PENGGGUNAAN ALGORITMA GAUSS-NEWTON UNTUK MENENTUKAN SIFAT-SIFAT PENAKSIR PARAMETER DAN

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "PENGGGUNAAN ALGORITMA GAUSS-NEWTON UNTUK MENENTUKAN SIFAT-SIFAT PENAKSIR PARAMETER DAN"

Transkripsi

1 PENGGGUNAAN ALGORITMA GAUSS-NEWTON UNTUK MENENTUKAN SIFAT-SIFAT PENAKSIR PARAMETER DAN DALAM SUATU MODEL NON-LINIER Abstrak Nur ei 1 1, Jurusa Matematika FMIPA Uiversitas Tadulako Jl. Sukaro-Hatta Palu, Idoesia Model statistik o-liier merupaka model yag diguaka utuk mejelaska hubuga atara variabel da beberapa prosedur pedeteksia, sehigga model o-liier telah megalami perkembaga yag sagat pesat terutama dalam hal tekik-tekik estimasi utuk meyelesaika permasalaha, walaupu model-model o-lier secara umum lebih sulit diaalisa daripada model liier. Utuk megetahui sifatsifat dari peaksir parameterya maka diguaka algoritma Gauss-Newto da OLS, sehigga model o-liier tersebut dapat ditrasformasika mejadi model liier yag disebut liear pseudomodel. Kata Kuci: No-Liier, Alogaritma Gauss- Newto, Ordiary Least Square, liear pseudomodel, I. PENDAHULUAN I.1 Latar Belakag Model statistik o-liier serig mucul dalam keyataa sehari-hari, misalya dalam betuk model-model ekoomi, seperti model fugsi produksi Cobb-Douglas, yaki Qt = L 1 t K t e t Dalam bayak kasus, model o-liier dapat ditrasformasika ke dalam model liier. Sejauh ii, telah dikaji model-model yag liier. Da dalam peelitia sekarag ii aka dikaji model statistik o-liier. Secara umum, model o-liier mempuyai betuk y = f(x,) + e. Dega pegetahua tetag aljabar matriks da algoritma Gauss-Newto, model o-liier tersebut dapat ditrasformasika mejadi model liier. Model liier yag diperoleh tersebut oleh Malivaud diamaka liear pseudomodel. Karea suatu model o-liier dapat diubah mejadi betuk pseudomodel liier, maka utuk mecari peaksir parameterya dapat diguaka metode OLS yag sudah serig diguaka dalam model liier. Dalam peelitia ii aka dikaji sifat-sifat peaksir parameter da dalam suatu model o-liier. Juga aka ditetuka iterval kepercayaa utuk peaksir parameter yag diperoleh dega (tigkat ketelitia) level of sigificat tertetu. I. Permasalaha Permasalaha utama dalam peelitia ii adalah mecari peaksir parameter da meyelidiki sifat-sifat peaksir tersebut pada suatu model o-liier. I.3 Tujua Peelitia Tujua dalam peelitia ii adalah : 1. Metrasformasika suatu model o-liier mejadi pseudomodel liier.

2 Peggguaa Algoritma Gauss-Newto Utuk Meetuka Sifat-Sifat Peaksir Da Dalam Suatu Model No-Liier II.. Mecari peaksir da melihat sifat-sifatya dari parameter yag tidak diketahui. 3. Meerapka algoritma Gauss-Newto utuk mecari peaksir terbaik. 4. Mecari iterval keperyaa dari peaksir parameter. 5. Membuat histogram distribusi empirik dari peaksir parameter. LANDASAN TEORI II.1. Noliear Least Squares Estimatio of Padag suatu model o-liier y = f(x,) + e, dimaa E(e) = da E(ee ) = peaksir parameter o-liier least square berarti memiimumka residual sum of squares S() = e e = [y - f(x, )] [y f(x, )]. I. Mecari Dega pegetahua tetag matriks da kalkulus, utuk memiimumka S() sama artiya mecari turua parsial pertamaya sama dega vektor, yaki Misalka ditulis : Z() = S f ( X, )' [ y f ( X, )] f ( x1, ) f (X, )' 1, maka diperoleh Z() = f ( xt, ) 1 Maka The first-order coditios utuk miimum adalah Z() [y f(x, )] =. f ( x1, ) k. f ( xt, ) k Disii, utuk mecari peaksir parameter diguaka algoritma Gauss-Newto. Utuk itu, aproksimasi f(x, ) dega ekspasi Deret Taylor order satu disekitar titik awal 1. Aproksimasi utuk observasi ke-t adalah f ( x, ) (, ) (, ) (, 1) t f xt f x t f xt ( 1). 1 k 1 1 Dega demikia, utuk seluruh T observasi meghasilka f ( X, ) f ( X, 1) Z( 1)( 1) da membetuk pseudomodel liier y( 1 ) y - f ( X, 1 ) Z( 1) 1. Dega megguaka metode OLS, dapat diperoleh peaksir parameter utuk iterasi kedua, 1 [ yaki = Z( )' Z( )] Z( )' y( ) 1 [ = 1 + Z( )' Z( )] Z( )'[ y f ( X,( )]. Jika proses ii dilajutka sampai iterasi ke-, algoritma Gauss-Newto memberika 1 +1 = + [ Z( )' Z( )] Z( )'[ y f ( X,( )]. Jika proses koverge +1 =, maka the first-order coditios utuk miimum Z( )'[ y f ( X,( )] harus dipeuhi. II. Peaksir utuk Matriks Variasi-Kovariasi Taksira Matriks variasi-kovariasi taksira utuk peaksir parameter adalah ˆ ˆ 1 b [ Z ( b)' Z( b)] 1

