Pengenalan Pola. Regresi Linier

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Pengenalan Pola. Regresi Linier"

Transkripsi

1 Pegeala Pola Regresi Liier PTIIK - 014

2 Course Cotets 1 Defiisi Regresi Liier Model Regresi Liear 3 Estimasi Regresi Liear 4 Studi Kasus da Latiha

3 Defiisi Regresi Liier Regresi adalah membagu model utuk memprediksi ilai dari data masuka yag diberika. Prediksi berbeda dega klasifikasi (catata: dalam machie learig, klasifikasi diaggap sebagai salah satu jeis dari prediksi). Klasifikasi diguaka utuk memprediksi label kelas/kategori. Metode utama utuk melakuka prediksi : Membagu model regresi yaitu dega mecari hubuga atara satu atau lebih variabel idepede atau prediktor (X) dega variabel depede atau respo (Y).

4 Defiisi Regresi Liier Macam-Macam Aalisis Regresi : Liear ad multiple regressio. No-liear regressio (eural etworks, support vector machies). Other regressio methods : geeralized liear model, Poisso regressio, log-liear models, regressio trees.

5 Model Regresi Liier Model regresi liier sederhaa medefiisika hubuga liier yag tepat atara ilai yag diharapka atau rata-rata Y, variabel terikat Y, da variabel idepede atau prediktor X: m y = a+b Nilai yag diamati Realisasi Y (y) berbeda dari ilai yag diharapka (m y ) dega kesalaha yag tak dapat dijelaska atau acak (): y = m y + = a+b +

6 Model Regresi Liier Model Regresi Liier Sederhaa : y= a + b + dega m y =a+b y adalah variabel respo (depedet), atau variabel yag igi kita prediksi, adalah variabel prediktor (idepede) da adalah variabel tigkat kesalaha yag merupaka satu-satuya kompoe acak dalam model regresi. a adalah titik potog garis regresi pada sumbu koordiat. b adalah besarya gradie/kemiriga garis regresi. m y adalah mea dari y dega syarat telah ditetuka, atau disebut sebagai rata-rata bersyarat y.

7 Model Regresi Liier Model Umum Regresi Liier : y= a + b + Keteraga : a da b adalah parameter yag aka ditetuka ilaiya utuk membagu persamaa regresi. Parameter tersebut tidak diketahui sebelumya. Kita perkiraka ilaiya dega meghitug dari data yag ada. b meujukka tigkat perubaha utuk setiap keaika ilai X. X telah diketahui sebelumya da berilai kosta. Deviasi/Peyimpaga ilai bersifat idepedet da berdistribusi Normal ~ N(0, ). Hasil Estimasi Persamaa Regresi : ˆ b b y 0 1

8 Visualisasi Regresi Liier Y y N(m y, y ) LINE assumptios of the Simple Liear Regressio Model m y =a + b Idetical ormal distributios of errors, all cetered o the regressio lie. Hubuga atara X da Y adalah Stright-Lie (liear). Nilai-ilai variabel X idepede diasumsika tetap (tidak acak), satu-satuya keacaka dalam ilai-ilai Y berasal dari kesalaha Kesalaha tidak berkorelasi (yaitu Idepedet) dalam pegamata berturut-turut. Kesalaha biasaya didistribusika dega mea 0 da varias yaitu: ~ N(0, ) X

9 Estimasi Regresi Liier Estimasi Persamaa Umum Regresi : Meghitug sum of squared errors (SSE): SSE ( y ˆ i yi ) i1 i1 y b b yˆ b0 b1 Metode least squares/ kuadrat terkecil memberika kita hasil estimasi "terbaik" utuk kita set pada data sampel. Metode least squares / kuadrat terkecil memilih ilai-ilai b 0 da b 1 utuk memiimalka sum of squared errors (SSE). b 1 y y y - b 1 b 0 y b 1

10 Y y i yˆi Error e y yˆ i i i. { yˆ ab the fitted regressio lie yˆ the predicted value of Y for i X

11 Y Y Data Y X e Three errors from the least squares regressio lie X Three errors from a fitted lie X Errors from the least squares regressio lie are miimized X

12 Cotoh Studi Kasus Perhatika data biaya ikla yag diguaka (X) da hubugaya dega Tigkat pejuala (Y) diberika dalam dataset berikut : No X Y Tetuka persamaa Regresiya!

13 Peyelesaia : Megestimasi least squares/kuadrat terkecil dari koefisie Regresi : 7 b b y 368 y 9630 ( ) y (508695) (9630)(368) 1 y - b1 y 7( ) (9630) (9630) 0 yˆ b0 b Hasil Estimasi Persamaa Regresiya adalah : ŷ

14 Latiha Idividu Perhatika dataset berikut : No (X) (Y) Tetuka persamaa Regresiya da hitug SSE-ya!

15 /

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP STATISTICS Haug N. Prasetyo Week 11 PENDAHULUAN Regresi da korelasi diguaka utuk megetahui hubuga dua atau lebih kejadia (variabel) yag dapat diukur secara matematis. Ada dua hal yag diukur atau diaalisis,

Lebih terperinci

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan REGRESI LINIER DAN KORELASI Variabel dibedaka dalam dua jeis dalam aalisis regresi: Variabel bebas atau variabel prediktor -> variabel yag mudah didapat atau tersedia. Dapat diyataka dega X 1, X,, X k

Lebih terperinci

REGRESI DAN KORELASI SEDERHANA

REGRESI DAN KORELASI SEDERHANA REGRESI DAN KORELASI SEDERHANA Apa yag disebut Regresi? Korelasi? Aalisa regresi da korelasi sederhaa membahas tetag keterkaita atara sebuah variabel (variabel terikat/depede) dega (sebuah) variabel lai

Lebih terperinci

REGRESI DAN KORELASI

REGRESI DAN KORELASI REGRESI DAN KORELASI Pedahulua Dalam kehidupa sehari-hari serig ditemuka masalah/kejadia yagg salig berkaita satu sama lai. Kita memerluka aalisis hubuga atara kejadia tersebut Dalam bab ii kita aka membahas

Lebih terperinci

Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya PENS. Probability and Random Process. Topik 10. Regresi

Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya PENS. Probability and Random Process. Topik 10. Regresi Program Pasca Sarjaa Terapa Politekik Elektroika Negeri Surabaya Probability ad Radom Process Topik 10. Regresi Prima Kristalia Jui 015 1 Outlie 1. Kosep Regresi Sederhaa. Persamaa Regresi Sederhaa 3.

