputr terhdp sumu seesr 6 dlh... A. B. C. D. E. 6 π 6 π 66 π 68 π 7 π

16 . Perhtikn gmr erikut! = + = Derh ng dirsir pd gmr diputr terhdp sumu, mk volume end putr ng terjdi dlh... A. B. C. D. E. 6 π 6 π 7 6 π 6 π 6 π. Volume end putr ng terjdi jik derh ng ditsi oleh kurv =, gris =, gris =, dn gris = diputr mengelilingi sumu sejuh 6 dlh... stun volume. (SPMB) A. π B. 6π C. 8π D. π E. π. Derh ng ditsi kurv = sin, < < π, dn sumu diputr mengelilingi sumu sejuh 6. Volume end putr ng terjdi dlh... stun volume. (SOAL UAN) 6

17 A. B. C. D. π π π π E. π 6. Perhtikn gmr erikut! = = Besr volume end putr derh di smping il diputr terhdp sumu seesr 6 dlh... stun volume. A. π B. π C. π D. π E. π 7

18 7. Volume end putr dri derh ng ditsi oleh =, = dn diputr terhdp sumu seesr 6 dlh... stun volume. A. B. C. D. E. π π π π π 8. Volume end putr dri sutu derh ng ditsi oleh =, =, dn sumu, il diputr terhdp sumu seesr 6 dlh... A. B. C. π π π D. π E. π 9. Derh D terletk di kudrn pertm ng ditsi oleh prol =, prol =, dn gris =. Volume end putr ng terjdi jik D diputr terhdp sumu dlh... stun volume. (SOAL UMPTN) A. π B. π C. 6π D. 8π E. π 8

19 . Perhtikn gmr erikut! - Volume end putr dri derh di smping il diputr terhdp sumu sejuh 6 dlh... stun volume. A. B. C. D. E. 8 π 9 π π π π 9

20 KUNCI JAWABAN LATIHAN SOAL. D 6. B. B 7. A. D 8. C. E 9. C. D. A

INTEGRAL. Misalkan suatu fungsi f(x) diintegralkan terhadap x maka di tulis sebagai berikut:

INTEGRAL. Misalkan suatu fungsi f(x) diintegralkan terhadap x maka di tulis sebagai berikut: INTEGRAL.PENGERTIAN INTEGRAL Integrl dlh cr mencri sutu fungsi jik turunnn di kethui tu kelikn dri diferensil (turunn) ng diseut jug nti derivtif tu nti diferensil. Untuk menentukn integrl tidk semudh

Lebih terperinci

1. Luas daerah yang dibatasi oleh kurva y = x 2 dan garis x + y = 6 adalah satuan luas. a. 54 b. 32. d. 18 e.

1. Luas daerah yang dibatasi oleh kurva y = x 2 dan garis x + y = 6 adalah satuan luas. a. 54 b. 32. d. 18 e. . Lus derh yng ditsi oleh kurv y = x dn gris x + y = dlh stun lus... c. d. 8 e. Sol Ujin Nsionl Thun 7 Kurv y = x dn gris x + y = ( y = x ) Sustikn nili y pd y = x sehingg didpt : x = x x = x x + x = (

Lebih terperinci

PEMANTAPAN BELAJAR SMA BBS INTEGRAL

PEMANTAPAN BELAJAR SMA BBS INTEGRAL BAB I PEMANTAPAN BELAJAR SMA BBS INTEGRAL I A RANGKUMAN INTEGRAL. Pengertin Apil terdpt fungsi F() yng dpt didiferensilkn pd selng I sedemikin hingg F () = f(), mk nti turunn (integrl) dri f() dlh F()

Lebih terperinci

INTEGRAL. Integral Tak Tentu Dan Integral Tertentu Dari Fungsi Aljabar

INTEGRAL. Integral Tak Tentu Dan Integral Tertentu Dari Fungsi Aljabar INTEGRAL Integrl Tk Tentu Dn Integrl Tertentu Dri Fungsi Aljr A. Integrl Tk Tentu Hitung integrl dlh kelikn dri hitung differensil. Pd hitung differensil yng dicri dlh fungsi turunnny, sedngkn pd hitung

Lebih terperinci

10. cos (ax+b)sin(ax+b) dx = 12. sec x dx = tan x + c. 13. sec (ax+b)dx = tan (ax+b)+ c. 14. c sec x dx = - ctg x + c

10. cos (ax+b)sin(ax+b) dx = 12. sec x dx = tan x + c. 13. sec (ax+b)dx = tan (ax+b)+ c. 14. c sec x dx = - ctg x + c BAB XVI. INTEGRAL A. Integrl Tk Tentu. Rumus Integrl Fungsi Aljr. k k n = n +. ( + ) n = ( n + ). = ln + n + + ; n - n+ (+) + ; dn n -. ( f ( ) ± g( ) ) f ( ) ± g ( ) n. os (+)sin(+) = ( n + ) os n + (+)

Lebih terperinci

INTEGRAL. y dx. x dy. F(x)dx F(x)dx

INTEGRAL. y dx. x dy. F(x)dx F(x)dx Drs. Mtrisoni www.mtemtikdw.wordpress.om INTEGRAL PENGERTIAN Bil dikethui : = F() + C mk = F () dlh turunn dri sedngkn dlh integrl (nti turunn) dri dn dpt digmrkn : differensil differensil Y Y Y Integrl

Lebih terperinci

7. APLIKASI INTEGRAL

7. APLIKASI INTEGRAL 7. APLIKASI INTEGRAL 7. Menghitung Lus Derh.Mislkn derh D (, ), f ( ) D f() Lus D =? Lngkh :. Iris D menjdi n gin dn lus stu uh irisn dihmpiri oleh lus persegi pnjng dengn tinggi f() ls(ler) A f ( ). Lus

Lebih terperinci

RANGKUMAN MATERI ' maupun F(x) = Pengerjaan f(x) sehingga memperoleh F(x) + c disebut mengintegralkan f(x) ke x dengan notasi:

RANGKUMAN MATERI ' maupun F(x) = Pengerjaan f(x) sehingga memperoleh F(x) + c disebut mengintegralkan f(x) ke x dengan notasi: INTEGRAL RANGKUMAN MATERI A. ANTIDERIVATIF DAN INTEGRAL TAK TENTU Jik kit mengmil uku dri temptny mk kit dpt mengemliknny lgi ke tempt semul. Opersi yng kedu menghpus opersi yng pertm. Kit ktkn hw du opersi

Lebih terperinci

10. cos (ax+b)sin(ax+b) dx = 12. sec x dx = tan x + c. 13. sec (ax+b)dx = tan (ax+b)+ c. 14. c sec x dx = - ctg x + c

