PROGRAM LINIER FUZZY PENUH DENGAN ALGORITMA MULTI OBJECTIVE LINEAR PROGRAMMING MENGGUNAKAN METODE LEVEL SUM

Ukuran: px
Mulai penontonan dengan halaman:

Download "PROGRAM LINIER FUZZY PENUH DENGAN ALGORITMA MULTI OBJECTIVE LINEAR PROGRAMMING MENGGUNAKAN METODE LEVEL SUM"

Transkripsi

1 PROGRAM LINIER FUZZY PENUH DENGAN ALGORITMA MULTI OBJECTIVE LINEAR PROGRAMMING MENGGUNAKAN METODE LEVEL SUM Yosifayza Septiai 1, Bambag Irawato 2, Susilo Hariyato 3 Departeme Matematika FSM Uiversitas Dipoegoro Jl. Prof. H. Soedarto, S. H. Tembalag Semarag yosifayzas@gmail.com, b_irawato.yahoo.co.id ABSTRACT. Fully Fuzzy Liear Programmig (FFLP) is oe form of fuzzy liear program that the decisio variables, limitig the mark, the objective fuctio coefficiets, the coefficiet costraits ad right had side costraits are fuzzy umbers. Fuzzy umbers used i FFLP is triagular fuzzy umbers.several methods have bee developed to solve FFLP oe method Kumar. This thesis explores the completio FFLP with multi-objective algorithm liear programmig (MOLP) ad compared with the method of Kumar. FFLP problem will be trasformed ito a problem MOLP with triagular fuzzy umbers ad the completed Level Sum Method. Keyword : Fully Fuzzy Liear Programmig, Triagular Fuzzy Number, Level Sum Method, Kumar Method. I. PENDAHULUAN. Titik petig dalam evolusi kosep moder ketidakpastia adalah publikasi paper oleh Lotfi A. Zadeh (1965), dalam makalahya Zadeh memperkealka teori yag objek -- fuzzy set - - dega set batas yag tidak pasti. keaggotaa dalam himpua fuzzy adalah buka soal peegasa atau peolaka, ya atau tidak, melaika soal derajat. Dalam perkembagaya pada bidag optimasi, sebuah permasalaha program liier umumya terdiri dari fugsi tujua da kedala-kedala yag diyataka oleh persamaa ataupu pertidaksamaa. Program liier merupaka suatu cara utuk memaksimalka atau memiimalka suatu fugsi tujua sehigga diperoleh hasil optimal, baik maksimum ataupu miimum. Dalam program liier terdapat salah satu asumsi dasar, yaitu asumsi kepastia (pedefiisia yag baik da tegas), dimaa setiap parameter data dalam program liier, yag terdiri dari koefisiekoefisie fugsi tujua, kostata-kostata sebelah kaa da koefisie-koefisie tekis, diketahui secara pasti. Program liier (tegas) dikembagka mejadi program liier kabur (Program Liier Fuzzy / FLP).

2 Dalam skripsi Muhammad Erva dibahas Masalah program liier fuzzy peuh (Fully Fuzzy Liear Programmig /FFLP) megguaka Algoritma Multi Objective Liear Programmig (MOLP) dega peyelesia megguaka Metode Leksigografi. Dalam peyusua tugas akhir ii aka dibahas proses peyelesaia masalah program liier fuzzy peuh (Fully Fuzzy Liear Programmig / FFLP) dega megguaka Algoritma Multi Objective Liear Programmig (MOLP). Dikataka program liier fuzzy peuh jika semua parameter da variabel merupaka bilaga fuzzy serta dikataka multi objective jika fugsi tujuaya lebih dari satu. Algoritma diguaka utuk medapatka peyelesaia dari FFLP dega megubah masalah FFLP mejadi setara masalah Multi Objective Liear Programmig da kemudia diselesaika dega Metode Level Sum. Pada akhir peyelesaia, himpua peyelesaia yag diharapka utuk masalah program liier fuzzy peuh adalah himpua bilaga triagular fuzzy positif yag diamaka solusi optimal fuzzy da aka diguaka utuk meghitug peyelesaia solusi optimal fugsi tujua fuzzy. II. 2.1 Bilaga Triagular fuzzy HASIL DAN PEMBAHASAN Bilaga triagular fuzzy adalah bilaga fuzzy dega fugsi keaggotaaya berbetuk segitiga. Defiisi-defiisi dasar pada bilaga triagular fuzzy da operasi aritmatika pada bilaga triagular fuzzy yaitu sebagai berikut: Defiisi 2.1 [3] Sebuah bilaga fuzzya adalah bilaga triagular fuzzy lambag dari (a 1, a 2, a 3 ) dimaa a 1, a 2, da a 3 adalah bilaga rill, dega a 1 < a 2 < a 3 da fugsi keaggotaa μ A (x) didefiisika sebagai berikut: x a 1 utuk a a 2 a 1 x a 2 1 μ A (x) = a 3 x utuk a a 3 a 2 x a 3 2 { 0 utuk yag laiya DegaF(R) himpua rill semua bilaga triagular fuzzy.

3 Defiisi 2.2 [1] Bilaga triagular fuzzy(a, b, c) dikataka bilaga fuzzy o-egatif jika a 0. Defiisi 2.3 [3] Diberika A =(a 1, a 2, a 3 ) da B =(b 1, b 2, b 3 ) berada didalam F(R), maka (i) A B = (a 1 + b 1, a 2 + b 2, a 3 + b 3 ). (ii) A B = (a 1 b 3, a 2 b 2, a 3 b 1 ). (iii) ka = (ka 1, ka 2, ka 3 ), utuk k 0. (iv) ka = (ka 3, ka 2, ka 1 ), utuk k < 0. (a 1 b 1, a 2 b 2, a 3 b 3 ), a 1 0, (v) A B = {(a 1 b 3, a 2 b 2, a 3 b 3 ), a 1 < 0, a 3 0, (a 1 b 3, a 2 b 2, a 3 b 1 ), a 3 < 0. Defiisi 2.4 [3] Diberika A = (a 1, a 2, a 3 ) da B = (b 1, b 2, b 3 ) berada di dalam F(R), maka (i) A B jika a i = b i, i = 1,2,3 ; (ii) A B jika a i b i, i = 1,2,3 da (iii) A B jika a i b i, i = 1,2,3. Defiisi 2.5 [3] Diberika A = (a 1, a 2, a 3 ) da B = (b 1, b 2, b 3 ) berada di dalam F(R), makaa B jika a i b i, i = 1,2,3 da a r > b r, utuk beberapa r {1,2,3}. Defiisi 2.6 [1] Fugsi rakig yag diguaka utuk megurutka bilaga triagular fuzzy didefiisika dega: degaa = (a, b, c), A F(R). R(A ) = a+2b+c 4 fugsi rakig (2.11) merupaka fugsi yag diguaka utuk megurutka bilaga triagular fuzzy pada program liier fuzzy sehigga berilai bilaga real da dapat dibadigka. 2.2 Program Liier Fuzzy Peuh Mejadi Masalah Multi Objective Liear Programmig Multiobjective optimizatio adalah metode optimasi dega beberapa fugsi tujua yag tuduk pada beberapa batasa. Solusi permasalaha ii diperoleh seperti peyelesaia optimasi dega satu fugsi tujua. Program liier Fuzzy yag terdiri dari Fuzzy peuh da Fuzzy tidak

