Hendra Gunawan. 2 April 2014

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Hendra Gunawan. 2 April 2014"

Transkripsi

1 MA1201 MATEMATIKA 2A Hendr Gunwn Semester II 2013/ April 2014

2 Kulih ng Llu 12.1 Fungsi du tu leih peuh 12.2 Turunn Prsil 12.3 Limit dn Kekontinun 12.4 Turunn ungsi du peuh 12.5 Turunn errh dn grdien 12.6 Aturn Rnti 12.7 Bidng singgung dn proksimsi Bgin I 12.8 Mksimum dn minimum 12.9 Metode pengli Lgrnge 4/2/2014 c Hendr Gunwn 2

3 Kulih Hri Ini 12.1 Fungsi du tu leih peuh 12.2 Turunn Prsil 12.3 Limit dn Kekontinun 12.4 Turunn ungsi du peuh 12.5 Turunn errh dn grdien 12.6 Aturn Rnti 12.7 Bidng singgung dn proksimsi Bg II 12.8 Mksimum dn minimum 12.9 Metode pengli Lgrnge 4/2/2014 c Hendr Gunwn 3

4 MA1201 MATEMATIKA 2A 12.7 BIDANG SINGGUNG DAN HAMPIRAN BAGIANII Menggunkn polinom Tlor orde 2 untuk menghmpiri nili ungsi du peuh di sekitr titiktertentu 4/2/2014 c Hendr Gunwn 4

5 Hmpirn Liner & Bidng Singgung Hmpirn Liner & Bidng Singgung Bil mempuni turunn di p = mk kit p p mempuni hmpirn liner Dlm hl ini persmn z merupkn persmn idng singgung pd p p g gg g p permukn z = di titik. 4/2/2014 c Hendr Gunwn 5

6 Polinom Tlor Orde 1 Polinom Tlor Orde 1 Terkit dengn hmpirn liner & idng g p g singgung polinom P 1 P merupkn polinom Tlor orde 1 untuk di titik di titik. l hl k Hmpirn liner Dlm hl ini P 1 untuk. 4/2/2014 c Hendr Gunwn 6

7 Polinom Tlor Orde 2 Seperti hln utk ungsi stu peuh kit mempuni polinom Tlor orde 2 untuk ungsi du peuh: P2 1 [ ]. Hmpirn kudrtik Dlm hl ini P 2 untuk. 4/2/2014 c Hendr Gunwn 7

8 Contoh/Ltihn Tentukn polinom Tlor orde 2 untuk = 2 2 e di 00 dn gunkn polinom ts untuk menksir nili Jw: = = = = = Jdi dn P 2 2 = P = 4/2/2014 c Hendr Gunwn 8

9 MA1201 MATEMATIKA 2A 12.8 MAKSIMUM DAN MINIMUM Menentukn nili mksimum dn minimum driungsidu peuh h 4/2/2014 c Hendr Gunwn 9

10 Nili Ekstrim Glol Mislkn S R 2 : S R dn p* S. i p* diseut nili mksimum glol pd S pil p* p untuk setip p S. ii p* diseut nili minimum glol pd S pil p* p untuk setip p S. Nili p* diseut nili ekstrim glol pd S pil p* merupkn nili mksimum glol tu nili minimum glol. 4/2/2014 c Hendr Gunwn 10

11 Nili Ekstrim Lokl Mislkn S R 2 : S R dn p* S. i p* diseut nili mksimum lokl pd S pil terdpt ckrm N ng memut p* sehingg p* p untuk setip p N S. ii p* diseut nili minimum lokl pd S pil terdpt ckrm N ng memut p* sehingg p* p untuk setip p N S. Nili p* diseut nili ekstrim lokl pd S pil p* merupkn nili mksimum lokl tu nili minimum lokl. 4/2/2014 c Hendr Gunwn 11

12 Teorem Eksistensi Mks Min Min Jik kontinu pd sutu himpunn tertutup dn terts S mk mencpi nili mksimum dn nili minimum glol pd S kemungkinn di titik ng ered. Cttn. S tertutup errti S memut titik titik pertsnn. S terts errti S termut dlm sutu ckrm COR ng erpust di O00 dn erjri jri R untuk sutu R > 0. 4/2/2014 c Hendr Gunwn 12

13 Teorem Titik Kritis Fungsi hn mungkin mencpi nili ekstrim di titik titik kritis itu di: i titik titik pertsn derh sl tu ii titik titik stsioner itu titik di mn mem puni turunn 0 tu iiititik titik singulr itu titik di mn tidk mempuni turunn. 4/2/2014 c Hendr Gunwn 13

14 Contoh 1. Fungsi = mencpi nili minimum 0 di 00 ng merupkn titik stsioner Fungsi g = mencpi nili minimum 0 di 00 ng merupkn titik singulr. 3. Jik kit tsi derh sl kedu ungsi di ts pd ckrm tertutup CO1 mk kedu ungsi di ts mencpi nili mksimum 1 pd setip titik pertsn. 4/2/2014 c Hendr Gunwn 14

15 Cttn Titikstsioner elum tentu merupkn titik ekstrim. Segi contoh ungsi F = mempuni titik stsioner 00 tetpi titik ini ukn merupkn titik ekstrim glol mupun lokl. Ingt pet konturn seperti p! Jik derh sl ungsi F ditsi pd ckrm tertutupco1 mk nili ekstrimn hn mungkintercpi i di titik iikpertsn itu pd lingkrn = 1. [Kit hs gimn mencri nili ekstrimn nnti!] 4/2/2014 c Hendr Gunwn 15

16 Uji Turunn Kedu: Srt Cukup untuk Nili Ekstrim Mislkn mempuni turunn prsil kedu ng kontinu pd sutu ckrm ng erpust di dn 00. Tulis 2 D D [ ]. Mk 1. Jik D > 0 dn < 0 mk merupkn nili mksimum lokl. 2. Jik D > 0 dn > 0 mk merupkn nili minimum lokl. 3. Jik D < 0 mk merupkn titik peln. 4. Jik D = 0 mkujiiniggl. 4/2/2014 c Hendr Gunwn 16

17 Contoh Tentukn nili ekstrim dri F = jik d. Jw: F = = 0 j.h.j. = ±1 dn F = 2 4 = 0 j.h.j. = 2. Jdi d 2 titik stsioner itu 12 dn 12. Selnjutn F = 6 F = 0 dn F = 2. Di 12 F = 61 = 6 > 0 dn D = = 12 > 0. Jdi F12 = 10 merupkn nili minimum lokl. Di 12 F = 6 1 = 6 < 0 dn D = = 12 < 0. Jdi 12 merupkn titik peln ukn ekstrim. 4/2/2014 c Hendr Gunwn 17

18 Sol 1 Mislkn nd ingin memut kotk tertutup dengn volume 1 dm 3 dn lus permuknn minimum. Berpkh ukurn kotk ts? 4/2/2014 c Hendr Gunwn 18