10. cos (ax+b)sin(ax+b) dx = 12. sec x dx = tan x + c. 13. sec (ax+b)dx = tan (ax+b)+ c. 14. c sec x dx = - ctg x + c Integrl Tk Tentu INTEGRAL. Rumus Integrl Fungsi Aljr. k x n k n +. ( x + n ( n +. x ln x + x n + + ; n - n+ (x+ + ; dn 4. ( f ( x ± g( x f ( x ± g ( x n - n. os (x+sin(x+ ( n + n+ os (x+ + ( + (. sin x

Lebih terperinci

Tujuan Pembelajaran. ) pada elips. 2. Dapat menentukan persamaan garis singgung yang melalui titik (x 1

Tujuan Pembelajaran. ) pada elips. 2. Dapat menentukan persamaan garis singgung yang melalui titik (x 1 K-3 mtemtik K e l s XI IRISAN KERUCUT: PERSAMAAN GARIS SINGGUNG PADA ELIPS Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Dpt menentukn persmn gris singgung di titik (,

Lebih terperinci

HITUNG INTEGRAL ( 4 ) 4. Diketahui f(x) = 4x + 1 dan F(2) = 17 ; Tentukan fungsi F f(x) = 4x + 1

HITUNG INTEGRAL ( 4 ) 4. Diketahui f(x) = 4x + 1 dan F(2) = 17 ; Tentukan fungsi F f(x) = 4x + 1 HITUNG INTEGRA BAB.Integrl tk tentu (tnp ts). Rumus-rumus ) ) n n n d c, n ) d c n n n. d c, n ). Sift-sift Integrl Contoh :... ) k. f ( ) d k. f ( ) d d d ln c ) ( ( ) ( )) ( ) ( ) d c ( ) ( ) d ( ) d

Lebih terperinci

Tujuan Pembelajaran. ) pada hiperbola yang berpusat di (0, 0). 2. Dapat menentukan persamaan garis singgung di titik (x 1

Tujuan Pembelajaran. ) pada hiperbola yang berpusat di (0, 0). 2. Dapat menentukan persamaan garis singgung di titik (x 1 K-3 mtemtik K e l s XI IRISAN KERUCUT: GARIS SINGGUNG PADA HIPERBOLA Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Dpt menentukn persmn gris singgung di titik (, ) pd

Lebih terperinci

E. INTEGRASI BAGIAN ( PARSIAL )

E. INTEGRASI BAGIAN ( PARSIAL ) E. INTEGRASI BAGIAN ( PARSIAL ) Integrsi gin (prsil) digunkn untuk mengintegrsikn sutu perklin fungsi yng msing-msing fungsiny ukn koefisien diferensil dri yng lin ( seperti yng sudh dihs pd su. B. D )

Lebih terperinci

LUAS DAERAH APLIKASI INTEGRAL TENTU. Indikator Pencapaian Hasil Belajar. Ringkasan Materi Perkuliahan

LUAS DAERAH APLIKASI INTEGRAL TENTU. Indikator Pencapaian Hasil Belajar. Ringkasan Materi Perkuliahan LUAS DAERAH APLIKASI INTEGRAL TENTU Indiktor Pencpin Hsil Beljr Mhsisw menunjukkn kemmpun dlm :. Menghitung lus pd idng dtr Ringksn Mteri Perkulihn Jik sutu derh ditsi oleh kurv f(), g(), gris dn dengn

Lebih terperinci

BAB: PENERAPAN INTEGRAL Topik: Volume Benda Putar (Khusus Kalkulus 1)

BAB: PENERAPAN INTEGRAL Topik: Volume Benda Putar (Khusus Kalkulus 1) BAB: PENERAPAN INTEGRAL Topik: Volume Bend Putr (Khusus Klkulus ) Kompetensi yng diukur dlh kemmpun mhsisw menghitung volume bend putr dengn metode cincin, metode ckrm, tu metode kulit tbung.. UAS Klkulus,

Lebih terperinci

Modul Matematika 2012

Modul Matematika 2012 Modul Mtemtik. ANTI TURUNAN Definisi Mislkn fungsi f terdefinisi pd selng teruk I. Fungsi F ng memenuhi F () = f () pd I dinmkn nti turunn tu fungsi primitif dri fungsi f pd I.. F() = cos nti turunn dri

Lebih terperinci

IRISAN KERUCUT: PERSAMAAN ELIPS. Tujuan Pembelajaran

IRISAN KERUCUT: PERSAMAAN ELIPS. Tujuan Pembelajaran K-13 mtemtik K e l s I IRISAN KERUCUT: PERSAMAAN ELIPS Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi definisi elips.. Memhmi unsur-unsur elips. 3. Memhmi eksentrisits

Lebih terperinci

selisih positif jarak titik (x, y) terhadap pasangan dua titik tertentu yang disebut titik

selisih positif jarak titik (x, y) terhadap pasangan dua titik tertentu yang disebut titik Hiperol 7.1. Persmn Hiperol Bentuk Bku Hiperol dlh himpunn semu titik (, ) pd idng sedemikin hingg selisih positif jrk titik (, ) terhdp psngn du titik tertentu ng diseut titik fokus (foci) dlh tetp. Untuk

Lebih terperinci

APLIKASI INTEGRAL PENERAPAN INTEGRAL. Luas daerah kelengkungan

APLIKASI INTEGRAL PENERAPAN INTEGRAL. Luas daerah kelengkungan APLIKASI INTEGRAL APLIKASI INTEGRAL PENERAPAN INTEGRAL Lus derh kelengkungn PENERAPAN INTEGRAL Indiktor 1 Indiktor 9 Lus derh di bwh kurv berdsr prinsip Riemn Volume bend putr, jik kurv diputr mengelilingi

Lebih terperinci

Tiara Ariqoh Bawindaputri TIP / kelas L

Tiara Ariqoh Bawindaputri TIP / kelas L Tir Ariqoh Bwindputri 500008 TIP / kels L INTEGRAL Integrl Tk tentu Integrl dlh entuk invers dri turunn. Secr umum jik seuh fungsi diintegrlkn terhdp vrile tertentu dpt disjikn dlm entuk : f ( F( C Untuk

Lebih terperinci

Bab 4 Transformasi Geometri

Bab 4 Transformasi Geometri B 4 Trnsformsi Geometri TUJUAN PEMBELAJARAN Pem is memhmi konsep trnsformsi geometri -D dn -D : trnslsi, rotsi, Refleksi, her dn slling OUTCOME PEMBELAJARAN Pem is menghitung trnsformsi geometri -D ser