4 peuh, utuk masalah Fuzzy tidak peuh tidak dapat diubah mejadi masalah program liier multi tujua (MOLP) karea pada Fuzzy tidak peuh x j adalah variabel keputusa berupa crisp buka Fuzzy, maka haya masalah Fuzzy peuh yag dapat diubah mejadi masalah program liier multi tujua (MOLP) dega tiga fugsi tujua. Berikut masalah FFLP mejadi masalah MOLP. Dikataka program liier Fuzzy peuh jika variabel (variabel keputusa da pembatas tada), koefisie fugsi tujua, koefisie kedala da ruas kaa kedala merupaka bilaga Fuzzy, dega formula: Memaksimalka / Memiimalka Z c T x dega kedala A x {,, }b, x 0, Dimaa a ij, c j, x j, b i F(R), utuk semua 1 j da 1 i m, c T = (c j) 1x, A = (a ij ) mx, x j = (x ij ) x1 da b = (b i) mx1. Di ubah mejadi betuk masalah MultiObjectie Liear Programmig (MOLP) mejadi berikut: (P) Memaksimalka / Memiimalka(z 1, z 2, z 3 ) j=1 (p j, q j, r j ) (x j, y j, t j ) dega kedala j=1 (a ij, b ij, c ij ) (x j, y j, t j ){,, }(b i, g i, h i ), utuk semua i = 1,2,, m da (x j, y j, t j ) 0, j = 1,2,, m. dega megguaka operasi aritmatika da hubugaparsial, masalah FFLP yag diberika dega masalah MOLP yag diberika dibawah ii: (M) Memaksimalka/Memiimalka z 1, = j=1 lower value dari ((p j, q j, r j ) (x j, y j, t j )) Memaksimalka/Memiimalka z 2, = j=1 middle value dari ((p j, q j, r j ) (x j, y j, t j )) Memaksimalka/Memiimalka z 3, = j=1 upper value dari ((p j, q j, r j ) (x j, y j, t j )) dega kedala j=1 lower value dari ((a ij, b ij, c ij ) (x j, y j, t j )) {, =, }b i,utuk semua i = 1,2,, m;

5 j=1 middle value dari ((a ij, b ij, c ij ) (x j, y j, t j )) {, =, }b i,utuk semua i = 1,2,, m ; j=1 upper value dari ((a ij, b ij, c ij ) (x j, y j, t j )) {, =, }b i,utuk semua i = 1,2,, m; z 2 z 1 ; z 3 z 2 ; x j y j, j = 1,2,, m; y j t j, j = 1,2,, m ; x j 0, j = 1,2,, m. Teorema 2.1[3] Diberika X = {x j, y j, t j ; j = 1,2,, m}yag merupaka solusi yag efisie utuk masalah (M), maka X = {(x j, y j, t j) ; j = 1,2,, m} adalah solusi optimal utuk masalah (P). Bukti : Misal, karea X = {(x j, y j, t j) ; j = 1,2,, m}adalah solusi efisie utuk masalah (M), X = {(x j, y j, t j) ; j = 1,2,, m} adalah solusi fisibel utuk masalah (P). Asumsika X = {(x j, y j, t j) ; j = 1,2,, m} tidak optimal utuk masalah (P). Maka, terdapat solusi fisibel X = {(x j, y j, t j ) ; j = 1,2,, m} laiya utuk masalah (P) sedemikia higgaz(x ) Z(X ) yaitu z i (x, y, t) z i (x, y, t ), i= 1,2,3 da z r (x, y, t) z r (x, y, t ), utuk beberapa r {1, 2, 3} dimaa x = {x j ; j = 1, 2,, m}, y = {y ; j = 1, 2,, m}, j t = {t j ; j = 1, 2,, m}, x = {x j ; j = 1,2,, m}, y = {y j ; j = 1,2,, m}, da t = {t j ; j = 1,2,, m}. Ii berarti bahwa X = {x j, y j, t j ; j = 1,2,, m} buka solusi efisie utuk masalah (M) yag merupaka kotradiksi. 2.4 Program Liier Fuzzy Peuh dega Bilaga Triagular Fuzzy Megguaka Metode Level Sum

6 Mecari solusi optimal dari program liier fuzzy peuh dega bilaga triagular fuzzy yag diberika megguaka metode Level Sum yag sudah di jelaska pada 2.3 maka sebagai berikut lagkah-lagkahya: 1. Memaksimalka/ memiimalka Z c T x dega kedala A x {,, }b, x 0, Dimaa a ij, c j, x j, b i F(R), utuk semua 1 j da 1 i m, c T = (c j) 1x, A = (a ij ) mx, x = (x j) x1 da b = (b i) mx1. 2. Jika diberika parameter z = (z 1, z 2, z 3 ), a ij = (a ij, b ij, c ij ), c j = (p j, q j, r j ), x j = (x j, y j, t j )da b i = (b i, g i, h i ), Maka lagkah 1 dapat ditulis sebagai masalah (P) seprti pada Permasalaha diubah mejadi masalah MOLP dibagi mejadi 3 bagia yaitu mejadimasalah (M) seperti pada 2,3. 4. Guaka metode Sum of Objective Jumlahka beberapa fugsi tujua mejadi sebagai berikut: Memaksimalka/ Memiimalka Z = (z 1 + z 2 + z 3 ) dega kedala seperti masalah (M) pada Selesaika lagkah 4 megguaka metode simpleks atau metode big m utuk meemuka x j, y j, da t j, dega, j = 1,2,, m. 6. Temuka solusi optimal fuzzy dega memasukka ilai x j, y j, t j,dega, j = 1,2,, m ke dalam x j = (x j, y j, t j ). 7. Subtitusi ilai x j = (x j, y j, t j ) ke dalam fugsi tujua j=1 c j x j. 8. Peegasa (defuzzificatio) ilai optimal fuzzy dega fugsi ragkigr(a ) = a+2b+c 4 Cotoh 1 Home Idustry Hagia Sofia memproduksi beberapa jeis baju muslim waita dewasa diataraya model terusa da model setela. Utuk memproduksi kedua jeis baju muslim tersebut dibutuhka beberapa jeis baha baku diataraya kai, beag, kai keras. Setiap satu

7 buah baju muslim model terusa membutuhka 3,2 yard kai pada model ormal, 2,8 yard kai pada model simple, da 3,6 yard kai pada model sulit, 1 buah beag pada model ormal, 1/2 beag pada model simple, da 2 beag pada model sulit, 1/2 kai keras beag pada model ormal, 0,1 kai keras pada model simple, da 1 kai keras pada model sulit. Setiap satu buah baju model setela membutuhka 4 yard kai pada model ormal, 3 yard kai pada model simple, da 5 yard kai pada model sulit, 1½ beag pada model ormal, 1 buah beag pada model simple da 2 buah beag pada model sulit, 0.9 kai keras pada model ormal, 0,5 kai keras pada model simple da 1,5 kai keras pada model sulit. Akibat berbagai macam model baju tidak meetu baha baku yag disediaka utuk diolah pu dapat berubah-ubah, dega jumlah kai 4050 yard da dapat megalami keaika tidak perah mecapai 4500 yard da megalami peurua tidak perah mecapai 3150 yard. Beag 1350 buah, megalami keaika tidak perah mecapai 1800 buah, megalami peurua tidak perah mecapai 900 buah. Kai keras 810 yard, megalami keaika tidak perah mecapai 1000 yard, megalami peurua tidak perah mecapai 450 yard. Produk tersebut dikerjaka melalui 3 proses pegerjaa, yaitu Proses I adalah pemotoga kai, Proses II adalah pejahita, Proses III adalah pegemasa (fiishig). Utuk membuat baju muslim model terusa dibutuhka 7 jam pada Proses I, 7 jam pada Proses II, 9 jam pada Proses III. Berbeda dega baju muslim model setela dibutuhka 5 jam pada Proses I, 9 jam pada Proses II, 13 jam pada Proses III. Jumlah karyawa pada Proses I sebayak 2 orag, pada Proses II sebayak 10 orag, pada Proses III sebayak 3 orag. Para karyawa bekerja 10 jam. Jika pasar sepi para karyawa bekerja kurag dari 10 jam tetapi tidak perah mecapai 6 jam da jika pasar ramai tidak perah mecapai 12 jam sehari. Da bekerja selama 6 hari kerja dalam satu miggu. Keutuga tiap baju muslim model terusa adalah Rp ,00 sedagka model setela Rp ,00 saat pasar sedag, sedagka saat pasar sepi keutuga mejadi meuru tetapi tidak perah mecapai Rp ,00 utuk model terusa da Rp ,00 utuk model setela. Saat pasar ramai keutuga pu bertambah tetapi tidak perah mecapai Rp ,00 utuk model terusa da Rp ,00 utuk model setela. Tabel Tabulasi Data pada Home Idustry Hagia Sofia Baha Baku Produk Kapasitas