19 Sol 2 Tentukn nili mksimum dn nili minimum dri F = pd ckrm tertutup CO1. Jw: Nili ekstrimn tercpi di pertsn itu pd lingkrn = 1. Untuk mencrin ntkn titik titik pd lingkrn ts dlm koordint polr kni = cos θ dn = sin θ. Mk F = Frθ = cos θsin θ = ½ sin 2θ. Jdi: F mencpi nili mksimum pd st θ = π/4 dn 5π/4 knidititik½ 2½ 2 dn ½ 2 ½ 2; dn F mencpi nili minimum pd st θ = 3π/4 dn 7π/4 knidititik ½ 2½ 2 dn ½ 2 ½ 2. 4/2/2014 c Hendr Gunwn 19

20 Cttn Sol 2 dpt pul dijw dengn menggmr pet kontur dn mengmti hw nili ekstrim tercpi pd pertsn khususn di 4 uh titik perpotongn lingkrn = 1 dengn gris = ±. 4/2/2014 c Hendr Gunwn 20

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA1201 MATEMATIKA 2A Hendr Gunwn Semester II 2016/2017 31 Mret 2017 Kulih yng Llu 12.1 Fungsi du tu leih peuh 12.2 Turunn Prsil 12.3 Limit dn Kekontinun 12.4 Turunn ungsi du peuh 12.5 Turunn errh dn grdien

Lebih terperinci

Hendra Gunawan. 26 Maret 2014

Hendra Gunawan. 26 Maret 2014 MA1201 MATEMATIKA 2A Hendr Gunwn Semester II 2013/2014 26 Mret 2014 Kuli ng Llu 12.1 Fungsi du tu lebi peub 12.2 Turunn Prsil 12.3 Limitdn Kekontinun 12.4 Turunn ungsi du peub 12.5 Turunn berr dn grdien

Lebih terperinci

INTEGRAL. Misalkan suatu fungsi f(x) diintegralkan terhadap x maka di tulis sebagai berikut:

INTEGRAL. Misalkan suatu fungsi f(x) diintegralkan terhadap x maka di tulis sebagai berikut: INTEGRAL.PENGERTIAN INTEGRAL Integrl dlh cr mencri sutu fungsi jik turunnn di kethui tu kelikn dri diferensil (turunn) ng diseut jug nti derivtif tu nti diferensil. Untuk menentukn integrl tidk semudh

Lebih terperinci

Hendra Gunawan. 30 Oktober 2013

Hendra Gunawan. 30 Oktober 2013 MA MATEMATIKA A Hendr Gunwn Semester I, 2/24 Oktoer 2 Ltihn. Fungsi g =,, terintegrlkn pd [, ]. Nytkn integrl tentu g pd [, ] segi limit jumlh Riemnn dengn prtisi reguler, dn hitunglh niliny. //2 c Hendr

Lebih terperinci

Tujuan Pembelajaran. ) pada elips. 2. Dapat menentukan persamaan garis singgung yang melalui titik (x 1

Tujuan Pembelajaran. ) pada elips. 2. Dapat menentukan persamaan garis singgung yang melalui titik (x 1 K-3 mtemtik K e l s XI IRISAN KERUCUT: PERSAMAAN GARIS SINGGUNG PADA ELIPS Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Dpt menentukn persmn gris singgung di titik (,

Lebih terperinci

7. APLIKASI INTEGRAL

7. APLIKASI INTEGRAL 7. APLIKASI INTEGRAL 7. Menghitung Lus Derh.Mislkn derh D (, ), f ( ) D f() Lus D =? Lngkh :. Iris D menjdi n gin dn lus stu uh irisn dihmpiri oleh lus persegi pnjng dengn tinggi f() ls(ler) A f ( ). Lus

Lebih terperinci

selisih positif jarak titik (x, y) terhadap pasangan dua titik tertentu yang disebut titik

selisih positif jarak titik (x, y) terhadap pasangan dua titik tertentu yang disebut titik Hiperol 7.1. Persmn Hiperol Bentuk Bku Hiperol dlh himpunn semu titik (, ) pd idng sedemikin hingg selisih positif jrk titik (, ) terhdp psngn du titik tertentu ng diseut titik fokus (foci) dlh tetp. Untuk

Lebih terperinci

LIMIT FUNGSI. DEFINISI Notasi. dibaca. limit f(x) bila x mendekati a sama dengan L. atau. f(x) mendekati L bila x mendekati a.

LIMIT FUNGSI. DEFINISI Notasi. dibaca. limit f(x) bila x mendekati a sama dengan L. atau. f(x) mendekati L bila x mendekati a. DEFINISI Notsi dibc tu berrti bhw IMIT FUNGSI it bil mendekti sm dengn mendekti bil mendekti nili dpt dibut sedekt mungkin dengn bil cukup dekt dengn, tetpi tidk sm dengn. Perhtikn bhw dlm deinisi tersebut

Lebih terperinci

Solusi Pengayaan Matematika

Solusi Pengayaan Matematika Solusi Pengn Mtemtik Edisi pril Pekn Ke-, 00 Nomor Sol: -0 Tentukn bnk psngn bilngn rel, ng memenuhi persmn ot ot Solusi: ot ot tnπ otπ π tnπ tn π π π π k π k 00 k 00 k k 00 k k 00 k k 00 k k 00 Kren k

Lebih terperinci

MATEMATIKA. Sesi INTEGRAL VOLUME A. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR B. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR TERHADAP SUMBU-X

MATEMATIKA. Sesi INTEGRAL VOLUME A. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR B. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR TERHADAP SUMBU-X MATEMATIKA KELAS XII - KURIKULUM GABUNGAN 6 Sesi N INTEGRAL VOLUME A. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR Apliksi integrl erikutn dlh menentukn volume end ng memiliki sumu putr. Contoh endn dlh tung,

Lebih terperinci

Tujuan Pembelajaran. ) pada hiperbola yang berpusat di (0, 0). 2. Dapat menentukan persamaan garis singgung di titik (x 1

Tujuan Pembelajaran. ) pada hiperbola yang berpusat di (0, 0). 2. Dapat menentukan persamaan garis singgung di titik (x 1 K-3 mtemtik K e l s XI IRISAN KERUCUT: GARIS SINGGUNG PADA HIPERBOLA Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Dpt menentukn persmn gris singgung di titik (, ) pd

Lebih terperinci

E. INTEGRASI BAGIAN ( PARSIAL )

E. INTEGRASI BAGIAN ( PARSIAL ) E. INTEGRASI BAGIAN ( PARSIAL ) Integrsi gin (prsil) digunkn untuk mengintegrsikn sutu perklin fungsi yng msing-msing fungsiny ukn koefisien diferensil dri yng lin ( seperti yng sudh dihs pd su. B. D )

Lebih terperinci

INTEGRAL TAK TENTU. x x x

INTEGRAL TAK TENTU. x x x INTEGRAL TAK TENTU Definisi : Fungsi F diktkn nti turunn dri fungsi f pd selng I jik F () = f() untuk semu di I. Notsi : F() = f() Integrl tk tentu dlh Anti/Invers/Kelikn turunn. c c Integrl tk tentu dlh