Lebih terperinci

Nama : INDRI SUCI RAHMAWATI NIM : ANALISIS REGRESI SESI 01 HAL

Nama : INDRI SUCI RAHMAWATI NIM : ANALISIS REGRESI SESI 01 HAL Nama : INDRI SUCI RAHMAWATI NIM : 2015-32-005 ANALISIS REGRESI SESI 01 HAL. 86-88 Latiha 2 Pelajari data dibawah ii, tetuka depede da idepede variabel serta : a. Hitug Sum of Square for Regressio (X) b.

Lebih terperinci

REGRESI LINIER SEDERHANA

REGRESI LINIER SEDERHANA REGRESI LINIER SEDERHANA REGRESI, KAUSALITAS DAN KORELASI DALAM EKONOMETRIKA Regresi adalah salah satu metode aalisis statistik yag diguaka utuk melihat pegaruh atara dua atau lebih variabel Kausalitas

Lebih terperinci

Nama : INDRI SUCI RAHMAWATI NIM : ANALISIS REGRESI SESI 01 HAL

Nama : INDRI SUCI RAHMAWATI NIM : ANALISIS REGRESI SESI 01 HAL Nama : INDRI SUCI RAHMAWATI NIM : 2015-32-005 ANALISIS REGRESI SESI 01 HAL. 85-88 Latiha 1 Pelajari data dibawah ii, tetuka depede da idepedet variabel serta a. Hitug Sum of for Regressio (X) b. Hitug

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Aalisis Regresi Istilah regresi pertama kali diperkealka oleh seorag ahli yag berama Facis Galto pada tahu 1886. Meurut Galto, aalisis regresi berkeaa dega studi ketergatuga dari suatu

Lebih terperinci

Penyelesaian: Variables Entered/Removed a. a. Dependent Variable: Tulang b. All requested variables entered.

Penyelesaian: Variables Entered/Removed a. a. Dependent Variable: Tulang b. All requested variables entered. 2. Pelajari data dibawah ii, tetuka depede da idepede variabel serta : a) Hitug Sum of Square for Regressio (X) b) Hitug Sum of Square for Residual c) Hitug Meas Sum of Square for Regressio (X) d) Hitug

Lebih terperinci

Suhu (X) Gula yang Dihasilkan (Y)

Suhu (X) Gula yang Dihasilkan (Y) Regresi Liear Sederhaa da Korelasi MA 208 Statistika Dasar Sei, 27 April 2009 2008 by USP & RFU Dose : Udjiaa S. Pasaribu Utriwei i Mukhaiyar Model Regresi Liear Tujua :. Meetuka/meaksir parameter-parameter

Lebih terperinci

STATISTIKA ANALISIS REGRESI DAN KORELASI LINIER SEDERHANA

STATISTIKA ANALISIS REGRESI DAN KORELASI LINIER SEDERHANA STATISTIKA ANALISIS REGRESI DAN KORELASI LINIER SEDERHANA OUTLINE LANJUTAN Peetua garis duga regresi dega Metode OLS kostata a da koefisie b Aalisis Varias komposisi variasi sekitar garis r da r Stadard

Lebih terperinci

REGRESI LINIER GANDA

REGRESI LINIER GANDA REGRESI LINIER GANDA Secara umum, data hasil pegamata Y bisa terjadi karea akibat variabelvariabel bebas,,, k. Aka ditetuka hubuga atara Y da,,, k sehigga didapat regresi Y atas,,, k amu masih meujukka

Lebih terperinci

STATISTIKA ANALISIS REGRESI ANALISIS REGRESI LINIER LEKTION ACHT(#8) ANALISIS REGRESI

STATISTIKA ANALISIS REGRESI ANALISIS REGRESI LINIER LEKTION ACHT(#8) ANALISIS REGRESI ANALISIS REGRESI STATISTIKA LEKTION ACHT(#8) ANALISIS REGRESI Regresi: kembali ke tahap perkembaga sebelumya (psi.). Aalisis regresi: aalisis yag diguaka utuk megetahui relasi depedesi (pegaruh) dari satu

Lebih terperinci

TUGAS ANALISIS REGRESI (HALAMAN

TUGAS ANALISIS REGRESI (HALAMAN TUGAS ANALISIS REGRESI (HALAMAN 85-88) 1. Tetuka depede da idepede variabel serta : a. Hitug Sum of Square for Regressio (X) b. Hitug Sum of Square for Residual c. Hitug Mea Sum of Square for Regresssio

Lebih terperinci

ANALISIS REGRESI DAN KORELASI SEDERHANA

ANALISIS REGRESI DAN KORELASI SEDERHANA LATAR BELAKANG DAN KORELASI SEDERHANA Aalisis regresi da korelasi megkaji da megukur keterkaita seara statistik atara dua atau lebih variabel. Keterkaita atara dua variabel regresi da korelasi sederhaa.

Lebih terperinci

Uji apakah ada perbedaan signifikan antara mean masing-masing laboratorium. Gunakan α=0.05.

