INTEGRAL. Misalkan suatu fungsi f(x) diintegralkan terhadap x maka di tulis sebagai berikut:

Ukuran: px
Mulai penontonan dengan halaman:

Download "INTEGRAL. Misalkan suatu fungsi f(x) diintegralkan terhadap x maka di tulis sebagai berikut:"

Transkripsi

1 INTEGRAL.PENGERTIAN INTEGRAL Integrl dlh cr mencri sutu fungsi jik turunnn di kethui tu kelikn dri diferensil (turunn) ng diseut jug nti derivtif tu nti diferensil. Untuk menentukn integrl tidk semudh menentukn turunn. Agr memperoleh gmrn ng jels perhtikn turunn eerp fungsi erikut: f() ½ ⅓ ¼ f () f() f () Dengn memperhtikn hl di ts tmpk hw jik f () n mk kn tetpi jik f () mk f() ersl dri ergi mcm fungsi + c dengn c sutu konstnt. Dengn meliht eerp contoh dits dpt kit peroleh sutu turn : Jik f () n mk f() n n+ + c..integral TAK TENTU. Rumus Integrl Tk Tentu Bil d/d merupkn notsi untuk turunn mk notsi untuk integrl dlh Mislkn sutu fungsi f() diintegrlkn terhdp mk di tulis segi erikut: f() d. Dic Integrl dri f() terhdp. Bil F() nti derivtif dri f() mk F() + c jug nti derivtif dri f(),dengn c dlh sutu konstnt. Secr umum integrl f() terhdp dpt ditulis : f() d. F() + c. Jik f() n mk n d n n+ + c. untuk n Inilh Rumus INTEGRAL TAK TENTU Contoh Hitunglh :. 7d Jw:. f() d 7d. 7 (-`+-7)d 7+ +c c. (-`+-7)d c -+-7+c

2 LATIHAN Tentukn hsil dri setip pengintegrln erikut ini:. d d 5 d 87 d (-) d (5-) d (-5+) d ( +-) d (+) d (+) d (-) d (-)(-7)d PEMAKAIAN INTEGRAL TAK TENTU Dlm menentukn nti diferensil sutu fungsi turunn msih mengdung nili konstnt c ng elum tertentu. Jik kit kn menentukn fungsi f dri sutu fungsi turunn mk hrus d dt lin erup nili fungsi tertentu gr konstnt c dpt kit cri. Contoh : Tentukn rumus fungsi f () jik dikethui f () -+ dn nili fungsi f() -7. Jw: f() f ' ( )d ( )d c c Mengingt f() -7 mk : f() () +()+ c c -7- c - c Jdi f(). Contoh : Seuh kurv f() mellui titik (,). Tentukn persmn kurv jik persmn grdien gris singgung di titik terseut Adlh d/d -. Jw: Jik d/d - (-) d - + c. - + c -()+c. c Jdi persmn kurv terseut dlh - + Titik (,) dillui oleh kurv

3 LATIHAN : Tentukn rumus fungsi jik dikethui memiliki sift-sift segi erikut:.... f () dn f(). f () dn f() 8 f () ( ) dn f() f () dn f() -7 f () - dn f() 9 Tentukn persmn kurv pd tip titik (,) ng memenuhi kondisi di wh ini:.... d d d d d d d d 8 dn kurv mellui titik (-,) - dn kurv mellui titik (, ) - + dn kurv mellui (,) dn kurv mellui titik (9,) d - + dn kurv mellui titik (,) d INTEGRAL TERTENTU Berdsrkn teorem Fundmentl / Dsr Jik f dlh fungsi kontinu pd intervl [,] dn F dlh nti derivtif f pd [,] mk f ( ) d F ( ) F ( ) F ( ) Penulisn Integrl dlm notsi diseut Integrl Tertentu kren hsil ng diperoleh f ( )d erup sutu nili tertentu, sedngkn diseut segi ts wh dn diseut segi ts ts integrl. Contoh :Hitunglh : ( )d Jw: ( ) d (++)-(++) (7+9+) (8++) 5 LATIHAN Hitunglh nili setip integrl tertentu erikut ini:.. ( )d 7. ( )d. d 8. ( 9. ( (5 )d ( )( 5)d )d ( )d ( 5). (7 )d ( )d )d. ( )( )d. ( )( )d..

4 d. ( ) d d PENGGUNAAN INTEGRAL TERTENTU A. MENGHITUNG LUAS DAERAH ANTARA KURVA DAN SUMBU X Menentukn lus dri sutu derh ntr kurv dn sumu dengn menggunkn integrl tertentu. Jik derh ditsi oleh kurv f (), sumu pd [,] mk untuk menentukn lusn dengn menggunkn integrl tertentu dlh segi erikut: L f ( )d [F()] F() F( ) dimil nili mutlk Contoh: Hitunglh lus derh ng ditsi oleh kurv sumu,gris dn gris. Jw: L d [ ] (. ) (. ) 8 ( ). 7 stun lus. Jdi lus derhn dlh stun lus. LATIHAN I. Tentukn lus derh ng dirsir pd sol - sol erikut ini dengn menggunkn pengintegrln.

5 5... II. Hitunglh dengn menggunkn rumus lus geometri. Untuk sol I. dn I. III. Tentukn lus derh ng ditsi oleh kurv dn sumu koordint tu gris ng diseutkn , sumu, gris dn + +, sumu, sumu, gris. (-) dn sumu. - 9 gris, dn.. dn sumu. sumu, gris - dn gris. sumu gris dn. - + sumu, gris dn gris - sumu. sumu. ( 5) sumu, sumu. - 9 sumu (5-) dn sumu - dn sumu. 9 - dn sumu B. MENGHITUNG LUAS ANTARA DUA KURVA Jik f dn g du fungsi ng kontinu pd intervl [,] dn f() g() dlm [,] dengn srt f() dn g() tidk erpotongn pd [,]. Mk lus derh ng ditsi oleh kurv f dn g dlm [,] dlh :

6 rumus ini erlku untuk : * f dn g non negtip (gmr ) ( f ( ) g ( ))d * f dn g negtif (gmr ) * f positif dn g negtif (gmr ) gmr gmr gmr Contoh: Hitunglh lus derh ng ditsi oleh kurv + dn + Jw: *) Tentukn dhulu koordint titik potong kedu kurv segi ts integrl dengn cr segi erikut: ( + )( ) - tu - -. Jdi - dn segi ts integrl. *) Menentukn lus derh ng ditsi kurv + dn + dengn ts wh - dn ts ts segi erikut: L [( ) ( )]d ( )d ] 8 ( ) ( ) [ **)Jdi lusn dlh stun lus LATIHAN 5 :A Hitunglh lus derh ng ditsi oleh du kurv ng ditentukn:.... dn + dn - dn dn - dn dn ½ 9 - dn dn dn -. dn 8 - B. Hitunglh lus derh ng dirsir erikut ini

7 7...