8 I Model Terusa II Model Setela (miggu) Kai (yard) 2.8, 3.2, 3.6 3,4,5 3150,4050,4500 Beag (buah) 0.5, 1, 2 1, 1.5, 2 900, 1350, 1800 Kai keras (yard) 0.1, 0.5, 1 0.5, 0.9, , 810, 1000 Proses I (jam) 4, 7, 8 6, 7.5, 8 72,120,144 Proses II (jam) 5, 7, 10 6, 9, ,600,720 Proses III (jam) 7.5, 9, 11 8, 13, ,180,216 Keutuga per pcs Keutuga mi per pcs Keutuga maks per pcs Variabel Keputusa : x 1 : jumlah produk I (model terusa) yag dibuat dalam pcs x 2 : jumlah produk II (model setela) yag dibuat dalam pcs Kasus tersebut dapat diformulasika sebagai berikut: Memaksimalka Z = (16000,21000,25000)x 1 + (20000,25000,30000)x 2 Dega kedala (2.8, 3.2, 3.6)x 1 + (3, 4, 5)x 2 (3150, 4050, 4500), (0.5,1, 2)x 1 + (1,1.5,2)x 2 (900,1350,1800), (0.1, 0.5,1)x 1 + (0.5,0.9,1.5)x 2 (450,810,1000), (4,7,8)x 1 + (6,7.5,8)x 2 (72,120,144), (5,7,10)x 1 + (6,9,11)x 2 (360,600,720), (7.5,9,11)x 1 + (8,13,15)x 2 (108,180,216),

9 x 1, x 2adalahbilaga triagular fuzzy o-egatif. Peyelesaia : Diperoleh dega metode Level Sum x 1 = (x 1, y 1, t 1 ) = (5.5385, , 13.5) da x 2 = (x 2, y 2, t 2 ) = (8.3077, , 4.5) z = (254770, , ) dega ilai crisp Z level sum = Jadi, keutuga maksimum yag bisa didapat oleh home idustry Hagia Sofia dalam memproduksi baju muslim waita adalah sebesar , dalam ribua rupiah yaitu Rp ,6 per migguya dega jumlah baju model terusa yag harus diproduksi sebayak pcs 37 pcs da jumlah baju model setela yag harus diproduksi sebayak pcs 29 pcs. III. KESIMPULAN Masalah program liier fuzzy peuh (FFLP) dapat diselesaika dega megguaka algoritma Multi Objective Liier Programmig (MOLP) kemudia diselesaika dega metode level Sum pada bilaga triagular fuzzy, algoritma ii diguaka utuk memecahka masalah program liier fuzzy peuh (FFLP) dega cara megubah masalah FFLP mejadi setara dega masalah MOLP da kemudia diselesaika dega metode Level Sum. Pada cotoh soal simulasi I peyelesaia masalah FFLP dega megguaka algoritma Multi Objective Liier Programmig (MOLP) Level Sum meghasilka solusi optimal fuzzy lebih optimal dibadigka peyelesaia masalah FFLP megguaka metode Kumar, karea meghasilka ilai solusi optimal da himpua tegas yag lebih besar dibadigka dega megguaka metode Kumar. IV. DAFTAR PUSTAKA [1] Kumar, Amit, Jagdeep Kaur da Pushpider Sigh Applied Mathematical Modellig. A New Method for Solvig Fully Fuzzy Liear Programmig Problems,35: [2] N. Mahdavi Amiri, S. H. Nasheri, A. Yazdi Fuzzy Primal Simplek Algorithms for Solvig Fuzzy Liear Programmig Problems. Iraia Joural of Operatio Research. Vol. 1, No. 2. PP

10 [3] Padia. P Multi-Objective Programmig Approach for Fuzzy Liear Problem. Joural Vol. 7, No. 37, PP

PENYELESAIAN PROGRAM LINIER VARIABEL FUZZY TRIANGULAR MENGGUNAKAN METODE DEKOMPOSISI DAN METODE SIMPLEKS

PENYELESAIAN PROGRAM LINIER VARIABEL FUZZY TRIANGULAR MENGGUNAKAN METODE DEKOMPOSISI DAN METODE SIMPLEKS PENYELESAIAN PROGRAM LINIER VARIABEL FUZZY TRIANGULAR MENGGUNAKAN METODE DEKOMPOSISI DAN METODE SIMPLEKS Nada Puspitasari 1, Bambag Irawato, S.Si, M.Si 2, Prof. Dr. Widowati, M.Si 3 Program Studi Matematika

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Bicriteria Liear Programmig (BLP) Pesoala optimisasi dega beberapa fugsi tujua memperhitugka beberapa tujua yag koflik secara simulta, secara umum Multi objective programmig (MOP)

Lebih terperinci

METODE MEHAR UNTUK SOLUSI OPTIMAL FUZZY DAN ANALISA SENSITIVITAS PROGRAM LINIER DENGAN VARIABEL FUZZY BILANGAN TRIANGULAR

METODE MEHAR UNTUK SOLUSI OPTIMAL FUZZY DAN ANALISA SENSITIVITAS PROGRAM LINIER DENGAN VARIABEL FUZZY BILANGAN TRIANGULAR METODE MEHAR UNTUK SOLUSI OPTIMAL FUZZY DAN ANALISA SENSITIVITAS PROGRAM LINIER DENGAN VARIABEL FUZZY BILANGAN TRIANGULAR Marlia Ulfa 1, Bambag Irawato 2, Suarsih 3 1,2,3 Program Studi Matematika, Fakultas

Lebih terperinci

PENYELESAIAN MASALAH PROGRAM LINIER FUZZY DENGAN BILANGAN FUZZY LINEAR REAL MENGGUNAKAN METODE SABIHA

PENYELESAIAN MASALAH PROGRAM LINIER FUZZY DENGAN BILANGAN FUZZY LINEAR REAL MENGGUNAKAN METODE SABIHA PENYELESAIAN MASALAH PROGRAM LINIER FUZZY DENGAN BILANGAN FUZZY LINEAR REAL MENGGUNAKAN METODE SABIHA Eky Pawestri Gita Asmara 1, Bambag Irawato, S.Si, M.Si 2, Lucia Ratasari, S.Si, M.Si Departeme Matematika

Lebih terperinci

BAB III PEMBAHASAN. Pada BAB III ini akan dibahas mengenai bentuk program linear fuzzy

BAB III PEMBAHASAN. Pada BAB III ini akan dibahas mengenai bentuk program linear fuzzy BAB III PEMBAHASAN Pada BAB III ii aka dibahas megeai betuk program liear fuzzy dega koefisie tekis kedala berbetuk bilaga fuzzy da pembahasa peyelesaia masalah optimasi studi kasus pada UD FIRDAUS Magelag

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Program liier Program liier adalah suatu tekik peyelesaia optimal atas suatu problema keputusa dega cara meetuka terlebih dahulu fugsi tujua (memaksimalka atau memiimalka) da kedala-kedala

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Bab ii berisi teori-teori yag meladasi pembahasa dalam tugas akhir ii, yag terdiri fugsi liear, persamaa da pertidaksamaa liear, pemrograma liear, bilaga iterval, karakteristik dari