Uji apakah ada perbedaan signifikan antara mean masing-masing laboratorium. Gunakan α=0.05. MA 8 STATISTIKA DASAR SEMESTER I /3 KK STATISTIKA, FMIPA ITB UJIAN AKHIR SEMESTER (UAS) Sei, Desember, 9.3.3 WIB ( MENIT) Kelas. Pegajar: Utriwei Mukhaiyar, Kelas. Pegajar: Sumato Wiotoharjo Jawablah pertayaa

Lebih terperinci

4/19/2016. Regresi Linier Berganda. Regresi Berganda. Model Regresi Berganda. Model Regresi Berganda. Asumsi Regresi Berganda. Model Regresi Berganda

4/19/2016. Regresi Linier Berganda. Regresi Berganda. Model Regresi Berganda. Model Regresi Berganda. Asumsi Regresi Berganda. Model Regresi Berganda 4/9/06 Regresi Liier Bergada Program Studi Tekik Idustri Uiversitas Brawijaa Ihwa Hamdala, ST., MT SI - Regresi & Korelasi Bergada Regresi Bergada Cotoh SI - Regresi & Korelasi Bergada Meguji huuga liier

Lebih terperinci

Probabilitas dan Statistika Korelasi dan Regresi. Adam Hendra Brata

Probabilitas dan Statistika Korelasi dan Regresi. Adam Hendra Brata Probabilitas da Statistika da Adam Hedra Brata Dua Peubah Acak dua perubah acah X da Y dega rata-rata da diberika oleh rumus : E(XY) - - - Sifat Sifat Sifat kovariasi utuk X da Y diskrit : f(, ) f(, )

Lebih terperinci

BAB III METODE PENELITIAN. penelitian yaitu PT. Sinar Gorontalo Berlian Motor, Jl. H. B Yassin no 28

BAB III METODE PENELITIAN. penelitian yaitu PT. Sinar Gorontalo Berlian Motor, Jl. H. B Yassin no 28 5 BAB III METODE PENELITIAN 3.1 Lokasi Peelitia da Waktu Peelitia Sehubuga dega peelitia ii, lokasi yag dijadika tempat peelitia yaitu PT. Siar Gorotalo Berlia Motor, Jl. H. B Yassi o 8 Kota Gorotalo.

Lebih terperinci

BAB 6: ESTIMASI PARAMETER (2)

BAB 6: ESTIMASI PARAMETER (2) Bab 6: Estimasi Parameter () BAB 6: ESTIMASI PARAMETER (). ESTIMASI PROPORSI POPULASI Proporsi merupaka perbadiga atara terjadiya suatu peristiwa dega semua kemugkiaa peritiwa yag bisa terjadi. Besara

Lebih terperinci

STATISTIK PERTEMUAN VIII

STATISTIK PERTEMUAN VIII STATISTIK PERTEMUAN VIII Pegertia Estimasi Merupaka bagia dari statistik iferesi Estimasi = pedugaa, atau meaksir harga parameter populasi dega harga-harga statistik sampelya. Misal : suatu populasi yag

Lebih terperinci

Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Unand

Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Unand TEKIK SAMPLIG PCA SEDERHAA Hazmira Yozza Izzati Rahmi HG Jurusa Matematika FMIPA Uad Defiisi : Jika suatu cotoh berukura diambil dari suatu populasi berukura sedemikia rupa sehigga setiap kemugkia cotoh

Lebih terperinci

BAB II LANDASAN TEORI. Pada bagian ini akan dibahas tentang teori-teori dasar yang. digunakan untuk dalam mengestimasi parameter model.

BAB II LANDASAN TEORI. Pada bagian ini akan dibahas tentang teori-teori dasar yang. digunakan untuk dalam mengestimasi parameter model. BAB II LANDASAN TEORI Pada bagia ii aka dibahas tetag teori-teori dasar yag diguaka utuk dalam megestimasi parameter model.. MATRIKS DAN VEKTOR Defiisi : Trace dari matriks bujur sagkar A a adalah pejumlaha

Lebih terperinci

MANAJEMEN RISIKO INVESTASI

MANAJEMEN RISIKO INVESTASI MANAJEMEN RISIKO INVESTASI A. PENGERTIAN RISIKO Resiko adalah peyimpaga hasil yag diperoleh dari recaa hasil yag diharapka Besarya tigkat resiko yag dimasukka dalam peilaia ivestasi aka mempegaruhi besarya

Lebih terperinci

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL BAB VIII MASAAH ESTIMASI SAT DAN DA SAMPE 8.1 Statistik iferesial Statistik iferesial suatu metode megambil kesimpula dari suatu populasi. Ada dua pedekata yag diguaka dalam statistik iferesial. Pertama,

Lebih terperinci

ANALISIS REGRESI DAN KORELASI

ANALISIS REGRESI DAN KORELASI MODUL KULIAH ANALISIS REGRESI DAN KORELASI Oleh: Drs. I WAYAN SANTIYASA, M.Si JURUSAN ILMU KOMPUTER FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS UDAYANA 016 RANCANGAN AKTIVITAS TUTORIAL (RAT)

Lebih terperinci

ANALISIS RUNTUT WAKTU DAN PERAMALAN (Time Series and Forecasting) Analisis Tren

ANALISIS RUNTUT WAKTU DAN PERAMALAN (Time Series and Forecasting) Analisis Tren ANALISIS RUNTUT WAKTU DAN PERAMALAN (Time Series ad Forecastig) Aalisis Tre P.E.N.D.A.H.U.L.U.A.N Rutut waktu merupaka kumpula data yag tercatat sepajag periode waktu tertetu (cotohya: miggua, bulaa, atau

Lebih terperinci

Makalah ANALISIS REGRESI DAN REGRESI GANDA

Makalah ANALISIS REGRESI DAN REGRESI GANDA 1 Makalah ANALISIS REGRESI DAN REGRESI GANDA Disusu oleh : 1. Rudii mulya ( 41610010035 ). Falle jatu awar try ( 41610010036 ) 3. Novia ( 41610010034 ) Tekik Idustri Uiversitas Mercu Buaa Jakarta 010 Rudii

Lebih terperinci

PENGANTAR MODEL LINEAR Oleh: Suryana

PENGANTAR MODEL LINEAR Oleh: Suryana PENGANTAR MODEL LINEAR Oleh: Suryaa Model liear meyagkut masalah statistik yag ketergatugaya terhadap parameter secara liear. Betuk umum model liear adalah 0 1X1... px p, dega = Variabel respo X i = Variabel