8 8 C. MENGHITUNG VOLUME BENDA PUTAR Bgimn menghitung volume dri end ng dientuk oleh ngun erikut jik ngun diputr mengelilingi sumu Bentuk end ng terjdi jik ngun diputr mengelilingi sumu dlh segi erikut:. MENGHITUNG VOLUME BENDA PUTAR MENGELILINGI SUMBU X Perhtikn derh ng ditsi kurv f() pd [,] ng diputr mengelilingi sumu seesr o pd gmr diwh ini: f() Untuk menghitung volume dri end terseut mk diut potongn - potongn melingkr ng sngt kecil erentuk tung seperti gmr diwh ini: Jik jri jri tung terseut dn tinggin δ Mk : δv π δ Sehingg volume end putr terseut merupkn jumlh potongn tung-tung itu f() n V i i dengn n jumlh potongn tung. Untuk δ ng sngt kecil kn dihsilkn pendektn volume ng sngt sempurn itu : n V δlimit i i i Bentuk ini dpt dintkn dlm integrl segi erikut: V d Ini rumus volume end ng diputr mengelilingi sumu. Contoh: Hitunglh volume end ng terjdi jik derh ng ditsi kurv + pd [,] diputr mengelilingi sumu seesr o. Jw: + V d V ( ) d

9 9 V (9 )d V [ ] V (9 9 ) ( ) V 9 Jdi volumen dlh 9 stun volume. LATIHAN A. Hitunglh volume dri end ng dihsilkn dri pemutrn o grfik erikut ini: B. Hitunglh volume dri end ng terjdi jik derh ng ditsi oleh kurv mengelilingi sumu sejuh o pd ts ng ditentukn:. pd [,]. sumu,sumu dn gris dn 9, dn. sumu dn gris 8 7., sumu dn sumu. sumu, sumu, gris 9. VOLUME BENDA PUTAR MENGELILINGI SUMBU Y Untuk menentukn volume end putr mengelilingi sumu dengn Integrl dlh segi erikut n : V i dengn n dlh jumlh potongn tung. i Untuk δ ng sngt kecil kn diperoleh pendek ng sngt sempurn itu: n V f() δlimit i i i Bentuk ini dpt dintkn dlm integrl segi erikut V d Ini rumus volume end ng diputr mengelilingi sumu.

10 Contoh: Hitunglh volume end ng terjdi jik derh ng ditsi kurv sumu, gris dn diputr mengelilingi sumu seesr o Jw: mk V d V d V d V [ ] V () () V stun volume. Jdi volumen dlh stun volume. LATIHAN 7 Hitunglh volume end putr il derh erikut diputr mengelilingi sumu sejuh o. dn. dn gris.. gris dn., dn. 9,gris -9 dn 9 (-), gris dn 7., gris dn sumu 8. + untuk < < 9., gris dn. / dn 8.. VOLUME BENDA PUTAR ANTARA DUA KURVA. Jik f dn g fungsi ng kontinu dn non negtip sedemikin sehingg f() g() pd [,] dn L dlh derh ng ditsi f ( ) dn g ( ) gris dn seperti gmr erikut ini: Jik derh terseut diputr sejuh o mengelilingi sumu f() Mk volumen dihitung dengn rumus: g() V ( )d Jik diputr mengelilingi sumu mk rumusn dlh: V ( )d Contoh: Hitunglh volume end putr ng terjdi jik derh ng ditsi kurv dn + diputr mengelilingi sumu stu putrn penuh. Jw :

11 Tentukn terleih dhulu titik potong kedu kurv terseut. + ( )( + ) tu - Jdi ts ts derhn dlh dn -, sehingg volumen dlh : V ( )d V [( ) ( ) ]d V [( )]d [ 5 ] 5 ( 8 8 ) ( ) 5 5 Jdi volumen dlh stun volume. LATIHAN 8 Tentukn volume end putr ng terjdi jik derh ng ditsi oleh du kurv diputr mengelilingi sumu ng ditentukn..,,gris, dengn sumu putr.. /, dengn sumu putr.. - +, gris +, dengn sumu putr..,, dengn sumu putr. ( - ),, sumu putrn dlh sumu. + dn 9 - dengn segi sumu putr. 7. dn, dengn sumu putr. 8. dn, dengn sumu putr. 9. dn, dengn sumu putr.. dn -, dengn sumu putr.

MATEMATIKA. Sesi INTEGRAL VOLUME A. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR B. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR TERHADAP SUMBU-X

MATEMATIKA. Sesi INTEGRAL VOLUME A. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR B. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR TERHADAP SUMBU-X MATEMATIKA KELAS XII - KURIKULUM GABUNGAN 6 Sesi N INTEGRAL VOLUME A. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR Apliksi integrl erikutn dlh menentukn volume end ng memiliki sumu putr. Contoh endn dlh tung,

Lebih terperinci

LUAS DAERAH APLIKASI INTEGRAL TENTU. Indikator Pencapaian Hasil Belajar. Ringkasan Materi Perkuliahan

LUAS DAERAH APLIKASI INTEGRAL TENTU. Indikator Pencapaian Hasil Belajar. Ringkasan Materi Perkuliahan LUAS DAERAH APLIKASI INTEGRAL TENTU Indiktor Pencpin Hsil Beljr Mhsisw menunjukkn kemmpun dlm :. Menghitung lus pd idng dtr Ringksn Mteri Perkulihn Jik sutu derh ditsi oleh kurv f(), g(), gris dn dengn

Lebih terperinci

INTEGRAL. Kelas XII IIS Semester Genap. Oleh : Markus Yuniarto, S.Si. SMA Santa Angela Tahun Pelajaran 2017/2018

INTEGRAL. Kelas XII IIS Semester Genap. Oleh : Markus Yuniarto, S.Si. SMA Santa Angela Tahun Pelajaran 2017/2018 Modul Integrl INTEGRAL Kels XII IIS Semester Genp Oleh : Mrkus Yunirto, SSi SMA Snt Angel Thun Peljrn 7/8 Modul Mtemtik Kels XII IIS Semester TA 7/8 Modul Integrl INTEGRAL Stndr Kompetensi: Menggunkn konsep

Lebih terperinci

MATEMATIKA INTEGRAL TENTU DAN LUAS DAERAH

MATEMATIKA INTEGRAL TENTU DAN LUAS DAERAH MATEMATIKA KELAS XII - KURIKULUM GABUNGAN 5 Sesi N INTEGRAL TENTU DAN LUAS DAERAH A. DEFINISI INTEGRAL TENTU Bentuk integrl f d = f + c diseut segi integrl tk tentu kren hsil dri pengintegrlnn msih erup

Lebih terperinci

INTEGRAL. Integral Tak Tentu Dan Integral Tertentu Dari Fungsi Aljabar

INTEGRAL. Integral Tak Tentu Dan Integral Tertentu Dari Fungsi Aljabar INTEGRAL Integrl Tk Tentu Dn Integrl Tertentu Dri Fungsi Aljr A. Integrl Tk Tentu Hitung integrl dlh kelikn dri hitung differensil. Pd hitung differensil yng dicri dlh fungsi turunnny, sedngkn pd hitung

Lebih terperinci

PEMANTAPAN BELAJAR SMA BBS INTEGRAL

PEMANTAPAN BELAJAR SMA BBS INTEGRAL BAB I PEMANTAPAN BELAJAR SMA BBS INTEGRAL I A RANGKUMAN INTEGRAL. Pengertin Apil terdpt fungsi F() yng dpt didiferensilkn pd selng I sedemikin hingg F () = f(), mk nti turunn (integrl) dri f() dlh F()

Lebih terperinci

INTEGRAL. y dx. x dy. F(x)dx F(x)dx

INTEGRAL. y dx. x dy. F(x)dx F(x)dx Drs. Mtrisoni www.mtemtikdw.wordpress.om INTEGRAL PENGERTIAN Bil dikethui : = F() + C mk = F () dlh turunn dri sedngkn dlh integrl (nti turunn) dri dn dpt digmrkn : differensil differensil Y Y Y Integrl

Lebih terperinci

Y y=f(x) LEMBAR KERJA SISWA. x=a. x=b

Y y=f(x) LEMBAR KERJA SISWA. x=a. x=b LEMBAR KERJA SISWA. Judul (Mteri Pokok) : Penggunn Integrl Tentu Untuk Menghitung Volume Bend Putr. Mt Peljrn : Mtemtik 3. Kels / Semester : II /. Wktu : 5 menit 5. Stndr Kompetensi :. Menggunkn konsep