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Variabel-variabel yang digunakan pada penelitian ini adalah:

BAB III METODOLOGI PENELITIAN. Variabel-variabel yang digunakan pada penelitian ini adalah: BAB III METODOLOGI PENELITIAN 3. Variabel da Defiisi Operasioal Variabel-variabel yag diguaka pada peelitia ii adalah: a. Teaga kerja, yaitu kotribusi terhadap aktivitas produksi yag diberika oleh para

Lebih terperinci

PROGRAM LINIER FUZZY PENUH DENGAN ALGORITMA MULTI OBJECTIVE LINEAR PROGRAMMING. Jl. Prof. H. Soedarto, S.H. Tembalang Semarang

PROGRAM LINIER FUZZY PENUH DENGAN ALGORITMA MULTI OBJECTIVE LINEAR PROGRAMMING. Jl. Prof. H. Soedarto, S.H. Tembalang Semarang PROGRAM LINIER FUZZY PENUH DENGAN ALGORITMA MULTI OBJECTIVE LINEAR PROGRAMMING Mohamad Ervan S 1, Bambang Irawanto 2, Sunarsih 1,2,3 Jurusan Matematika FSM Universitas Diponegoro Jl. Prof. H. Soedarto,

Lebih terperinci

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3 BAB XII. SUKU BANYAK A = a Pegertia: f(x) = a x + a x + a x + + a x +a adalah suku bayak (poliom) dega : - a, a, a,.,a, a, a 0 adalah koefisiekoefisie suku bayak yag merupaka kostata real dega a 0 - a

Lebih terperinci

PERTEMUAN 13. VEKTOR dalam R 3

PERTEMUAN 13. VEKTOR dalam R 3 PERTEMUAN VEKTOR dalam R Pegertia Ruag Vektor Defiisi R Jika adalah sebuah bilaga bulat positif, maka tupel - - terorde (ordered--tuple) adalah sebuah uruta bilaga riil ( a ),a,..., a. Semua tupel - -terorde

Lebih terperinci

Distribusi Pendekatan (Limiting Distributions)

Distribusi Pendekatan (Limiting Distributions) Distribusi Pedekata (Limitig Distributios) Ada 3 tekik utuk meetuka distribusi pedekata: 1. Tekik Fugsi Distribusi Cotoh 2. Tekik Fugsi Pembagkit Mome Cotoh 3. Tekik Teorema Limit Pusat Cotoh Fitriai Agustia,

Lebih terperinci

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi 6. Pecacaha Lajut Relasi Rekuresi Relasi rekuresi utuk dereta {a } adalah persamaa yag meyataka a kedalam satu atau lebih suku sebelumya, yaitu a 0, a,, a -, utuk seluruh bilaga bulat, dega 0, dimaa 0

Lebih terperinci

MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR. Dosen Pengampu : Darmadi, S.Si, M.Pd

MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR. Dosen Pengampu : Darmadi, S.Si, M.Pd MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR Dose Pegampu : Darmadi, S.Si, M.Pd Disusu : Kelas 5A / Kelompok 5 : Dia Dwi Rahayu (084. 06) Hefetamala (084. 4) Khoiril Haafi (084. 70) Liaatul Nihayah (084. 74)

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakag Dalam duia iformatika, assigmet Problem yag biasa dibetuk dega matriks berbobot merupaka salah satu masalah terbesar, dimaa masalah ii merupaka masalah yag metode peyelesaiaya

Lebih terperinci

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian BAB I PENDAHULUAN A. Latar Belakag Masalah Matematika merupaka suatu ilmu yag mempuyai obyek kajia abstrak, uiversal, medasari perkembaga tekologi moder, da mempuyai pera petig dalam berbagai disipli,

Lebih terperinci

Laboratorium Ilmu dan Rekayasa Komputasi Departemen Teknik Informatika, Institut Teknologi Bandung Jl. Ganesha 10, Bandung

Laboratorium Ilmu dan Rekayasa Komputasi Departemen Teknik Informatika, Institut Teknologi Bandung Jl. Ganesha 10, Bandung Eksplorasi Algoritma Mass, Profit,, Profit / Mass, atau Profit / utuk Persoala Iteger Kapsack yag Bedaya Berupa Zat Kimia dega Jeisya Terdefiisi Abstrak Riyai Mardikaigrum 1, Nurshati 2, Vaia Karimah 3

Lebih terperinci

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3 SUKU BANYAK A Pegertia: f(x) x + a 1 x 1 + a 2 x 2 + + a 2 +a 1 adalah suku bayak (poliom) dega : - a, a 1, a 2,.,a 2, a 1, a 0 adalah koefisiekoefisie suku bayak yag merupaka kostata real dega a 0 - a

Lebih terperinci

I. DERET TAKHINGGA, DERET PANGKAT

I. DERET TAKHINGGA, DERET PANGKAT I. DERET TAKHINGGA, DERET PANGKAT. Pedahulua Pembahasa tetag deret takhigga sebagai betuk pejumlaha suku-suku takhigga memegag peraa petig dalam fisika. Pada bab ii aka dibahas megeai pegertia deret da

Lebih terperinci

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR Nur Aei Prodi Matematika, FST-UINAM uraeiatullah@gmail.com Ifo: Jural MSA Vol. 3 No. 2 Edisi: Juli Desember

Lebih terperinci

Balas Additive Algorithm, Algoritma Branch & Bound untuk Binary Integer Programming

Balas Additive Algorithm, Algoritma Branch & Bound untuk Binary Integer Programming Balas Additive Algorithm, Algoritma Brach & Boud utuk Biary Iteger Programmig Aditio Pagestu 13514030 Program Studi Tekik Iformatika Sekolah Tekik Elektro da Iformatika Istitut Tekologi Badug, Jl. Gaesha

Lebih terperinci

Contoh Produksi dua jenis sepatu A dan B memberikan fungsi keuntungan bulanan sebagai berikut :

Contoh Produksi dua jenis sepatu A dan B memberikan fungsi keuntungan bulanan sebagai berikut : I. OPTIMISASI FUNGSI TANPA KENDALA Utuk fugsi dua peubah ) f ag terdiferesial dua kali. Jika di titik ) P dipeuhi :. sarat stasioer)... > maka mecapai ekstrim di ) P. Jika : ekstrim maksimum mecapai maka

Lebih terperinci

Bab 3 Metode Interpolasi

Bab 3 Metode Interpolasi Baha Kuliah 03 Bab 3 Metode Iterpolasi Pedahulua Iterpolasi serig diartika sebagai mecari ilai variabel tergatug tertetu, misalya y, pada ilai variabel bebas, misalya, diatara dua atau lebih ilai yag diketahui

Lebih terperinci

APLIKASI FUZZY LINEAR PROGRAMMING UNTUK MENGOPTIMALKAN PRODUKSI LAMPU (Studi Kasus di PT. Sinar Terang Abadi )

APLIKASI FUZZY LINEAR PROGRAMMING UNTUK MENGOPTIMALKAN PRODUKSI LAMPU (Studi Kasus di PT. Sinar Terang Abadi ) APLIKASI FUZZY LINEAR PROGRAMMING UNTUK MENGOPTIMALKAN PRODUKSI LAMPU (Studi Kasus di PT. Siar Terag Abadi ) Nama Mahasiswa : Bagus Suryo Adi Utomo NRP : 203 09 00 Jurusa : Matematika Dose Pembimbig :

Lebih terperinci

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR Nur Aei Prodi Matematika, FST-UINAM uraeiatullah@gmail.com Ifo: Jural MSA Vol. 3 No. 2 Edisi: Juli Desember