Lebih terperinci

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya 5 BAB II LANDASAN TEORI Dalam tugas akhir ii aka dibahas megeai peaksira besarya koefisie korelasi atara dua variabel radom kotiu jika data yag teramati berupa data kategorik yag terbetuk dari kedua variabel

Lebih terperinci

Pemilihan Model Terbaik

Pemilihan Model Terbaik Pemiliha Model Terbaik Hazmira Yozza Jur. Matematika FMIPA Uiv. Adalas Jadi bayak model yag mugki dibetuk Var. Bebas :,, 3 Model Maa Yag Mampu Mewakili Data 3,, 3, 3,, 3 + model akar, log, hasil kali,

Lebih terperinci

PENGUJIAN HIPOTESIS DUA SAMPEL

PENGUJIAN HIPOTESIS DUA SAMPEL PENGUJIAN HIPOTESIS DUA SAMPEL Tujua Mahasiswa mampu memahami pegujia hipotesis utuk parameter populasi berdasarka dua buah sampel. Dasar Teori Uji Rata-rata Dua Sampel yag Salig Bebas utuk Sampel Kecil

Lebih terperinci

III BAHAN DAN METODE PENELITIAN. Ternak yang digunakan dalam penelitian ini adalah kuda berjumlah 25

III BAHAN DAN METODE PENELITIAN. Ternak yang digunakan dalam penelitian ini adalah kuda berjumlah 25 18 III BAHAN DAN METODE PENELITIAN 3.1 Baha Peelitia 3.1.1 Objek Peelitia Terak yag diguaka dalam peelitia ii adalah kuda berjumlah 25 ekor terdiri dari 5 jata da 20 betia dega umur berkisar atara 10 15

Lebih terperinci

L A T I H A N S O A L A N R E G 1 Muhamad Ferdiansyah, S. Stat.

L A T I H A N S O A L A N R E G 1 Muhamad Ferdiansyah, S. Stat. L A T I H A N S O A L A N R E G Muhamad Ferdiasyah, S. Stat. *Saya saraka utuk mecoba sediri baru lihat jawabaya **Jawaba saya BELUM TENTU BENAR karea saya mausia biasa. Silaka dikosultasika jika ada jawaba

Lebih terperinci

BAB IV REGRESI DAN KORELASI SEDERHANA

BAB IV REGRESI DAN KORELASI SEDERHANA 4. Pegertia Regresi da Korelasi. BAB IV REGRESI DAN KORELASI SEDERHANA a. Regresi da korelasi diguaka utuk mempelajari pola da megukur hubuga statistik atara dua atau lebih variabel. b. Jika diguaka haya

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 6 BAB 2 LANDASAN TEORI 2.1. Metode Kuadrat Terkecil Aalisis regresi merupaka aalisis utuk medapatka hubuga da model matematis atara variabel depede (Y) da satu atau lebih variabel idepede (X). Hubuga atara

Lebih terperinci

Statistika Inferensial

Statistika Inferensial Cofidece Iterval Ara Fariza Statistika Iferesial Populasi Sampel Simpulka (estimasi) tetag parameter Medapatka statistik Estimasi: estimasi titik, estimasi iterval, uji hipotesa 2 1 Proses Estimasi Populasi

Lebih terperinci

BAB 3 PENYELESAIAN PERSAMAAN NON LINIER

BAB 3 PENYELESAIAN PERSAMAAN NON LINIER BAB PENYELESAIAN PERSAMAAN NON LINIER.. Permasalaha Persamaa No Liier Peyelesaia persamaa o liier adalah peetua akar-akar persamaa o liier.dimaa akar sebuah persamaa =0 adalah ilai-ilai yag meyebabka ilai

Lebih terperinci

BAB II LANDASAN TEORI. matematika secara numerik dan menggunakan alat bantu komputer, yaitu:

BAB II LANDASAN TEORI. matematika secara numerik dan menggunakan alat bantu komputer, yaitu: 4 BAB II LANDASAN TEORI 2.1 Model matematis da tahapa matematis Secara umum tahapa yag harus ditempuh dalam meyelesaika masalah matematika secara umerik da megguaka alat batu komputer, yaitu: 2.1.1 Tahap

Lebih terperinci

BAB 3 METODE PENELITIAN

BAB 3 METODE PENELITIAN BAB 3 METODE PENELITIAN 3.1 Disai Peelitia Tujua Jeis Peelitia Uit Aalisis Time Horiso T-1 Assosiatif survey Orgaisasi Logitudial T-2 Assosiatif survey Orgaisasi Logitudial T-3 Assosiatif survey Orgaisasi

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Metode Peelitia Peelitia ii megguaka metode peelitia Korelasioal. Peelitia korelasioaal yaitu suatu metode yag meggambarka secara sistematis da obyektif tetag hubuga atara

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Variabel-variabel yang digunakan pada penelitian ini adalah:

BAB III METODOLOGI PENELITIAN. Variabel-variabel yang digunakan pada penelitian ini adalah: BAB III METODOLOGI PENELITIAN 3. Variabel da Defiisi Operasioal Variabel-variabel yag diguaka pada peelitia ii adalah: a. Teaga kerja, yaitu kotribusi terhadap aktivitas produksi yag diberika oleh para

Lebih terperinci

TINJAUAN PUSTAKA Pengertian

TINJAUAN PUSTAKA Pengertian TINJAUAN PUSTAKA Pegertia Racaga peelitia kasus-kotrol di bidag epidemiologi didefiisika sebagai racaga epidemiologi yag mempelajari hubuga atara faktor peelitia dega peyakit, dega cara membadigka kelompok

Lebih terperinci

BAB VII RANDOM VARIATE DISTRIBUSI DISKRET

BAB VII RANDOM VARIATE DISTRIBUSI DISKRET BAB VII RANDOM VARIATE DISTRIBUSI DISKRET Diskret radom variabel dapat diguaka utuk berbagai radom umber yag diambil dalam betuk iteger. Pola kebutuha ivetori (persediaa) merupaka cotoh yag serig diguaka