Lebih terperinci

Matematika EBTANAS Tahun 1992

Matematika EBTANAS Tahun 1992 Mtemtik EBTANAS Thun 99 EBT-SMA-9-0 Grfik fungsi kudrt yng persmnny y = x 5x memotong sumu x. Slh stu titik potongny dlh (, 0), mk nili sm dengn EBT-SMA-9-0 Persmn x px + 5 = 0 kr-krny sm. Nili p 0 tu

Lebih terperinci

INTEGRAL. 1. Macam-macam Integral. Nuria Rahmatin TIP L. A. Integral Tak Tentu

INTEGRAL. 1. Macam-macam Integral. Nuria Rahmatin TIP L. A. Integral Tak Tentu INTEGRAL Nuri Rhmtin 5000006 TIP L. Mcm-mcm Integrl A. Integrl Tk Tentu Integrl dlh entuk invers dri turunn. Secr umum jik seuh fungsi diintegrlkn terhdp vrile tertentu dpt disjikn dlm entuk : f ( F( C

Lebih terperinci

matematika K-13 IRISAN KERUCUT: PERSAMAAN HIPERBOLA K e l a s A. Definisi Hiperbola Tujuan Pembelajaran

matematika K-13 IRISAN KERUCUT: PERSAMAAN HIPERBOLA K e l a s A. Definisi Hiperbola Tujuan Pembelajaran K-13 mtemtik K e l s I IRISAN KERUCUT: PERSAMAAN HIPERBLA Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi definisi dn unsur-unsur hiperol.. Dpt menentukn persmn

Lebih terperinci

APLIKASI INTEGRAL PENERAPAN INTEGRAL. Luas daerah kelengkungan

APLIKASI INTEGRAL PENERAPAN INTEGRAL. Luas daerah kelengkungan APLIKASI INTEGRAL APLIKASI INTEGRAL PENERAPAN INTEGRAL Lus derh kelengkungn Integrl digunkn pd design Menr Petrons di Kul lumpur, untuk perhitungn kekutn menr. Sdne Oper House di design berdsrkn irisn-irisn

Lebih terperinci

TEORI DEFINITE INTEGRAL

TEORI DEFINITE INTEGRAL definite integrl & lus yog.prihstomo TEORI DEFINITE INTEGRAL Definisi : Jik y = f(x) dlh fungsi kontinu dn terdefinisi dlm intervl tertutup [,] sehingg lim n n i= f ( xi). Δxi d (mempunyi nili), mk definite

Lebih terperinci

Penyelesaian Persamaan Kuadrat 1. Rumus abc Rumus menentukan akar persamaan kuadrat ax 2 bx c 0; a, b, c R dan a 0

Penyelesaian Persamaan Kuadrat 1. Rumus abc Rumus menentukan akar persamaan kuadrat ax 2 bx c 0; a, b, c R dan a 0 PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT PERSAMAAN KUADRAT Bentuk umum persmn kudrt dlh c 0,,,c R, 0 Penyelesin Persmn Kudrt. Rumus c Rumus menentukn kr persmn kudrt c 0;,, c R dn 0, = ± 4c. Memfktorkn

Lebih terperinci

Vektor translasi dpt ditunjukkan oleh bil. berurutan yang ditulis dlm bentuk matriks kolom

Vektor translasi dpt ditunjukkan oleh bil. berurutan yang ditulis dlm bentuk matriks kolom TRANSFORMASI GEOMETRI BAB Sutu trnsformsi idng dlh sutu pemetn dri idng Krtesius ke idng ng lin tu T : R R (,) ( ', ') Jenis-jenis trnsformsi ntr lin : Trnsformsi Isometri itu trnsformsi ng tidk menguh

Lebih terperinci

INTEGRAL TAK TENTU. x x x

INTEGRAL TAK TENTU. x x x INTEGRAL TAK TENTU Definisi : Fungsi F diktkn nti turunn dri fungsi f pd selng I jik F () = f() untuk semu di I. Notsi : F() = f() Integrl tk tentu dlh Anti/Invers/Kelikn turunn. c c Integrl tk tentu dlh

Lebih terperinci

1. Identitas Trigonometri. 1. Identitas trigonometri dasar berikut ini merupakan hubungan kebalikan.

1. Identitas Trigonometri. 1. Identitas trigonometri dasar berikut ini merupakan hubungan kebalikan. 1. Identits Trigonometri Pengertin Identits Trigonometri dlh kesmn yng memut entuk trigonometri dn erlku untuk semrng sudut yng dierikn. Jenis Identits Trigonometri 1. Identits trigonometri dsr erikut

Lebih terperinci

A. Pengertian Integral

A. Pengertian Integral A. Pengertin Integrl Di Kels XI, klin telh mempeljri konsep turunn. Pemhmn tentng konsep turunn ini dpt klin gunkn untuk memhmi konsep integrl. Untuk itu, co tentukn turunn fungsi-fungsi erikut. f () f

Lebih terperinci

UJIAN BERSAMA SMA KABUPATEN TANAH DATAR SEMESTER 1 TAHUN PELAJARAN 2008/2009. Mata Pelajaran : MATEMATIKA Kelas/jurusan : XII/IPS Hari/Tanggal :

UJIAN BERSAMA SMA KABUPATEN TANAH DATAR SEMESTER 1 TAHUN PELAJARAN 2008/2009. Mata Pelajaran : MATEMATIKA Kelas/jurusan : XII/IPS Hari/Tanggal : UJIN ERSM SM KUPTEN TNH DTR SEMESTER THUN PELJRN / Mt Peljrn : MTEMTIK Kels/jurusn : XII/IPS Hri/Tnggl : Wktu : menit Pilihlh slh stu jwn ng dinggp pling enr dn tept!. d c c c c. Jik F '( ) dn F () mk

Lebih terperinci

Matematika Dasar VOLUME BENDA PUTAR

Matematika Dasar VOLUME BENDA PUTAR OLUME BENDA PUTAR Ben putr yng seerhn pt kit mil ontoh lh tung engn esr volume lh hsilkli lus ls ( lus lingkrn ) n tinggi tung. olume ri en putr ser umum pt ihitung ri hsilkli ntr lus ls n tinggi. Bil

Lebih terperinci

(c) lim. (d) lim. (f) lim

(c) lim. (d) lim. (f) lim FMIPA - ITB. MA Mtemtik A Semester, 6-7. Pernytn enr dn slh. () ()! e Solusi. Benr. Fungsi eksonensil (enyeut) memesr leih cet drid fungsi olinom (emilng) sehingg emginny menghsilkn nili Dengn Hoitl s