Lebih terperinci

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya 5 BAB II LANDASAN TEORI Dalam tugas akhir ii aka dibahas megeai peaksira besarya koefisie korelasi atara dua variabel radom kotiu jika data yag teramati berupa data kategorik yag terbetuk dari kedua variabel

Lebih terperinci

BAB II LANDASAN TEORI. matematika secara numerik dan menggunakan alat bantu komputer, yaitu:

BAB II LANDASAN TEORI. matematika secara numerik dan menggunakan alat bantu komputer, yaitu: 4 BAB II LANDASAN TEORI 2.1 Model matematis da tahapa matematis Secara umum tahapa yag harus ditempuh dalam meyelesaika masalah matematika secara umerik da megguaka alat batu komputer, yaitu: 2.1.1 Tahap

Lebih terperinci

BAB I PENDAHULUAN. Integral adalah salah satu konsep penting dalam Matematika yang

BAB I PENDAHULUAN. Integral adalah salah satu konsep penting dalam Matematika yang BAB I PENDAHULUAN 1.1 Latar Belakag Masalah Itegral adalah salah satu kosep petig dalam Matematika yag dikemukaka pertama kali oleh Isac Newto da Gottfried Wilhelm Leibiz pada akhir abad ke-17. Selajutya

Lebih terperinci

Persamaan Non-Linear

Persamaan Non-Linear Persamaa No-Liear Peyelesaia persamaa o-liear adalah meghitug akar suatu persamaa o-liear dega satu variabel,, atau secara umum dituliska : = 0 Cotoh: 2 5. 5 4 9 2 0 2 5 5 4 9 2 2. 2 0 2 5. e 0 Metode

Lebih terperinci

PROGRAM LINIER FUZZY PENUH DENGAN METODE KUMAR. Jl. Prof. H. Soedarto, S.H. Tembalang Semarang

PROGRAM LINIER FUZZY PENUH DENGAN METODE KUMAR. Jl. Prof. H. Soedarto, S.H. Tembalang Semarang PROGRAM LINIER FUZZY PENUH DENGAN METODE KUMAR Shintia Devi Wahyudy 1, Bambang Irawanto 2, 1,2 Jurusan Matematika FSM Universitas Diponegoro Jl Prof H Soedarto, SH Tembalang Semarang 1 Shintiadevi15@gmailcom,

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 1, 41-48, April 2003, ISSN : MATRIKS STOKASTIK GANDA DAN SIFAT-SIFATNYA

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 1, 41-48, April 2003, ISSN : MATRIKS STOKASTIK GANDA DAN SIFAT-SIFATNYA JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No., 4-48, April 00, ISSN : 40-858 MATRIKS STOKASTIK GANDA DAN SIFAT-SIFATNYA Suryoto Jurusa Matematika F-MIPA Uiversas Dipoegoro Semarag Abstrak Suatu matriks tak

Lebih terperinci

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL Defiisi Persamaa diferesial adalah persamaa yag melibatka variabelvariabel tak bebas da derivatif-derivatifya terhadap variabel-variabel bebas. Berikut ii adalah

Lebih terperinci

Kompleksitas Waktu untuk Algoritma Rekursif. ZK Abdurahman Baizal

Kompleksitas Waktu untuk Algoritma Rekursif. ZK Abdurahman Baizal Kompleksitas Waktu utuk Algoritma Rekursif ZK Abdurahma Baizal Algoritma Rekursif Betuk rekursif : suatu subruti/fugsi/ prosedur yag memaggil diriya sediri. Betuk dimaa pemaggila subruti terdapat dalam

Lebih terperinci

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan REGRESI LINIER DAN KORELASI Variabel dibedaka dalam dua jeis dalam aalisis regresi: Variabel bebas atau variabel prediktor -> variabel yag mudah didapat atau tersedia. Dapat diyataka dega X 1, X,, X k

Lebih terperinci

Secara umum, suatu barisan dapat dinyatakan sebagai susunan terurut dari bilangan-bilangan real:

Secara umum, suatu barisan dapat dinyatakan sebagai susunan terurut dari bilangan-bilangan real: BARISAN TAK HINGGA Secara umum, suatu barisa dapat diyataka sebagai susua terurut dari bilaga-bilaga real: u 1, u 2, u 3, Barisa tak higga merupaka suatu fugsi dega domai berupa himpua bilaga bulat positif

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Optimasi 2.1.1. Pegertia Optimasi Optimasi (Optimizatio) adalah aktivitas utuk medapatka hasil terbaik di bawah keadaa yag diberika. Tujua akhir dari semua aktivitas tersebut

Lebih terperinci

BAB VII RANDOM VARIATE DISTRIBUSI DISKRET

BAB VII RANDOM VARIATE DISTRIBUSI DISKRET BAB VII RANDOM VARIATE DISTRIBUSI DISKRET Diskret radom variabel dapat diguaka utuk berbagai radom umber yag diambil dalam betuk iteger. Pola kebutuha ivetori (persediaa) merupaka cotoh yag serig diguaka

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2016/2017 3 Februari 2017 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg Batas

Lebih terperinci

1 Persamaan rekursif linier non homogen koefisien konstan tingkat satu

1 Persamaan rekursif linier non homogen koefisien konstan tingkat satu Secara umum persamaa rekursif liier tigkat-k bisa dituliska dalam betuk: dega C 0 0. C 0 x + C 1 x 1 + C 2 x 2 + + C k x k = b, Jika b = 0 maka persamaa rekursif tersebut diamaka persamaa rekursif liier

Lebih terperinci

B a b 1 I s y a r a t

B a b 1 I s y a r a t 34 TKE 315 ISYARAT DAN SISTEM B a b 1 I s y a r a t (bagia 3) Idah Susilawati, S.T., M.Eg. Program Studi Tekik Elektro Fakultas Tekik da Ilmu Komputer Uiversitas Mercu Buaa Yogyakarta 29 35 1.5.2. Isyarat

Lebih terperinci

III PEMBAHASAN. λ = 0. Ly = 0, maka solusi umum dari persamaan diferensial (3.3) adalah

III PEMBAHASAN. λ = 0. Ly = 0, maka solusi umum dari persamaan diferensial (3.3) adalah III PEMBAHASAN Pada bagia ii aka diformulasika masalah yag aka dibahas. Solusi masalah aka diselesaika dega Metode Dekomposisi Adomia. Selajutya metode ii aka diguaka utuk meyelesaika model yag diyataka

Lebih terperinci

Hendra Gunawan. 12 Februari 2014

Hendra Gunawan. 12 Februari 2014 MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2013/2014 12 Februari 2014 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 82 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakag Dalam keadaa dimaa meghadapi persoala program liier yag besar, maka aka berusaha utuk mecari peyelesaia optimal dega megguaka algoritma komputasi, seperti algoritma

Lebih terperinci

OPTIMASI PRODUKSI TAS MENGGUNAKAN ALGORITMA FUZZY LINIER PROGRAMMING (STUDI KASUS: UKM.CANTIK SAUVENIR)

OPTIMASI PRODUKSI TAS MENGGUNAKAN ALGORITMA FUZZY LINIER PROGRAMMING (STUDI KASUS: UKM.CANTIK SAUVENIR) Semiar NasioalTekologiIformasi 2015 OPTIMASI PRODUKSI TAS MENGGUNAKAN ALGORITMA FUZZY LINIER PROGRAMMING (STUDI KASUS: UKM.CANTIK SAUVENIR) YS. Palguadi 1) Lia Primadai 2) 1) Iformatika, FMIPA Uiversitas

Lebih terperinci

MATEMATIKA DISKRIT FUNGSI

MATEMATIKA DISKRIT FUNGSI 1 MATEMATIKA DISKRIT FUNGSI Fugsi Misalka A da B himpua. Relasi bier f dari A ke B merupaka suatu fugsi jika setiap eleme di dalam A dihubugka dega tepat satu eleme di dalam B. Jika f adalah fugsi dari