3 JIMT, Vol. 6, No. 1, MEI 9 : dimaa S( b) ˆ. T K III. IV. PROSEDUR PENELITIAN 1. Memilih model o-liier tertetu yag aka ditaksir parameter yag tidak diketahui.. Megubah model o-liier pada prosedur (1) mejadi pseudomodel liear. 3. Meerapka algoritma (iterasi) Gauss-Newto da metode OLS pada pseudomodel liear yag diperoleh utuk mecari peaksir terbaikya. 4. Meyelidiki sifat-sifat peaksir yag diperoleh da membadigkaya dega ilai parameter yag sebearya. 5. Membuat iterval taksira utuk masig-masig peaksir parameter. 6. Membuat program komputer dega MATLAB utuk megerjaka semua prosedur di atas. HASIL DAN ANALISIS PENELITIAN IV.1. Meghitug Peaksir Da Dega Megguaka Beberapa Jeis Iitial Value Dala hal ii iitial value yag diguaka adalah [1;1;1;1], [5.;.1;.1;.5], [4;1;3;1], utuk 3 sampel dega rumus yag diguaka : y=5*oes(3,1)+.*(l.^+.5*k)+ormrd(,1,3,1) serta matriks L da K adalah sebagai berikut Y = K =.77 L =

4 Peggguaa Algoritma Gauss-Newto Utuk Meetuka Sifat-Sifat Peaksir Da Dalam Suatu Model No-Liier Tabel 1: Taksira parameter dega iitial value [1; 1; 1; 1] Tabel : Taksira parameter dega iitial value [5.;.1;.1;.5] Tabel 3: Taksira parameter dega iitial value [4; 1; 3; 1]

5 JIMT, Vol. 6, No. 1, MEI 9 : Aalisa tabel: Dari tabel di atas terlihat bahwa peaksir koverge tidak pada jumlah iterasi yag sama. Utuk ilai awal [1;1;1;1] da [5.;.1;.1;.5], koverge pada iterasi ke-4 dega Residual Sum of Square adalah 4.165e-6 da 6.853e-4. Semetara dega megguaka ilai awal [4;1;3;1], koverge pada iterasi ke-6, dega megguaka presisi 1-9. Dari tabel-tabel di atas, peaksir merupaka peaksir kurag efisie karea adalah itercept dalam model o-liier yag kita puya. Residual Sum of square utuk iitial value yag diguaka adalah1.139e-8. Utuk kasus iitial value [4;1;3;1], matrik variasi kovariasi dari peaksir adalah sebagai berikut: ˆ b = 1.e-8* IV.. Iterval Cofidece Utuk Peaksir, 1,, 3 Dega Sigificace Level = 5% Aalisa Tabel 4 Tabel 4: Iterval Cofidece utuk Sigificace level = 5% Iterval Cofidece utuk ilai awal [1,1,1,1] [5.;.1;.1;.5] [4;1;3;1] [ ] [ ] [ ] 1 [ ] [ ] [ ] [ ] [ ] [ ] 3 [ ] [ ] [ ] Dari tabel 4 terlihat bahwa, iterval taksira utuk ilai awal [5.;.1;.1;.5] memberika taksira yag palig efisie diatara iterval dega ilai-ilai awal yag lai. IV.3. Meghitug No-Liear Least Square Estimates Yag Memeuhi Kasus Sebagai Berikut 1 = Tabel 5: Taksira parameter dega iitial value [4;3;1] 1 =