Lebih terperinci

HITUNG INTEGRAL ( 4 ) 4. Diketahui f(x) = 4x + 1 dan F(2) = 17 ; Tentukan fungsi F f(x) = 4x + 1

HITUNG INTEGRAL ( 4 ) 4. Diketahui f(x) = 4x + 1 dan F(2) = 17 ; Tentukan fungsi F f(x) = 4x + 1 HITUNG INTEGRA BAB.Integrl tk tentu (tnp ts). Rumus-rumus ) ) n n n d c, n ) d c n n n. d c, n ). Sift-sift Integrl Contoh :... ) k. f ( ) d k. f ( ) d d d ln c ) ( ( ) ( )) ( ) ( ) d c ( ) ( ) d ( ) d

Lebih terperinci

matematika K-13 IRISAN KERUCUT: PERSAMAAN HIPERBOLA K e l a s A. Definisi Hiperbola Tujuan Pembelajaran

matematika K-13 IRISAN KERUCUT: PERSAMAAN HIPERBOLA K e l a s A. Definisi Hiperbola Tujuan Pembelajaran K-13 mtemtik K e l s I IRISAN KERUCUT: PERSAMAAN HIPERBLA Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi definisi dn unsur-unsur hiperol.. Dpt menentukn persmn

Lebih terperinci

PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN GRAFIKNYA

PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN GRAFIKNYA PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN GRAFIKNYA Persmn dlh klimt mtemtik teruk ng memut huungn sm dengn. Sedngkn klimt mtemtik tertutup ng memut huungn sm dengn diseut kesmn. Klimt mtemtik :. Klimt mtemtik

Lebih terperinci

MUH1G3/ MATRIKS DAN RUANG VEKTOR

MUH1G3/ MATRIKS DAN RUANG VEKTOR MUHG3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN 3 Sistem Persmn Liner Sistem Persmn Liner Su Pokok Bhsn Pendhulun Solusi SPL dengn OBE Solusi SPL dengn Invers mtriks dn Aturn Crmmer SPL Homogen Beerp Apliksi

Lebih terperinci

KALKULUS I Dr. Wuryansari Muharini Kusumawinahyu Program Sarjana Matematika Universitas Brawijaya

KALKULUS I Dr. Wuryansari Muharini Kusumawinahyu Program Sarjana Matematika Universitas Brawijaya KALKULUS I Dr. Wurnsri Muhrini Kusumwinhu Progrm Srjn Mtemtik Universits Brwij Deinisi: Mislkn A dn B dlh himpunn tk kosong. Fungsi dri A ke B dlh sutu ATURAN ng MEMADANKAN SETIAP ELEMEN di A dengn tept

Lebih terperinci

LUAS DAERAH APLIKASI INTEGRAL TENTU. Indikator Pencapaian Hasil Belajar. Ringkasan Materi Perkuliahan

LUAS DAERAH APLIKASI INTEGRAL TENTU. Indikator Pencapaian Hasil Belajar. Ringkasan Materi Perkuliahan LUAS DAERAH APLIKASI INTEGRAL TENTU Indiktor Pencpin Hsil Beljr Mhsisw menunjukkn kemmpun dlm :. Menghitung lus pd idng dtr Ringksn Mteri Perkulihn Jik sutu derh ditsi oleh kurv f(), g(), gris dn dengn

Lebih terperinci

MATEMATIKA INTEGRAL TENTU DAN LUAS DAERAH

MATEMATIKA INTEGRAL TENTU DAN LUAS DAERAH MATEMATIKA KELAS XII - KURIKULUM GABUNGAN 5 Sesi N INTEGRAL TENTU DAN LUAS DAERAH A. DEFINISI INTEGRAL TENTU Bentuk integrl f d = f + c diseut segi integrl tk tentu kren hsil dri pengintegrlnn msih erup

Lebih terperinci

15. INTEGRAL SEBAGAI LIMIT

15. INTEGRAL SEBAGAI LIMIT 15. INTEGRAL SEBAGAI LIMIT 15.1 Jumlh Riemnn Dlm kulih Klkulus pd thun pertm, integrl Riemnn bisny diperkenlkn sebgi limit dri jumlh Riemnn, tidk mellui integrl Riemnn ts dn integrl Riemnn bwh. Hl ini

Lebih terperinci

Modul Matematika 2012

Modul Matematika 2012 Modul Mtemtik. ANTI TURUNAN Definisi Mislkn fungsi f terdefinisi pd selng teruk I. Fungsi F ng memenuhi F () = f () pd I dinmkn nti turunn tu fungsi primitif dri fungsi f pd I.. F() = cos nti turunn dri

Lebih terperinci

IV V a b c d. a b c d. b c d. bukan fungsi linier y = x = x y 5xy + y = B.2 Konsep Fungsi Linier

IV V a b c d. a b c d. b c d. bukan fungsi linier y = x = x y 5xy + y = B.2 Konsep Fungsi Linier 8. Dri fungsi-fungsi ng disjikn dengn digrm pnh erikut ini mnkh ng merupkn fungsi onto, injektif tu ijektif, jik relsi dri A ke B? A c d IV B A c d V B A c d VI B B. Konsep Fungsi Linier. Tujun Setelh

Lebih terperinci

PENGAYAAN MATEMATIKA SOLUSI SOAL-SOAL LATIHAN 1

PENGAYAAN MATEMATIKA SOLUSI SOAL-SOAL LATIHAN 1 PENGAYAAN MATEMATIKA SOLUSI SOAL-SOAL LATIHAN 6y y 8y. Dikethui R dn. Temukn nili y. y y 8y 6 Solusi: 6y y 8y y y 8y 6 6y y 8y 8y y 6 y 8 0 y y y 0 y y y 0 ( y ) ( y ) 0 y y 8y 6 ( y )(y ) 0 y 0tu y 0

Lebih terperinci

UJIAN BERSAMA SMA KABUPATEN TANAH DATAR SEMESTER 1 TAHUN PELAJARAN 2008/2009. Mata Pelajaran : MATEMATIKA Kelas/jurusan : XII/IPS Hari/Tanggal :

UJIAN BERSAMA SMA KABUPATEN TANAH DATAR SEMESTER 1 TAHUN PELAJARAN 2008/2009. Mata Pelajaran : MATEMATIKA Kelas/jurusan : XII/IPS Hari/Tanggal : UJIN ERSM SM KUPTEN TNH DTR SEMESTER THUN PELJRN / Mt Peljrn : MTEMTIK Kels/jurusn : XII/IPS Hri/Tnggl : Wktu : menit Pilihlh slh stu jwn ng dinggp pling enr dn tept!. d c c c c. Jik F '( ) dn F () mk

Lebih terperinci

INTEGRAL. y dx. x dy. F(x)dx F(x)dx

INTEGRAL. y dx. x dy. F(x)dx F(x)dx Drs. Mtrisoni www.mtemtikdw.wordpress.om INTEGRAL PENGERTIAN Bil dikethui : = F() + C mk = F () dlh turunn dri sedngkn dlh integrl (nti turunn) dri dn dpt digmrkn : differensil differensil Y Y Y Integrl