Lebih terperinci

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi 6. Pecacaha Lajut Relasi Rekuresi Relasi rekuresi utuk dereta {a } adalah persamaa yag meyataka a kedalam satu atau lebih suku sebelumya, yaitu a 0, a,, a -, utuk seluruh bilaga bulat, dega 0, dimaa 0

Lebih terperinci

BAB 4. METODE ESTIMASI PARAMETER DARI DISTRIBUSI WAKTU KERUSAKAN

BAB 4. METODE ESTIMASI PARAMETER DARI DISTRIBUSI WAKTU KERUSAKAN BAB 4 METODE ESTIMASI PARAMETER DARI DISTRIBUSI WAKTU KERUSAKAN Estimasi reliabilitas membutuhka pegetahua distribusi waktu kerusaka yag medasari dari kompoe atau sistem yag dimodelka Utuk memprediksi

Lebih terperinci

BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP. Permasalahan dalam tugas akhir ini dibatasi hanya pada penaksiran

BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP. Permasalahan dalam tugas akhir ini dibatasi hanya pada penaksiran BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP Permasalaha dalam tugas akhir ii dibatasi haya pada peaksira besarya koefisie korelasi polychoric da tidak dilakuka peguia terhadap koefisie korelasi

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN A. Subjek Peelitia Peelitia ii dilaksaaka di kawasa huta magrove, yag berada pada muara sugai Opak di Dusu Baros, Kecamata Kretek, Kabupate Batul. Populasi dalam peelitia ii adalah

Lebih terperinci

IMPLEMENTASI RUMUS SOBEL PADA WEB DENGAN TOPIK REGRESI LINIER MENGGUNAKAN VARIABEL INTERVENING

IMPLEMENTASI RUMUS SOBEL PADA WEB DENGAN TOPIK REGRESI LINIER MENGGUNAKAN VARIABEL INTERVENING Versi Olie: https://joural.ubm.ac.id/idex.php/alu Vol.I (No. ) : 9-4. Th. 08 Implemetasi Rumus Sobel Pada Regresi Liear ISSN: 60-60 IMPLEMENTASI RUMUS SOBEL PADA WEB DENGAN TOPIK REGRESI LINIER MENGGUNAKAN

Lebih terperinci

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR Nur Aei Prodi Matematika, FST-UINAM uraeiatullah@gmail.com Ifo: Jural MSA Vol. 3 No. 2 Edisi: Juli Desember

Lebih terperinci

MAKALAH STATISTIKA MATEMATIKA 2 REGRESI LINEAR BERGANDA

MAKALAH STATISTIKA MATEMATIKA 2 REGRESI LINEAR BERGANDA MAKALAH STATISTIKA MATEMATIKA 2 REGRESI LINEAR BERGANDA Oleh : Magdalea Iriai Kehi (2013220030) Maria Liliaa Jeia (2013220038) FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN PRODI PENDIDIKAN MATEMATIKA UNIVERSITAS

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN

BAB IV HASIL PENELITIAN DAN PEMBAHASAN BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4.1. Data Respode Respode dalam peelitia ii adalah karyawa PT. Lucky Samudra Pratama di wilayah Jakarta Utara. Respode yag mejawab kuesioer sebayak orag. Kuesioer

Lebih terperinci

BAB III METODE PENELITIAN. Metode yang digunakan dalam penelitian ini adalah metode korelasional, yaitu

BAB III METODE PENELITIAN. Metode yang digunakan dalam penelitian ini adalah metode korelasional, yaitu BAB III METODE PENELITIAN 3.1 Metode Peelitia Metode yag diguaka dalam peelitia ii adalah metode korelasioal, yaitu Peelitia korelasi bertujua utuk meemuka ada atau tidakya hubuga atara dua variabel atau

Lebih terperinci

KORELASI DAN REGRESI BERGANDA

KORELASI DAN REGRESI BERGANDA KORELASI DAN REGRESI BERGANDA KORELASI BERGANDA Koelasi begada meupaka alat uku megeai hubuga yag tejadi ataa vaiabel depede () dega dua atau lebih vaiabel idepede,. Dega koelasi begada kekuata atau keeata

Lebih terperinci

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR Nur Aei Prodi Matematika, FST-UINAM uraeiatullah@gmail.com Ifo: Jural MSA Vol. 3 No. 2 Edisi: Juli Desember

Lebih terperinci

PENAKSIRAN FUNGSI PERMINTAAN C. METODE PENAKSIRAN. - Metode langsung - Metode tidak langsung

PENAKSIRAN FUNGSI PERMINTAAN C. METODE PENAKSIRAN. - Metode langsung - Metode tidak langsung PENAKSIRAN FUNGSI PERMINTAAN Ari Darmawa, Dr. S.AB, M.AB Email: aridarmawa_fia@ub.ac.id A. PENDAHULUAN B. PENAKSIRAN DAN PRAKIRAAN PERMINTAAN - Peaksira permitaa - Prakiraa permitaa C. METODE PENAKSIRAN

Lebih terperinci

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS

UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS UJIAN AKHIR SEMESTER STATISTIKA DAN PROBABILITAS AMN IST ISI Rabu, 15 Jui 016 100 meit [ Boleh membuka buku Tidak boleh memakai komputer ] SOAL 1 [30%] Hasil sigi (survei) lalu litas di suatu kawasa, yag

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Saham Saham adalah surat berharga yag dapat dibeli atau dijual oleh peroraga atau lembaga di pasar tempat surat tersebut diperjualbelika. Sebagai istrumet ivestasi, saham memiliki

Lebih terperinci

PETA KONSEP RETURN dan RISIKO PORTOFOLIO

PETA KONSEP RETURN dan RISIKO PORTOFOLIO PETA KONSEP RETURN da RISIKO PORTOFOLIO RETURN PORTOFOLIO RISIKO PORTOFOLIO RISIKO TOTAL DIVERSIFIKASI PORTOFOLIO DENGAN DUA AKTIVA PORTOFOLIO DENGAN BANYAK AKTIVA DEVERSIFIKASI DENGAN BANYAK AKTIVA DEVERSIFIKASI

