Kompleksitas Waktu untuk Algoritma Rekursif. ZK Abdurahman Baizal

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Kompleksitas Waktu untuk Algoritma Rekursif. ZK Abdurahman Baizal"

Transkripsi

1 Kompleksitas Waktu utuk Algoritma Rekursif ZK Abdurahma Baizal

2 Algoritma Rekursif Betuk rekursif : suatu subruti/fugsi/ prosedur yag memaggil diriya sediri. Betuk dimaa pemaggila subruti terdapat dalam body subruti Dega rekursi, program aka lebih mudah dilihat

3 Betuk rekursi bertujua utuk : meyederhaaka peulisa program meggatika betuk iterasi Syarat betuk rekursif: ada kodisi termial (basis) ada subroutie all yag melibatka parameter yag ilaiya meuju kodisi termial (reurree)

4 Meghitug kompleksitas betuk rekursif Utuk betuk rekursif, diguaka tekik perhituga kompleksitas dega relasi rekures

5 Meghitug faktorial Futio Faktorial (iput : iteger) iteger {meghasilka ilai!, tidak egatif} Algoritma If = the Retur Else Retur ( *faktorial (-) ) Edif

6 Meghitug faktorial Kompleksitas waktu : utuk kasus basis, tidak ada operasi perkalia () utuk kasus rekures, kompleksitas waktu diukur dari jumlah perkalia () ditambah kompleksitas waktu utuk faktorial (-)

7 Meghitug faktorial Jadi relasi rekures : ( ),,

8 Meghitug faktorial =.. = + () = + Jadi () = O()

9 Meara Haoi Legeda di Haoi, tetag kisah pedeta Budha bersama murid-muridya.

10 Bagaimaa memidahka seluruh piriga (64 piriga)tersebut ke sebuah tiag yag lai (dari A ke B); setiap kali haya satu piriga yag boleh dipidahka, tetapi tidak boleh ada piriga besar di atas piriga keil. Ada tiag peratara C. B A C

11 Kata pedeta, jika pemidaha berhasil dilakuka, maka DUNIA KIAMA!!!

12 Meara Haoi Proedure Haoi (iput, A, B, C:iteger) Algoritma If = the Write ( Pidahka piriga dari,a, ke,b) Else Haoi(-,A,C,B) Writel( Pidahka piriga dari,a, ke,b) Haoi(-,C,B,A) Edif

13 Meara Haoi Relasi Rekurres :,,

14 3 3 3 = Meara Haoi

15 Meara Haoi Jadi O

16 Meara Haoi adalah jumlah seluruh perpidaha piriga dari satu tiag ke tiag laiya. Jika perpidaha piriga butuh waktu detik, maka waktu yag dibutuhka : 64 detik = = kira-kira 6 milyar tahu (???!!!)

17 Persoala Miimum & Maksimum proedure MiMaks(iput A : abelit, i, j : iteger, output mi, maks : iteger) { Meari ilai maksimum da miimum di dalam tabel A yag berukura eleme seara Divide ad Coquer. Masuka: tabel A yag sudah terdefiisi elemeelemeya Keluara: ilai maksimum da ilai miimum tabel } Deklarasi mi, mi, maks, maks : iteger

18 Persoala Miimum & Maksimum if i=j the { eleme } miai maksai else if (i = j-) the { eleme } if Ai < Aj the maksaj miai else maksai miaj edif

19 Persoala Miimum & Maksimum else { lebih dari eleme } k(i+j) div { bagidua tabel pada posisi k } MiMaks(A, i, k, mi, maks) MiMaks(A, k+, j, mi, maks) if mi < mi the mimi else mimi edif if maks<maks the maksmaks else maksmaks edif

20 Persoala Miimum & Maksimum Relasi rekurres: ( ) ( / ),,,

21 Persoala Miimum & Maksimum Peyelesaia: Asumsi: = k, dega k bilaga bulat positif, maka () = (/) + = ((/4) + ) + = 4(/4) = 4 ((/8) + ) = 8(/8) =... = k () + i = k + k k i

22 Persoala Miimum & Maksimum log log = / + = 3/ Jadi 3 O

23 Utuk megetahui kompleksitas betuk rekursif, maka harus diubah dalam betuk yag buka rekursif Bagaimaa megubah betuk rekursif ke o rekursif? Ada dua maam ara utuk meyelesaika masalah ii, yaitu ara oba-oba da dega persamaa karakteristik :. Cara oba-oba (deret).. Metode dega persamaa karakteristik

24 Cara oba-oba. Cara ii dilakuka dega meetuka pola deret yag terbetuk (ara deret). Cotoh utuk ara ii telah ditujukka dalam meari kompleksitas waktu utuk beberapa betuk rekursif sebelumya. Cara ii agak sulit da perlu pegalama.

25 Cara oba-oba Cotoh : a b, 3

26 Cara oba-oba b a b a a b 3 b a b b a a b b a b b a b a b b b a b a b () = () = a = 8a + 7b Sulit utuk diformulasika

27 Metode dega persamaa karakteristik Betuk Persamaa Liier ak Homoge Lagkah-lagkahya adalah sebagai berikut:. Perhatika betuk rekursifya : a a... a k f t P k f P d b d d b d... poliomial dega orde / derajat terbesar d didapatka ilai t da d b k

28 Metode dega persamaa karakteristik. Asumsi f = a a... a k k Misal x x x ax ax... a k x k k ax ax... ak x Persamaa di atas kemudia dibagi dega (ii jika k x betuk homoge k x adalah suku dega orde terkeil), sehigga k k k didapatka : x a x a x... a k

29 Metode dega persamaa karakteristik 3. Diperoleh persamaa karakteristik : k k k d x a x a x... a x t k t da d didapatka dari lagkah.

30 Metode dega persamaa karakteristik 4. Ada maam kasus : Kasus Semua akar karakteristik berbeda Solusi Umum: x, x, 3,... x x x x ,, 3,... adalah kostata yag harus diari Kasus Semua akar karakteristik sama, yaitu x x... Solusi Umum: 3... x. 3 4 x

31 Masalah faktorial,, (i) f. t = d =

32 Masalah faktorial (ii) persamaa homoge (kita aggap f()=) Misal x x x, maka Persamaa terakhir ii dibagi dega (suku dega orde terkeil), didapatka : x = x

33 Masalah faktorial (iii) Persamaa karakteristik (x )(x ) = Akar akarya adalah : x x Akar sama, jadi termasuk kasus, sehigga solusi umum :.