Lebih terperinci

PEMANTAPAN BELAJAR SMA BBS INTEGRAL

PEMANTAPAN BELAJAR SMA BBS INTEGRAL BAB I PEMANTAPAN BELAJAR SMA BBS INTEGRAL I A RANGKUMAN INTEGRAL. Pengertin Apil terdpt fungsi F() yng dpt didiferensilkn pd selng I sedemikin hingg F () = f(), mk nti turunn (integrl) dri f() dlh F()

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA MATEMATIKA A Hendr Gunwn Semester II, 6/7 Februri 7 Kulih yng Llu 8. Bentuk Tk Tentu Tipe / Menghitung limit bentuk tk tentu / dengn menggunkn Aturn l Hopitl 8. Bentuk Tk Tentu Linny Menghitung bentuk

Lebih terperinci

APLIKASI INTEGRAL PENERAPAN INTEGRAL. Luas daerah kelengkungan

APLIKASI INTEGRAL PENERAPAN INTEGRAL. Luas daerah kelengkungan APLIKASI INTEGRAL APLIKASI INTEGRAL PENERAPAN INTEGRAL Lus derh kelengkungn PENERAPAN INTEGRAL Indiktor 1 Indiktor 9 Lus derh di bwh kurv berdsr prinsip Riemn Volume bend putr, jik kurv diputr mengelilingi

Lebih terperinci

UJIAN BERSAMA SMA KABUPATEN TANAH DATAR SEMESTER 1 TAHUN PELAJARAN 2008/2009. Mata Pelajaran : MATEMATIKA Kelas/jurusan : XII/ IPA Hari/Tanggal :

UJIAN BERSAMA SMA KABUPATEN TANAH DATAR SEMESTER 1 TAHUN PELAJARAN 2008/2009. Mata Pelajaran : MATEMATIKA Kelas/jurusan : XII/ IPA Hari/Tanggal : UJIAN BERSAMA SMA KABUPATEN TANAH DATAR SEMESTER TAHUN PELAJARAN /9 Mt Peljrn : MATEMATIKA Kels/jurusn : XII/ IPA Hri/Tnggl : Wktu : menit. d... A. c B. c C. c D. c E. c. sin cos d... A. cos C B. cos C

Lebih terperinci

Fungsi f dikatakan pada / onto / surjektif jika setiap elemen himpunan B merupakan

Fungsi f dikatakan pada / onto / surjektif jika setiap elemen himpunan B merupakan III FUNGSI 15 1. Definisi Fungsi Definisi 1 Mislkn dn dlh himpunn. Relsi iner f dri ke merupkn sutu fungsi jik setip elemen di dlm dihuungkn dengn tept stu elemen di dlm. Jik f dlh fungsi dri ke, mk f

Lebih terperinci

SOLUSI PREDIKSI UJIAN NASIONAL MATEMATIKA IPS 2015

SOLUSI PREDIKSI UJIAN NASIONAL MATEMATIKA IPS 2015 PAKET SOLUSI PREDIKSI UJIAN NASIONAL MATEMATIKA IPS. Sit: p q ~ p q Mthmn tidk eljr tu di dpt mengerjkn sol UN mtemtik dn lulus UN setr dengn perntn Jik Mthmn eljr mk di dpt mengerjkn sol UN mtemtik dn

Lebih terperinci

TURUNAN FUNGSI. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XI

TURUNAN FUNGSI. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XI LA - WB (Lembr Aktivits Wrg Beljr) TURUNAN FUNGSI Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XI Creted By It Yulin 33 Turunn Fungsi Kompetensi Dsr 1. Menggunkn

Lebih terperinci

UN SMA IPA 2004 Matematika

UN SMA IPA 2004 Matematika UN SMA IPA Mtemtik Kode Sol P Doc. Version : - hlmn. Persmn kudrt ng kr-krn dn - dlh... ² + + = ² - + = ² + + = ² + - = ² - - =. Tinggi h meter dri sebuh peluru ng ditembkkn ke ts setelh t detik dintkn

Lebih terperinci

Vektor translasi dpt ditunjukkan oleh bil. berurutan yang ditulis dlm bentuk matriks kolom

Vektor translasi dpt ditunjukkan oleh bil. berurutan yang ditulis dlm bentuk matriks kolom TRANSFORMASI GEOMETRI BAB Sutu trnsformsi idng dlh sutu pemetn dri idng Krtesius ke idng ng lin tu T : R R (,) ( ', ') Jenis-jenis trnsformsi ntr lin : Trnsformsi Isometri itu trnsformsi ng tidk menguh

Lebih terperinci

Tiara Ariqoh Bawindaputri TIP / kelas L

Tiara Ariqoh Bawindaputri TIP / kelas L Tir Ariqoh Bwindputri 500008 TIP / kels L INTEGRAL Integrl Tk tentu Integrl dlh entuk invers dri turunn. Secr umum jik seuh fungsi diintegrlkn terhdp vrile tertentu dpt disjikn dlm entuk : f ( F( C Untuk

Lebih terperinci

LIMIT FUNGSI DAN KEKONTINUAN

LIMIT FUNGSI DAN KEKONTINUAN LIMIT FUNGSI DAN KEKONTINUAN RANGKUMAN MATERI Sebelum memsuki mteri, perhtikn himpunn-himpunn berikut: ) Himpunn bilngn sli:,,,4,5,.... b) Himpunn bilngn bult:...,,,0,,,.... p c) Himpunn bilngn rsionl:

Lebih terperinci

APLIKASI INTEGRAL PENERAPAN INTEGRAL. Luas daerah kelengkungan

APLIKASI INTEGRAL PENERAPAN INTEGRAL. Luas daerah kelengkungan APLIKASI INTEGRAL APLIKASI INTEGRAL PENERAPAN INTEGRAL Lus derh kelengkungn Integrl digunkn pd design Menr Petrons di Kul lumpur, untuk perhitungn kekutn menr. Sdne Oper House di design berdsrkn irisn-irisn

Lebih terperinci

matematika K-13 TEOREMA FAKTOR DAN OPERASI AKAR K e l a s

matematika K-13 TEOREMA FAKTOR DAN OPERASI AKAR K e l a s K-3 mtemtik K e l s XI TEOREMA FAKTOR DAN OPERASI AKAR Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Memhmi teorem fktor.. Menentukn kr dn fktor liner suku nyk dengn

Lebih terperinci

Matematika EBTANAS Tahun 1992

Matematika EBTANAS Tahun 1992 Mtemtik EBTANAS Thun 99 EBT-SMA-9-0 Grfik fungsi kudrt yng persmnny y = x 5x memotong sumu x. Slh stu titik potongny dlh (, 0), mk nili sm dengn EBT-SMA-9-0 Persmn x px + 5 = 0 kr-krny sm. Nili p 0 tu

Lebih terperinci

12. LUAS DAERAH DAN INTEGRAL

12. LUAS DAERAH DAN INTEGRAL 12. LUAS DAERAH DAN INTEGRAL 12.1 Lus Derh di Bwh Kurv Mslh menentukn lus derh (dn volume rung) telh dipeljri sejk er Pythgors dn Zeno, pd thun 500-n SM. Konsep integrl (yng terkit ert dengn lus derh)