Lebih terperinci

Tri Handhika Pusat Studi Komputasi Matematika (PSKM), Kampus D 139 Universitas Gunadarma Abstrak

Tri Handhika Pusat Studi Komputasi Matematika (PSKM), Kampus D 139 Universitas Gunadarma Abstrak PENGGUNAAN MEODE EMPIRICAL BES LINEAR UNBIASED PREDICION (EBLUP) PADA GENERAL LINEAR MIXED MODEL ri Hadhika Pusat Studi Komputasi Matematika (PSKM), Kampus D 139 Uiversitas Guadarma trihadika@staff.guadarma.ac.id

Lebih terperinci

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika Wed 6/0/3 ETIMAI (PENDUGAAN TATITIK) Ir. Tito Adi Dewato tatistika Deskriptif Iferesi Estimasi Uji Hipotesis Titik Retag Estimasi da Uji Hipotesis Dilakuka setelah peelitia dalam tahap pegambila suatu

Lebih terperinci

Universitas Gadjah Mada Fakultas Teknik Departemen Teknik Sipil dan Lingkungan REGRESI DAN KORELASI. Statistika dan Probabilitas

Universitas Gadjah Mada Fakultas Teknik Departemen Teknik Sipil dan Lingkungan REGRESI DAN KORELASI. Statistika dan Probabilitas Uiversitas Gadjah Mada Fakultas Tekik Departeme Tekik Sipil da Ligkuga REGRESI DAN KORELASI Statistika da Probabilitas Kurva Regresi Mecari garis/kurva yag mewakili seragkaia titik data Ada dua cara utuk

Lebih terperinci

Bab III METODE PENELITIAN

Bab III METODE PENELITIAN perpustakaa.us.ac.id digilib.us.ac.id Bab III METODE PENELITIAN Metode yag diguaka dalam peelitia ii adalah studi literatur beserta peerapaya yaitu dega megumpulka referesi berupa buku, artikel, jural

Lebih terperinci

Bab 3 Metode Interpolasi

Bab 3 Metode Interpolasi Baha Kuliah 03 Bab 3 Metode Iterpolasi Pedahulua Iterpolasi serig diartika sebagai mecari ilai variabel tergatug tertetu, misalya y, pada ilai variabel bebas, misalya, diatara dua atau lebih ilai yag diketahui

Lebih terperinci

BAB III METODE PENELITIAN. Penelitian ini merupakan jenis penelitian deskriptif-kuantitatif, karena

BAB III METODE PENELITIAN. Penelitian ini merupakan jenis penelitian deskriptif-kuantitatif, karena 7 BAB III METODE PENELITIAN A. Jeis Peelitia Peelitia ii merupaka jeis peelitia deskriptif-kuatitatif, karea melalui peelitia ii dapat dideskripsika fakta-fakta yag berupa kemampua siswa kelas VIII SMP

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Distribusi Ekspoesial Fugsi ekspoesial adalah salah satu fugsi yag palig petig dalam matematika. Biasaya, fugsi ii ditulis dega otasi exp(x) atau e x, di maa e adalah basis logaritma

Lebih terperinci

Distribusi Pendekatan (Limiting Distributions)

Distribusi Pendekatan (Limiting Distributions) Distribusi Pedekata (Limitig Distributios) Ada 3 tekik utuk meetuka distribusi pedekata: 1. Tekik Fugsi Distribusi Cotoh 2. Tekik Fugsi Pembagkit Mome Cotoh 3. Tekik Teorema Limit Pusat Cotoh Fitriai Agustia,

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini dilaksanakan di SMA Negeri 1 Way Tuba Tahun Ajaran

III. METODE PENELITIAN. Penelitian ini dilaksanakan di SMA Negeri 1 Way Tuba Tahun Ajaran III. METODE PENELITIAN A. Waktu da Tempat Peelitia ii dilaksaaka di SMA Negeri 1 Way Tuba Tahu Ajara 013-014 pada bula september tahu 013. B. Populasi da Sampel Populasi dalam peelitia ii adalah seluruh

Lebih terperinci

Pengujian Hipotesis Statistika. Sigit Nugroho. Universitas Bengkulu. Disusun oleh. (7 sesi)

Pengujian Hipotesis Statistika. Sigit Nugroho. Universitas Bengkulu. Disusun oleh. (7 sesi) Pegujia Hipotesis Statistika (7 sesi) Disusu oleh Sigit Nugroho Uiversitas Begkulu Hipotesis Hipotesis merupaka dugaa semetara yag diaggap bear. Dalam Statistika, Hipotesis merupaka peryataa yag bisa diuji

Lebih terperinci

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL Defiisi Persamaa diferesial adalah persamaa yag melibatka variabelvariabel tak bebas da derivatif-derivatifya terhadap variabel-variabel bebas. Berikut ii adalah

Lebih terperinci

Ukuran Pemusatan. Pertemuan 3. Median. Quartil. 17-Mar-17. Modus

Ukuran Pemusatan. Pertemuan 3. Median. Quartil. 17-Mar-17. Modus -Mar- Ukura Pemusata Pertemua STATISTIKA DESKRIPTIF Statistik deskripti adalah pegolaha data utuk tujua medeskripsika atau memberika gambara terhadap obyek yag diteliti dega megguaka sampel atau populasi.

Lebih terperinci

BAB 2 ANAVA 2 JALAN. Merupakan pengembangan dari ANAVA 1 Jalan Jika pada ANAVA 1 jalan 1 Faktor Jika pada ANAVA 2 jalan 2 Faktor

BAB 2 ANAVA 2 JALAN. Merupakan pengembangan dari ANAVA 1 Jalan Jika pada ANAVA 1 jalan 1 Faktor Jika pada ANAVA 2 jalan 2 Faktor BAB ANAVA JALAN Merupaka pegembaga dari ANAVA 1 Jala Jika pada ANAVA 1 jala 1 Faktor Jika pada ANAVA jala Faktor Model Liier i i 1,..., a j 1,..., Satu faktor ag diteliti Aava 1 jala k i j k i 1,,...,

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN 5 BAB III METODOLOGI PENELITIAN 3.. Tempat da waktu Peelitia Kegiata pegambila data dilakuka di IUPHHK-HA PT Ratah Timber Kalimata Timur. Waktu pegambila data dilakuka pada bula Februari sampai April 009.