6 Peggguaa Algoritma Gauss-Newto Utuk Meetuka Sifat-Sifat Peaksir Da Dalam Suatu Model No-Liier Aalisa tabel 5: Dari tabel 5 di atas terlihat bahwa peaksir koverge pada iterasi ke-8 dega Residual Sum of Square adalah 9.84 dega megguaka presisi 1-9. Nilai peaksir 1 ilai peaksir utuk parameter. dalam hal ii adalah IV.4. Meghitug No-Liear Least Square Estimates Yag Memeuhi Kasus Sebagai Berikut 1 = 1/3 Aalisa Tabel 6: Tabel 6: Taksira parameter dega iitial value [4;3;1] 1=1/ Dari tabel 6 di atas terlihat bahwa peaksir koverge pada iterasi ke-5 dega Residual Sum of Square adalah 9.85 dega megguaka presisi 1-9. IV.5. Meghitug o-liear least square estimates yag memeuhi kasus sebagai berikut 1 = da 1 = 1/3 Aalisa Tabel 7: Tabel 7: Taksira parameter dega iitial value [4;3;1] 1=1/3 =1/ Dari tabel 7 di atas terlihat bahwa peaksir koverge pada iterasi ke-3 dega Residual Sum of Square adalah.7 dega megguaka presisi 1-9. Secara umum megakibatka peaksir 1 da cukup efisie. IV.6. Selajutya Aka Dihitug Rata-Rata Nilai Peaksir da Dibadigka Dega Nilai Sebearya Yaitu = [5;;;.5] da utuk 1 Sampel da = 1. Utuk beberapa iitial value yag dicoba, diperoleh hasil taksira seperti pada tabel berikut 16

7 JIMT, Vol. 6, No. 1, MEI 9 : Tabel 8: Taksira Da No Iitial value Rata koverge Utuk 1 Sampel (Dega Beberapa Iitial Value) [1,1,1,1] [5.;.1;.1;.5] e-1 3 [4;3;3;1] e-4 Aalisa tabel 8: Dari tabel 8 di atas dapat dilihat bahwa, utuk replikasi 1, yag artiya medapatka 1 buah peaksir yag koverge, peaksir tetap kurag efisie. Selai itu dapat dilihat pula bahwa, utuk iitial value yag jauh dega ilai sebearya memberika ilai taksira yag kurag efisie. IV.7 Grafik Batag Utuk Setiap Nilai Peaksir, 1,, 3 Da Dalam hal ii iitial value yag diambil adalah disekitar ilai da da [6;3;3;1] Tabel 9 : Distribusi Empirik utuk Peaksir da dega dua iitial value INITIAL VALUE [5.;.1;.1;.5] [6;3;3;1] Utuk 1 Sampel. yaitu [5.;.1;.1;.5] Distribusi empirik utuk taksira Distribusi empirik utuk 1 taksira 17

8 Peggguaa Algoritma Gauss-Newto Utuk Meetuka Sifat-Sifat Peaksir Da Dalam Suatu Model No-Liier Distribusi empirik utuk taksira Distribusi empirik utuk 3 taksira Distribusi empirik utuk taksira Dari tabel 9 diatas, dapat dilihat bahwa, utuk peaksir ilai taksiraya sagat bervariasi. Ii disebabka karea taksira tidak koverge ke ilai yag sebearya. Semetara itu, utuk peaksir 1,, da 3, serta ilai taksiraya efisie da koverge ke ilai sebearya, sehigga diperoleh diagram seperti terlihat di tabel di atas, dimaa ilai-ilai taksiraya meumpuk di ilai sebearya. V. KESIMPULAN 1. Peaksir kurag efisie, karea merupaka itercept (aditif) dalam model oliier yag diguaka. x x

9 JIMT, Vol. 6, No. 1, MEI 9 : VI.. Secara umum, jika iitial value lebih dekat dega ilai sebearya, jumlah iterasi utuk koverge semaki sedikit. 3. Utuk model oliier dega substitusi parameter- parameterya maka peaksirya tidak berubah secara sigificat. Dalam kasus seperti ii, peaksir tetap kurag efisie, karea selalu mucul sebagai itercept dalam model. 4. Utuk peaksir 1,, da 3, serta ilai taksiraya koverge ke ilai sebearya, sehigga diperoleh diagram seperti di atas, dimaa ilai-ilai taksiraya meumpuk di ilai sebearya. REFERENSI [1] Draper N. R. ad Smith H., 1998, Applied Regressio Aalysis, third editio. Joh Wiley & Sos, New York. [] Duae H., Bruce L., 1998, Masterig Matlab 5: A Comprehesive Tutorial ad Referece, Pretice Hall, New Jersey. [3] Judge, G.G., et.al., 1988, Itroductio To The Theory Ad Practice of Ecoometrics, secod editio, Joh Wiley & Sos, New York. [4] Muirhead, R.J., 198, Aspects of Multivariate Statistical Theory, Joh Wiley & Sos, New York. 19