Lebih terperinci

Hubungan integral garis yang umum antara ke dua kuantitas tersebut,

Hubungan integral garis yang umum antara ke dua kuantitas tersebut, 6 GRADIN PONSIAL Grdien ptensil dlh sutu metde ng sederhn untuk mencri intensits medn listrik dri ptensil. Hubungn integrl gris ng umum ntr ke du kuntits tersebut,. dl Dengn mengmbil N sebgi vektr stun

Lebih terperinci

Catatan Kuliah MA1123 KALKULUS ELEMENTER I BAB V. INTEGRAL

Catatan Kuliah MA1123 KALKULUS ELEMENTER I BAB V. INTEGRAL BAB V. INTEGRAL Anti-turunn dn Integrl Tk Tentu Persmn Diferensil Sederhn Notsi Sigm dn Lus Derh di Bwh Kurv Integrl Tentu Teorem Dsr Klkulus Sift-sift Integrl Tentu Leih Lnjut Sustitusi dlm Penghitungn

Lebih terperinci

INTEGRAL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 45

INTEGRAL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 45 INTEGRAL Deprtemen Mtemtik FMIPA IPB Bogor, 2012 (Deprtemen Mtemtik FMIPA IPB) Klkulus I Bogor, 2012 1 / 45 Topik Bhsn 1 Pendhulun 2 Anti-turunn 3 Lus di Bwh Kurv 4 Integrl Tentu 5 Teorem Dsr Klkulus 6

Lebih terperinci

Limit & Kontinuitas. Oleh: Hanung N. Prasetyo. Calculus/Hanung N. Prasetyo/Politeknik Telkom Bandung

Limit & Kontinuitas. Oleh: Hanung N. Prasetyo. Calculus/Hanung N. Prasetyo/Politeknik Telkom Bandung imit & Kontinuits Oleh: Hnung N. Prsetyo Clculus/Hnung N. Bb. IMIT.1. Du mslh undmentl klkulus... Gris Tngen.. Konsep imit.4. Teorem imit.5. Konsep kontinuits Clculus/Hnung N. Du Mslh Fundmentl Klkulus

Lebih terperinci

MATEMATIKA IPA PAKET B KUNCI JAWABAN SOAL

MATEMATIKA IPA PAKET B KUNCI JAWABAN SOAL MATEMATIKA IPA PAKET KUNCI JAWAAN SOAL. Jwn : Mislkn p: ir sungi jernih q: Tidk terkndung zt pencemr r: Semu ikn tidk mti Diperoleh : Premis : p q Premis : ~r ~q q r Jdi, kesimpuln dri premis-premis terseut

Lebih terperinci

FUNGSI KUADRAT. . a 0, a, b, c bil real. ymax. ymin. , maka harga m= A. 0 B. 1 C. 2 D. 3 E. 4 Jawab : m mempunyai nilai minimum 1 5.

FUNGSI KUADRAT. . a 0, a, b, c bil real. ymax. ymin. , maka harga m= A. 0 B. 1 C. 2 D. 3 E. 4 Jawab : m mempunyai nilai minimum 1 5. FUNGSI KUADRAT Bb Bentuk Umum : x bx c. 0,, b, c bil rel b b c A. Titik Punck =, b Dengn sumbu simetri : x b c mx jik 0 Nili ekstrim : min jik 0 Jik fungsi x x m memuni nili minimum 8, mk hrg m= A. 0 B.

Lebih terperinci

6. Himpunan Fungsi Ortogonal

6. Himpunan Fungsi Ortogonal 6. Himpunn Fungsi Ortogonl Mislkn f periodik dengn periode, dn mulus bgin demi bgin pd [ π, π]. Jik S f N (θ) = N n= N c ne inθ, n =,, 2,..., dlh jumlh prsil dri deret Fourier f, mk kit telh menunjukkn

Lebih terperinci

SUKU BANYAK ( POLINOM)

SUKU BANYAK ( POLINOM) SUKU BANYAK ( POLINOM) B 15 A. PENGERTIAN SUKU BANYAK. Bentuk 1 0 x x x x x, dengn 0 dn n { il. cch } n diseut dengn Suku nyk (Polinomil) dlm x erderjt n ( n dlh pngkt tertinggi dri x),,,., diseut keofisien

Lebih terperinci

Integral Tak Tentu dan Integral Tertentu

Integral Tak Tentu dan Integral Tertentu Integrl Tk Tentu dn Integrl Tertentu Pengertin Integrl Jik F dlh fungsi umum yng ersift F = f, mk F merupkn ntiturunn tu integrl dri f. Pengintegrln fungsi f terhdp dinotsikn segi erikut : f d F c notsi

Lebih terperinci

ANALISIS NUMERIK. Inter polasi. SPL simultan. Akar Persama. linear

ANALISIS NUMERIK. Inter polasi. SPL simultan. Akar Persama. linear ANALISIS NUMERIK Inter polsi SPL simultn Akr Persm n Non liner INTERPOLASI Tujun Interpolsi bergun untuk menksir hrg-hrg tengh ntr titik dt yng sudh tept. Interpolsi mempunyi orde tu derjt. Mcm Interpolsi

Lebih terperinci

Nuryanto,ST.,MT DIFERENSIAL FUNGSI MAJEMUK

Nuryanto,ST.,MT DIFERENSIAL FUNGSI MAJEMUK Nurnto,ST,MT DIFERENSIAL FUNGSI MAJEMUK DIFERENSIASI ARSIAL dz q d p d o d q p o f dz z d d z f,,, Nurnto,ST,MT Nurnto,ST,MT = 4-6 z + z + z + 5 Diferensil prsil Diferensil totl Contoh z 8 18 6 z z 6z

Lebih terperinci

Soal Latihan dan Pembahasan Fungsi kuadrat

Soal Latihan dan Pembahasan Fungsi kuadrat Sol Ltihn dn Pemhsn Fungsi kudrt Di susun Oleh : uun Somntri htt://imingneljr.net/ Di dukung oleh : Portl eduksi Grtis Indonesi Oen Knowledge nd Edution htt://oke.or.id Tutoril ini dierolehkn untuk di

Lebih terperinci

SMA Santa Angela. Bandung. 1 P a g e

SMA Santa Angela. Bandung. 1 P a g e Persmn Gris Singgung SMA Snt Angel Bndung P g e P g e Persmn Gris Singgung pd Ellips Seperti hln pd lingkrn, terdpt du mcm gris singgung ng kn diicrkn, itu gris singgung ng mellui slh stu titik pd ellips

Lebih terperinci

FUNGSI TRIGONOMETRI LIMIT FUNGSI

FUNGSI TRIGONOMETRI LIMIT FUNGSI FUNGSI TRIGONOMETRI LIMIT FUNGSI Limit Fungsi. Limit fungsi f() merupkn nili hmpirn dri f() untuk nili mendekti nili tertentu misl. Bentuk umum : Lim f() -> Jik dikethui du uh fungsi f() dn g() msing-msing