Lebih terperinci

PREDIKSI UJIAN NASIONAL TAHUN PELAJARAN

PREDIKSI UJIAN NASIONAL TAHUN PELAJARAN PREDIKSI UJIAN NASIONAL TAHUN PELAJARAN - Mt Peljrn Progrm : Mtemtik (MA) : IPA Petunjuk : Pilihlh slh stu jwn yng pling tept!. Dikethui: 5. Dikethui log = dn log = y. Nili log P : Hri tidk hujn tu Rudi

Lebih terperinci

LOMBA CERDAS CERMAT MATEMATIKA (LCCM) TINGKAT SMP DAN SMA SE-SUMATERA Memperebutkan Piala Gubernur Sumatera Selatan 3 5 Mei 2011

LOMBA CERDAS CERMAT MATEMATIKA (LCCM) TINGKAT SMP DAN SMA SE-SUMATERA Memperebutkan Piala Gubernur Sumatera Selatan 3 5 Mei 2011 LOMBA CERDAS CERMAT MATEMATIKA (LCCM) TINGKAT SMP DAN SMA SE-SUMATERA Mempereutkn Pil Guernur Sumter Seltn Mei 0 PENYISIHAN I PERORANGAN LCCM TINGKAT SMA. Dikethui kuus ABCD.EFGH dengn rusuk 6 cm. Jik

Lebih terperinci

Hendra Gunawan. 30 Oktober 2013

Hendra Gunawan. 30 Oktober 2013 MA MATEMATIKA A Hendr Gunwn Semester I, 2/24 Oktoer 2 Ltihn. Fungsi g =,, terintegrlkn pd [, ]. Nytkn integrl tentu g pd [, ] segi limit jumlh Riemnn dengn prtisi reguler, dn hitunglh niliny. //2 c Hendr

Lebih terperinci

BAB VI. PENERAPAN INTEGRAL. kurva di bidang-xy dan andaikan f kontinu dan tak negatif pada selang [a, b]. Luas

BAB VI. PENERAPAN INTEGRAL. kurva di bidang-xy dan andaikan f kontinu dan tak negatif pada selang [a, b]. Luas 1 BAB VI. PENERAPAN INTEGRAL 6.1. Lus Derh Bidng Dtr Derh di ts sumu-. Andikn y = f() menentukn persmn seuh kurv di idng-y dn ndikn f kontinu dn tk negtif pd selng [, ]. Lus derh R yng ditsi oleh y = f(),

Lebih terperinci

Integral B A B. A. Pengertian Integral. B. Integral Tak Tentu. C. Integral Tertentu. D. Menentukan Luas Daerah. E. Menentukan Volume Benda Putar

Integral B A B. A. Pengertian Integral. B. Integral Tak Tentu. C. Integral Tertentu. D. Menentukan Luas Daerah. E. Menentukan Volume Benda Putar Integrl B A B A. Pengertin Integrl B. Integrl Tk Tentu C. Integrl Tertentu D. Menentukn Lus Derh E. Menentukn Volume Bend Putr Sumer: www.wllpperse.com Pernhkh klin meliht ling-ling peswt? Bgimnkh entukny?

Lebih terperinci

Integral Tak Tentu dan Integral Tertentu

Integral Tak Tentu dan Integral Tertentu Integrl Tk Tentu dn Integrl Tertentu Pengertin Integrl Jik F dlh fungsi umum yng ersift F = f, mk F merupkn ntiturunn tu integrl dri f. Pengintegrln fungsi f terhdp dinotsikn segi erikut : f d F c notsi

Lebih terperinci

Integral. Konstanta dari Integrasi. Integral Tak Tentu. AntiTurunan (Antiderivative)

Integral. Konstanta dari Integrasi. Integral Tak Tentu. AntiTurunan (Antiderivative) Integrl AntiTurunn (Antiderivtive) AntiTurunn dri seuh fungsi f dl seuh fungsi F sedemikin hingg Dierikn Pd Peltihn Guru-Guru Aceh Jy 5 Septemer 0 Oleh: Ridh Ferdhin, M.Sc F f E. AntiTurunn dri f ( ) 6

Lebih terperinci

Integral Tak Wajar. Ayundyah Kesumawati. March 25, Prodi Statistika FMIPA-UII

Integral Tak Wajar. Ayundyah Kesumawati. March 25, Prodi Statistika FMIPA-UII Kesumwti Prodi Sttistik FMIPA-UII Mrch 25, 205 Sutu integrl tertentu b f (x)dx () diktkn wjr jik i memenuhi du syrt berikut: i. Bts integrsi dn b merupkn bilngn berhingg ii. fungsi f (x) terbts pd intervl

Lebih terperinci

MATEMATIKA IPA PAKET B KUNCI JAWABAN SOAL

MATEMATIKA IPA PAKET B KUNCI JAWABAN SOAL MATEMATIKA IPA PAKET KUNCI JAWAAN SOAL. Jwn : Mislkn p: ir sungi jernih q: Tidk terkndung zt pencemr r: Semu ikn tidk mti Diperoleh : Premis : p q Premis : ~r ~q q r Jdi, kesimpuln dri premis-premis terseut

Lebih terperinci

MUH1G3/ MATRIKS DAN RUANG VEKTOR

MUH1G3/ MATRIKS DAN RUANG VEKTOR MUHG3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN 3 Sistem Persmn Liner Sistem Persmn Liner Su Pokok Bhsn Pendhulun Solusi SPL dengn OBE Solusi SPL dengn Invers mtriks dn Aturn Crmmer SPL Homogen Beerp Apliksi

Lebih terperinci

LIMIT FUNGSI. DEFINISI Notasi. dibaca. limit f(x) bila x mendekati a sama dengan L. atau. f(x) mendekati L bila x mendekati a.

LIMIT FUNGSI. DEFINISI Notasi. dibaca. limit f(x) bila x mendekati a sama dengan L. atau. f(x) mendekati L bila x mendekati a. DEFINISI Notsi dibc tu berrti bhw IMIT FUNGSI it bil mendekti sm dengn mendekti bil mendekti nili dpt dibut sedekt mungkin dengn bil cukup dekt dengn, tetpi tidk sm dengn. Perhtikn bhw dlm deinisi tersebut

Lebih terperinci

Parabola adalah tempat kedudukan titik-titik yang jaraknya ke satu titik tertentu sama dengan jaraknya ke sebuah garis tertentu (direktriks).