Lebih terperinci

x = μ...? 2 2 s = σ...? x x s = σ...?

x = μ...? 2 2 s = σ...? x x s = σ...? Pedugaa Parameter x 2 sx s = μ...? 2 = σ x...? = σ...? Peduga Parameter Peduga titik yaitu parameter populasi p diduga dega suatu besara statistik, misal: rata-rata, proporsi, ragam, dll Peduga Selag (Iterval)

Lebih terperinci

1 Persamaan rekursif linier non homogen koefisien konstan tingkat satu

1 Persamaan rekursif linier non homogen koefisien konstan tingkat satu Secara umum persamaa rekursif liier tigkat-k bisa dituliska dalam betuk: dega C 0 0. C 0 x + C 1 x 1 + C 2 x 2 + + C k x k = b, Jika b = 0 maka persamaa rekursif tersebut diamaka persamaa rekursif liier

Lebih terperinci

PENAKSIRAN. Penaksiran Titik. Selang Kepercayaan untuk VARIANSI. MA2181 ANALISIS DATA Utriweni Mukhaiyar 17 Oktober 2011

PENAKSIRAN. Penaksiran Titik. Selang Kepercayaan untuk VARIANSI. MA2181 ANALISIS DATA Utriweni Mukhaiyar 17 Oktober 2011 PENAKSIRAN Peaksira Titik Peaksira Selag Selag Kepercayaa utuk RATAAN Selag Kepercayaa utuk VARIANSI MA8 ANALISIS DATA Utriwei Mukhaiyar 7 Oktober 0 Metode Peaksira Peaksira Titik Peaksira Selag Nilai

Lebih terperinci

METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc.

METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc. METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/0 SUGENG00 Copyright 996-98 Dale Caregie & Associates, Ic. Kesalaha ERROR: Selisih atara ilai perkiraa dega ilai eksakilai

Lebih terperinci

III BAHAN DAN METODE PENELITIAN. Objek yang diamati dalam penelitian ini adalah telur tetas itik Mojosari yang

III BAHAN DAN METODE PENELITIAN. Objek yang diamati dalam penelitian ini adalah telur tetas itik Mojosari yang III BAHAN DAN METODE PENELITIAN 1.1 Baha da Alat Peelitia 3.1.1 Baha peelitia Objek yag diamati dalam peelitia ii adalah telur tetas itik Mojosari yag diperoleh dari Duck Complex Balai Peelitia Terak Ciawi,

Lebih terperinci

BAB I PERPANGKATAN DAN BENTUK AKAR

BAB I PERPANGKATAN DAN BENTUK AKAR P e r p a g k a t a & B e t u k A k a r BAB I PERPANGKATAN DAN BENTUK AKAR Pegalama Belajar:. Megidetifikasi, medeskripsika, Kata Kuci: Sifat-sifat pagkat Pagkat Negatif Pagkat Pecaha Betuk Baku mejelaska

Lebih terperinci

BAB 2 LANDASAN TEORI. Statistika merupakan salah satu cabang penegtahuan yang paling banyak mendapatkan

BAB 2 LANDASAN TEORI. Statistika merupakan salah satu cabang penegtahuan yang paling banyak mendapatkan BAB LANDASAN TEORI. Pegertia Regresi Statistika merupaka salah satu cabag peegtahua yag palig bayak medapatka perhatia da dipelajari oleh ilmua dari hamper semua bidag ilmu peegtahua, terutama para peeliti

Lebih terperinci

Barisan Aritmetika dan deret aritmetika

Barisan Aritmetika dan deret aritmetika BARISAN DAN DERET BILANGAN Peyusu: Atmii Dhoruri, MS Kode: Jejag: SMP T/P: / A. Kompetesi yag diharapka. Meetuka suku ke- barisa aritmatika da barisa geometri. Meetuka jumlah suku pertama deret aritmatika

Lebih terperinci

BAB 1 PENDAHULUAN. Analisis regresi menjadi salah satu bagian statistika yang paling banyak aplikasinya.

BAB 1 PENDAHULUAN. Analisis regresi menjadi salah satu bagian statistika yang paling banyak aplikasinya. BAB 1 PENDAHULUAN 1.1 Latar Belakag Aalisis regresi mejadi salah satu bagia statistika yag palig bayak aplikasiya. Aalisis regresi memberika keleluasaa kepada peeliti utuk meyusu model hubuga atau pegaruh

Lebih terperinci

Pertemuan Ke-11. Teknik Analisis Komparasi (t-test)_m. Jainuri, M.Pd

Pertemuan Ke-11. Teknik Analisis Komparasi (t-test)_m. Jainuri, M.Pd Pertemua Ke- Komparasi berasal dari kata compariso (Eg) yag mempuyai arti perbadiga atau pembadiga. Tekik aalisis komparasi yaitu salah satu tekik aalisis kuatitatif yag diguaka utuk meguji hipotesis tetag

Lebih terperinci

BAB I PENDAHULUAN. X Y X Y X Y sampel

BAB I PENDAHULUAN. X Y X Y X Y sampel BAB I PENDAHULUAN 1.1 Latar Belakag Masalah Aalisis regresi merupaka metode aalisis data yag meggambarka hubuga atara variabel respo dega satu atau beberapa variabel prediktor. Aalisis regresi tersebut

Lebih terperinci

UKURAN PEMUSATAN DATA

UKURAN PEMUSATAN DATA Malim Muhammad, M.Sc. UKURAN PEMUSATAN DATA J U R U S A N A G R O T E K N O L O G I F A K U L T A S P E R T A N I A N U N I V E R S I T A S M U H A M M A D I Y A H P U R W O K E R T O DEFINISI UKURAN PEMUSATAN

Lebih terperinci

Pendugaan Parameter. Debrina Puspita Andriani /

Pendugaan Parameter. Debrina Puspita Andriani    / Pedugaa Parameter 7 Debria Puspita Adriai E-mail : debria.ub@gmail.com / debria@ub.ac.id Outlie Pedahulua Pedugaa Titik Pedugaa Iterval Pedugaa Parameter: Kasus Sampel Rataa Populasi Pedugaa Parameter:

Lebih terperinci

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi.