Lebih terperinci

Modul Matematika 2012

Modul Matematika 2012 Modul Mtemtik. ANTI TURUNAN Definisi Mislkn fungsi f terdefinisi pd selng teruk I. Fungsi F ng memenuhi F () = f () pd I dinmkn nti turunn tu fungsi primitif dri fungsi f pd I.. F() = cos nti turunn dri

Lebih terperinci

APLIKASI INTEGRAL PENERAPAN INTEGRAL. Luas daerah kelengkungan

APLIKASI INTEGRAL PENERAPAN INTEGRAL. Luas daerah kelengkungan APLIKASI INTEGRAL APLIKASI INTEGRAL PENERAPAN INTEGRAL Lus derh kelengkungn PENERAPAN INTEGRAL Indiktor 1 Indiktor 9 Lus derh di bwh kurv berdsr prinsip Riemn Volume bend putr, jik kurv diputr mengelilingi

Lebih terperinci

7. APLIKASI INTEGRAL

7. APLIKASI INTEGRAL 7. APLIKASI INTEGRAL 7. Menghitung Lus Derh.Mislkn derh D (, ), f ( ) D f() Lus D =? Lngkh :. Iris D menjdi n gin dn lus stu uh irisn dihmpiri oleh lus persegi pnjng dengn tinggi f() ls(ler) A f ( ). Lus

Lebih terperinci

1. Luas daerah yang dibatasi oleh kurva y = x 2 dan garis x + y = 6 adalah

1. Luas daerah yang dibatasi oleh kurva y = x 2 dan garis x + y = 6 adalah . Lus derh yng ditsi oleh kurv y = x dn gris x + y = dlh stun lus... c. d. 8 Sol Ujin Nsionl Thun 7 Kurv y = x dn gris x + y = ( y = x ) Sustikn nili y pd y = x sehingg didpt : x = x x = x x + x = ( =,

Lebih terperinci

1. Luas daerah yang dibatasi oleh kurva y = x 2 dan garis x + y = 6 adalah satuan luas. a. 54 b. 32. d. 18 e.

1. Luas daerah yang dibatasi oleh kurva y = x 2 dan garis x + y = 6 adalah satuan luas. a. 54 b. 32. d. 18 e. . Lus derh yng ditsi oleh kurv y = x dn gris x + y = dlh stun lus... c. d. 8 e. Sol Ujin Nsionl Thun 7 Kurv y = x dn gris x + y = ( y = x ) Sustikn nili y pd y = x sehingg didpt : x = x x = x x + x = (

Lebih terperinci

HITUNG INTEGRAL ( 4 ) 4. Diketahui f(x) = 4x + 1 dan F(2) = 17 ; Tentukan fungsi F f(x) = 4x + 1

HITUNG INTEGRAL ( 4 ) 4. Diketahui f(x) = 4x + 1 dan F(2) = 17 ; Tentukan fungsi F f(x) = 4x + 1 HITUNG INTEGRA BAB.Integrl tk tentu (tnp ts). Rumus-rumus ) ) n n n d c, n ) d c n n n. d c, n ). Sift-sift Integrl Contoh :... ) k. f ( ) d k. f ( ) d d d ln c ) ( ( ) ( )) ( ) ( ) d c ( ) ( ) d ( ) d

Lebih terperinci

E. INTEGRASI BAGIAN ( PARSIAL )

E. INTEGRASI BAGIAN ( PARSIAL ) E. INTEGRASI BAGIAN ( PARSIAL ) Integrsi gin (prsil) digunkn untuk mengintegrsikn sutu perklin fungsi yng msing-msing fungsiny ukn koefisien diferensil dri yng lin ( seperti yng sudh dihs pd su. B. D )

Lebih terperinci

APLIKASI INTEGRAL PENERAPAN INTEGRAL. Luas daerah kelengkungan

APLIKASI INTEGRAL PENERAPAN INTEGRAL. Luas daerah kelengkungan APLIKASI INTEGRAL APLIKASI INTEGRAL PENERAPAN INTEGRAL Lus derh kelengkungn Integrl digunkn pd design Menr Petrons di Kul lumpur, untuk perhitungn kekutn menr. Sdne Oper House di design berdsrkn irisn-irisn

Lebih terperinci

RANGKUMAN MATERI ' maupun F(x) = Pengerjaan f(x) sehingga memperoleh F(x) + c disebut mengintegralkan f(x) ke x dengan notasi:

RANGKUMAN MATERI ' maupun F(x) = Pengerjaan f(x) sehingga memperoleh F(x) + c disebut mengintegralkan f(x) ke x dengan notasi: INTEGRAL RANGKUMAN MATERI A. ANTIDERIVATIF DAN INTEGRAL TAK TENTU Jik kit mengmil uku dri temptny mk kit dpt mengemliknny lgi ke tempt semul. Opersi yng kedu menghpus opersi yng pertm. Kit ktkn hw du opersi

Lebih terperinci

Tiara Ariqoh Bawindaputri TIP / kelas L

Tiara Ariqoh Bawindaputri TIP / kelas L Tir Ariqoh Bwindputri 500008 TIP / kels L INTEGRAL Integrl Tk tentu Integrl dlh entuk invers dri turunn. Secr umum jik seuh fungsi diintegrlkn terhdp vrile tertentu dpt disjikn dlm entuk : f ( F( C Untuk

Lebih terperinci

Tujuan Pembelajaran. ) pada elips. 2. Dapat menentukan persamaan garis singgung yang melalui titik (x 1

Tujuan Pembelajaran. ) pada elips. 2. Dapat menentukan persamaan garis singgung yang melalui titik (x 1 K-3 mtemtik K e l s XI IRISAN KERUCUT: PERSAMAAN GARIS SINGGUNG PADA ELIPS Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Dpt menentukn persmn gris singgung di titik (,

Lebih terperinci

Tujuan Pembelajaran. ) pada hiperbola yang berpusat di (0, 0). 2. Dapat menentukan persamaan garis singgung di titik (x 1

Tujuan Pembelajaran. ) pada hiperbola yang berpusat di (0, 0). 2. Dapat menentukan persamaan garis singgung di titik (x 1 K-3 mtemtik K e l s XI IRISAN KERUCUT: GARIS SINGGUNG PADA HIPERBOLA Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Dpt menentukn persmn gris singgung di titik (, ) pd

Lebih terperinci

10. cos (ax+b)sin(ax+b) dx = 12. sec x dx = tan x + c. 13. sec (ax+b)dx = tan (ax+b)+ c. 14. c sec x dx = - ctg x + c

10. cos (ax+b)sin(ax+b) dx = 12. sec x dx = tan x + c. 13. sec (ax+b)dx = tan (ax+b)+ c. 14. c sec x dx = - ctg x + c BAB XVI. INTEGRAL A. Integrl Tk Tentu. Rumus Integrl Fungsi Aljr. k k n = n +. ( + ) n = ( n + ). = ln + n + + ; n - n+ (+) + ; dn n -. ( f ( ) ± g( ) ) f ( ) ± g ( ) n. os (+)sin(+) = ( n + ) os n + (+)

Lebih terperinci

selisih positif jarak titik (x, y) terhadap pasangan dua titik tertentu yang disebut titik

selisih positif jarak titik (x, y) terhadap pasangan dua titik tertentu yang disebut titik Hiperol 7.1. Persmn Hiperol Bentuk Bku Hiperol dlh himpunn semu titik (, ) pd idng sedemikin hingg selisih positif jrk titik (, ) terhdp psngn du titik tertentu ng diseut titik fokus (foci) dlh tetp. Untuk