Parabola adalah tempat kedudukan titik-titik yang jaraknya ke satu titik tertentu sama dengan jaraknya ke sebuah garis tertentu (direktriks). Prol dlh tempt kedudukn titik-titik ng jrkn ke stu titik tertentu sm dengn jrkn ke seuh gris tertentu (direktriks). Persmn Prol 1. Persmn Prol dengn Punck O(,) Perhtikn gmr erikut ini! PARABOLA g A P(,

Lebih terperinci

GEOMETRI DIMENSI DUA

GEOMETRI DIMENSI DUA GEOMETRI DIMENSI DU SUDUT Pengertin Sudut Sudut dlh ngun ng dientuk dri rus gris ng ertemu pd sutu titik. Titik pertemunn diseut titik sudut. Kedu rus grisn diseut kki sudut / sisi sudut. Perhtikn gmr

Lebih terperinci

INTEGRAL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 45

INTEGRAL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 45 INTEGRAL Deprtemen Mtemtik FMIPA IPB Bogor, 2012 (Deprtemen Mtemtik FMIPA IPB) Klkulus I Bogor, 2012 1 / 45 Topik Bhsn 1 Pendhulun 2 Anti-turunn 3 Lus di Bwh Kurv 4 Integrl Tentu 5 Teorem Dsr Klkulus 6

Lebih terperinci

TRANSLASI. Jarak dan arah tertentu itu dapat diwakili oleh vektor translasi yaitu suatu pasangan A A B B C C. Akibatnya ABC kongruen dengan A B C.

TRANSLASI. Jarak dan arah tertentu itu dapat diwakili oleh vektor translasi yaitu suatu pasangan A A B B C C. Akibatnya ABC kongruen dengan A B C. TRANSLASI Definisi : Trnslsi tu pergesern dl sutu trnsformsi ng memindn tip titi pd idng dengn jr dn r tertentu. Jr dn r tertentu itu dpt diwili ole vetor trnslsi itu sutu psngn ilngn terurut. Pertin gmr

Lebih terperinci

IV V a b c d. a b c d. b c d. bukan fungsi linier y = x = x y 5xy + y = B.2 Konsep Fungsi Linier

IV V a b c d. a b c d. b c d. bukan fungsi linier y = x = x y 5xy + y = B.2 Konsep Fungsi Linier 8. Dri fungsi-fungsi ng disjikn dengn digrm pnh erikut ini mnkh ng merupkn fungsi onto, injektif tu ijektif, jik relsi dri A ke B? A c d IV B A c d V B A c d VI B B. Konsep Fungsi Linier. Tujun Setelh

Lebih terperinci

Sudaryatno Sudirham. Studi Mandiri. Fungsi dan Grafik. Darpublic

Sudaryatno Sudirham. Studi Mandiri. Fungsi dan Grafik. Darpublic Sudrtno Sudirhm Studi Mndiri Fungsi dn Grfik ii Drpulic BAB Mononom dn Polinom Mononom dlh perntn tunggl ng erentuk k n, dengn k dlh tetpn dn n dlh ilngn ult termsuk nol. Fungsi polinom merupkn jumlh terts

Lebih terperinci

SOAL LATIHAN UJIAN NASIONAL 2015 SMA NEGERI 8 JAKARTA

SOAL LATIHAN UJIAN NASIONAL 2015 SMA NEGERI 8 JAKARTA SOAL LATIHAN UJIAN NASIONAL 0 SMA NEGERI 8 JAKARTA. Dierikn premis-premis segi erikut: Premis : Jik urh hujn tinggi dn irigsi uruk, mk tnmn pdi memusuk Premis : Tnmn pdi tidk memusuk tu petni menderit

Lebih terperinci

APLIKASI INTEGRAL TENTU

APLIKASI INTEGRAL TENTU APLIKASI INTEGRAL TENTU Apliksi Itegrl Tetu థ Lus ditr 2 kurv థ Volume ed dlm idg (deg metode ckrm d cici) థ Volume ed putr (deg metode kulit tug) థ Lus permuk ed putr థ Mome d pust mss 1 2 1. LUAS DIANTARA

Lebih terperinci

UN SMA IPA 2004 Matematika

UN SMA IPA 2004 Matematika UN SMA IPA Mtemtik Kode Sol P Doc. Version : - hlmn. Persmn kudrt ng kr-krn dn - dlh... ² + + = ² - + = ² + + = ² + - = ² - - =. Tinggi h meter dri sebuh peluru ng ditembkkn ke ts setelh t detik dintkn

Lebih terperinci

E-learning Matematika, GRATIS

E-learning Matematika, GRATIS www.mtemtik-ps.logspot.com E-lerning Mtemtik, GRATIS Penusun Editor : Nur Aini Indh H, S.Pd. ; Imm Indr Gunwn, S.Si. : Drs. Keto Susnto, M.Si. M.T. ; Istij, S.H. M.Hum. Imm Indr Gunwn, S.Si. A. DEFINISI

Lebih terperinci

APLIKASI INTEGRAL TENTU

APLIKASI INTEGRAL TENTU APLIKASI INTEGAL TENTU A. Lus Derh Bing t 1. Mislkn erh = x, y x, y f x. Lus? y = f(x) x Lngkh-lngkh: 1. Iris menji n gin ri lus stu uh irisn ihmpiri oleh lus persegi pnjng engn tinggi f(x). ls (ler) x

Lebih terperinci

Yohanes Private Matematika ,

Yohanes Private Matematika , Yohnes Privte Mtemtik 3 081519611185, 08119605588 Irisn keruut: Lingkrn Prol Elis Hierol LINGKARAN Bentuk umum : 2 + 2 = r 2 ust: (0, 0) ; jri-jri = r ( ) 2 + ( ) 2 = r 2 ust: (, ) ; jri-jri = r r r 2

Lebih terperinci

BAB 3 SOLUSI NUMERIK SISTEM PERSAMAAN LINEAR

BAB 3 SOLUSI NUMERIK SISTEM PERSAMAAN LINEAR A SOLUSI NUMERIK SISTEM PERSAMAAN LINEAR. Metode Eliminsi Guss Tinu sistem persmn liner ng terdiri dri i ris dn peuh, kni,,,, erikut.......... i i i Jik =, sistem persmn linern diseut sistem homogen, sedngkn

Lebih terperinci

UNTUK MENDAPATKAN SOAL PREDIKSI SBMPTN 2015

UNTUK MENDAPATKAN SOAL PREDIKSI SBMPTN 2015 -. UNTUK MENDAPATKAN SOAL PREDIKSI SBMPTN 015 SILAHKAN KLIK KUNJUNGI: WWW.E-SBMPTN.COM Ltihn Sol Fisik 1. Thun hy dlh stun dri... (A) jrk (D) momentum (B) keeptn (E) energi (C) wktu. Stu wtt hour sm dengn...