STUDI TENTANG BEBERAPA MODIFIKASI METODE ITERASI BEBAS TURUNAN

STUDI TENTANG BEBERAPA MODIFIKASI METODE ITERASI BEBAS TURUNAN STUDI TENTANG BEBERAPA MODIFIKASI METODE ITERASI BEBAS TURUNAN Supriadi Putra, M,Si Laboratorium Komputasi Numerik Jurusa Matematika FMIPA Uiversitas Riau e-mail : spoetra@yahoo.co.id ABSTRAK Makalah ii

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Distribusi Ekspoesial Fugsi ekspoesial adalah salah satu fugsi yag palig petig dalam matematika. Biasaya, fugsi ii ditulis dega otasi exp(x) atau e x, di maa e adalah basis logaritma

Lebih terperinci

MENENTUKAN KOEFISIEN DETERMINASI ANTARA ESTIMASI M DENGAN TYPE WELSCH DENGAN LEAST TRIMMED SQUARE DALAM DATA YANG MEMPUNYAI PENCILAN

MENENTUKAN KOEFISIEN DETERMINASI ANTARA ESTIMASI M DENGAN TYPE WELSCH DENGAN LEAST TRIMMED SQUARE DALAM DATA YANG MEMPUNYAI PENCILAN Saitia Matematika ISSN: 337-9197 Vol. 0, No. 03 (014), pp. 5 35. MENENTUKAN KOEFISIEN DETERMINASI ANTARA ESTIMASI M DENGAN TYPE WELSCH DENGAN LEAST TRIMMED SQUARE DALAM DATA YANG MEMPUNYAI PENCILAN Sabam

Lebih terperinci

Pendekatan Nilai Logaritma dan Inversnya Secara Manual

Pendekatan Nilai Logaritma dan Inversnya Secara Manual Pedekata Nilai Logaritma da Iversya Secara Maual Moh. Affaf Program Studi Pedidika Matematika, STKIP PGRI BANGKALAN affafs.theorem@yahoo.com Abstrak Pada pegaplikasiaya, bayak peggua yag meggatugka masalah

Lebih terperinci

BAB II LANDASAN TEORI. matematika secara numerik dan menggunakan alat bantu komputer, yaitu:

BAB II LANDASAN TEORI. matematika secara numerik dan menggunakan alat bantu komputer, yaitu: 4 BAB II LANDASAN TEORI 2.1 Model matematis da tahapa matematis Secara umum tahapa yag harus ditempuh dalam meyelesaika masalah matematika secara umerik da megguaka alat batu komputer, yaitu: 2.1.1 Tahap

Lebih terperinci

METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc.

METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc. METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/0 SUGENG00 Copyright 996-98 Dale Caregie & Associates, Ic. Kesalaha ERROR: Selisih atara ilai perkiraa dega ilai eksakilai

Lebih terperinci

STATISTIKA ANALISIS REGRESI DAN KORELASI LINIER SEDERHANA

STATISTIKA ANALISIS REGRESI DAN KORELASI LINIER SEDERHANA STATISTIKA ANALISIS REGRESI DAN KORELASI LINIER SEDERHANA OUTLINE LANJUTAN Peetua garis duga regresi dega Metode OLS kostata a da koefisie b Aalisis Varias komposisi variasi sekitar garis r da r Stadard

Lebih terperinci

PROSIDING ISBN:

PROSIDING ISBN: S-6 Perlukah Cross Validatio dilakuka? Perbadiga atara Mea Square Predictio Error da Mea Square Error sebagai Peaksir Harapa Kuadrat Kekelirua Model Yusep Suparma (yusep.suparma@ upad.ac.id) Uiversitas

Lebih terperinci

Bab 3 Metode Interpolasi

Bab 3 Metode Interpolasi Baha Kuliah 03 Bab 3 Metode Iterpolasi Pedahulua Iterpolasi serig diartika sebagai mecari ilai variabel tergatug tertetu, misalya y, pada ilai variabel bebas, misalya, diatara dua atau lebih ilai yag diketahui