Lebih terperinci

UJIAN SEMESTER GANJIL SMA SANG DEWA JAKARTA TAHUN PELAJARAN

UJIAN SEMESTER GANJIL SMA SANG DEWA JAKARTA TAHUN PELAJARAN UJIAN SEMESTER GANJIL SMA SANG DEWA JAKARTA TAHUN PELAJARAN - Mt Peljrn : ILMU HITUNG MODERN Kels / Progrm : XII AIA ( Du Bels ) / Ajin Ilmu Api Hri / Tnggl : Minggu Nopemer Wktu :.. WIB ( Menit) Pilihlh

Lebih terperinci

TEORI DEFINITE INTEGRAL

TEORI DEFINITE INTEGRAL definite integrl & lus yog.prihstomo TEORI DEFINITE INTEGRAL Definisi : Jik y = f(x) dlh fungsi kontinu dn terdefinisi dlm intervl tertutup [,] sehingg lim n n i= f ( xi). Δxi d (mempunyi nili), mk definite

Lebih terperinci

IRISAN KERUCUT: PERSAMAAN ELIPS. Tujuan Pembelajaran

IRISAN KERUCUT: PERSAMAAN ELIPS. Tujuan Pembelajaran K-13 mtemtik K e l s I IRISAN KERUCUT: PERSAMAAN ELIPS Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi definisi elips.. Memhmi unsur-unsur elips. 3. Memhmi eksentrisits

Lebih terperinci

10. cos (ax+b)sin(ax+b) dx = 12. sec x dx = tan x + c. 13. sec (ax+b)dx = tan (ax+b)+ c. 14. c sec x dx = - ctg x + c

10. cos (ax+b)sin(ax+b) dx = 12. sec x dx = tan x + c. 13. sec (ax+b)dx = tan (ax+b)+ c. 14. c sec x dx = - ctg x + c Integrl Tk Tentu INTEGRAL. Rumus Integrl Fungsi Aljr. k x n k n +. ( x + n ( n +. x ln x + x n + + ; n - n+ (x+ + ; dn 4. ( f ( x ± g( x f ( x ± g ( x n - n. os (x+sin(x+ ( n + n+ os (x+ + ( + (. sin x

Lebih terperinci

BAB: PENERAPAN INTEGRAL Topik: Volume Benda Putar (Khusus Kalkulus 1)

BAB: PENERAPAN INTEGRAL Topik: Volume Benda Putar (Khusus Kalkulus 1) BAB: PENERAPAN INTEGRAL Topik: Volume Bend Putr (Khusus Klkulus ) Kompetensi yng diukur dlh kemmpun mhsisw menghitung volume bend putr dengn metode cincin, metode ckrm, tu metode kulit tbung.. UAS Klkulus,

Lebih terperinci

INTEGRAL. 1. Macam-macam Integral. Nuria Rahmatin TIP L. A. Integral Tak Tentu

INTEGRAL. 1. Macam-macam Integral. Nuria Rahmatin TIP L. A. Integral Tak Tentu INTEGRAL Nuri Rhmtin 5000006 TIP L. Mcm-mcm Integrl A. Integrl Tk Tentu Integrl dlh entuk invers dri turunn. Secr umum jik seuh fungsi diintegrlkn terhdp vrile tertentu dpt disjikn dlm entuk : f ( F( C

Lebih terperinci

INTEGRAL TAK TENTU. x x x

INTEGRAL TAK TENTU. x x x INTEGRAL TAK TENTU Definisi : Fungsi F diktkn nti turunn dri fungsi f pd selng I jik F () = f() untuk semu di I. Notsi : F() = f() Integrl tk tentu dlh Anti/Invers/Kelikn turunn. c c Integrl tk tentu dlh

Lebih terperinci

Hendra Gunawan. 15 November 2013

Hendra Gunawan. 15 November 2013 MA1101 MATEMATIKA 1A Hendr Gunwn Semester I, 2013/2014 15 Novemer 2013 Ltihn 1. Pnjng lmi sutu pegs dlh 0.08 m. Gy seesr 0.6 N diperlukn untuk menekn dn menhnny pd pnjng 0.07 m. Tentukn kerjyng dilkukn

Lebih terperinci

matematika K-13 IRISAN KERUCUT: PERSAMAAN HIPERBOLA K e l a s A. Definisi Hiperbola Tujuan Pembelajaran

matematika K-13 IRISAN KERUCUT: PERSAMAAN HIPERBOLA K e l a s A. Definisi Hiperbola Tujuan Pembelajaran K-13 mtemtik K e l s I IRISAN KERUCUT: PERSAMAAN HIPERBLA Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi definisi dn unsur-unsur hiperol.. Dpt menentukn persmn

Lebih terperinci

ELIPS. A. Pengertian Elips

ELIPS. A. Pengertian Elips ELIPS A. Pengertin Elips Elips dlh tempt kedudukn titik-titik yng jumlh jrkny terhdp du titik tertentu mempunyi nili yng tetp. Kedu titik terseut dlh titik focus / titik pi. Elips jug didefinisikn segi

Lebih terperinci

Integral. Konstanta dari Integrasi. Integral Tak Tentu. AntiTurunan (Antiderivative)

Integral. Konstanta dari Integrasi. Integral Tak Tentu. AntiTurunan (Antiderivative) Integrl AntiTurunn (Antiderivtive) AntiTurunn dri seuh fungsi f dl seuh fungsi F sedemikin hingg Dierikn Pd Peltihn Guru-Guru Aceh Jy 5 Septemer 0 Oleh: Ridh Ferdhin, M.Sc F f E. AntiTurunn dri f ( ) 6

Lebih terperinci

PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN PERTIDAKSAMAAN KUADRAT

PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN PERTIDAKSAMAAN KUADRAT PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN PERTIDAKSAMAAN KUADRAT Persmn Kudrt. Bentuk Umum Persmn Kudrt Mislkn,, Є R dn 0 mk persmn yng erentuk 0 dinmkn persmn kudrt dlm peuh. Dlm persmn kudrt 0, dlh koefisien

Lebih terperinci

BAB. I INTEGRAL. (Orang tuanya) (Anaknya)

BAB. I INTEGRAL. (Orang tuanya) (Anaknya) BAB. I INTEGRAL A. Pendhulun.. Pengertin integrl. Integrl dlh lwn kelikn) dri diferensil. Dpt diumpmkn hw opersi diferensil itu, dikethui orng tuny, disuruh menri nkny, sedngkn opersi integrl, dikethui

Lebih terperinci

PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN GRAFIKNYA

PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN GRAFIKNYA PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN GRAFIKNYA Persmn dlh klimt mtemtik teruk ng memut huungn sm dengn. Sedngkn klimt mtemtik tertutup ng memut huungn sm dengn diseut kesmn. Klimt mtemtik :. Klimt mtemtik

Lebih terperinci

A. Pengertian Integral

A. Pengertian Integral A. Pengertin Integrl Di Kels XI, klin telh mempeljri konsep turunn. Pemhmn tentng konsep turunn ini dpt klin gunkn untuk memhmi konsep integrl. Untuk itu, co tentukn turunn fungsi-fungsi erikut. f () f

Lebih terperinci

INTEGRAL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 45

INTEGRAL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 45 INTEGRAL Deprtemen Mtemtik FMIPA IPB Bogor, 2012 (Deprtemen Mtemtik FMIPA IPB) Klkulus I Bogor, 2012 1 / 45 Topik Bhsn 1 Pendhulun 2 Anti-turunn 3 Lus di Bwh Kurv 4 Integrl Tentu 5 Teorem Dsr Klkulus 6

Lebih terperinci

Vektor translasi dpt ditunjukkan oleh bil. berurutan yang ditulis dlm bentuk matriks kolom