34 Masalah faktorial Cari da : Dari relasi rekures :..(*) Dari solusi umum: (**)

35 Masalah faktorial Dari (*) da (**) didapatka persamaa : Dari kedua persamaa terakhir ii diperoleh da Dega demikia diperoleh : = Jadi kompleksitas waktuya adalah da O

36 Kasus Meara Haoi Relasi rekurres :,, (i) f. t = d =

37 Kasus Meara Haoi (ii) Persamaa homoge Misal x x x Persamaa terakhir ii dibagi didapatka : x = x (suku dega orde terkeil),

38 Kasus Meara Haoi (iii) Diperoleh persamaa karakteristik : (x )(x ) = Dari persamaa karakterik diperoleh akar-akar : x x akar-akar berbeda, sehigga termasuk dalam kasus, sehigga solusi umum:

39 Kasus Meara Haoi Cari da : Dari relasi rekurres : 3 Dari (*) da (**) (*) Dari Solusi umum: 4 (**) 4 3 = da = -

40 Kasus Meara Haoi Jadi Jadi kompleksitas waktu : Kompleksitas waktu Asimptotik: O

41 Persoala Miimum & Maksimum Relasi Rekurres (i) Dimisalka f m m m,,, m t = d = m m m

42 Persoala Miimum & Maksimum (ii) Persamaa homoge : x m m m m m m x Misal m x m Persamaa terakhir ii dibagi dega m x (suku dega orde terkeil), didapatka : x =

43 Persoala Miimum & Maksimum (iii) Diperoleh persamaa karakteristik : x x Akar-akarya : Solusi umum : m m m Karea log m x x m log log

44 Persoala Miimum & Maksimum Cari da : Dari relasi rekurres : = 4 =..(*) Dari solusi umum: (**) Dari (*) da (**) Jadi kompleksitas waktu : Kompleksitas waktu asimptotik 3 O

45 Betuk Persamaa Liier Homoge Betuk Persama Liier Homoge adalah : a a... a k f f = k Dega Jadi betuk Persama Liier Homoge adalah : a a... a k k

46 Barisa Fiboai Relasi rekurres : x x x x (i) Persamaa rekursi : =, maka Misal

47 Barisa Fiboai x Persamaa terakhir ii dibagi, didapatka : x x = persamaa karakteristik 5 x 5 x 5 5 (ii) Akar persamaa karakteristik adalah : da akar-akar berbeda, sehigga termasuk dalam kasus, sehigga solusi umum:

48 Barisa Fiboai (iii) Cari da : Dari relasi rekurres da solusi umum diperoleh : Dari persamaa terakhir ii, diperoleh da = 5 =

49 Deret Fiboai (iv) Masukka ke solusi umum kembali, sehigga didapatka : 5 5 5

50 Cotoh lai Misal kita puya relasi rekurres :

51 Cotoh lai (i) Persamaa rekursi : Misal () = x, maka persamaa di atas mejadi : x 7x 5x 9x 3 Persamaa terakhir ii dibagi 3 x (suku dega orde terkeil) didapatka : x x 3x 3 x 3 7x 5x 9 persamaa karakteristik

52 Cotoh lai (ii) Akar persamaa karakteristik adalah : x x x 3 3 tidak semua akar-akarya sama (juga tidak semua berbeda) jadi perpadua atara kasus da kasus, sehigga solusi umumya adalah : 3 33

53 Cotoh lai ) ()(3 3 ) ()(3 3 ) ()( (iii) Cari da da 3 : Dari relasi rekurres da solusi umum diperoleh : Disederhaaka mejadi : 3 =, da 3 =

54 Cotoh lai (iv) Masukka ke solusi umum kembali, sehigga didapatka : ( ) O( 3 3 )

55 eorema Master Cara yag telah dibahas didepa adalah bagaimaa meari () utuk algoritma rekursif, yag berlaku seara umum. Khusus utuk strategi Divide & Coquer, kita bisa juga meari kompleksitas waktu asimptotik (igat! haya kompleksitas waktu asimptotik, buka () ) dega megguaka teorema Master.

56 eorema Master eorema Master : Utuk suatu geeral Divide ad Coquer reurree : Jika a f f dimaa b O d d dalam persamaa geeral Divide ad Coquer reurree di atas, maka O O O d d b loga log a a a b b b (aalogous results hold for the ad otatios, too) d d d

57 Cotoh : Persoala Miimum & Maksimum (proedure MiMax) salah satu otoh strategi divide ad oquer.,,,. Dari relasi rekures di atas, diperoleh a =, b =, d =. sehigga d log a b O atau O

Kompleksitas Waktu untuk Algoritma Rekursif

Kompleksitas Waktu untuk Algoritma Rekursif Kopleksitas Waktu utuk Algorita Rekursif Betuk rekursif : - suatu subruti/fugsi/ proseur yag eaggil iriya seiri. - Betu iaa peaggila subruti terapat ala boy subruti - Dega rekursi, progra aka lebih uah

Lebih terperinci

1 Persamaan rekursif linier non homogen koefisien konstan tingkat satu

1 Persamaan rekursif linier non homogen koefisien konstan tingkat satu Secara umum persamaa rekursif liier tigkat-k bisa dituliska dalam betuk: dega C 0 0. C 0 x + C 1 x 1 + C 2 x 2 + + C k x k = b, Jika b = 0 maka persamaa rekursif tersebut diamaka persamaa rekursif liier

Lebih terperinci

Kompleksitas dari Algoritma-Algoritma untuk Menghitung Bilangan Fibonacci

Kompleksitas dari Algoritma-Algoritma untuk Menghitung Bilangan Fibonacci Kompleksitas dari Algoritma-Algoritma utuk Meghitug Bilaga Fiboacci Gregorius Roy Kaluge NIM : 358 Program Studi Tekik Iformatika, Istitut Tekologi Badug Jala Gaesha, Badug e-mail: if8@studets.if.itb.ac.id,

Lebih terperinci

Distribusi Pendekatan (Limiting Distributions)

Distribusi Pendekatan (Limiting Distributions) Distribusi Pedekata (Limitig Distributios) Ada 3 tekik utuk meetuka distribusi pedekata: 1. Tekik Fugsi Distribusi Cotoh 2. Tekik Fugsi Pembagkit Mome Cotoh 3. Tekik Teorema Limit Pusat Cotoh Fitriai Agustia,

Lebih terperinci

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3 SUKU BANYAK A Pegertia: f(x) x + a 1 x 1 + a 2 x 2 + + a 2 +a 1 adalah suku bayak (poliom) dega : - a, a 1, a 2,.,a 2, a 1, a 0 adalah koefisiekoefisie suku bayak yag merupaka kostata real dega a 0 - a

Lebih terperinci

PROGRAM STUDI S1 SISTEM KOMPUTER UNIVERSITAS DIPONEGORO. Oky Dwi Nurhayati, ST, MT email: okydn@undip.ac.id