Lebih terperinci

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL Defiisi Persamaa diferesial adalah persamaa yag melibatka variabelvariabel tak bebas da derivatif-derivatifya terhadap variabel-variabel bebas. Berikut ii adalah

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Statistika iferesi merupaka salah satu cabag statistika yag bergua utuk meaksir parameter. Peaksira dapat diartika sebagai dugaa atau perkiraa atas sesuatu yag aka terjadi

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang. Universitas Sumatera Utara

BAB I PENDAHULUAN. 1.1 Latar Belakang. Universitas Sumatera Utara BAB I PENDAHULUAN 1.1 Latar Belakag Salah satu pera da fugsi statistik dalam ilmu pegetahua adalah sebagai. alat aalisis da iterpretasi data kuatitatif ilmu pegetahua, sehigga didapatka suatu kesimpula

Lebih terperinci

Aji Wiratama, Yuni Yulida, Thresye Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat Jl. Jend. A. Yani km 36 Banjarbaru

Aji Wiratama, Yuni Yulida, Thresye Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat Jl. Jend. A. Yani km 36 Banjarbaru Jural Matematika Muri da Terapa εpsilo Vol.8 No.2 (24) Hal. 39-45 APLIKASI METODE DEKOMPOSISI ADOMIAN UNTUK MENENTUKAN FORMULA TRANSFORMASI LAPLACE Aji Wiratama, Yui Yulida, Thresye Program Studi Matematika

Lebih terperinci

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan REGRESI LINIER DAN KORELASI Variabel dibedaka dalam dua jeis dalam aalisis regresi: Variabel bebas atau variabel prediktor -> variabel yag mudah didapat atau tersedia. Dapat diyataka dega X 1, X,, X k

Lebih terperinci

TRANSFORMASI BOX-COX PADA ANALISIS REGRESI LINIER SEDERHANA

TRANSFORMASI BOX-COX PADA ANALISIS REGRESI LINIER SEDERHANA Jural Matematika UNAND Vol. 2 No. 2 Hal. 115 122 ISSN : 2303 2910 c Jurusa Matematika FMIPA UNAND TRANSFORMASI BOX-COX PADA ANALISIS REGRESI LINIER SEDERHANA ELVI YATI, DODI DEVIANTO, YUDIANTRI ASDI Program

Lebih terperinci

I. DERET TAKHINGGA, DERET PANGKAT

I. DERET TAKHINGGA, DERET PANGKAT I. DERET TAKHINGGA, DERET PANGKAT. Pedahulua Pembahasa tetag deret takhigga sebagai betuk pejumlaha suku-suku takhigga memegag peraa petig dalam fisika. Pada bab ii aka dibahas megeai pegertia deret da

Lebih terperinci

1 Persamaan rekursif linier non homogen koefisien konstan tingkat satu

1 Persamaan rekursif linier non homogen koefisien konstan tingkat satu Secara umum persamaa rekursif liier tigkat-k bisa dituliska dalam betuk: dega C 0 0. C 0 x + C 1 x 1 + C 2 x 2 + + C k x k = b, Jika b = 0 maka persamaa rekursif tersebut diamaka persamaa rekursif liier

Lebih terperinci

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X Pedugaa Selag: Metode Pivotal Lagkah-lagkahya 1. Adaika X1, X,..., X adalah cotoh acak dari populasi dega fugsi kepekata f( x; ), da parameter yag tidak diketahui ilaiya. Adaika T adalah peduga titik bagi..

Lebih terperinci

BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL)

BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) Setiap peelitia selalu berkeaa dega sekelompok data. Yag dimaksud kelompok disii adalah: Satu orag mempuyai sekelompok data, atau sekelompok orag mempuyai satu

Lebih terperinci

Ukuran Pemusatan. Pertemuan 3. Median. Quartil. 17-Mar-17. Modus

Ukuran Pemusatan. Pertemuan 3. Median. Quartil. 17-Mar-17. Modus -Mar- Ukura Pemusata Pertemua STATISTIKA DESKRIPTIF Statistik deskripti adalah pegolaha data utuk tujua medeskripsika atau memberika gambara terhadap obyek yag diteliti dega megguaka sampel atau populasi.

Lebih terperinci

BAB II LANDASAN TEORI. Pada bagian ini akan dibahas tentang teori-teori dasar yang. digunakan untuk dalam mengestimasi parameter model.