Vektor translasi dpt ditunjukkan oleh bil. berurutan yang ditulis dlm bentuk matriks kolom TRANSFORMASI GEOMETRI BAB Sutu trnsformsi idng dlh sutu pemetn dri idng Krtesius ke idng ng lin tu T : R R (,) ( ', ') Jenis-jenis trnsformsi ntr lin : Trnsformsi Isometri itu trnsformsi ng tidk menguh

Lebih terperinci

Hendra Gunawan. 30 Oktober 2013

Hendra Gunawan. 30 Oktober 2013 MA MATEMATIKA A Hendr Gunwn Semester I, 2/24 Oktoer 2 Ltihn. Fungsi g =,, terintegrlkn pd [, ]. Nytkn integrl tentu g pd [, ] segi limit jumlh Riemnn dengn prtisi reguler, dn hitunglh niliny. //2 c Hendr

Lebih terperinci

Penyelesaian Persamaan Kuadrat 1. Rumus abc Rumus menentukan akar persamaan kuadrat ax 2 bx c 0; a, b, c R dan a 0

Penyelesaian Persamaan Kuadrat 1. Rumus abc Rumus menentukan akar persamaan kuadrat ax 2 bx c 0; a, b, c R dan a 0 PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT PERSAMAAN KUADRAT Bentuk umum persmn kudrt dlh c 0,,,c R, 0 Penyelesin Persmn Kudrt. Rumus c Rumus menentukn kr persmn kudrt c 0;,, c R dn 0, = ± 4c. Memfktorkn

Lebih terperinci

PENGAYAAN MATEMATIKA SOLUSI SOAL-SOAL LATIHAN 1

PENGAYAAN MATEMATIKA SOLUSI SOAL-SOAL LATIHAN 1 PENGAYAAN MATEMATIKA SOLUSI SOAL-SOAL LATIHAN 6y y 8y. Dikethui R dn. Temukn nili y. y y 8y 6 Solusi: 6y y 8y y y 8y 6 6y y 8y 8y y 6 y 8 0 y y y 0 y y y 0 ( y ) ( y ) 0 y y 8y 6 ( y )(y ) 0 y 0tu y 0

Lebih terperinci

FUNGSI TRIGONOMETRI LIMIT FUNGSI

FUNGSI TRIGONOMETRI LIMIT FUNGSI FUNGSI TRIGONOMETRI LIMIT FUNGSI Limit Fungsi. Limit fungsi f() merupkn nili hmpirn dri f() untuk nili mendekti nili tertentu misl. Bentuk umum : Lim f() -> Jik dikethui du uh fungsi f() dn g() msing-msing

Lebih terperinci

(c) lim. (d) lim. (f) lim

(c) lim. (d) lim. (f) lim FMIPA - ITB. MA Mtemtik A Semester, 6-7. Pernytn enr dn slh. () ()! e Solusi. Benr. Fungsi eksonensil (enyeut) memesr leih cet drid fungsi olinom (emilng) sehingg emginny menghsilkn nili Dengn Hoitl s

Lebih terperinci

E-learning matematika, GRATIS

E-learning matematika, GRATIS www.mtemtik-ps.logspot.com E-lerning mtemtik, GRATIS Penusun Editor : Nur Aini Indh H, S.Pd. ; Imm Indr Gunwn, S.Si. : Drs. Keto Susnto, M.Si. M.T. ; Istij, S.H. M.Hum. Imm Indr Gunwn, S.Si. A. DEFINISI

Lebih terperinci

E-learning Matematika, GRATIS

E-learning Matematika, GRATIS www.mtemtik-ps.logspot.com E-lerning Mtemtik, GRATIS Penusun Editor : Nur Aini Indh H, S.Pd. ; Imm Indr Gunwn, S.Si. : Drs. Keto Susnto, M.Si. M.T. ; Istij, S.H. M.Hum. Imm Indr Gunwn, S.Si. A. DEFINISI

Lebih terperinci

Bab 4 Transformasi Geometri

Bab 4 Transformasi Geometri B 4 Trnsformsi Geometri TUJUAN PEMBELAJARAN Pem is memhmi konsep trnsformsi geometri -D dn -D : trnslsi, rotsi, Refleksi, her dn slling OUTCOME PEMBELAJARAN Pem is menghitung trnsformsi geometri -D ser

Lebih terperinci

Integral Tak Tentu dan Integral Tertentu

Integral Tak Tentu dan Integral Tertentu Integrl Tk Tentu dn Integrl Tertentu Pengertin Integrl Jik F dlh fungsi umum yng ersift F = f, mk F merupkn ntiturunn tu integrl dri f. Pengintegrln fungsi f terhdp dinotsikn segi erikut : f d F c notsi

Lebih terperinci

Matematika EBTANAS Tahun 1992

Matematika EBTANAS Tahun 1992 Mtemtik EBTANAS Thun 99 EBT-SMA-9-0 Grfik fungsi kudrt yng persmnny y = x 5x memotong sumu x. Slh stu titik potongny dlh (, 0), mk nili sm dengn EBT-SMA-9-0 Persmn x px + 5 = 0 kr-krny sm. Nili p 0 tu

Lebih terperinci

IV V a b c d. a b c d. b c d. bukan fungsi linier y = x = x y 5xy + y = B.2 Konsep Fungsi Linier

IV V a b c d. a b c d. b c d. bukan fungsi linier y = x = x y 5xy + y = B.2 Konsep Fungsi Linier 8. Dri fungsi-fungsi ng disjikn dengn digrm pnh erikut ini mnkh ng merupkn fungsi onto, injektif tu ijektif, jik relsi dri A ke B? A c d IV B A c d V B A c d VI B B. Konsep Fungsi Linier. Tujun Setelh

Lebih terperinci

UJIAN BERSAMA SMA KABUPATEN TANAH DATAR SEMESTER 1 TAHUN PELAJARAN 2008/2009. Mata Pelajaran : MATEMATIKA Kelas/jurusan : XII/ IPA Hari/Tanggal :

UJIAN BERSAMA SMA KABUPATEN TANAH DATAR SEMESTER 1 TAHUN PELAJARAN 2008/2009. Mata Pelajaran : MATEMATIKA Kelas/jurusan : XII/ IPA Hari/Tanggal : UJIAN BERSAMA SMA KABUPATEN TANAH DATAR SEMESTER TAHUN PELAJARAN /9 Mt Peljrn : MATEMATIKA Kels/jurusn : XII/ IPA Hri/Tnggl : Wktu : menit. d... A. c B. c C. c D. c E. c. sin cos d... A. cos C B. cos C

Lebih terperinci

TURUNAN FUNGSI. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XI

TURUNAN FUNGSI. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XI LA - WB (Lembr Aktivits Wrg Beljr) TURUNAN FUNGSI Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XI Creted By It Yulin 33 Turunn Fungsi Kompetensi Dsr 1. Menggunkn

Lebih terperinci

SMA Santa Angela. Bandung. 1 P a g e

SMA Santa Angela. Bandung. 1 P a g e Persmn Gris Singgung SMA Snt Angel Bndung P g e P g e Persmn Gris Singgung pd Ellips Seperti hln pd lingkrn, terdpt du mcm gris singgung ng kn diicrkn, itu gris singgung ng mellui slh stu titik pd ellips

Lebih terperinci

MATERI I : VEKTOR. Pertemuan-01

MATERI I : VEKTOR. Pertemuan-01 MATERI I : VEKTOR Pertemun-0. Pendhulun Definisi Vektor didefinisikn segi esrn yng memiliki rh. Keeptn, gy dn pergesern merupkn ontoh ontoh dri vektor kren semuny memiliki esr dn rh wlupun untuk keeptn

Lebih terperinci

15. INTEGRAL SEBAGAI LIMIT

15. INTEGRAL SEBAGAI LIMIT 15. INTEGRAL SEBAGAI LIMIT 15.1 Jumlh Riemnn Dlm kulih Klkulus pd thun pertm, integrl Riemnn bisny diperkenlkn sebgi limit dri jumlh Riemnn, tidk mellui integrl Riemnn ts dn integrl Riemnn bwh. Hl ini