PROGRAM STUDI S1 SISTEM KOMPUTER UNIVERSITAS DIPONEGORO. Oky Dwi Nurhayati, ST, MT email: okydn@undip.ac.id PROGRAM STUDI S1 SISTEM KOMPUTER UNIVERSITAS DIPONEGORO Oky Dwi Nurhayati, ST, MT email: okydn@undip.ac.id Kinerja yang perlu ditelaah pada algoritma: beban komputasi efisiensi penggunaan memori Yang perlu

Lebih terperinci

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3 BAB XII. SUKU BANYAK A = a Pegertia: f(x) = a x + a x + a x + + a x +a adalah suku bayak (poliom) dega : - a, a, a,.,a, a, a 0 adalah koefisiekoefisie suku bayak yag merupaka kostata real dega a 0 - a

Lebih terperinci

I. DERET TAKHINGGA, DERET PANGKAT

I. DERET TAKHINGGA, DERET PANGKAT I. DERET TAKHINGGA, DERET PANGKAT. Pedahulua Pembahasa tetag deret takhigga sebagai betuk pejumlaha suku-suku takhigga memegag peraa petig dalam fisika. Pada bab ii aka dibahas megeai pegertia deret da

Lebih terperinci

BAB III PEMBAHASAN. Pada BAB III ini akan dibahas mengenai bentuk program linear fuzzy

BAB III PEMBAHASAN. Pada BAB III ini akan dibahas mengenai bentuk program linear fuzzy BAB III PEMBAHASAN Pada BAB III ii aka dibahas megeai betuk program liear fuzzy dega koefisie tekis kedala berbetuk bilaga fuzzy da pembahasa peyelesaia masalah optimasi studi kasus pada UD FIRDAUS Magelag

Lebih terperinci

PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT

PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT Prosidig Semiar Nasioal Matematika da Terapaya 06 p-issn : 0-0384; e-issn : 0-039 PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT Liatus

Lebih terperinci

Bab 3 Metode Interpolasi

Bab 3 Metode Interpolasi Baha Kuliah 03 Bab 3 Metode Iterpolasi Pedahulua Iterpolasi serig diartika sebagai mecari ilai variabel tergatug tertetu, misalya y, pada ilai variabel bebas, misalya, diatara dua atau lebih ilai yag diketahui

Lebih terperinci

METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc.

METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc. METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/0 SUGENG00 Copyright 996-98 Dale Caregie & Associates, Ic. Kesalaha ERROR: Selisih atara ilai perkiraa dega ilai eksakilai

Lebih terperinci

Pendekatan Nilai Logaritma dan Inversnya Secara Manual

Pendekatan Nilai Logaritma dan Inversnya Secara Manual Pedekata Nilai Logaritma da Iversya Secara Maual Moh. Affaf Program Studi Pedidika Matematika, STKIP PGRI BANGKALAN affafs.theorem@yahoo.com Abstrak Pada pegaplikasiaya, bayak peggua yag meggatugka masalah

Lebih terperinci

theresiaveni.wordpress.com NAMA : KELAS :

theresiaveni.wordpress.com NAMA : KELAS : theresiaveiwordpresscom NAMA : KELAS : 1 theresiaveiwordpresscom BARISAN DAN DERET Barisa da deret dapat diguaka utuk memudahka peyelesaia perhituga, misalya buga bak, keaika produksi, da laba/rugi suatu

Lebih terperinci

Hendra Gunawan. 12 Februari 2014

Hendra Gunawan. 12 Februari 2014 MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2013/2014 12 Februari 2014 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 82 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg

Lebih terperinci

PERTEMUAN 13. VEKTOR dalam R 3

PERTEMUAN 13. VEKTOR dalam R 3 PERTEMUAN VEKTOR dalam R Pegertia Ruag Vektor Defiisi R Jika adalah sebuah bilaga bulat positif, maka tupel - - terorde (ordered--tuple) adalah sebuah uruta bilaga riil ( a ),a,..., a. Semua tupel - -terorde

Lebih terperinci

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4 Program Studi : Tekik Iformatika Miggu ke : 4 INDUKSI MATEMATIKA Hampir semua rumus da hukum yag berlaku tidak tercipta dega begitu saja sehigga diraguka kebearaya. Biasaya, rumus-rumus dapat dibuktika

Lebih terperinci

Design and Analysis of Algorithm

Design and Analysis of Algorithm Design and Analysis of Algorithm Week 4: Kompleksitas waktu algoritma rekursif part 1 Dr. Putu Harry Gunawan 1 1 Department of Computational Science School of Computing Telkom University Dr. Putu Harry

Lebih terperinci

BARISAN DAN DERET. Nurdinintya Athari (NDT)

BARISAN DAN DERET. Nurdinintya Athari (NDT) BARISAN DAN DERET Nurdiitya Athari (NDT) BARISAN Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) = a Fugsi tersebut dikeal sebagai barisa bilaga

Lebih terperinci

MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR. Dosen Pengampu : Darmadi, S.Si, M.Pd

MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR. Dosen Pengampu : Darmadi, S.Si, M.Pd MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR Dose Pegampu : Darmadi, S.Si, M.Pd Disusu : Kelas 5A / Kelompok 5 : Dia Dwi Rahayu (084. 06) Hefetamala (084. 4) Khoiril Haafi (084. 70) Liaatul Nihayah (084. 74)

Lebih terperinci

Penyelesaian Persamaan Non Linier

Penyelesaian Persamaan Non Linier Peyelesaia Persamaa No Liier Metode Iterasi Sederhaa Metode Newto Raphso Permasalaha Titik Kritis pada Newto Raphso Metode Secat Metode Numerik Iterasi/NewtoRaphso/Secat - Metode Iterasi Sederhaa- Metode

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Permasalaha peugasa atau assigmet problem adalah suatu persoala dimaa harus melakuka peugasa terhadap sekumpula orag yag kepada sekumpula job yag ada, sehigga tepat satu

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2016/2017 3 Februari 2017 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg Batas

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret Program Perkuliaha Dasar Umum Sekolah Tiggi Tekologi Telkom Barisa da Deret Barisa Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) a Fugsi tersebut

Lebih terperinci

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL Defiisi Persamaa diferesial adalah persamaa yag melibatka variabelvariabel tak bebas da derivatif-derivatifya terhadap variabel-variabel bebas. Berikut ii adalah

Lebih terperinci

Persamaan Non-Linear

Persamaan Non-Linear Persamaa No-Liear Peyelesaia persamaa o-liear adalah meghitug akar suatu persamaa o-liear dega satu variabel,, atau secara umum dituliska : = 0 Cotoh: 2 5. 5 4 9 2 0 2 5 5 4 9 2 2. 2 0 2 5. e 0 Metode

Lebih terperinci

MATEMATIKA DISKRIT FUNGSI

MATEMATIKA DISKRIT FUNGSI 1 MATEMATIKA DISKRIT FUNGSI Fugsi Misalka A da B himpua. Relasi bier f dari A ke B merupaka suatu fugsi jika setiap eleme di dalam A dihubugka dega tepat satu eleme di dalam B. Jika f adalah fugsi dari

Lebih terperinci

Laboratorium Ilmu dan Rekayasa Komputasi Departemen Teknik Informatika, Institut Teknologi Bandung Jl. Ganesha 10, Bandung

Laboratorium Ilmu dan Rekayasa Komputasi Departemen Teknik Informatika, Institut Teknologi Bandung Jl. Ganesha 10, Bandung Eksplorasi Algoritma Mass, Profit,, Profit / Mass, atau Profit / utuk Persoala Iteger Kapsack yag Bedaya Berupa Zat Kimia dega Jeisya Terdefiisi Abstrak Riyai Mardikaigrum 1, Nurshati 2, Vaia Karimah 3

Lebih terperinci

Fungsi. Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B.