Lebih terperinci

INTEGRAL. Integral Tak Tentu Dan Integral Tertentu Dari Fungsi Aljabar

INTEGRAL. Integral Tak Tentu Dan Integral Tertentu Dari Fungsi Aljabar INTEGRAL Integrl Tk Tentu Dn Integrl Tertentu Dri Fungsi Aljr A. Integrl Tk Tentu Hitung integrl dlh kelikn dri hitung differensil. Pd hitung differensil yng dicri dlh fungsi turunnny, sedngkn pd hitung

Lebih terperinci

TEORI DEFINITE INTEGRAL

TEORI DEFINITE INTEGRAL definite integrl & lus yog.prihstomo TEORI DEFINITE INTEGRAL Definisi : Jik y = f(x) dlh fungsi kontinu dn terdefinisi dlm intervl tertutup [,] sehingg lim n n i= f ( xi). Δxi d (mempunyi nili), mk definite

Lebih terperinci

3. LIMIT DAN KEKONTINUAN

3. LIMIT DAN KEKONTINUAN . LIMIT DAN KEKONTINUAN . Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp nili jik mendekti

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Anlisis Rel Hendr Gunwn* *http://hgunwn82.wordpress.com Anlysis nd Geometry Group Bndung Institute of Technology Bndung, INDONESIA Progrm Studi S1 Mtemtik ITB, Semester II 2016/2017 HG* (*ITB Bndung)

Lebih terperinci

INTEGRAL FOURIER KED. Diasumsikan syarat-syarat berikut pada f(x): 1. f x memenuhi syarat Dirichlet pada setiap interval terhingga L, L.

INTEGRAL FOURIER KED. Diasumsikan syarat-syarat berikut pada f(x): 1. f x memenuhi syarat Dirichlet pada setiap interval terhingga L, L. INTEGRAL FOURIER Disumsikn syrt-syrt berikut pd f(x):. f x memenuhi syrt Dirichlet pd setip intervl terhingg L, L.. f x dx konvergen, yitu f(x) dpt diintegrsikn secr mutlk dlm (, ). Selnjutny, Teorem integrl

Lebih terperinci

RANGKUMAN MATERI ' maupun F(x) = Pengerjaan f(x) sehingga memperoleh F(x) + c disebut mengintegralkan f(x) ke x dengan notasi:

RANGKUMAN MATERI ' maupun F(x) = Pengerjaan f(x) sehingga memperoleh F(x) + c disebut mengintegralkan f(x) ke x dengan notasi: INTEGRAL RANGKUMAN MATERI A. ANTIDERIVATIF DAN INTEGRAL TAK TENTU Jik kit mengmil uku dri temptny mk kit dpt mengemliknny lgi ke tempt semul. Opersi yng kedu menghpus opersi yng pertm. Kit ktkn hw du opersi

Lebih terperinci

Bab 3 Terapan Integral Ganda

Bab 3 Terapan Integral Ganda Surdi Siregr Metode Mtemtik Astronomi Bb 3 Terpn Integrl Gnd 3. Integrl Gnd dlm koordint Krtesis dn Polr Koordint Krtesis Koordint Polr Ilustrsi b g f ={,, } Mss M, da, dd r ={,, r )},, M r da r rdrd sin

Lebih terperinci

Materi IX A. Pendahuluan

Materi IX A. Pendahuluan Mteri IX Tujun :. Mhsisw dpt memhmi vektor. Mhsisw mmpu mengunkn vektor dlm persoln sederhn 3. Mhsisw mengimplementsikn konsep vektor pd rngkin listrik. Pendhulun Sudh menjdi kesepktn umum hw untuk menentukn

Lebih terperinci

Bab 3 M M 3.1 PENDAHULUAN

Bab 3 M M 3.1 PENDAHULUAN B SISTEM PERSAMAAN LINEAR Pd gin ini kn dijelskn tentng sistem persmn liner (SPL) dn r menentukn solusiny. SPL nyk digunkn untuk memodelkn eerp mslh rel, mislny: mslh rngkin listrik, jringn komputer, model

Lebih terperinci

A x = b apakah solusi x

A x = b apakah solusi x MTRIKS INVERSI & SIFT-SIFTNY Bil, x, dlh sklr ilngn rel yng memenuhi x, mk x pil. Sekrng, untuk sistem persmn linier x pkh solusi x dpt diselesikn dengn x? Mtriks Identits Untuk sklr (rel numer dn ), mk.

Lebih terperinci

IRISAN KERUCUT: PERSAMAAN ELIPS. Tujuan Pembelajaran

IRISAN KERUCUT: PERSAMAAN ELIPS. Tujuan Pembelajaran K-13 mtemtik K e l s I IRISAN KERUCUT: PERSAMAAN ELIPS Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi definisi elips.. Memhmi unsur-unsur elips. 3. Memhmi eksentrisits

Lebih terperinci

ALJABAR LINIER _1 Matrik. Ira Prasetyaningrum

ALJABAR LINIER _1 Matrik. Ira Prasetyaningrum LJR LINIER _ Mtrik Ir Prsetyningrum DEFINISI MTRIKS pkh yng dimksud dengn Mtriks? kumpuln ilngn yng disjikn secr tertur dlm ris dn kolom yng mementuk sutu persegi pnjng, sert termut dintr sepsng tnd kurung.

Lebih terperinci

BAB: PENERAPAN INTEGRAL Topik: Volume Benda Putar (Khusus Kalkulus 1)

BAB: PENERAPAN INTEGRAL Topik: Volume Benda Putar (Khusus Kalkulus 1) BAB: PENERAPAN INTEGRAL Topik: Volume Bend Putr (Khusus Klkulus ) Kompetensi yng diukur dlh kemmpun mhsisw menghitung volume bend putr dengn metode cincin, metode ckrm, tu metode kulit tbung.. UAS Klkulus,

Lebih terperinci

Soal-soal dan Pembahasan Matematika Dasar SBMPTN-SNMPTN 2006

Soal-soal dan Pembahasan Matematika Dasar SBMPTN-SNMPTN 2006 www.purwntowhyudi.com Hl- Sol-sol dn Pemhsn Mtemtik Dsr SBMPTN-SNMPTN 006. Jik > 0, > 0 dn mk A. C. E. B. D. Jw:. Jwnny dlh A. Jik p - dn q -, mk q p. A. C. E. B. D. Jw: q p Jwnny dlh A . Grfik y terletk

Lebih terperinci

UJIAN NASIONAL. Matematika (D10) PROGRAM STUDI IPA PAKET 1 (UTAMA) SELASA, 11 MEI 2004 Pukul

UJIAN NASIONAL. Matematika (D10) PROGRAM STUDI IPA PAKET 1 (UTAMA) SELASA, 11 MEI 2004 Pukul 0-0 D0-P-0- DOKUMEN NEGARA SANGAT RAHASIA UJIAN NASIONAL TAHUN PELAJARAN 00/00 SMA/MA Mtemtik (D0) PROGRAM STUDI IPA PAKET (UTAMA) SELASA, MEI 00 Pukul 07.0 09.0 DEPARTEMEN PENDIDIKAN NASIONAL Hk Cipt