Lebih terperinci

BAB IV METODE ANALISIS RANGKAIAN

BAB IV METODE ANALISIS RANGKAIAN BAB IV METODE ANALISIS RANGKAIAN. Anlisis Arus Cng Anlisis rus cng memnftkn hukum Kirchoff I (KCL) dn hukum Kirchoff I (KVL). Contoh - Tentukn esr rus dlm loop terseut dn gimn rh rusny? Ohm 0V 0V Ohm 0V

Lebih terperinci

BAB XXI. TRANSFORMASI GEOMETRI

BAB XXI. TRANSFORMASI GEOMETRI BAB XXI. TRANSFORMASI GEOMETRI Trnsformsi digunn untu untu memindhn sutu titi tu ngun pd sutu idng. Trnsformsi geometri dlh gin dri geometri ng memhs tentng peruhn (let,entu, penjin ng didsrn dengn gmr

Lebih terperinci

E-learning matematika, GRATIS

E-learning matematika, GRATIS www.mtemtik-ps.logspot.com E-lerning mtemtik, GRATIS Penusun Editor : Nur Aini Indh H, S.Pd. ; Imm Indr Gunwn, S.Si. : Drs. Keto Susnto, M.Si. M.T. ; Istij, S.H. M.Hum. Imm Indr Gunwn, S.Si. A. DEFINISI

Lebih terperinci

BAB XXI. TRANSFORMASI GEOMETRI

BAB XXI. TRANSFORMASI GEOMETRI BAB XXI. TRANSFORMASI GEOMETRI Trnsformsi digunn untu untu memindhn sutu titi tu ngun pd sutu idng. Trnsformsi geometri dlh gin dri geometri ng memhs tentng peruhn (let,entu, penjin ng didsrn dengn gmr

Lebih terperinci

Catatan Kuliah MA1123 KALKULUS ELEMENTER I BAB V. INTEGRAL

Catatan Kuliah MA1123 KALKULUS ELEMENTER I BAB V. INTEGRAL BAB V. INTEGRAL Anti-turunn dn Integrl Tk Tentu Persmn Diferensil Sederhn Notsi Sigm dn Lus Derh di Bwh Kurv Integrl Tentu Teorem Dsr Klkulus Sift-sift Integrl Tentu Leih Lnjut Sustitusi dlm Penghitungn

Lebih terperinci

TRANSFORMASI GEOMETRI

TRANSFORMASI GEOMETRI TRANSFORMASI GEOMETRI Trnsformsi digunn untu untu memindhn sutu titi tu ngun pd sutu idng. Trnsformsi geometri dlh gin dri geometri ng memhs tentng peruhn (let,entu, penjin ng didsrn dengn gmr dn mtris.

Lebih terperinci

Bab. Integral. Di unduh dari: (www.bukupaket.com) Sumber buku : (bse.kemdikbud.go.id)

Bab. Integral. Di unduh dari: (www.bukupaket.com) Sumber buku : (bse.kemdikbud.go.id) PUSAT PERBUKUAN Deprtemen Pendidikn Nsionl B I Integrl Tujun Pemeljrn Setelh mempeljri ini, dihrpkn klin dpt. merncng turn integrl tk tentu dri turn turunn;. menghitung integrl tk tentu dri fungsi ljr;.

Lebih terperinci

E-LEARNING MATEMATIKA

E-LEARNING MATEMATIKA MODUL E-LEARNING E-LEARNING MATEMATIKA Oleh : NURYADIN EKO RAHARJO, M.PD. NIP. 9705 00 00 Penulisn Modul e Lerning ini diiyi oleh dn DIPA BLU UNY TA 00 Sesui dengn Surt Perjnjin Pelksnn e Lerning Nomor

Lebih terperinci

BAB I. MATRIKS BAB II. DETERMINAN BAB III. INVERS MATRIKS BAB IV. PENYELESAIAN PERSAMAAN LINEAR SIMULTAN

BAB I. MATRIKS BAB II. DETERMINAN BAB III. INVERS MATRIKS BAB IV. PENYELESAIAN PERSAMAAN LINEAR SIMULTAN DFTR ISI BB I. MTRIKS BB II. DETERMINN BB III. INVERS MTRIKS BB IV. PENYELESIN PERSMN LINER SIMULTN BB I. MTRIKS Mtriks erup sekelompok ilngn yng disusun empt persegi dn ditsi tnd terdiri dri ris dn kolom

Lebih terperinci

IAH IAAH I H HAAH xaah I A b x2ah x23h I A 3 x23b H 2

IAH IAAH I H HAAH xaah I A b x2ah x23h I A 3 x23b H 2 GRMMR CONTEXT-FREE DN PRING entuk umum produksi CFG dlh :, V N, (V N V T )* nlisis sintks dlh penelusurn seuh klimt (tu sentensil) smpi pd simol wl grmmr. nlisis sintks dpt dilkukn mellui derivsi tu prsing.

Lebih terperinci

MATERI I : VEKTOR. Pertemuan-01

MATERI I : VEKTOR. Pertemuan-01 MATERI I : VEKTOR Pertemun-0. Pendhulun Definisi Vektor didefinisikn segi esrn yng memiliki rh. Keeptn, gy dn pergesern merupkn ontoh ontoh dri vektor kren semuny memiliki esr dn rh wlupun untuk keeptn

Lebih terperinci

Fungsi f dikatakan pada / onto / surjektif jika setiap elemen himpunan B merupakan

Fungsi f dikatakan pada / onto / surjektif jika setiap elemen himpunan B merupakan III FUNGSI 15 1. Definisi Fungsi Definisi 1 Mislkn dn dlh himpunn. Relsi iner f dri ke merupkn sutu fungsi jik setip elemen di dlm dihuungkn dengn tept stu elemen di dlm. Jik f dlh fungsi dri ke, mk f

Lebih terperinci

A. PENGERTIAN B. DETERMINAN MATRIKS

A. PENGERTIAN B. DETERMINAN MATRIKS ATRIKS A. PENGERTIAN triks dlh sutu deretn elemen yng mementuk empt persegi pnjng, terdiri dri m ris dn n kolom. Elemen terseut dpt erentuk koefisien, ilngn tu simul. triks yng mempunyi m ris dn n kolom

Lebih terperinci

MODUL MATEMATIKA KELAS XII

MODUL MATEMATIKA KELAS XII MODUL MATEMATIKA KELAS XII LAKSONO BANGUN AS ARI SMA NEGERI KANDANGAN BAB I INTEGRAL -- A. INTEGRAL TENTU DAN INTEGRAL TAK TENTU Integrl dlh kelikn dri turunn (diferensil). Oleh kren itu integrl diseut

Lebih terperinci

Fungsi dan Grafik Diferensial dan Integral

Fungsi dan Grafik Diferensial dan Integral Sudrtno Sudirhm Studi Mndiri Fungsi dn Grfik Diferensil dn Integrl i Drpulic Hk cipt pd penulis, 1 SUDIRHAM, SUDARYATNO Fungsi dn Grfik, Diferensil dn Integrl Oleh: Sudrtmo Sudirhm Drpulic, Bndung fdg-111

Lebih terperinci

VEKTOR. seperti AB, AB, a r, a, atau a.