Fungsi. Jika f adalah fungsi dari A ke B kita menuliskan f : A B yang artinya f memetakan A ke B. Fugsi Misalka A da B himpua. Relasi bier f dari A ke B merupaka suatu fugsi jika setiap eleme di dalam A dihubugka dega tepat satu eleme di dalam B. Jika f adalah fugsi dari A ke B kita meuliska f : A

Lebih terperinci

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X Pedugaa Selag: Metode Pivotal Lagkah-lagkahya 1. Adaika X1, X,..., X adalah cotoh acak dari populasi dega fugsi kepekata f( x; ), da parameter yag tidak diketahui ilaiya. Adaika T adalah peduga titik bagi..

Lebih terperinci

BAB II TEORI MOTOR LANGKAH

BAB II TEORI MOTOR LANGKAH BAB II TEORI MOTOR LANGKAH II. Dasar-Dasar Motor Lagkah Motor lagkah adalah peralata elektromagetik yag megubah pulsa digital mejadi perputara mekais. Rotor pada motor lagkah berputar dega perubaha yag

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Bicriteria Liear Programmig (BLP) Pesoala optimisasi dega beberapa fugsi tujua memperhitugka beberapa tujua yag koflik secara simulta, secara umum Multi objective programmig (MOP)

Lebih terperinci

Design and Analysis of Algorithms CNH2G3- Week 4 Kompleksitas waktu algoritma rekursif part 1

Design and Analysis of Algorithms CNH2G3- Week 4 Kompleksitas waktu algoritma rekursif part 1 Design and Analysis of Algorithms CNH2G3- Week 4 Kompleksitas waktu algoritma rekursif part 1 Dr. Putu Harry Gunawan (PHN) Quiz I 1. Tentukan operasi dasar, c op dan C(n) untung masing-masing algoritma

Lebih terperinci

Barisan Dan Deret Arimatika

Barisan Dan Deret Arimatika Barisa Da Deret Arimatika A. Barisa Aritmatika Niko etera memiliki sebuah peggaris ukura 0 cm. Ia megamati bilaga-bilaga pada peggarisya ii. Bilaga-bilaga tersebut beruruta 0, 1,, 3,, 0. etiap bilaga beruruta

Lebih terperinci

Barisan Aritmetika dan deret aritmetika

Barisan Aritmetika dan deret aritmetika BARISAN DAN DERET BILANGAN Peyusu: Atmii Dhoruri, MS Kode: Jejag: SMP T/P: / A. Kompetesi yag diharapka. Meetuka suku ke- barisa aritmatika da barisa geometri. Meetuka jumlah suku pertama deret aritmatika

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakag Dalam keadaa dimaa meghadapi persoala program liier yag besar, maka aka berusaha utuk mecari peyelesaia optimal dega megguaka algoritma komputasi, seperti algoritma

Lebih terperinci

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa istilah, definisi serta konsep-konsep yang

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa istilah, definisi serta konsep-konsep yang II. LANDASAN TEORI Pada bab ii aka diberika beberapa istilah, defiisi serta kosep-kosep yag medukug dalam peelitia ii. 2.1 Kosep Dasar Teori Graf Berikut ii aka diberika kosep dasar teori graf yag bersumber

Lebih terperinci

Batas Bilangan Ajaib Pada Graph Caterpillar

Batas Bilangan Ajaib Pada Graph Caterpillar J. Math. ad Its Appl. ISSN: 189-605X Vol. 3, No., Nov 006, 49 56 Batas Bilaga Ajaib Pada Graph Caterpillar Chairul Imro Jurusa Matematika FMIPA ITS Surabaya imro-its@matematika.its.ac.id Abstrak Jika suatu

Lebih terperinci

3. Rangkaian Logika Kombinasional dan Sequensial 3.1. Rangkaian Logika Kombinasional Enkoder

3. Rangkaian Logika Kombinasional dan Sequensial 3.1. Rangkaian Logika Kombinasional Enkoder 3. Ragkaia Logika Kombiasioal da Sequesial Ragkaia Logika secara garis besar dibagi mejadi dua, yaitu ragkaia logika Kombiasioal da ragkaia logika Sequesial. Ragkaia logika Kombiasioal adalah ragkaia yag

Lebih terperinci

II. TINJAUAN PUSTAKA. Secara umum apabila a bilangan bulat dan b bilangan bulat positif, maka ada tepat = +, 0 <

II. TINJAUAN PUSTAKA. Secara umum apabila a bilangan bulat dan b bilangan bulat positif, maka ada tepat = +, 0 < II. TINJAUAN PUSTAKA 2.1 Keterbagia Secara umum apabila a bilaga bulat da b bilaga bulat positif, maka ada tepat satu bilaga bulat q da r sedemikia sehigga : = +, 0 < dalam hal ii b disebut hasil bagi

Lebih terperinci

Bab IV. Penderetan Fungsi Kompleks

Bab IV. Penderetan Fungsi Kompleks Bab IV Pedereta Fugsi Kompleks Sebagaimaa pada fugsi real, fugsi kompleks juga dapat dideretka pada daerah kovergesiya. Semua watak kajia kovergesi pada fugsi real berlaku pula pada fugsi kompleks. Secara

Lebih terperinci

BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP. Permasalahan dalam tugas akhir ini dibatasi hanya pada penaksiran

BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP. Permasalahan dalam tugas akhir ini dibatasi hanya pada penaksiran BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP Permasalaha dalam tugas akhir ii dibatasi haya pada peaksira besarya koefisie korelasi polychoric da tidak dilakuka peguia terhadap koefisie korelasi

Lebih terperinci

HALAMAN Dengan definisi limit barisan buktikan limit berikut ini : = 0. a. lim PENYELESAIAN : jadi terbukti bahwa lim = 0 = 5. b.