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Anlisis Rel Hendr Gunwn* *http://hgunwn82.wordpress.com Anlysis nd Geometry Group Bndung Institute of Technology Bndung, INDONESIA Progrm Studi S1 Mtemtik ITB, Semester II 2016/2017 HG* (*ITB Bndung)

Lebih terperinci

UJIAN BERSAMA SMA KABUPATEN TANAH DATAR SEMESTER 1 TAHUN PELAJARAN 2008/2009. Mata Pelajaran : MATEMATIKA Kelas/jurusan : XII/IPS Hari/Tanggal :

UJIAN BERSAMA SMA KABUPATEN TANAH DATAR SEMESTER 1 TAHUN PELAJARAN 2008/2009. Mata Pelajaran : MATEMATIKA Kelas/jurusan : XII/IPS Hari/Tanggal : UJIN ERSM SM KUPTEN TNH DTR SEMESTER THUN PELJRN / Mt Peljrn : MTEMTIK Kels/jurusn : XII/IPS Hri/Tnggl : Wktu : menit Pilihlh slh stu jwn ng dinggp pling enr dn tept!. d c c c c. Jik F '( ) dn F () mk

Lebih terperinci

12. LUAS DAERAH DAN INTEGRAL

12. LUAS DAERAH DAN INTEGRAL 12. LUAS DAERAH DAN INTEGRAL 12.1 Lus Derh di Bwh Kurv Mslh menentukn lus derh (dn volume rung) telh dipeljri sejk er Pythgors dn Zeno, pd thun 500-n SM. Konsep integrl (yng terkit ert dengn lus derh)

Lebih terperinci

Hendra Gunawan. 2 April 2014

Hendra Gunawan. 2 April 2014 MA1201 MATEMATIKA 2A Hendr Gunwn Semester II 2013/2014 2 April 2014 Kulih ng Llu 12.1 Fungsi du tu leih peuh 12.2 Turunn Prsil 12.3 Limit dn Kekontinun 12.4 Turunn ungsi du peuh 12.5 Turunn errh dn grdien

Lebih terperinci

BAB I. MATRIKS BAB II. DETERMINAN BAB III. INVERS MATRIKS BAB IV. PENYELESAIAN PERSAMAAN LINEAR SIMULTAN

BAB I. MATRIKS BAB II. DETERMINAN BAB III. INVERS MATRIKS BAB IV. PENYELESAIAN PERSAMAAN LINEAR SIMULTAN DFTR ISI BB I. MTRIKS BB II. DETERMINN BB III. INVERS MTRIKS BB IV. PENYELESIN PERSMN LINER SIMULTN BB I. MTRIKS Mtriks erup sekelompok ilngn yng disusun empt persegi dn ditsi tnd terdiri dri ris dn kolom

Lebih terperinci

1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini:

1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini: ) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persmn kudrt dlh seperti di bwh ini: b c dengn, b, c bilngn dn riil Dimn, disebut sebgi koefisien dri b disebut sebgi koefisien dri c disebut

Lebih terperinci

II. LANDASAN TEORI. Dalam bab ini akan didiskusikan definisi definisi, istilah istilah dan teoremateorema. yang berhubungan dengan penelitian ini.

II. LANDASAN TEORI. Dalam bab ini akan didiskusikan definisi definisi, istilah istilah dan teoremateorema. yang berhubungan dengan penelitian ini. II. LANDASAN TEORI Dlm ini kn didiskusikn definisi definisi, istilh istilh dn teoremteorem yng erhuungn dengn penelitin ini. 2.1 Anlitik Geometri Definisi 2.1.1 Titik dlh unsur yng tidk memiliki pnjng,

Lebih terperinci

Vektor di R2 ( Baca : Vektor di ruang dua ) adalah Vektor- di ruang dua )

Vektor di R2 ( Baca : Vektor di ruang dua ) adalah Vektor- di ruang dua ) A Pengertin Vektor Di R Vektor di R ( B : Vektor di rung du ) dlh Vektor- di rung du ) dlh Vektor-vektor ng terletk pd idng dtr pengertin vektor ng leih singkt dlh sutu esrn ng memiliki esr dn rh tertentu

Lebih terperinci

VEKTOR. Dua vektor dikatakan sama jika besar dan arahnya sama. Artinya suatu vektor letaknya bisa di mana saja asalkan besar dan arahnya sama.

VEKTOR. Dua vektor dikatakan sama jika besar dan arahnya sama. Artinya suatu vektor letaknya bisa di mana saja asalkan besar dan arahnya sama. -1- VEKTOR PENGERTIAN VEKTOR dlh sutu esrn yng mempunyi nili (esr) dn rh. Sutu vektor dpt digmrkn segi rus gris errh. Nili (esr) vektor dinytkn dengn pnjng gris dn rhny dinytkn dengn tnd pnh. Notsi vektor

Lebih terperinci

didefinisikan sebagai bilangan yang dapat ditulis dengan b

didefinisikan sebagai bilangan yang dapat ditulis dengan b 1 PENDAHULUAN 1.1 Sistem Bilngn Rel Untuk mempeljri klkulus perlu memhmi hsn tentng system ilngn rel, kren klkulus didsrkn pd system ilngn rel dn siftsiftny. Sistem ilngn yng pling sederhn dlh ilngn sli,

Lebih terperinci

Integral B A B. A. Pengertian Integral. B. Integral Tak Tentu. C. Integral Tertentu. D. Menentukan Luas Daerah. E. Menentukan Volume Benda Putar

Integral B A B. A. Pengertian Integral. B. Integral Tak Tentu. C. Integral Tertentu. D. Menentukan Luas Daerah. E. Menentukan Volume Benda Putar Integrl B A B A. Pengertin Integrl B. Integrl Tk Tentu C. Integrl Tertentu D. Menentukn Lus Derh E. Menentukn Volume Bend Putr Sumer: www.wllpperse.com Pernhkh klin meliht ling-ling peswt? Bgimnkh entukny?

Lebih terperinci

MATEMATIKA IPA PAKET B KUNCI JAWABAN SOAL

MATEMATIKA IPA PAKET B KUNCI JAWABAN SOAL MATEMATIKA IPA PAKET KUNCI JAWAAN SOAL. Jwn : Mislkn p: ir sungi jernih q: Tidk terkndung zt pencemr r: Semu ikn tidk mti Diperoleh : Premis : p q Premis : ~r ~q q r Jdi, kesimpuln dri premis-premis terseut

Lebih terperinci

Catatan Kuliah MA1123 KALKULUS ELEMENTER I BAB V. INTEGRAL

Catatan Kuliah MA1123 KALKULUS ELEMENTER I BAB V. INTEGRAL BAB V. INTEGRAL Anti-turunn dn Integrl Tk Tentu Persmn Diferensil Sederhn Notsi Sigm dn Lus Derh di Bwh Kurv Integrl Tentu Teorem Dsr Klkulus Sift-sift Integrl Tentu Leih Lnjut Sustitusi dlm Penghitungn

Lebih terperinci

1. Identitas Trigonometri. 1. Identitas trigonometri dasar berikut ini merupakan hubungan kebalikan.

1. Identitas Trigonometri. 1. Identitas trigonometri dasar berikut ini merupakan hubungan kebalikan. 1. Identits Trigonometri Pengertin Identits Trigonometri dlh kesmn yng memut entuk trigonometri dn erlku untuk semrng sudut yng dierikn. Jenis Identits Trigonometri 1. Identits trigonometri dsr erikut

Lebih terperinci

Materi IX A. Pendahuluan

Materi IX A. Pendahuluan Mteri IX Tujun :. Mhsisw dpt memhmi vektor. Mhsisw mmpu mengunkn vektor dlm persoln sederhn 3. Mhsisw mengimplementsikn konsep vektor pd rngkin listrik. Pendhulun Sudh menjdi kesepktn umum hw untuk menentukn

Lebih terperinci

Bab a. maka notasi determinan dari matriks A ditulis : det (A) atau. atau A.