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi. Distribusi Samplig (Distribusi Pearika Sampel). Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

3 METODE PENELITIAN 3.1 Kerangka Pemikiran 3.2 Lokasi dan Waktu Penelitian

3 METODE PENELITIAN 3.1 Kerangka Pemikiran 3.2 Lokasi dan Waktu Penelitian 19 3 METODE PENELITIAN 3.1 Keragka Pemikira Secara rigkas, peelitia ii dilakuka dega tiga tahap aalisis. Aalisis pertama adalah megaalisis proses keputusa yag dilakuka kosume dega megguaka aalisis deskriptif.

Lebih terperinci

BAB III METODE PENELITIAN. Metode yang digunakan dalam penelitian ini adalah penelitian korelasi,

BAB III METODE PENELITIAN. Metode yang digunakan dalam penelitian ini adalah penelitian korelasi, BAB III METODE PENELITIAN 3.1 Metode Peelitia Metode yag diguaka dalam peelitia ii adalah peelitia korelasi, yaitu suatu metode yag secara sistematis meggambarka tetag hubuga pola asuh orag tua dega kosep

Lebih terperinci

IV. METODE PENELITIAN

IV. METODE PENELITIAN IV. METODE PENELITIAN 4.1 Lokasi da Waktu peelitia Peelitia dilakuka pada budidaya jamur tiram putih yag dimiliki oleh usaha Yayasa Paguyuba Ikhlas yag berada di Jl. Thamri No 1 Desa Cibeig, Kecamata Pamijaha,

Lebih terperinci

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI

BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI BAB 3 ENTROPI DARI BEBERAPA DISTRIBUSI Utuk lebih memahami megeai etropi, pada bab ii aka diberika perhituga etropi utuk beberapa distribusi diskrit da kotiu. 3. Distribusi Diskrit Pada sub bab ii dibahas

Lebih terperinci

Persamaan Non-Linear

Persamaan Non-Linear Persamaa No-Liear Peyelesaia persamaa o-liear adalah meghitug akar suatu persamaa o-liear dega satu variabel,, atau secara umum dituliska : = 0 Cotoh: 2 5. 5 4 9 2 0 2 5 5 4 9 2 2. 2 0 2 5. e 0 Metode

Lebih terperinci

BAB II TINJAUAN PUSTAKA. dengan asumsi bahwa telah diketahui bentuk fungsi regresinya. atau dalam bentuk matriks dapat ditulis dengan:

BAB II TINJAUAN PUSTAKA. dengan asumsi bahwa telah diketahui bentuk fungsi regresinya. atau dalam bentuk matriks dapat ditulis dengan: BAB II TINJAUAN PUSTAKA 2.1 Regresi Parametrik Regresi parametrik merupaka metode statistika yag diguaka utuk megetahui pola hubuga atara variabel prediktor dega variabel respo, dega asumsi bahwa telah

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 1 BAB II LANDASAN TEORI 1.1 Loyalitas Pelagga Meurut Griffi (00:4) loyalty is defied as o radom purchase expressed over time by some decisio makig uit. Berdasarka defeisi tersebut dapat dijelaska bahwa

Lebih terperinci

I. DERET TAKHINGGA, DERET PANGKAT

I. DERET TAKHINGGA, DERET PANGKAT I. DERET TAKHINGGA, DERET PANGKAT. Pedahulua Pembahasa tetag deret takhigga sebagai betuk pejumlaha suku-suku takhigga memegag peraa petig dalam fisika. Pada bab ii aka dibahas megeai pegertia deret da

Lebih terperinci

BAB III ESTIMASI PARAMETER MODEL DENGAN GS2SLS. Pada bab ini akan dibahas tentang bentuk model spasial lag sekaligus

BAB III ESTIMASI PARAMETER MODEL DENGAN GS2SLS. Pada bab ini akan dibahas tentang bentuk model spasial lag sekaligus BAB III ESTIMASI PARAMETER MODEL DENGAN GS2SLS Pada bab ii aka dibahas tetag betuk model spasial lag sekaligus spasial error da prosedur Geeralized Spatial Two Stage Least Squares (GS2SLS) utuk megestimasi

Lebih terperinci

Barisan Dan Deret Arimatika

Barisan Dan Deret Arimatika Barisa Da Deret Arimatika A. Barisa Aritmatika Niko etera memiliki sebuah peggaris ukura 0 cm. Ia megamati bilaga-bilaga pada peggarisya ii. Bilaga-bilaga tersebut beruruta 0, 1,, 3,, 0. etiap bilaga beruruta

Lebih terperinci

BAB III METODE PENELITIAN Variabel Penelitian dan Definisi Operasional Variabel. miskin Kabupaten/Kota di Provinsi DIY. Jumlah penduduk miskin

BAB III METODE PENELITIAN Variabel Penelitian dan Definisi Operasional Variabel. miskin Kabupaten/Kota di Provinsi DIY. Jumlah penduduk miskin BAB III METODE PENELITIAN 3.1. Variabel Peelia da Defiisi Operasioal Variabel 3.1.1. Variabel Depede Dalam peelia ii variabel depedeya adalah jumlah peduduk miski Kabupate/Kota di Provisi DIY. Jumlah peduduk

Lebih terperinci

II. LANDASAN TEORI. Sampling adalah proses pengambilan atau memilih n buah elemen dari populasi yang

II. LANDASAN TEORI. Sampling adalah proses pengambilan atau memilih n buah elemen dari populasi yang II. LANDASAN TEORI Defiisi 2.1 Samplig Samplig adalah proses pegambila atau memilih buah eleme dari populasi yag berukura N (Lohr, 1999). Dalam melakuka samplig, terdapat teori dasar yag disebut teori

Lebih terperinci