BAB II LANDASAN TEORI. Pada bagian ini akan dibahas tentang teori-teori dasar yang. digunakan untuk dalam mengestimasi parameter model. BAB II LANDASAN TEORI Pada bagia ii aka dibahas tetag teori-teori dasar yag diguaka utuk dalam megestimasi parameter model.. MATRIKS DAN VEKTOR Defiisi : Trace dari matriks bujur sagkar A a adalah pejumlaha

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, , Agustus 2003, ISSN : METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, , Agustus 2003, ISSN : METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT Vol. 6. No., 97-09, Agustus 003, ISSN : 40-858 METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT Robertus Heri Jurusa Matematika FMIPA UNDIP Abstrak Tulisa ii membahas peetua persamaa ruag

Lebih terperinci

PENAKSIRAN. Penaksiran Titik. Selang Kepercayaan untuk VARIANSI. MA2181 ANALISIS DATA Utriweni Mukhaiyar 17 Oktober 2011

PENAKSIRAN. Penaksiran Titik. Selang Kepercayaan untuk VARIANSI. MA2181 ANALISIS DATA Utriweni Mukhaiyar 17 Oktober 2011 PENAKSIRAN Peaksira Titik Peaksira Selag Selag Kepercayaa utuk RATAAN Selag Kepercayaa utuk VARIANSI MA8 ANALISIS DATA Utriwei Mukhaiyar 7 Oktober 0 Metode Peaksira Peaksira Titik Peaksira Selag Nilai

Lebih terperinci

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya 5 BAB II LANDASAN TEORI Dalam tugas akhir ii aka dibahas megeai peaksira besarya koefisie korelasi atara dua variabel radom kotiu jika data yag teramati berupa data kategorik yag terbetuk dari kedua variabel

Lebih terperinci

PENDUGAAN PARAMETER DARI DISTRIBUSI POISSON DENGAN MENGGUNAKAN METODE MAXIMUM LIKEHOOD ESTIMATION (MLE) DAN METODE BAYES

PENDUGAAN PARAMETER DARI DISTRIBUSI POISSON DENGAN MENGGUNAKAN METODE MAXIMUM LIKEHOOD ESTIMATION (MLE) DAN METODE BAYES Jural Matematika UNAND Vol. 3 No. 4 Hal. 52 59 ISSN : 233 29 c Jurusa Matematika FMIPA UNAND PENDUGAAN PARAMETER DARI DISTRIBUSI POISSON DENGAN MENGGUNAKAN METODE MAXIMUM LIKEHOOD ESTIMATION (MLE) DAN

Lebih terperinci

RESPONSI 2 STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 2015

RESPONSI 2 STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 2015 RESPONSI STK 511 (ANALISIS STATISTIKA) JUMAT, 11 SEPTEMBER 015 A. PENYAJIAN DAN PERINGKASAN DATA 1. PENYAJIAN DATA a. Sebutka tekik peyajia data utuk data kualitatif! Diagram kueh, diagram batag, distribusi

Lebih terperinci

Perbandingan Metode Regresi Robust Estimasi Least Trimmed Square, Estimasi Scale, dan Estimasi Method Of Moment

Perbandingan Metode Regresi Robust Estimasi Least Trimmed Square, Estimasi Scale, dan Estimasi Method Of Moment PRISMA 1 (2018) https://joural.ues.ac.id/sju/idex.php/prisma/ Perbadiga Metode Regresi Robust Estimasi Least Trimmed Square, Estimasi Scale, da Estimasi Method Of Momet Muhammad Bohari Rahma, Edy Widodo

Lebih terperinci

METODE SIMPSON TERMODIFIKASI UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA LINEAR JENIS KEDUA. Jonas Lodewyk H 1, Zulkarnain 2 ABSTRACT

METODE SIMPSON TERMODIFIKASI UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA LINEAR JENIS KEDUA. Jonas Lodewyk H 1, Zulkarnain 2 ABSTRACT METODE SIMPSON TERMODIFIKASI UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA LINEAR JENIS KEDUA Joas Lodewyk H 1, Zulkarai 1 Mahasiswa Program Studi S1 Matematika Dose Jurusa Matematika Fakultas Matematika