HALAMAN Dengan definisi limit barisan buktikan limit berikut ini : = 0. a. lim PENYELESAIAN : jadi terbukti bahwa lim = 0 = 5. b. Didowload dari ririez.blog.us.ac.id HALAMAN 36 37 5. Dega defiisi limit barisa buktika limit berikut ii : a. lim = 0 lim 1 2 + 3 = 0 > 0 h 1 = 2 + 3 0 = 1 2 + 3 1 2 1 2 1 2 < jadi terbukti bahwa lim =

Lebih terperinci

SINYAL WAKTU Pengolahan Sinyal Digital Minggu II

SINYAL WAKTU Pengolahan Sinyal Digital Minggu II SINYAL WAKTU Pegolaha Siyal Digital Miggu II 24 Goodrich, Tamassia PENDAHULUAN Defiisi Siyal x(t) Fugsi dari variabel bebas yag memiliki ilai real/skalar yag meyampaika iformasi tetag keadaa atau ligkuga

Lebih terperinci

BAB I PENDAHULUAN. Integral adalah salah satu konsep penting dalam Matematika yang

BAB I PENDAHULUAN. Integral adalah salah satu konsep penting dalam Matematika yang BAB I PENDAHULUAN 1.1 Latar Belakag Masalah Itegral adalah salah satu kosep petig dalam Matematika yag dikemukaka pertama kali oleh Isac Newto da Gottfried Wilhelm Leibiz pada akhir abad ke-17. Selajutya

Lebih terperinci

4 HASIL DAN PEMBAHASAN

4 HASIL DAN PEMBAHASAN 7 4 HASIL DAN PEMBAHASAN Studi Pedahulua Salah satu bahasa dalam aljabar liier yag merupaka kuci petig dalam latis adalah proses ortogoalisasi Gram-Schmidt. Proses ii aka mejadi ide utama dalam pembetuka

Lebih terperinci

Matematika Terapan Dosen : Zaid Romegar Mair, ST., M.Cs Pertemuan 3

Matematika Terapan Dosen : Zaid Romegar Mair, ST., M.Cs Pertemuan 3 Matematika Terapa Dose : Zaid Romegar Mair ST. M.Cs Pertemua 3 PROGRAM STUDI TEKNIK INFORMATIKA Jl. Koloel Wahid Udi Lk. I Kel. Kayuara Sekayu 30711 web:www.polsky.ac.id mail: polsky@polsky.ac.id Tel.

Lebih terperinci

Metode Beda Hingga dan Teorema Newton untuk Menentukan Jumlah Deret. Finite Difference Method and Newton's Theorem to Determine the Sum of Series

Metode Beda Hingga dan Teorema Newton untuk Menentukan Jumlah Deret. Finite Difference Method and Newton's Theorem to Determine the Sum of Series Jural ILM DASAR, Vol, No, Juli : 9-98 9 Metode Beda Higga da Teorema Newto utuk Meetuka Jumlah Deret Fiite Differece Method ad Newto's Theorem to Determie the Sum of Series Tri Mulyai,*), Moh Hasa ), Slami

Lebih terperinci

Himpunan/Selang Kekonvergenan

Himpunan/Selang Kekonvergenan oki eswa (fmipa-itb) Deret Pagkat Kita aka mempelajari beberapa tehik utuk meyajika suatu fugsi f (x) dalam betuk deret pagkat (power series), yaitu meetuka derat pagkat c (x a) sehigga f (x) = c (x a)

Lebih terperinci

) didefinisikan sebagai persamaan yang dapat dinyatakan dalam bentuk: a x a x a x b... b adalah suatu urutan bilangan dari bilangan s1, s2,...

) didefinisikan sebagai persamaan yang dapat dinyatakan dalam bentuk: a x a x a x b... b adalah suatu urutan bilangan dari bilangan s1, s2,... SISEM PERSAMAAN LINIER DAN MARIKS. SISEM PERSAMAAN LINIER Secara umum, persamaa liier dega variabel ( x, x,..., x ) didefiisika sebagai persamaa yag dapat diyataka dalam betuk: a x a x a x b... dega a,

Lebih terperinci

Dasar Sistem Pengaturan - Transformasi Laplace. Transformasi Laplace bilateral atau dua sisi dari sinyal bernilai riil x(t) didefinisikan sebagai :

Dasar Sistem Pengaturan - Transformasi Laplace. Transformasi Laplace bilateral atau dua sisi dari sinyal bernilai riil x(t) didefinisikan sebagai : Defiisi Trasformasi Laplace Trasformasi Laplace Bilateral Trasformasi Laplace bilateral atau dua sisi dari siyal berilai riil x(t) didefiisika sebagai : X B x(t)e Operasi trasformasi Laplace bilateral

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Distribusi Ekspoesial Fugsi ekspoesial adalah salah satu fugsi yag palig petig dalam matematika. Biasaya, fugsi ii ditulis dega otasi exp(x) atau e x, di maa e adalah basis logaritma

Lebih terperinci

B a b 1 I s y a r a t

B a b 1 I s y a r a t 34 TKE 315 ISYARAT DAN SISTEM B a b 1 I s y a r a t (bagia 3) Idah Susilawati, S.T., M.Eg. Program Studi Tekik Elektro Fakultas Tekik da Ilmu Komputer Uiversitas Mercu Buaa Yogyakarta 29 35 1.5.2. Isyarat

Lebih terperinci

KALKULUS 4. Dra. D. L. Crispina Pardede, DEA. SARMAG TEKNIK MESIN

KALKULUS 4. Dra. D. L. Crispina Pardede, DEA. SARMAG TEKNIK MESIN KALKULUS Dra. D. L. Crispia Pardede DEA. SARMAG TEKNIK MESIN KALKULUS - SILABUS. Deret Fourier.. Fugsi Periodik.2. Fugsi Geap da Gajil.3. Deret Trigoometri.. Betuk umum Deret Fourier.. Kodisi Dirichlet.6.