Lebih terperinci

Soal dan Pembahasan. Ujian Nasional Matematika Teknik SMK matematikamenyenangkan.com

Soal dan Pembahasan. Ujian Nasional Matematika Teknik SMK matematikamenyenangkan.com Soal da Pembahasa jia Nasioal 06 Matematika Tekik SMK matematikameyeagka.com . pqr Betuk sederhaa dari p q r A. p 8 q r adalah... B. p q 0 r 0 D. p q 0 r 0 C. p 8 q r 0 E. p 6 q r Igat rumus berikut m

Lebih terperinci

PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT

PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT Prosidig Semiar Nasioal Matematika da Terapaya 06 p-issn : 0-0384; e-issn : 0-039 PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT Liatus

Lebih terperinci

Metode Beda Hingga dan Teorema Newton untuk Menentukan Jumlah Deret. Finite Difference Method and Newton's Theorem to Determine the Sum of Series

Metode Beda Hingga dan Teorema Newton untuk Menentukan Jumlah Deret. Finite Difference Method and Newton's Theorem to Determine the Sum of Series Jural ILM DASAR, Vol, No, Juli : 9-98 9 Metode Beda Higga da Teorema Newto utuk Meetuka Jumlah Deret Fiite Differece Method ad Newto's Theorem to Determie the Sum of Series Tri Mulyai,*), Moh Hasa ), Slami

Lebih terperinci

METODE TRANSFORMASI ELZAKI DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL BIASA LINEAR ORDE-N DENGAN KOEFISIEN KONSTANTA. Mahasiswa Program S1 Matematika 2

METODE TRANSFORMASI ELZAKI DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL BIASA LINEAR ORDE-N DENGAN KOEFISIEN KONSTANTA. Mahasiswa Program S1 Matematika 2 METODE TRANSFORMASI ELZAKI DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL BIASA LINEAR ORDE-N DENGAN KOEFISIEN KONSTANTA Roki Nuari *, Aziskha, Edag Lily Mahasiswa Program S Maemaika Dose Jurusa Maemaika Fakulas

Lebih terperinci

Fungsi. Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B.

Fungsi. Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B. Fugsi Misalka A da B himpua. Relasi bier f dari A ke B merupaka suatu fugsi jika setiap eleme di dalam A dihubugka dega tepat satu eleme di dalam B. Jika f adalah fugsi dari A ke B kita meuliska f : A

Lebih terperinci

Penyelesaian Persamaan Non Linier

Penyelesaian Persamaan Non Linier Peyelesaia Persamaa No Liier Metode Iterasi Sederhaa Metode Newto Raphso Permasalaha Titik Kritis pada Newto Raphso Metode Secat Metode Numerik Iterasi/NewtoRaphso/Secat - Metode Iterasi Sederhaa- Metode

Lebih terperinci

2 BARISAN BILANGAN REAL

2 BARISAN BILANGAN REAL 2 BARISAN BILANGAN REAL Di sekolah meegah barisa diperkealka sebagai kumpula bilaga yag disusu meurut "pola" tertetu, misalya barisa aritmatika da barisa geometri. Biasaya barisa da deret merupaka satu

Lebih terperinci

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4 Program Studi : Tekik Iformatika Miggu ke : 4 INDUKSI MATEMATIKA Hampir semua rumus da hukum yag berlaku tidak tercipta dega begitu saja sehigga diraguka kebearaya. Biasaya, rumus-rumus dapat dibuktika

Lebih terperinci

Batas Bilangan Ajaib Pada Graph Caterpillar

Batas Bilangan Ajaib Pada Graph Caterpillar J. Math. ad Its Appl. ISSN: 189-605X Vol. 3, No., Nov 006, 49 56 Batas Bilaga Ajaib Pada Graph Caterpillar Chairul Imro Jurusa Matematika FMIPA ITS Surabaya imro-its@matematika.its.ac.id Abstrak Jika suatu

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Distribusi Ekspoesial Fugsi ekspoesial adalah salah satu fugsi yag palig petig dalam matematika. Biasaya, fugsi ii ditulis dega otasi exp(x) atau e x, di maa e adalah basis logaritma

Lebih terperinci

PENGARUH VARIASI PELUANG CROSSOVER DAN MUTASI DALAM ALGORITMA GENETIKA UNTUK MENYELESAIKAN MASALAH KNAPSACK. Sutikno

PENGARUH VARIASI PELUANG CROSSOVER DAN MUTASI DALAM ALGORITMA GENETIKA UNTUK MENYELESAIKAN MASALAH KNAPSACK. Sutikno sutiko PENGARUH VARIASI PELUANG CROSSOVER DAN MUTASI DALAM ALGORITMA GENETIKA UNTUK MENYELESAIKAN MASALAH KNAPSACK Sutiko Program Studi Tekik Iformatika Fakultas Sais da Matematika UNDIP tik@udip.ac.id

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Aalisis Regresi Istilah regresi pertama kali diperkealka oleh seorag ahli yag berama Facis Galto pada tahu 1886. Meurut Galto, aalisis regresi berkeaa dega studi ketergatuga dari suatu

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang. Universitas Sumatera Utara

BAB I PENDAHULUAN. 1.1 Latar Belakang. Universitas Sumatera Utara BAB I PENDAHULUAN 1.1 Latar Belakag Salah satu pera da fugsi statistik dalam ilmu pegetahua adalah sebagai. alat aalisis da iterpretasi data kuatitatif ilmu pegetahua, sehigga didapatka suatu kesimpula

Lebih terperinci

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n LIMIT 4.. FUNGSI LIMIT Defiisi 4.. A R Titik c R adalah titik limit dari A, jika utuk setiap δ > 0 ada palig sedikit satu titik di A, c sedemikia sehigga c < δ. Defiisi diatas dapat disimpulka dega cara

Lebih terperinci

Bab 2 LANDASAN TEORI

Bab 2 LANDASAN TEORI 14 Bab 2 LANDASAN TEORI 21 Program Liier Programasi Liier (Liear Pogrammig) merupaka suatu model optimasi persamaa liier berkeaa dega kedala-kedala liier yag dihadapiya Model ii dikembagka oleh George

Lebih terperinci

I. PENDAHULUAN II. LANDASAN TEORI

I. PENDAHULUAN II. LANDASAN TEORI I PENDAHULUAN 1 Latar belakag Model pertumbuha Solow-Swa (the Solow-Swa growth model) atau disebut juga model eoklasik (the eo-classical model) pertama kali dikembagka pada tahu 195 oleh Robert Solow da

Lebih terperinci

BAB III PROGRAMA LINIER

BAB III PROGRAMA LINIER BAB III PROGRAMA LINIER 31 Searah Sigkat Programa Liier Meurut George B Datzig yag serig disebut Bapak Liear Programmig, di dalam bukuya : Liear Programmig ad Extesio, meyebutka, bahwa ide dari pada liear

Lebih terperinci

Pengenalan Pola. Regresi Linier

Pengenalan Pola. Regresi Linier Pegeala Pola Regresi Liier PTIIK - 014 Course Cotets 1 Defiisi Regresi Liier Model Regresi Liear 3 Estimasi Regresi Liear 4 Studi Kasus da Latiha Defiisi Regresi Liier Regresi adalah membagu model utuk

Lebih terperinci

BAB II LANDASAN TEORI. Pada bagian ini akan dibahas tentang teori-teori dasar yang. digunakan untuk dalam mengestimasi parameter model.