Bab a. maka notasi determinan dari matriks A ditulis : det (A) atau. atau A. Bb DETERMINAN MATRIKS Determinn sutu mtriks dlh sutu fungsi sklr dengn domin mtriks bujur sngkr. Dengn kt lin, determinn merupkn pemetn dengn domin berup mtriks bujur sngkr, sementr kodomin berup sutu

Lebih terperinci

LIMIT FUNGSI. DEFINISI Notasi. dibaca. limit f(x) bila x mendekati a sama dengan L. atau. f(x) mendekati L bila x mendekati a.

LIMIT FUNGSI. DEFINISI Notasi. dibaca. limit f(x) bila x mendekati a sama dengan L. atau. f(x) mendekati L bila x mendekati a. DEFINISI Notsi dibc tu berrti bhw IMIT FUNGSI it bil mendekti sm dengn mendekti bil mendekti nili dpt dibut sedekt mungkin dengn bil cukup dekt dengn, tetpi tidk sm dengn. Perhtikn bhw dlm deinisi tersebut

Lebih terperinci

SEMI KUASA TITIK TERHADAP ELIPS

SEMI KUASA TITIK TERHADAP ELIPS RISMTI - ISSN : - 66 THUN VOL NO. GUSTUS 5 SEMI US TITI TERHD ELIS rnidsri Mshdi rtini Mhsisw rogrm Studi Mgister Mtemtik Universits Riu Jl. HR Soernts M 5 mpus in Wid Simpng ru eknru Riu 89 Emil: rnidsri@hoo.com

Lebih terperinci

BAB 7. LIMIT DAN LAJU PERUBAHAN

BAB 7. LIMIT DAN LAJU PERUBAHAN BAB 7. LIMIT DAN LAJU PERUBAHAN 7. LIMIT FUNGSI 7.. Limit fungsi di sutu titik Menggmbrkn perilku fungsi jik peubhn mendekti sutu titik Illustrsi: Dikethui f( ) f(), 3,30,0 3,030,00 3,003 3 f() = f() 3,000?

Lebih terperinci

FUNGSI TRANSENDEN. Sifat satu kesatu yang mengakibatkan fungsi

FUNGSI TRANSENDEN. Sifat satu kesatu yang mengakibatkan fungsi FUNGSI TRANSENDEN I. Pendhulun. Pokok Bhsn Logritm Fungsi Eksponen.2 Tujun Mengethui entuk fungsi trnsenden dlm klkulus. Mengethui dn memhmi entuk fungsi trnseden itu logritm dn fungsi eksponen sert dlm

Lebih terperinci

Matematika SMA (Program Studi IPA)

Matematika SMA (Program Studi IPA) Smrt Solution UJIAN NASIONAL TAHUN PELAJARAN 2013/2014 Disusun Sesui Indiktor Kisi-Kisi UN 2013 Mtemtik SMA (Progrm Studi IPA) Disusun oleh : Pk Anng - Blogspot Pge 1 of 13 5. 2. Menyelesikn sol pliksi

Lebih terperinci

LIMIT FUNGSI DAN KEKONTINUAN

LIMIT FUNGSI DAN KEKONTINUAN LIMIT FUNGSI DAN KEKONTINUAN RANGKUMAN MATERI Sebelum memsuki mteri, perhtikn himpunn-himpunn berikut: ) Himpunn bilngn sli:,,,4,5,.... b) Himpunn bilngn bult:...,,,0,,,.... p c) Himpunn bilngn rsionl:

Lebih terperinci

matematika K-13 TEOREMA FAKTOR DAN OPERASI AKAR K e l a s

matematika K-13 TEOREMA FAKTOR DAN OPERASI AKAR K e l a s K-3 mtemtik K e l s XI TEOREMA FAKTOR DAN OPERASI AKAR Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Memhmi teorem fktor.. Menentukn kr dn fktor liner suku nyk dengn

Lebih terperinci

Bab. Integral. Di unduh dari: (www.bukupaket.com) Sumber buku : (bse.kemdikbud.go.id)

Bab. Integral. Di unduh dari: (www.bukupaket.com) Sumber buku : (bse.kemdikbud.go.id) PUSAT PERBUKUAN Deprtemen Pendidikn Nsionl B I Integrl Tujun Pemeljrn Setelh mempeljri ini, dihrpkn klin dpt. merncng turn integrl tk tentu dri turn turunn;. menghitung integrl tk tentu dri fungsi ljr;.

Lebih terperinci

mengambil semua titik sample berupa titik ujung, yakni jumlah Riemann merupakan hampiran luas dari daerah dibawah kurva y = f (x) x i b x

mengambil semua titik sample berupa titik ujung, yakni jumlah Riemann merupakan hampiran luas dari daerah dibawah kurva y = f (x) x i b x B 4. Peerp Itegrl BAB 4. PENGGUNAAN INTEGRAL 4.. Lus re dtr Perhtik derh di wh kurv y = f () di tr du gris tegk = d = di ts sumu, deg f fugsi kotiu. Seperti pd s medefiisik itegrl tertetu, kit gi itervl

Lebih terperinci

matematika PEMINATAN Kelas X FUNGSI LOGARITMA K-13 A. Definisi Fungsi Logaritma

matematika PEMINATAN Kelas X FUNGSI LOGARITMA K-13 A. Definisi Fungsi Logaritma K-3 Kels mtemtik PEMINATAN FUNGSI LOGARITMA Tujun Pembeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi definisi fungsi logritm.. Dpt menggunkn konsep fungsi logritm dlm menyelesikn

Lebih terperinci

Erna Sri Hartatik. Aljabar Linear. Pertemuan 3 Aljabar Vektor (Perkalian vektor-lanjutan)

Erna Sri Hartatik. Aljabar Linear. Pertemuan 3 Aljabar Vektor (Perkalian vektor-lanjutan) Ern Sri Hrttik Aljr Liner Pertemun Aljr Vektor (Perklin vektor-lnjutn) Pemhsn Perklin Cross (Cross Product) - Model cross product - Sift cross product Pendhulun Selin dot product d fungsi perklin product

Lebih terperinci

INTEGRAL FOURIER KED. Diasumsikan syarat-syarat berikut pada f(x): 1. f x memenuhi syarat Dirichlet pada setiap interval terhingga L, L.