Lebih terperinci

PENGANTAR MATEMATIKA DISKRIT

PENGANTAR MATEMATIKA DISKRIT PENGANTAR MATEMATIKA DISKRIT DIKTAT Oleh: Rippi Maya Eliva Sukma Cipta PROGRAM STUDI PENDIDIKAN MATEMATIKA UNIVERSITAS ISLAM NEGERI SUNAN GUNUNG DJATI BANDUNG 016 Kata Pegatar Diktat ii disusu sebagai

Lebih terperinci

Bab 8 Teknik Pengintegralan

Bab 8 Teknik Pengintegralan Catata Kuliah MA3 Kalkulus Elemeter II Oki Neswa,Ph.D., Departeme Matematika-ITB Bab 8 Tekik Pegitegrala Metoda Substitusi Itegral Fugsi Trigoometrik Substitusi Merasioalka Itegral Parsial Itegral Fugsi

Lebih terperinci

ARTIKEL. Menentukan rumus Jumlah Suatu Deret dengan Operator Beda. Markaban Maret 2015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN

ARTIKEL. Menentukan rumus Jumlah Suatu Deret dengan Operator Beda. Markaban Maret 2015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN ARTIKEL Meetuka rumus Jumlah Suatu Deret dega Operator Beda Markaba 191115198801005 Maret 015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN PUSAT PENGEMBANGAN DAN PEMBERDAYAAN PENDIDIK DAN TENAGA KEPENDIDIKAN

Lebih terperinci

DERET TAK HINGGA (INFITITE SERIES)

DERET TAK HINGGA (INFITITE SERIES) MATEMATIKA II DERET TAK HINGGA (INFITITE SERIES) sugegpb.lecture.ub.ac.id aada.lecture.ub.ac.id BARISAN Barisa merupaka kumpula suatu bilaga (atau betuk aljabar) yag disusu sehigga membetuk suku-suku yag

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Aalisis Regresi Istilah regresi pertama kali diperkealka oleh seorag ahli yag berama Facis Galto pada tahu 1886. Meurut Galto, aalisis regresi berkeaa dega studi ketergatuga dari suatu

Lebih terperinci

TURUNAN FUNGSI. Definisi. 3.1 Pengertian Turunan Fungsi. Turunan fungsi f adalah fungsi f yang nilainya di c adalah. asalkan limit ini ada.

TURUNAN FUNGSI. Definisi. 3.1 Pengertian Turunan Fungsi. Turunan fungsi f adalah fungsi f yang nilainya di c adalah. asalkan limit ini ada. 3 TURUNAN FUNGSI 3. Pegertia Turua Fugsi Defiisi Turua fugsi f adala fugsi f yag ilaiya di c adala f c f c f c 0 asalka it ii ada. Coto Jika f 3 + +4, maka turua f di adala f f f 0 3 4 3.. 4 0 34 4 4 4

Lebih terperinci

Soal dan Pembahasan. Ujian Nasional Matematika Teknik SMK matematikamenyenangkan.com

Soal dan Pembahasan. Ujian Nasional Matematika Teknik SMK matematikamenyenangkan.com Soal da Pembahasa jia Nasioal 06 Matematika Tekik SMK matematikameyeagka.com . pqr Betuk sederhaa dari p q r A. p 8 q r adalah... B. p q 0 r 0 D. p q 0 r 0 C. p 8 q r 0 E. p 6 q r Igat rumus berikut m

Lebih terperinci

BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL)

BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) Setiap peelitia selalu berkeaa dega sekelompok data. Yag dimaksud kelompok disii adalah: Satu orag mempuyai sekelompok data, atau sekelompok orag mempuyai satu

Lebih terperinci

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian BAB I PENDAHULUAN A. Latar Belakag Masalah Matematika merupaka suatu ilmu yag mempuyai obyek kajia abstrak, uiversal, medasari perkembaga tekologi moder, da mempuyai pera petig dalam berbagai disipli,

Lebih terperinci

Beberapa Sifat Semigrup Matriks Atas Daerah Integral Admitting Struktur Ring 1

Beberapa Sifat Semigrup Matriks Atas Daerah Integral Admitting Struktur Ring 1 Beberapa Sifat Semigrup Matriks Atas Daerah Itegral Admittig Struktur ig K a r y a t i Jurusa Pedidika Matematika FMIPA, Uiversitas Negeri Yogyakarta Email: yatiuy@yahoo.com Abstrak Diberika adalah daerah

Lebih terperinci

METODE NUMERIK TKM4104. Kuliah ke-2 DERET TAYLOR DAN ANALISIS GALAT

METODE NUMERIK TKM4104. Kuliah ke-2 DERET TAYLOR DAN ANALISIS GALAT METODE NUMERIK TKM4104 Kuliah ke- DERET TAYLOR DAN ANALISIS GALAT DERET TAYLOR o Deret Taylor adalah alat yag utama utuk meuruka suatu metode umerik. o Deret Taylor bergua utuk meghampiri ugsi ke dalam

Lebih terperinci

BAB II TEORI DASAR. Definisi Grup G disebut grup komutatif atau grup abel jika berlaku hukum

BAB II TEORI DASAR. Definisi Grup G disebut grup komutatif atau grup abel jika berlaku hukum BAB II TEORI DASAR 2.1 Aljabar Liier Defiisi 2. 1. 1 Grup Himpua tak kosog G disebut grup (G, ) jika pada G terdefiisi operasi, sedemikia rupa sehigga berlaku : a. Jika a, b eleme dari G, maka a b eleme

Lebih terperinci

II LANDASAN TEORI. Sebuah bilangan kompleks dapat dinyatakan dalam bentuk. z = x jy. (2.4)

II LANDASAN TEORI. Sebuah bilangan kompleks dapat dinyatakan dalam bentuk. z = x jy. (2.4) 3 II LANDASAN TEORI 2.1 Peubah Kompleks da Fugsi Kompleks Sebuah bilaga kompleks dapat diyataka dalam betuk z = x + jy, (2.1) dega x da y adalah bilaga-bilaga real da j = 1. Bilaga x disebut bagia real

Lebih terperinci

Oleh : Bambang Supraptono, M.Si. Referensi : Kalkulus Edisi 9 Jilid 1 (Varberg, Purcell, Rigdom) Hal

Oleh : Bambang Supraptono, M.Si. Referensi : Kalkulus Edisi 9 Jilid 1 (Varberg, Purcell, Rigdom) Hal BAB. Limit Fugsi Ole : Bambag Supraptoo, M.Si. Referesi : Kalkulus Edisi 9 Jilid (Varberg, Purcell, Rigdom) Hal 56 - Defiisi: Pegertia presisi tetag it Megataka bawa f ( ) L berarti bawa utuk tiap yag

Lebih terperinci

II. LANDASAN TEORI. Sampling adalah proses pengambilan atau memilih n buah elemen dari populasi yang

II. LANDASAN TEORI. Sampling adalah proses pengambilan atau memilih n buah elemen dari populasi yang II. LANDASAN TEORI Defiisi 2.1 Samplig Samplig adalah proses pegambila atau memilih buah eleme dari populasi yag berukura N (Lohr, 1999). Dalam melakuka samplig, terdapat teori dasar yag disebut teori

Lebih terperinci

BARISAN FIBONACCI DAN BILANGAN PHI

BARISAN FIBONACCI DAN BILANGAN PHI BARISAN FIBONACCI DAN BILANGAN PHI Fiboacci Matematikawa terbesar pada abad pertegaha adalah Leoardo dari Pisa, Italia (80 0). Ia lebih dikeal dega ama Fibo-acci. Artiya, aak Boaccio. Meara Pisa yag terkeal