BAB II LANDASAN TEORI. Pada bagian ini akan dibahas tentang teori-teori dasar yang. digunakan untuk dalam mengestimasi parameter model. BAB II LANDASAN TEORI Pada bagia ii aka dibahas tetag teori-teori dasar yag diguaka utuk dalam megestimasi parameter model.. MATRIKS DAN VEKTOR Defiisi : Trace dari matriks bujur sagkar A a adalah pejumlaha

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Permasalahan

BAB I PENDAHULUAN Latar Belakang Permasalahan BAB I PENDAHULUAN 1.1. Latar Belakag Permasalaha Matematika merupaka Quee ad servat of sciece (ratu da pelaya ilmu pegetahua). Matematika dikataka sebagai ratu karea pada perkembagaya tidak tergatug pada

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Vehicle Routig Problem Vehicle routig problem memiliki peraa pokok dalam maajeme logistik. Vehicle routig problem berpera dalam meracag rute yag optimal yag diguaka oleh sejumlah

Lebih terperinci

STUDI PERBANDINGAN PERFORMANCE ALGORITMA HEURISTIK POUR TERHADAP MIXED INTEGER PROGRAMMING DALAM MENYELESAIKAN PENJADWALAN FLOWSHOP

STUDI PERBANDINGAN PERFORMANCE ALGORITMA HEURISTIK POUR TERHADAP MIXED INTEGER PROGRAMMING DALAM MENYELESAIKAN PENJADWALAN FLOWSHOP STUDI PERBANDINGAN PERFORMANCE ALGORITMA HEURISTIK POUR TERHADAP. (Tessa Vaia Soetato, et al.) STUDI PERBANDINGAN PERFORMANCE ALGORITMA HEURISTIK POUR TERHADAP MIXED INTEGER PROGRAMMING DALAM MENYELESAIKAN

Lebih terperinci

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL BAB VIII MASAAH ESTIMASI SAT DAN DA SAMPE 8.1 Statistik iferesial Statistik iferesial suatu metode megambil kesimpula dari suatu populasi. Ada dua pedekata yag diguaka dalam statistik iferesial. Pertama,

Lebih terperinci

Deret Fourier. Modul 1 PENDAHULUAN

Deret Fourier. Modul 1 PENDAHULUAN Modul Deret Fourier Prof. Dr. Bambag Soedijoo P PENDAHULUAN ada modul ii dibahas masalah ekspasi deret Fourier Sius osius utuk suatu fugsi periodik ataupu yag diaggap periodik, da dibahas pula trasformasi

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Statistika iferesi merupaka salah satu cabag statistika yag bergua utuk meaksir parameter. Peaksira dapat diartika sebagai dugaa atau perkiraa atas sesuatu yag aka terjadi

Lebih terperinci

Fungsi. Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B.

Fungsi. Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B. Fugsi Misalka A da B himpua. Relasi bier f dari A ke B merupaka suatu fugsi jika setiap eleme di dalam A dihubugka dega tepat satu eleme di dalam B. Jika f adalah fugsi dari A ke B kita meuliska f : A

Lebih terperinci

,n N. Jelas barisan ini terbatas pada dengan batas M =: 1, dan. barisan ini kovergen ke 0.

,n N. Jelas barisan ini terbatas pada dengan batas M =: 1, dan. barisan ini kovergen ke 0. PROGRAM STUDI PENDIDIKAN MATEMATIKA FKIP UNMUH PONOROGO SOAL UJIAN TENGAH SEMESTER GENAP TA 03/04 Mata Ujia : Aalisis Real Tipe Soal : REGULER Dose : Dr. Jula HERNADI Waktu : 90 meit Hari, Taggal : Selasa,

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, , Agustus 2003, ISSN : METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, , Agustus 2003, ISSN : METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT Vol. 6. No., 97-09, Agustus 003, ISSN : 40-858 METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT Robertus Heri Jurusa Matematika FMIPA UNDIP Abstrak Tulisa ii membahas peetua persamaa ruag

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 5. No. 1, 39-46, April 2002, ISSN :

JURNAL MATEMATIKA DAN KOMPUTER Vol. 5. No. 1, 39-46, April 2002, ISSN : JURNAL MATEMATKA DAN KOMPUTER Vol 5 No, 39-46, April 22, SSN : 4-858 MENCAR SOLUS PENAKSR PARAMETER PADA ANALSS VARANS DENGAN PENDEKATAN GENERAL NVERS Sukestiaro Jurusa Matematika FMPA Uiversitas Negeri

Lebih terperinci

II LANDASAN TEORI. Sebuah bilangan kompleks dapat dinyatakan dalam bentuk. z = x jy. (2.4)

II LANDASAN TEORI. Sebuah bilangan kompleks dapat dinyatakan dalam bentuk. z = x jy. (2.4) 3 II LANDASAN TEORI 2.1 Peubah Kompleks da Fugsi Kompleks Sebuah bilaga kompleks dapat diyataka dalam betuk z = x + jy, (2.1) dega x da y adalah bilaga-bilaga real da j = 1. Bilaga x disebut bagia real

Lebih terperinci

BARISAN TAK HINGGA DAN DERET TAK HINGGA

BARISAN TAK HINGGA DAN DERET TAK HINGGA BARIAN TAK HINGGA DAN DERET TAK HINGGA Bajar/Barisa Tak Higga Barisa tak higga { } adalah suatu fugsi dari dimaa daerah domaiya adalah himpua bilaga bulat positif (bilaga asli). Cotoh: Bila.. maka fugsi

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA DAN DASAR TEORI

BAB 2 TINJAUAN PUSTAKA DAN DASAR TEORI BAB 2 TINJAUAN PUSTAKA DAN DASAR TEORI Bab 2 berisi tetag studi pustaka yag dilakuka utuk medapatka gambara tetag metode yag tepat utuk megatasi permasalaha yag dihadapi, serta dasar-dasar teori yag diguaka

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Permasalaha peugasa atau assigmet problem adalah suatu persoala dimaa harus melakuka peugasa terhadap sekumpula orag yag kepada sekumpula job yag ada, sehigga tepat satu

Lebih terperinci

TINJAUAN PUSTAKA Pengertian

TINJAUAN PUSTAKA Pengertian TINJAUAN PUSTAKA Pegertia Racaga peelitia kasus-kotrol di bidag epidemiologi didefiisika sebagai racaga epidemiologi yag mempelajari hubuga atara faktor peelitia dega peyakit, dega cara membadigka kelompok

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 31-41, April 2004, ISSN :

JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 31-41, April 2004, ISSN : Vol. 7. No. 1, 31-41, April 24, ISSN : 141-8518 Peetua Kestabila Sistem Kotrol Lup Tertutup Waktu Kotiu dega Metode Trasformasi ke Betuk Kaoik Terkotrol Robertus Heri Jurusa Matematika FMIPA UNDIP Abstrak

Lebih terperinci

Kestabilan Rangkaian Tertutup Waktu Kontinu Menggunakan Metode Transformasi Ke Bentuk Kanonik Terkendali

Kestabilan Rangkaian Tertutup Waktu Kontinu Menggunakan Metode Transformasi Ke Bentuk Kanonik Terkendali Jural Tekika ISSN : 285-859 Fakultas Tekik Uiversitas Islam Lamoga Volume No.2 Tahu 29 Kestabila Ragkaia Tertutup Waktu Kotiu Megguaka Metode Trasformasi Ke Betuk Kaoik Terkedali Suhariyato ) Dose Fakultas

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 30 BAB III METODE PENELITIAN Peelitia pejadwala pembagkit termal ii adalah utuk membadigka metode Lagragia Relaxatio yag diajuka peulis dega metode yag diguaka PLN. Di sii aka diuji metode maa yag peramalaya

Lebih terperinci

terurut dari bilangan bulat, misalnya (7,2) (notasi lain 2

terurut dari bilangan bulat, misalnya (7,2) (notasi lain 2 Bab Bilaga kompleks BAB BILANGAN KOMPLEKS Defiisi Bilaga Kompleks Sebelum medefiisika bilaga kompleks, pembaca diigatka kembali pada permasalah dalam sistem bilaga yag telah dikeal sebelumya Yag pertama

Lebih terperinci

) didefinisikan sebagai persamaan yang dapat dinyatakan dalam bentuk: a x a x a x b... b adalah suatu urutan bilangan dari bilangan s1, s2,...