Lebih terperinci

, 4, 3, 2, 1, 0, 1, 2, 3, 4, (3) Bilangan rasional melibatkan hasil bagi dua bilangan bulat, seperti. 04, tidak termasuk bilangan rasional

, 4, 3, 2, 1, 0, 1, 2, 3, 4, (3) Bilangan rasional melibatkan hasil bagi dua bilangan bulat, seperti. 04, tidak termasuk bilangan rasional Diktt Kulih TK Mtemtik BAB PENDAHULUAN. Sistem Bilngn Rel Terdpt eerp sistem ilngn itu: ilngn sli, ilngn ult, ilngn rsionl, ilngn irrsionl, dn ilngn rel. Msing-msing ilngn itu segi erikut. ) Bilngn sli

Lebih terperinci

3. LIMIT DAN KEKONTINUAN. INF228 Kalkulus Dasar

3. LIMIT DAN KEKONTINUAN. INF228 Kalkulus Dasar . LIMIT DAN KEKONTINUAN INF8 Klkulus Dsr . Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di =, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn

Lebih terperinci

LIMIT DAN KONTINUITAS

LIMIT DAN KONTINUITAS LIMIT DAN KONTINUITAS Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di =, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp nili jik mendekti

Lebih terperinci

7. Ruang L 2 (a, b) f(x) 2 dx < }.

7. Ruang L 2 (a, b) f(x) 2 dx < }. 7. Rung L (, b) Rung L (, b) didefinisikn sebgi rung semu fungsi f yng kudrtny terintegrlkn pd [, b], ykni L (, b) := {f : b f(x) dx < }. Rung ini menckup fungsi-fungsi f yng tk terbts pd [, b] tetpi f

Lebih terperinci

14. SIFAT-SIFAT INTEGRAL RIEMANN

14. SIFAT-SIFAT INTEGRAL RIEMANN 4. SIFAT-SIFAT INTEGRAL RIEMANN 4. Sift-sift Dsr Integrl Riemnn Pd bb ini kit kn mempeljri sift-sift dsr integrl Riemnn. Sift pertm dlh sift kelinern, yng dinytkn dlm Proposisi. Sepnjng bb ini, I menytkn

Lebih terperinci

Solusi Pengayaan Matematika Edisi 4 Januari Pekan Ke-4, 2007 Nomor Soal: 31-40

Solusi Pengayaan Matematika Edisi 4 Januari Pekan Ke-4, 2007 Nomor Soal: 31-40 Solusi Pengn Mtemtik Edisi 4 Jnuri Pekn Ke-4, 007 Nomor Sol: -40. Diberikn persmn 8 9 4 8 007 dn b, dengn b. Angk stun dri b dlh. A. B. C. D. 7 E. 9 Persmn 8 9 4 8 8 9 4 8 9 4 8 8 8 9 8 4 8 8 8 0 0 b tu

Lebih terperinci

Integral Kompleks (Bagian Kesatu)

Integral Kompleks (Bagian Kesatu) Integrl Kompleks (Bgin Kestu) Supm Jurusn Mtemtik, FMIPA UGM Yogykrt 55281, INDONESIA Emil:mspomo@yhoo.com, supm@ugm.c.id (Pertemun Minggu XI) Outline 1 Fungsi Bernili Kompleks 2 Lintsn tu Kontur 3 Integrl

Lebih terperinci

BAB 3 SOLUSI NUMERIK SISTEM PERSAMAAN LINEAR

BAB 3 SOLUSI NUMERIK SISTEM PERSAMAAN LINEAR A SOLUSI NUMERIK SISTEM PERSAMAAN LINEAR. Metode Eliminsi Guss Tinu sistem persmn liner ng terdiri dri i ris dn peuh, kni,,,, erikut.......... i i i Jik =, sistem persmn linern diseut sistem homogen, sedngkn

Lebih terperinci

3. LIMIT DAN KEKONTINUAN

3. LIMIT DAN KEKONTINUAN 3. LIMIT DAN KEKONTINUAN 1 3.1 Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi 1 1 Fungsi dits tidk terdeinisi di =1, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp

Lebih terperinci

(c) lim. (d) lim. (f) lim

(c) lim. (d) lim. (f) lim FMIPA - ITB. MA Mtemtik A Semester, 6-7. Pernytn enr dn slh. () ()! e Solusi. Benr. Fungsi eksonensil (enyeut) memesr leih cet drid fungsi olinom (emilng) sehingg emginny menghsilkn nili Dengn Hoitl s

Lebih terperinci

Suku banyak. Akar-akar rasional dari

Suku banyak. Akar-akar rasional dari Suku nyk Algoritm pemgin suku nyk menentukn Teorem sis dn teorem fktor terdiri dri Pengertin dn nili suku nyk Hsil gi dn sis pemgin suku nyk Penggunn teorem sis Penggunn teorem fktor Derjd suku nyk pd

Lebih terperinci

BAB III TRANSFORMASI LINEAR

BAB III TRANSFORMASI LINEAR Diktt ljr Liner II BB III RNSFORMSI LINER DEFINISI RNSFORMSI LINER Jik V W msing msing lh rung vektor mk V W msing msing merupkn himpunn Dengn emikin pt iut sutu fungsi ntr V n W erkit engn struktur ri

Lebih terperinci

E-LEARNING MATEMATIKA

E-LEARNING MATEMATIKA MOUL E-LEARNING E-LEARNING MATEMATIKA Oleh : NURYAIN EKO RAHARJO, M.P. NIP. 7 Penulisn Modul e Lerning ini diiyi oleh dn IPA BLU UNY TA Sesui dengn Surt Perjnjin Pelksnn e Lerning Nomor./H./PL/ Tnggl Juli

Lebih terperinci

MATERI I : VEKTOR. Pertemuan-01

MATERI I : VEKTOR. Pertemuan-01 MATERI I : VEKTOR Pertemun-0. Pendhulun Definisi Vektor didefinisikn segi esrn yng memiliki rh. Keeptn, gy dn pergesern merupkn ontoh ontoh dri vektor kren semuny memiliki esr dn rh wlupun untuk keeptn

Lebih terperinci

didefinisikan sebagai bilangan yang dapat ditulis dengan b

didefinisikan sebagai bilangan yang dapat ditulis dengan b 1 PENDAHULUAN 1.1 Sistem Bilngn Rel Untuk mempeljri klkulus perlu memhmi hsn tentng system ilngn rel, kren klkulus didsrkn pd system ilngn rel dn siftsiftny. Sistem ilngn yng pling sederhn dlh ilngn sli,

Lebih terperinci

BAB VI PEWARNAAN GRAF

BAB VI PEWARNAAN GRAF 85 BAB VI PEWARNAAN GRAF 6.1 Pewrnn Simpul Pewrnn dri sutu grf G merupkn sutu pemetn dri sekumpuln wrn ke eerp simpul (vertex) yng d pd grf G sedemikin sehingg simpul yng ertetngg memiliki wrn yng ered.