Lebih terperinci

PENAKSIR RASIO UNTUK RATA-RATA POPULASI MENGGUNAKAN KOEFISIEN VARIASI DAN KOEFISIEN KURTOSIS PADA SAMPLING GANDA

PENAKSIR RASIO UNTUK RATA-RATA POPULASI MENGGUNAKAN KOEFISIEN VARIASI DAN KOEFISIEN KURTOSIS PADA SAMPLING GANDA PEAKSIR RASIO UTUK RATA-RATA POPULASI MEGGUAKA KOEFISIE VARIASI DA KOEFISIE KURTOSIS PADA SAMPLIG GADA Heru Agriato *, Arisma Ada, Firdaus Mahasiswa Program S Matematika Dose Jurusa Matematika Fakultas

Lebih terperinci

ANALISIS REGRESI DAN KORELASI SEDERHANA

ANALISIS REGRESI DAN KORELASI SEDERHANA LATAR BELAKANG DAN KORELASI SEDERHANA Aalisis regresi da korelasi megkaji da megukur keterkaita seara statistik atara dua atau lebih variabel. Keterkaita atara dua variabel regresi da korelasi sederhaa.

Lebih terperinci

PENGANTAR MODEL LINEAR Oleh: Suryana

PENGANTAR MODEL LINEAR Oleh: Suryana PENGANTAR MODEL LINEAR Oleh: Suryaa Model liear meyagkut masalah statistik yag ketergatugaya terhadap parameter secara liear. Betuk umum model liear adalah 0 1X1... px p, dega = Variabel respo X i = Variabel

Lebih terperinci

TEOREMA WEYL UNTUK OPERATOR HYPONORMAL

TEOREMA WEYL UNTUK OPERATOR HYPONORMAL Jural UJMC, Volume 3, Nomor, Hal. - 6 pissn : 460-3333 eissn : 579-907X TEOREMA WEYL UNTUK OPERATOR HYPONORMAL Guawa Uiversitas Muhammadiyah Purwokerto, gu.oge@gmail.com Abstract This paper aims at describig

Lebih terperinci

BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP. Permasalahan dalam tugas akhir ini dibatasi hanya pada penaksiran

BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP. Permasalahan dalam tugas akhir ini dibatasi hanya pada penaksiran BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP Permasalaha dalam tugas akhir ii dibatasi haya pada peaksira besarya koefisie korelasi polychoric da tidak dilakuka peguia terhadap koefisie korelasi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Aalisis Regresi Istilah regresi pertama kali diperkealka oleh seorag ahli yag berama Facis Galto pada tahu 1886. Meurut Galto, aalisis regresi berkeaa dega studi ketergatuga dari suatu

Lebih terperinci

Penyelesaian Persamaan Non Linier

Penyelesaian Persamaan Non Linier Peyelesaia Persamaa No Liier Metode Iterasi Sederhaa Metode Newto Raphso Permasalaha Titik Kritis pada Newto Raphso Metode Secat Metode Numerik Iterasi/NewtoRaphso/Secat - Metode Iterasi Sederhaa- Metode

Lebih terperinci

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian

BAB I PENDAHULUAN. Matematika merupakan suatu ilmu yang mempunyai obyek kajian BAB I PENDAHULUAN A. Latar Belakag Masalah Matematika merupaka suatu ilmu yag mempuyai obyek kajia abstrak, uiversal, medasari perkembaga tekologi moder, da mempuyai pera petig dalam berbagai disipli,

Lebih terperinci

PENAKSIRAN M A S T A T I S T I K A D A S A R 1 7 M A R E T 2014 U T R I W E N I M U K H A I Y A R

PENAKSIRAN M A S T A T I S T I K A D A S A R 1 7 M A R E T 2014 U T R I W E N I M U K H A I Y A R PENAKSIRAN P E N A K S I R A N T I T I K P E N A K S I R A N S E L A N G S E L A N G K E P E R C A Y A A N U N T U K R A T A A N S E L A N G K E P E R C A Y A A N U N T U K V A R I A N S I M A 0 8 S T

Lebih terperinci

METODE DEKOMPOSISI LAPLACE UNTUK MENENTUKAN SOLUSI PERSAMAAN DIFERENSIAL PARSIAL NONLINIER

METODE DEKOMPOSISI LAPLACE UNTUK MENENTUKAN SOLUSI PERSAMAAN DIFERENSIAL PARSIAL NONLINIER Vol.1 No.1 (16) Hal. 38-45 METODE DEKOMPOSISI LAPLACE UNTUK MENENTUKAN SOLUSI PERSAMAAN DIFERENSIAL PARSIAL NONLINIER Siar Ismaya, Yui Yulida *, Na imah Hijriati Program Studi Matematika Fakultas MIPA