) didefinisikan sebagai persamaan yang dapat dinyatakan dalam bentuk: a x a x a x b... b adalah suatu urutan bilangan dari bilangan s1, s2,... SISEM PERSAMAAN LINIER DAN MARIKS. SISEM PERSAMAAN LINIER Secara umum, persamaa liier dega variabel ( x, x,..., x ) didefiisika sebagai persamaa yag dapat diyataka dalam betuk: a x a x a x b... dega a,

Lebih terperinci

Bab IV. Penderetan Fungsi Kompleks

Bab IV. Penderetan Fungsi Kompleks Bab IV Pedereta Fugsi Kompleks Sebagaimaa pada fugsi real, fugsi kompleks juga dapat dideretka pada daerah kovergesiya. Semua watak kajia kovergesi pada fugsi real berlaku pula pada fugsi kompleks. Secara

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah BAB ENDAHULUAN. Latar Belakag Masalah Dalam kehidupa yata, hampir seluruh feomea alam megadug ketidak pastia atau bersifat probabilistik, misalya pergeraka lempega bumi yag meyebabka gempa, aik turuya

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 010 TIM OLIMPIADE MATEMATIKA INDONESIA 0 Prestasi itu diraih buka didapat!!! SOLUSI SOAL Bidag Matematika Disusu oleh : Eddy Hermato, ST Olimpiade Matematika Tk

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Saham Saham adalah surat berharga yag dapat dibeli atau dijual oleh peroraga atau lembaga di pasar tempat surat tersebut diperjualbelika. Sebagai istrumet ivestasi, saham memiliki

Lebih terperinci

Fungsi Kompleks. (Pertemuan XXVII - XXX) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

Fungsi Kompleks. (Pertemuan XXVII - XXX) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya TKS 4007 Matematika III Fugsi Kompleks (Pertemua XXVII - XXX) Dr. AZ Jurusa Tekik Sipil Fakultas Tekik Uiversitas Brawijaya Pedahulua Persamaa x + 1 = 0 tidak memiliki akar dalam himpua bilaga real. Pertayaaya,

Lebih terperinci

PENGGGUNAAN ALGORITMA GAUSS-NEWTON UNTUK MENENTUKAN SIFAT-SIFAT PENAKSIR PARAMETER DAN

PENGGGUNAAN ALGORITMA GAUSS-NEWTON UNTUK MENENTUKAN SIFAT-SIFAT PENAKSIR PARAMETER DAN PENGGGUNAAN ALGORITMA GAUSS-NEWTON UNTUK MENENTUKAN SIFAT-SIFAT PENAKSIR PARAMETER DAN DALAM SUATU MODEL NON-LINIER Abstrak Nur ei 1 1, Jurusa Matematika FMIPA Uiversitas Tadulako Jl. Sukaro-Hatta Palu,

Lebih terperinci

BAB II MAKALAH. : Seminar Nasional Sains dan Pendidikan Sains VIII UKSW. : Prosiding Seminar Nasional Matematika VIII UKSW 15 Juni

BAB II MAKALAH. : Seminar Nasional Sains dan Pendidikan Sains VIII UKSW. : Prosiding Seminar Nasional Matematika VIII UKSW 15 Juni BAB II MAKALAH Makalah I. Judul Dipresetasika : Liear Goal Programmig utuk Optimasi Perecaaa si : Semiar Nasioal Sais da Pedidika Sais VIII UKSW 201 yag diseleggaraka oleh Fakultas Sais da Matematika UKSW

Lebih terperinci

ARTIKEL. Menentukan rumus Jumlah Suatu Deret dengan Operator Beda. Markaban Maret 2015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN

ARTIKEL. Menentukan rumus Jumlah Suatu Deret dengan Operator Beda. Markaban Maret 2015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN ARTIKEL Meetuka rumus Jumlah Suatu Deret dega Operator Beda Markaba 191115198801005 Maret 015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN PUSAT PENGEMBANGAN DAN PEMBERDAYAAN PENDIDIK DAN TENAGA KEPENDIDIKAN

Lebih terperinci

ISIAN SINGKAT! 1. Diberikan hasil kali digit digit dari n harus sama dengan 25

ISIAN SINGKAT! 1. Diberikan hasil kali digit digit dari n harus sama dengan 25 head office : Kompleks Sawaga Permai Blok A5 No.1A, Sawaga, Depok 16511 Telp.01-951 1160. cotact perso : 0-878787-1-8585 / 081-8691-10 Bidag Studi Kode Berkas Waktu : Matematika : MA-L01 (solusi) : 90

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN JURAL MATEMATKA DA KOMPUTER Vol. 6. o., 77-85, Agustus 003, SS : 40-858 DSTRBUS WAKTU BERHET PADA PROSES PEMBAHARUA Sudaro Jurusa Matematika FMPA UDP Abstrak Dalam proses stokhastik yag maa kejadia dapat

Lebih terperinci

HUBUNGAN PELABELAN GRACEFUL PADA DIGRAF BIDIRECTIONAL G DAN GRAF UNDERLYING DARI G

HUBUNGAN PELABELAN GRACEFUL PADA DIGRAF BIDIRECTIONAL G DAN GRAF UNDERLYING DARI G J Sais MIPA Desember 7 Vol 1 No Hal: 197 - ISSN 1978-187 ABSTRACT HUBUNGAN PELABELAN GRACEFUL PADA DIGRAF BIDIRECTIONAL G DAN GRAF UNDERLYING DARI G Kristiaa Wijaya Jurusa Matematika FMIPA Uiversitas Jember

Lebih terperinci

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu

Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu BAB 4 UKURAN PENYEBARAN DATA Pada Bab sebelumya kita telah mempelajari beberapa ukura pemusata data, yaitu ukura yag memberika iformasi tetag bagaimaa data-data ii megumpul atau memusat Pada bagia Bab

Lebih terperinci

METODE PENELITIAN. dalam tujuh kelas dimana tingkat kemampuan belajar matematika siswa

METODE PENELITIAN. dalam tujuh kelas dimana tingkat kemampuan belajar matematika siswa 19 III. METODE PENELITIAN A. Populasi da Sampel Populasi dalam peelitia ii adalah seluruh siswa kelas VIII SMP Negeri 8 Badar Lampug tahu pelajara 2009/2010 sebayak 279 orag yag terdistribusi dalam tujuh

Lebih terperinci

Semigrup Matriks Admitting Struktur Ring

Semigrup Matriks Admitting Struktur Ring Semigrup Matriks dmittig Struktur ig K a r y a t i Jurusa Pedidika Matematika FMIP, Uiversitas Negeri Yogyakarta Email: yatiuy@yahoo.com bstrak Diberika adalah rig komutatif dega eleme satua da adalah

Lebih terperinci

Mata Kuliah: Statistik Inferensial

Mata Kuliah: Statistik Inferensial PENGUJIAN HIPOTESIS SAMPEL KECIL Prof. Dr. H. Almasdi Syahza, SE., MP Email: asyahza@yahoo.co.id DEFINISI Pegertia Sampel Kecil Sampel kecil yag jumlah sampel kurag dari 30, maka ilai stadar deviasi (s)

Lebih terperinci

STATISTIKA NON PARAMETRIK

STATISTIKA NON PARAMETRIK . PENDAHULUAN STATISTIKA NON PARAMETRIK Kelebiha Uji No Parametrik: - Perhituga sederhaa da cepat - Data dapat berupa data kualitatif (Nomial atau Ordial) - Distribusi data tidak harus Normal Kelemaha

Lebih terperinci