INTEGRAL FOURIER KED. Diasumsikan syarat-syarat berikut pada f(x): 1. f x memenuhi syarat Dirichlet pada setiap interval terhingga L, L. INTEGRAL FOURIER Disumsikn syrt-syrt berikut pd f(x):. f x memenuhi syrt Dirichlet pd setip intervl terhingg L, L.. f x dx konvergen, yitu f(x) dpt diintegrsikn secr mutlk dlm (, ). Selnjutny, Teorem integrl

Lebih terperinci

3 PANGKAT, AKAR, DAN LOGARITMA

3 PANGKAT, AKAR, DAN LOGARITMA PANGKAT, AKAR, DAN LOGARITMA.. Pngkt Pngkt dri seuh ilngn dlh sutu indeks ng menunjukkn nkn perklin ilngn ng sm secr eruntun. Notsi n errti hw hrus diklikn degn itu sendiri senk n kli. Notsi ilngn erpngkt

Lebih terperinci

PREDIKSI UJIAN NASIONAL TAHUN PELAJARAN

PREDIKSI UJIAN NASIONAL TAHUN PELAJARAN PREDIKSI UJIAN NASIONAL TAHUN PELAJARAN - Mt Peljrn Progrm : Mtemtik (MA) : IPA Petunjuk : Pilihlh slh stu jwn yng pling tept!. Dikethui: 5. Dikethui log = dn log = y. Nili log P : Hri tidk hujn tu Rudi

Lebih terperinci

E-LEARNING MATEMATIKA

E-LEARNING MATEMATIKA MODUL E-LEARNING E-LEARNING MATEMATIKA Oleh : NURYADIN EKO RAHARJO, M.PD. NIP. 9705 00 00 Penulisn Modul e Lerning ini diiyi oleh dn DIPA BLU UNY TA 00 Sesui dengn Surt Perjnjin Pelksnn e Lerning Nomor

Lebih terperinci

SOLUSI PREDIKSI UJIAN NASIONAL MATEMATIKA IPS 2015

SOLUSI PREDIKSI UJIAN NASIONAL MATEMATIKA IPS 2015 PAKET SOLUSI PREDIKSI UJIAN NASIONAL MATEMATIKA IPS. Sit: p q ~ p q Mthmn tidk eljr tu di dpt mengerjkn sol UN mtemtik dn lulus UN setr dengn perntn Jik Mthmn eljr mk di dpt mengerjkn sol UN mtemtik dn

Lebih terperinci

Parabola adalah tempat kedudukan titik-titik yang jaraknya ke satu titik tertentu sama dengan jaraknya ke sebuah garis tertentu (direktriks).

Parabola adalah tempat kedudukan titik-titik yang jaraknya ke satu titik tertentu sama dengan jaraknya ke sebuah garis tertentu (direktriks). Prol dlh tempt kedudukn titik-titik ng jrkn ke stu titik tertentu sm dengn jrkn ke seuh gris tertentu (direktriks). Persmn Prol 1. Persmn Prol dengn Punck O(,) Perhtikn gmr erikut ini! PARABOLA g A P(,

Lebih terperinci

VEKTOR. seperti AB, AB, a r, a, atau a.

VEKTOR. seperti AB, AB, a r, a, atau a. VEKTOR I. KOMPETENSI YANG DICAPAI Mhsisw dpt :. Menggmr vektor dengn sistem vektor stun.. Menghitung perklin vektor. 3. Menghitung penmhn vektor dengn turn segitig, turn rn genng, dn turn poligon. 4. Menghitung

Lebih terperinci

RANGKUMAN INTEGRAL. Di Susun Oleh : Syaiful Hamzah Nasution, S.Si., S.Pd.

RANGKUMAN INTEGRAL. Di Susun Oleh : Syaiful Hamzah Nasution, S.Si., S.Pd. Generted y Foxit PDF Cretor Foxit Softwre http://www.foxitsoftwre.om For evlution only. RANGKUMAN INTEGRAL Di Susun Oleh : Syiful Hmzh Nsution, S.Si., S.Pd. Di dukung oleh : Portl eduksi Indonesi Open

Lebih terperinci

DETERMINAN. Misalkan A adalah suatu matriks persegi. a) Jika A memiliki satu baris atau satu kolom bilangan nol, maka det(a) = 0.

DETERMINAN. Misalkan A adalah suatu matriks persegi. a) Jika A memiliki satu baris atau satu kolom bilangan nol, maka det(a) = 0. DETERMINAN Fungsi determinn dri sutu mtriks persegi A (dinotsikn dengn det(a) tu A ) didefinisikn sebgi jumlh dri semu hsil kli elementer bertnd dri A. Sementr, ngk tu bilngn dri det(a) disebut determinn

Lebih terperinci

3. LIMIT DAN KEKONTINUAN

3. LIMIT DAN KEKONTINUAN 3. LIMIT DAN KEKONTINUAN 1 3.1 Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi 1 1 Fungsi dits tidk terdeinisi di =1, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp

Lebih terperinci

PEMBAHASAN. A. Teorema Pythagoras 1. Luas persegi dan luas segitiga siku-siku Perhatikan Gambar 1! D. Gambar 1

PEMBAHASAN. A. Teorema Pythagoras 1. Luas persegi dan luas segitiga siku-siku Perhatikan Gambar 1! D. Gambar 1 PEMBAHASAN A. Teorem Pythgors 1. Lus persegi dn lus segitig siku-siku Perhtikn Gmr 1! D s A s B Gmr 1 Pd gmr terseut tmpk seuh persegi ABD yng pnjng sisiny s stun pnjng. Lus persegi ABD = sisi sisi L =

Lebih terperinci

MUH1G3/ MATRIKS DAN RUANG VEKTOR

MUH1G3/ MATRIKS DAN RUANG VEKTOR MUHG3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN 3 Sistem Persmn Liner Sistem Persmn Liner Su Pokok Bhsn Pendhulun Solusi SPL dengn OBE Solusi SPL dengn Invers mtriks dn Aturn Crmmer SPL Homogen Beerp Apliksi

Lebih terperinci

BAB VI. PENERAPAN INTEGRAL. kurva di bidang-xy dan andaikan f kontinu dan tak negatif pada selang [a, b]. Luas

BAB VI. PENERAPAN INTEGRAL. kurva di bidang-xy dan andaikan f kontinu dan tak negatif pada selang [a, b]. Luas 1 BAB VI. PENERAPAN INTEGRAL 6.1. Lus Derh Bidng Dtr Derh di ts sumu-. Andikn y = f() menentukn persmn seuh kurv di idng-y dn ndikn f kontinu dn tk negtif pd selng [, ]. Lus derh R yng ditsi oleh y = f(),

Lebih terperinci

Integral Tak Wajar. Ayundyah Kesumawati. March 25, Prodi Statistika FMIPA-UII

Integral Tak Wajar. Ayundyah Kesumawati. March 25, Prodi Statistika FMIPA-UII Kesumwti Prodi Sttistik FMIPA-UII Mrch 25, 205 Sutu integrl tertentu b f (x)dx () diktkn wjr jik i memenuhi du syrt berikut: i. Bts integrsi dn b merupkn bilngn berhingg ii. fungsi f (x) terbts pd intervl

Lebih terperinci

Bab 3 M M 3.1 PENDAHULUAN

Bab 3 M M 3.1 PENDAHULUAN B SISTEM PERSAMAAN LINEAR Pd gin ini kn dijelskn tentng sistem persmn liner (SPL) dn r menentukn solusiny. SPL nyk digunkn untuk memodelkn eerp mslh rel, mislny: mslh rngkin listrik, jringn komputer, model

Lebih terperinci

3. LIMIT DAN KEKONTINUAN

3. LIMIT DAN KEKONTINUAN . LIMIT DAN KEKONTINUAN . Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp nili jik mendekti

Lebih terperinci

BAB III METODE METODE DEFUZZYFIKASI

BAB III METODE METODE DEFUZZYFIKASI Fuy Logi Metode Metode Deuyiksi BAB III METODE METODE DEFUYFIKASI Seperti yng telh dihs dlm, hw untuk meruh kelurn uy menjdi nili risp mk diperlukn sutu proses yng leih dikenl dengn istilh deuyiksi Dlm

Lebih terperinci

BAB 3 SOLUSI NUMERIK SISTEM PERSAMAAN LINEAR

BAB 3 SOLUSI NUMERIK SISTEM PERSAMAAN LINEAR A SOLUSI NUMERIK SISTEM PERSAMAAN LINEAR. Metode Eliminsi Guss Tinu sistem persmn liner ng terdiri dri i ris dn peuh, kni,,,, erikut.......... i i i Jik =, sistem persmn linern diseut sistem homogen, sedngkn

Lebih terperinci