VEKTOR. seperti AB, AB, a r, a, atau a. VEKTOR I. KOMPETENSI YANG DICAPAI Mhsisw dpt :. Menggmr vektor dengn sistem vektor stun.. Menghitung perklin vektor. 3. Menghitung penmhn vektor dengn turn segitig, turn rn genng, dn turn poligon. 4. Menghitung

Lebih terperinci

Matriks yang mempunyai jumlah baris sama dengan jumlah kolomnya disebut matriks bujur sangkar (square matrix). contoh :

Matriks yang mempunyai jumlah baris sama dengan jumlah kolomnya disebut matriks bujur sangkar (square matrix). contoh : TRIKS. PENGERTIN triks dlh sutu deretn elemen yng mementuk empt persegi pnjng, terdiri dri m ris dn n kolom. Elemen terseut dpt erentuk koefisien, ilngn tu simul. triks yng mempunyi m ris dn n kolom diseut

Lebih terperinci

Limit & Kontinuitas. Oleh: Hanung N. Prasetyo. Calculus/Hanung N. Prasetyo/Politeknik Telkom Bandung

Limit & Kontinuitas. Oleh: Hanung N. Prasetyo. Calculus/Hanung N. Prasetyo/Politeknik Telkom Bandung imit & Kontinuits Oleh: Hnung N. Prsetyo Clculus/Hnung N. Bb. IMIT.1. Du mslh undmentl klkulus... Gris Tngen.. Konsep imit.4. Teorem imit.5. Konsep kontinuits Clculus/Hnung N. Du Mslh Fundmentl Klkulus

Lebih terperinci

GRAFIK ALIRAN SINYAL

GRAFIK ALIRAN SINYAL GRAFIK ALIRAN SINYAL PENGANTAR Grfik lirn sinl merupkn sutu pendektn ng digunkn untuk menjikn dinmik sistem pengturn. Grfik lirn sinl merupkn sutu digrm ng mewkili seperngkt persmn ljr linier. Untuk mengnlisis

Lebih terperinci

Definisi Vektor. Vektor adalah besaran yang mempunyai besar dan arah

Definisi Vektor. Vektor adalah besaran yang mempunyai besar dan arah VEKTOR Definisi Vektor Vektor dlh esrn yng mempunyi esr dn rh Besr vektor rtiny pnjng vektor Arh vektor rtiny sudut yng dientuk dengn sumu X positif Vektor disjikn dlm entuk rus gris errh Gmr Vektor B

Lebih terperinci

METODE ANALISIS. Tentukan arus pada masing-masing tahanan dengan menggunakan metode arus cabang untuk rangkaian seperti pada Gambar 1.

METODE ANALISIS. Tentukan arus pada masing-masing tahanan dengan menggunakan metode arus cabang untuk rangkaian seperti pada Gambar 1. 1. Anlisis Arus Cng METODE ANALSS Metode rus ng dlh slh stu metode penyelesin nlisis rngkin il rngkin terdiri dri du tu leih sumer. Pd metode rus ng ini, kn diperoleh rus pd setip ng dri sutu rngkin yng

Lebih terperinci

Daerah D dibatasi kurva y = f (x) dengan f (x) 0, garis x = a, garis x = b, dan sumbu x. D = {(x,y) a x b, 0 y f (x)} Luas daerah D adalah  Ú.

Daerah D dibatasi kurva y = f (x) dengan f (x) 0, garis x = a, garis x = b, dan sumbu x. D = {(x,y) a x b, 0 y f (x)} Luas daerah D adalah  Ú. x x g x x erh ditsi kurv = (x) deg (x), gris x =, gris x =, d sumu x. = {(x,) x, (x)} Lus derh dlh. L = lim x x = x erh ditsi kurv = (x), kurv = g(x), deg (x) g(x), gris x =, d gris x =. = {(x,) x, g(x)

Lebih terperinci

SMA Santa Angela. Bandung. 1 P a g e

SMA Santa Angela. Bandung. 1 P a g e Persmn Gris Singgung SMA Snt Angel Bndung P g e P g e Persmn Gris Singgung pd Ellips Seperti hln pd lingkrn, terdpt du mcm gris singgung ng kn diicrkn, itu gris singgung ng mellui slh stu titik pd ellips

Lebih terperinci

Jarak Titik, Garis dan Bidang dalam Ruang

Jarak Titik, Garis dan Bidang dalam Ruang Pge of Kegitn eljr. Tujun Pembeljrn Setelh mempeljri kegitn beljr, dihrpkn sisw dpt :. Menentukn jrk titik dn gris dlm rung b. Menentukn jrk titik dn bidng dlm rung c. Menentukn jrk ntr du gris dlm rung.

Lebih terperinci

BAB 1 PENDAHULUAN. f tidak semua bernilai nol dan a, b, disebut persamaan kuadrat di dalam variabel. atau disebut juga permukaan kuadrat;

BAB 1 PENDAHULUAN. f tidak semua bernilai nol dan a, b, disebut persamaan kuadrat di dalam variabel. atau disebut juga permukaan kuadrat; PENDHULUN. Ltr elkng Dlm memhs permslhn-permslhn sttistik dn fisik sering dijumpi nlis-nlis mslh ng menngkut fungsi-fungsi non linier, misln mengeni entuk-entuk kudrt. entuk kudrt ng is digmrkn pd rung

Lebih terperinci

DETERMINAN. Matematika Industri I. TIP FTP UB Mas ud Effendi. Matematika Industri I

DETERMINAN. Matematika Industri I. TIP FTP UB Mas ud Effendi. Matematika Industri I DETERMINAN Mtemtik Industri I TIP FTP UB Ms ud Effendi Mtemtik Industri I Pokok Bhsn Determinn Determinn orde-ketig Persmn simultn dengn tig ilngn tidk dikethui Konsistensi sutu set persmn Sift-sift determinn

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA1201 MATEMATIKA 2A Hendr Gunwn Semester II 2016/2017 31 Mret 2017 Kulih yng Llu 12.1 Fungsi du tu leih peuh 12.2 Turunn Prsil 12.3 Limit dn Kekontinun 12.4 Turunn ungsi du peuh 12.5 Turunn errh dn grdien

Lebih terperinci

Prestasi itu diraih bukan didapat!!!