Lebih terperinci

BAB IV. PENGGUNAAN TURUNAN

BAB IV. PENGGUNAAN TURUNAN Mteri: BAB IV. ENGGUNAAN TURUNAN Hmpirn linier menggunkn turunn Gerk bend sepnjng gris lurus Lju yng berkitn Deret Tylor Mksimum dn minimum globl dn lokl Kemonotonn dn kecekungn Menggmbr grik cnggih Teorem

Lebih terperinci

IRISAN KERUCUT. 1. Persamaan lingkaran dengan pusat (0,0) dan jari-jari r. Persamaan = TK titik T = =

IRISAN KERUCUT. 1. Persamaan lingkaran dengan pusat (0,0) dan jari-jari r. Persamaan = TK titik T = = IRISAN KERUCUT Bb 9 A. LINGKARAN. Persmn lingkrn dengn pust (0,0) dn jri-jri r 0 r T(x,y) X Persmn = TK titik T = { T / OT r } = = {( x, y) / r } {( x, y) / r }. Persmn lingkrn dengn pust (,b) dengn jri-jri

Lebih terperinci

PREDIKSI UJIAN NASIONAL TAHUN PELAJARAN

PREDIKSI UJIAN NASIONAL TAHUN PELAJARAN PREDIKSI UJIAN NASIONAL TAHUN PELAJARAN - Mt Peljrn Progrm : Mtemtik (MA) : IPA Petunjuk : Pilihlh slh stu jwn yng pling tept!. Dikethui: 5. Dikethui log = dn log = y. Nili log P : Hri tidk hujn tu Rudi

Lebih terperinci

Y y=f(x) LEMBAR KERJA SISWA. x=a. x=b

Y y=f(x) LEMBAR KERJA SISWA. x=a. x=b LEMBAR KERJA SISWA. Judul (Mteri Pokok) : Penggunn Integrl Tentu Untuk Menghitung Volume Bend Putr. Mt Peljrn : Mtemtik 3. Kels / Semester : II /. Wktu : 5 menit 5. Stndr Kompetensi :. Menggunkn konsep

Lebih terperinci

LIMIT FUNGSI. Tapi jika x hanya mendekati 1, f(x) mendekati nilai berapa..? x 0,9 0,99 0,999 0, ,0001 1,001 1,01 1,1

LIMIT FUNGSI. Tapi jika x hanya mendekati 1, f(x) mendekati nilai berapa..? x 0,9 0,99 0,999 0, ,0001 1,001 1,01 1,1 Rinksn Limit Funsi Kels XI IPS SMA Trknit Jkrt LIMIT FUNGSI Limit dlm kt-kt sehri-hri: Mendekti hmpir, sedikit li, tu hr bts, sesutu yn dekt tetpi tidk dpt dicpi. Ilustrsi it = = Funsi ini tk mempunyi

Lebih terperinci

Matematika SMA (Program Studi IPA)

Matematika SMA (Program Studi IPA) Smrt Solution UJIAN NASIONAL TAHUN PELAJARAN 2013/2014 Disusun Sesui Indiktor Kisi-Kisi UN 2013 Mtemtik SMA (Progrm Studi IPA) Disusun oleh : Pk Anng - Blogspot Pge 1 of 13 5. 2. Menyelesikn sol pliksi

Lebih terperinci

SOAL DAN SOLUSI LATIHAN UJIAN NASIONAL 2015 SMA NEGERI 8 JAKARTA

SOAL DAN SOLUSI LATIHAN UJIAN NASIONAL 2015 SMA NEGERI 8 JAKARTA SOAL DAN SOLUSI LATIHAN UJIAN NASIONAL SMA NEGERI 8 JAKARTA. Dierikn premis-premis segi erikut: Premis : Jik curh hujn tinggi dn irigsi uruk, mk tnmn pdi memusuk Premis : Tnmn pdi tidk memusuk tu petni

Lebih terperinci

A. Pengertian Integral

A. Pengertian Integral A. Pengertin Integrl Di Kels XI, klin telh mempeljri konsep turunn. Pemhmn tentng konsep turunn ini dpt klin gunkn untuk memhmi konsep integrl. Untuk itu, co tentukn turunn fungsi-fungsi erikut. f () f

Lebih terperinci

c y X = B D y D x h t t p : / / m a t e m a t r i c k. b l o g s p o t. c o m

c y X = B D y D x h t t p : / / m a t e m a t r i c k. b l o g s p o t. c o m h t t p : / / m t e m t r i k l o g s p o t o m Bentuk umum SPLV : Cr menentukn himpunn penelesin HP : ), ) : Eliminsi dn sutitusi Menggunkn invers mtriks, dengn konsep : B A X mk B AX, Cttn : jik dintkn

Lebih terperinci

GEOMETRI PADA BIDANG: VEKTOR

GEOMETRI PADA BIDANG: VEKTOR GEOMETRI PADA BIDANG: VEKTOR A. Kurv Bidng: Representsi Prmetrik Sutu kurv bidng ditentukn oleh sepsng persmn prmetrik: x f () t, y f () t t dlm intervl I dengn f dn g kontinu pd intervl I. Secr umum,

Lebih terperinci

2. PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT

2. PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT . PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT A. Persmn Kudrt. Bentuk umum persmn kudrt : x + bx + c = 0, 0. Nili determinn persmn kudrt : D = b c. Akr-kr persmn kudrt dpt dicri dengn memfktorkn tupun

Lebih terperinci

Jarak Titik, Garis dan Bidang dalam Ruang

Jarak Titik, Garis dan Bidang dalam Ruang Pge of Kegitn eljr. Tujun Pembeljrn Setelh mempeljri kegitn beljr, dihrpkn sisw dpt :. Menentukn jrk titik dn gris dlm rung b. Menentukn jrk titik dn bidng dlm rung c. Menentukn jrk ntr du gris dlm rung.

Lebih terperinci

Integral Tak Wajar. Ayundyah Kesumawati. March 25, Prodi Statistika FMIPA-UII

Integral Tak Wajar. Ayundyah Kesumawati. March 25, Prodi Statistika FMIPA-UII Kesumwti Prodi Sttistik FMIPA-UII Mrch 25, 205 Sutu integrl tertentu b f (x)dx () diktkn wjr jik i memenuhi du syrt berikut: i. Bts integrsi dn b merupkn bilngn berhingg ii. fungsi f (x) terbts pd intervl

Lebih terperinci

THEOREMA SISA, THEOREMA FAKTOR BENTUK POLINUM. Prepared by: Romli Shodikin, M.Pd sabtu., 23 November 2013 Pertemuan 7

THEOREMA SISA, THEOREMA FAKTOR BENTUK POLINUM. Prepared by: Romli Shodikin, M.Pd sabtu., 23 November 2013 Pertemuan 7 THEOREMA SISA, THEOREMA FAKTOR BENTUK POLINUM Prepred y: Romli Shodikin, M.Pd stu., 3 Novemer 013 Pertemun 7 TEOREMA SISA dn TEOREMA FAKTOR Teorem Sis untuk Pemgin Bentuk Liner Teorem Sis : 1.Jik sutu

Lebih terperinci