Lebih terperinci

SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS

SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS Prosidig Semiar Nasioal Peelitia, Pedidika da Peerapa MIPA, Fakultas MIPA, Uiversitas Negeri Yogyakarta, 4 Mei 0 SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS Musthofa Jurusa Pedidika Matematika FMIPA

Lebih terperinci

1 n MODUL 5. Peubah Acak Diskret Khusus

1 n MODUL 5. Peubah Acak Diskret Khusus ODUL 5 Peubah Acak Diskret Khusus Terdapat beberapa peubah acak diskret khusus yag serig mucul dalam aplikasi. Peubah Acak Seragam ( Uiform) Bila X suatu peubah acak diskret dimaa setiap eleme dari X mempuyai

Lebih terperinci

BAB 4. METODE ESTIMASI PARAMETER DARI DISTRIBUSI WAKTU KERUSAKAN

BAB 4. METODE ESTIMASI PARAMETER DARI DISTRIBUSI WAKTU KERUSAKAN BAB 4 METODE ESTIMASI PARAMETER DARI DISTRIBUSI WAKTU KERUSAKAN Estimasi reliabilitas membutuhka pegetahua distribusi waktu kerusaka yag medasari dari kompoe atau sistem yag dimodelka Utuk memprediksi

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN JURAL MATEMATKA DA KOMPUTER Vol. 6. o., 77-85, Agustus 003, SS : 40-858 DSTRBUS WAKTU BERHET PADA PROSES PEMBAHARUA Sudaro Jurusa Matematika FMPA UDP Abstrak Dalam proses stokhastik yag maa kejadia dapat

Lebih terperinci

Institut Teknologi Sepuluh Nopember Surabaya. Model Sistem dalam Persamaan Keadaan

Institut Teknologi Sepuluh Nopember Surabaya. Model Sistem dalam Persamaan Keadaan Istitut Tekologi Sepuluh Nopember Surabaya Model Sistem dalam Persamaa Keadaa Pegatar Materi Cotoh Soal Rigkasa Latiha Pegatar Materi Cotoh Soal Rigkasa Istilah-istilah Dalam Persamaa Keadaa Aalisis Sistem

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 3 BAB II TINJAUAN PUSTAKA Pada bab ii aka dituliska beberapa aspek teoritis berupa defiisi, teorema da sifat-sifat yag berhubuga dega aljabar liear, struktur aljabar da teori kodig yag diguaka sebagai

Lebih terperinci

Semigrup Matriks Admitting Struktur Ring

Semigrup Matriks Admitting Struktur Ring Semigrup Matriks dmittig Struktur ig K a r y a t i Jurusa Pedidika Matematika FMIP, Uiversitas Negeri Yogyakarta Email: yatiuy@yahoo.com bstrak Diberika adalah rig komutatif dega eleme satua da adalah

Lebih terperinci

Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1

Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1 Barisa Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 9/0/06 Matematika Barisa Tak Higga Secara sederhaa, barisa merupaka susua dari bilaga bilaga yag urutaya berdasarka bilaga

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, , Agustus 2003, ISSN : METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, , Agustus 2003, ISSN : METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT Vol. 6. No., 97-09, Agustus 003, ISSN : 40-858 METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT Robertus Heri Jurusa Matematika FMIPA UNDIP Abstrak Tulisa ii membahas peetua persamaa ruag

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang Masalah

BAB I PENDAHULUAN. A. Latar Belakang Masalah BAB I PENDAHULUAN A. Latar Belakag Masalah Struktur alabar adalah suatu himpua yag di dalamya didefiisika suatu operasi bier yag memeuhi aksioma-aksioma tertetu. Gelaggag ( Rig ) merupaka suatu struktur

Lebih terperinci

BAB I PENDAHULUAN. , membentuk struktur ring terhadap operasi penjumlahan matriks dan operasi pergandaan matriks baku. Himpunan bagian dari

BAB I PENDAHULUAN. , membentuk struktur ring terhadap operasi penjumlahan matriks dan operasi pergandaan matriks baku. Himpunan bagian dari BB I PENDHULUN. Latar Belakag Masalah Struktur rig (gelaggag) R adalah suatu himpua R yag kepadaya didefiisika dua operasi bier yag disebut pejumlaha da pergadaa yag memeuhi aksioma-aksioma tertetu, yaitu:

Lebih terperinci

HUBUNGAN VARIETY DAN IDEAL RADIKAL SKRIPSI. Oleh : Ambar Mujiarti J2A

HUBUNGAN VARIETY DAN IDEAL RADIKAL SKRIPSI. Oleh : Ambar Mujiarti J2A HUBUNGAN VARIETY DAN IDEAL RADIKAL SKRIPSI Oleh : Ambar Mujiarti J2A 004 003 PROGRAM STUDI MATEMATIKA JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS DIPONEGORO SEMARANG 2009

Lebih terperinci

Teorema Nilai Rata-rata

Teorema Nilai Rata-rata Nilai Kus Prihatoso April 27, 2012 Yogyakarta Nilai Suatu Fugsi Masih igatkah ada tetag ilai rata-rata dari sekmpula bilaga? Berapakah ilai rata-rata dari sebayak bilaga y 1, y 2,..., y? Nilai Suatu Fugsi

Lebih terperinci

V. METODE PENELITIAN. Alam Universitas Lampung. Metode yang digunakan dalam penelitian ini adalah

V. METODE PENELITIAN. Alam Universitas Lampung. Metode yang digunakan dalam penelitian ini adalah V. METODE PENELITIAN Peelitia ii dilakuka pada Semester IV Tahu Akademik 4/5, bertempat di Jurusa Matematika Fakultas Matematika da Ilmu Pegetahua Alam Uiversitas Lampug. Metode yag diguaka dalam peelitia

Lebih terperinci

PREDIKSI SOAL ULANGAN AKHIR SEMESTER GENAP KELAS IX SMP NEGERI 196 JAKARTA. Jawab : Nilai dari. Jawab :.3.3 = 27

PREDIKSI SOAL ULANGAN AKHIR SEMESTER GENAP KELAS IX SMP NEGERI 196 JAKARTA. Jawab : Nilai dari. Jawab :.3.3 = 27 PREDIKSI SOAL ULANGAN AKHIR SEMESTER GENAP KELAS IX SMP NEGERI 9 JAKARTA No. Idikator Soal Prediksi Soal Peserta didik dapat meyataka betuk pecaha aljabar yag pembilag da peyebutya berpagkat egatif mejadi

Lebih terperinci

III Sistem LTI Waktu Diskrit Sistem LTI Operasi Konvolusi Watak sistem LTI Stabilitas sistem LTI Kausalitas sistem LTI

III Sistem LTI Waktu Diskrit Sistem LTI Operasi Konvolusi Watak sistem LTI Stabilitas sistem LTI Kausalitas sistem LTI III Sistem LTI Waktu Diskrit Sistem LTI Operasi Kovolusi Watak sistem LTI Stabilitas sistem LTI Kausalitas sistem LTI lts 1 III.1 Sistem LTI Sistem LTI Liear Time Ivariat Liear Tak-ubah-Waktu Liear Shift

Lebih terperinci

BAB I INDUKSI MATEMATIK. Beberapa Prinsip Induksi Matematik (PIM) yang perlu diketahui: 1. Sederhana 2. Yang dirampatkan (generalized) 3.