Prestasi itu diraih bukan didapat!!! SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 00 TIM OLIMPIADE MATEMATIKA INDONESIA 00 Prestsi itu dirih ukn didpt!!! SOLUSI SOAL Bidng Mtemtik Disusun oleh : Olimpide Mtemtik Tk Kupten/Kot 00 BAGIAN PERTAMA.

Lebih terperinci

1. Pengertian Matriks

1. Pengertian Matriks BAB MATRIKS BAB MATRIKS. Pengertin Mtriks. Opersi Mtriks. Trnspose Sutu Mtriks. Kesmn Duh Buh Mtriks. Jenis-Jenis Mtriks. Trnsformsi Elementer 7. Rnk Mtriks . Pengertin Mtriks Mtriks dlh dftr ilngn yng

Lebih terperinci

KALKULUS I Dr. Wuryansari Muharini Kusumawinahyu Program Sarjana Matematika Universitas Brawijaya

KALKULUS I Dr. Wuryansari Muharini Kusumawinahyu Program Sarjana Matematika Universitas Brawijaya KALKULUS I Dr. Wurnsri Muhrini Kusumwinhu Progrm Srjn Mtemtik Universits Brwij Deinisi: Mislkn A dn B dlh himpunn tk kosong. Fungsi dri A ke B dlh sutu ATURAN ng MEMADANKAN SETIAP ELEMEN di A dengn tept

Lebih terperinci

OSN 2015 Matematika SMA/MA

OSN 2015 Matematika SMA/MA Sol 5. Mislkn,, c, d dlh ilngn sli sehingg c d dn d c. Buktikn hw () (cd) mx{,}. Jw: Klim hw c. Jik = 1 mk jels memenuhi pernytn. Mislkn p prim dn = p t s dengn p s. Untuk menunjukkn hw c cukup kit tunjukkn

Lebih terperinci

Soal Latihan dan Pembahasan Fungsi kuadrat

Soal Latihan dan Pembahasan Fungsi kuadrat Sol Ltihn dn Pemhsn Fungsi kudrt Di susun Oleh : uun Somntri htt://imingneljr.net/ Di dukung oleh : Portl eduksi Grtis Indonesi Oen Knowledge nd Edution htt://oke.or.id Tutoril ini dierolehkn untuk di

Lebih terperinci

A x = b apakah solusi x

A x = b apakah solusi x MTRIKS INVERSI & SIFT-SIFTNY Bil, x, dlh sklr ilngn rel yng memenuhi x, mk x pil. Sekrng, untuk sistem persmn linier x pkh solusi x dpt diselesikn dengn x? Mtriks Identits Untuk sklr (rel numer dn ), mk.

Lebih terperinci

MATRIKS. Menggunakan konsep matriks, vektor, dan transformasi dalam pemecahan masalah.

MATRIKS. Menggunakan konsep matriks, vektor, dan transformasi dalam pemecahan masalah. MATRIKS Stndr Kompetensi : Menggunkn konsep mtriks, vektor, dn trnsformsi dlm pemechn mslh Kompetensi Dsr : Menggunkn sift-sift dn opersi mtriks untuk menentukn invers mtriks persegi Menggunkn determinn

Lebih terperinci

Hubungan integral garis yang umum antara ke dua kuantitas tersebut,

Hubungan integral garis yang umum antara ke dua kuantitas tersebut, 6 GRADIN PONSIAL Grdien ptensil dlh sutu metde ng sederhn untuk mencri intensits medn listrik dri ptensil. Hubungn integrl gris ng umum ntr ke du kuntits tersebut,. dl Dengn mengmbil N sebgi vektr stun

Lebih terperinci

adalah biaya marginal dari C terhadap Q x adalah biaya marginal dari C terhadap Q y Umumnya biaya marginal adalah positif C

adalah biaya marginal dari C terhadap Q x adalah biaya marginal dari C terhadap Q y Umumnya biaya marginal adalah positif C A. endhulun. Seperti telh dikethui hw diferensil memhs tentng tingkt peruhn sehuungn dengn peruhn kecil dlm vrile es fungsi ersngkutn. Dengn diferensil dpt dikethui kedudukn-kedudukn khusus dri fungsi

Lebih terperinci

DETERMINAN. Misalkan A adalah suatu matriks persegi. a) Jika A memiliki satu baris atau satu kolom bilangan nol, maka det(a) = 0.

DETERMINAN. Misalkan A adalah suatu matriks persegi. a) Jika A memiliki satu baris atau satu kolom bilangan nol, maka det(a) = 0. DETERMINAN Fungsi determinn dri sutu mtriks persegi A (dinotsikn dengn det(a) tu A ) didefinisikn sebgi jumlh dri semu hsil kli elementer bertnd dri A. Sementr, ngk tu bilngn dri det(a) disebut determinn

Lebih terperinci

PEMBAHASAN. A. Teorema Pythagoras 1. Luas persegi dan luas segitiga siku-siku Perhatikan Gambar 1! D. Gambar 1

PEMBAHASAN. A. Teorema Pythagoras 1. Luas persegi dan luas segitiga siku-siku Perhatikan Gambar 1! D. Gambar 1 PEMBAHASAN A. Teorem Pythgors 1. Lus persegi dn lus segitig siku-siku Perhtikn Gmr 1! D s A s B Gmr 1 Pd gmr terseut tmpk seuh persegi ABD yng pnjng sisiny s stun pnjng. Lus persegi ABD = sisi sisi L =

Lebih terperinci

Integral Numerik. Sunkar E. Gautama, 2013

Integral Numerik. Sunkar E. Gautama, 2013 Integrl Numerik Sunkr E. Gutm, 2013 http://prdoks77.logspot.com Integrl numerik ilh metode untuk menghitung nili integrsi sutu fungsi dlm sutu selng tnp mempedulikn fungsi hsil integrlny dengn menggunkn

Lebih terperinci

MATEMATIKA IPA PAKET A KUNCI JAWABAN

MATEMATIKA IPA PAKET A KUNCI JAWABAN MATEMATIKA IPA PAKET A KUNCI JAWABAN. Jwbn : A Mislkn : p : Msyrkt membung smph pd temptny. q: Kesehtn msyrkt terjg. Diperoleh: Premis : ~q ~p p q Premis : p Kesimpuln : q Jdi, kesimpuln dri premis-premis

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) : 2 jam tatap muka dan 2 jam tugas terstruktur

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) : 2 jam tatap muka dan 2 jam tugas terstruktur RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nm Sekolh : SMAN 78 JAKARTA Mt Peljrn : Mtemtik 4 Ben Beljr : 4 sks Aloksi wktu : 2 jm ttp muk dn 2 jm tugs terstruktur Aspek Stndr Kompetensi Kompetensi Dsr Indiktor

Lebih terperinci