BAB I INDUKSI MATEMATIK. Beberapa Prinsip Induksi Matematik (PIM) yang perlu diketahui: 1. Sederhana 2. Yang dirampatkan (generalized) 3. BAB I INDUKSI MATEMATIK Iduksi matematik merupaka salah satu metode pembuktia yag baku di dalam matematika, yag meyataka kebeara dari suatu peryataa tetag semua bilaga asli atau kadag-kadag semua bilaga

Lebih terperinci

4.7 TRANSFORMASI UNTUK MENDEKATI KENORMALAN

4.7 TRANSFORMASI UNTUK MENDEKATI KENORMALAN 4.7 TRANSFORMASI UNTUK MENDEKATI KENORMALAN Saat asumsi keormala tidak dipuhi maka kesimpula yag kita buat berdasarka suatu metod statistik yag mesyaratka asumsi keormala meadi tidak baik, sehigga mucul

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Didalam melakuka kegiata suatu alat atau mesi yag bekerja, kita megeal adaya waktu hidup atau life time. Waktu hidup adalah lamaya waktu hidup suatu kompoe atau uit pada

Lebih terperinci

III BAB BARISAN DAN DERET. Tujuan Pembelajaran. Pengantar

III BAB BARISAN DAN DERET. Tujuan Pembelajaran. Pengantar BAB III BARISAN DAN DERET Tujua Pembelajara Setelah mempelajari materi bab ii, Ada diharapka dapat:. meetuka suku ke- barisa da jumlah suku deret aritmetika da geometri,. meracag model matematika dari

Lebih terperinci

SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS. Abstrak

SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS. Abstrak Prosidig Semiar Nasioal Peelitia, Pedidika da Peerapa MIPA, Fakultas MIPA, Uiversitas Negeri Yogyakarta, 4 Mei 0 SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS Musthofa Jurusa Pedidika Matematika FMIPA

Lebih terperinci

BAB 1 PENDAHULUAN. Analisis regresi menjadi salah satu bagian statistika yang paling banyak aplikasinya.

BAB 1 PENDAHULUAN. Analisis regresi menjadi salah satu bagian statistika yang paling banyak aplikasinya. BAB 1 PENDAHULUAN 1.1 Latar Belakag Aalisis regresi mejadi salah satu bagia statistika yag palig bayak aplikasiya. Aalisis regresi memberika keleluasaa kepada peeliti utuk meyusu model hubuga atau pegaruh

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Optimasi 2.1.1. Pegertia Optimasi Optimasi (Optimizatio) adalah aktivitas utuk medapatka hasil terbaik di bawah keadaa yag diberika. Tujua akhir dari semua aktivitas tersebut

Lebih terperinci

PENGARUH VARIASI PELUANG CROSSOVER DAN MUTASI DALAM ALGORITMA GENETIKA UNTUK MENYELESAIKAN MASALAH KNAPSACK. Sutikno

PENGARUH VARIASI PELUANG CROSSOVER DAN MUTASI DALAM ALGORITMA GENETIKA UNTUK MENYELESAIKAN MASALAH KNAPSACK. Sutikno sutiko PENGARUH VARIASI PELUANG CROSSOVER DAN MUTASI DALAM ALGORITMA GENETIKA UNTUK MENYELESAIKAN MASALAH KNAPSACK Sutiko Program Studi Tekik Iformatika Fakultas Sais da Matematika UNDIP tik@udip.ac.id

Lebih terperinci

BARISAN PANGKAT TERURUT MATRIKS PADA ALJABAR MAX PLUS

BARISAN PANGKAT TERURUT MATRIKS PADA ALJABAR MAX PLUS BRISN PNGKT TERURUT MTRIKS PD LJBR MX PLUS Nurwa Jurusa Matematika FMIP Uiversitas Negeri Gorotalo E-mail: urwa_mat@ug.ac.id bstrak Diberika matriks R yag memeuhi = λ. Matriks adalah k + c c k taktereduksi

Lebih terperinci

2 BARISAN BILANGAN REAL

2 BARISAN BILANGAN REAL 2 BARISAN BILANGAN REAL Di sekolah meegah barisa diperkealka sebagai kumpula bilaga yag disusu meurut "pola" tertetu, misalya barisa aritmatika da barisa geometri. Biasaya barisa da deret merupaka satu

Lebih terperinci

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n LIMIT 4.. FUNGSI LIMIT Defiisi 4.. A R Titik c R adalah titik limit dari A, jika utuk setiap δ > 0 ada palig sedikit satu titik di A, c sedemikia sehigga c < δ. Defiisi diatas dapat disimpulka dega cara

Lebih terperinci

Design and Analysis of Algorithms CNH2G3- Week 5 Kompleksitas waktu algoritma rekursif part 2: Metode Karakteristik

Design and Analysis of Algorithms CNH2G3- Week 5 Kompleksitas waktu algoritma rekursif part 2: Metode Karakteristik Design and Analysis of Algorithms CNH2G3- Week 5 Kompleksitas waktu algoritma rekursif part 2: Metode Karakteristik Dr. Putu Harry Gunawan (PHN Review 1. Tentukan kompleksitas waktu Big-Oh untuk relasi

Lebih terperinci

Design and Analysis of Algorithm

Design and Analysis of Algorithm Design and Analysis of Algorithm Week 5: Kompleksitas waktu algoritma rekursif part 2 Dr. Putu Harry Gunawan 1 1 Department of Computational Science School of Computing Telkom University Dr. Putu Harry

Lebih terperinci

PETA KONSEP RETURN dan RISIKO PORTOFOLIO

PETA KONSEP RETURN dan RISIKO PORTOFOLIO PETA KONSEP RETURN da RISIKO PORTOFOLIO RETURN PORTOFOLIO RISIKO PORTOFOLIO RISIKO TOTAL DIVERSIFIKASI PORTOFOLIO DENGAN DUA AKTIVA PORTOFOLIO DENGAN BANYAK AKTIVA DEVERSIFIKASI DENGAN BANYAK AKTIVA DEVERSIFIKASI

Lebih terperinci