Lebih terperinci

Perbandingan Beberapa Metode Pendugaan Parameter AR(1)

Perbandingan Beberapa Metode Pendugaan Parameter AR(1) Jural Vokasi 0, Vol.7. No. 5-3 Perbadiga Beberapa Metode Pedugaa Parameter AR() MUHLASAH NOVITASARI M, NANI SETIANINGSIH & DADAN K Program Studi Matematika Fakultas MIPA Uiversitas Tajugpura Jl. Ahmad

Lebih terperinci

STUDI PERBANDINGAN PERFORMANCE ALGORITMA HEURISTIK POUR TERHADAP MIXED INTEGER PROGRAMMING DALAM MENYELESAIKAN PENJADWALAN FLOWSHOP

STUDI PERBANDINGAN PERFORMANCE ALGORITMA HEURISTIK POUR TERHADAP MIXED INTEGER PROGRAMMING DALAM MENYELESAIKAN PENJADWALAN FLOWSHOP STUDI PERBANDINGAN PERFORMANCE ALGORITMA HEURISTIK POUR TERHADAP. (Tessa Vaia Soetato, et al.) STUDI PERBANDINGAN PERFORMANCE ALGORITMA HEURISTIK POUR TERHADAP MIXED INTEGER PROGRAMMING DALAM MENYELESAIKAN

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Didalam melakuka kegiata suatu alat atau mesi yag bekerja, kita megeal adaya waktu hidup atau life time. Waktu hidup adalah lamaya waktu hidup suatu kompoe atau uit pada

Lebih terperinci

Penaksiran Titik Penaksiran Selang. Selang Kepercayaan untuk VARIANSI MA2081 STATISTIKA DASAR

Penaksiran Titik Penaksiran Selang. Selang Kepercayaan untuk VARIANSI MA2081 STATISTIKA DASAR PENAKSIRAN Peaksira Titik Peaksira Selag Selag Kepercayaa utuk RATAAN Selag Kepercayaa utuk VARIANSI MA08 STATISTIKA DASAR MA08 STATISTIKA DASAR Utriwei Mukhaiyar 5 Oktober 0 Metode Peaksira Peaksira Titik

Lebih terperinci

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n

LIMIT. = δ. A R, jika dan hanya jika ada barisan. , sedemikian hingga Lim( a n LIMIT 4.. FUNGSI LIMIT Defiisi 4.. A R Titik c R adalah titik limit dari A, jika utuk setiap δ > 0 ada palig sedikit satu titik di A, c sedemikia sehigga c < δ. Defiisi diatas dapat disimpulka dega cara

Lebih terperinci

PENGGUNAAN METODE BAYESIAN OBYEKTIF DALAM PEMBUATAN GRAFIK PENGENDALI p-chart

PENGGUNAAN METODE BAYESIAN OBYEKTIF DALAM PEMBUATAN GRAFIK PENGENDALI p-chart Prosidig Semiar Nasioal Peelitia, Pedidika da Peerapa MIPA, Fakultas MIPA, Uiversitas Negeri Yogyakarta, 2 Jui 2012 PENGGUNAAN METODE BAYESIAN OBYEKTIF DALAM PEMBUATAN GRAFIK PENGENDALI p-chart Adi Setiawa

Lebih terperinci

Metode Bootstrap Persentil Pada Sensor Tipe II Berdistribusi Eksponensial

Metode Bootstrap Persentil Pada Sensor Tipe II Berdistribusi Eksponensial Statistika, Vol. 7 No. 1, 1 6 Mei 007 Metode Bootstrap Persetil Pada Sesor Tipe II Berdistribusi Ekspoesial Jurusa Statistika FMIPA Uiversitas Islam Idoesia Yogyakarta Abstrak Metode bootstrap adalah suatu

Lebih terperinci

PENAKSIRAN DAN PERAMALAN BIAYA D. PENAKSIRAN BIAYA JANGKA PANJANG E. PERAMALAN BIAYA

PENAKSIRAN DAN PERAMALAN BIAYA D. PENAKSIRAN BIAYA JANGKA PANJANG E. PERAMALAN BIAYA PENAKSIRAN DAN PERAMALAN BIAYA Ari Darmawa, Dr. S.AB, M.AB Email: aridarmawa_fia@ub.ac.id A. PENDAHULUAN B. PENAKSIRAN DAN PRAKIRAAN FUNGSI BIAYA C. PENAKSIRAN JANGKA PENDEK - Ekstrapolasi sederhaa - Aalisis

Lebih terperinci

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL BAB VIII MASAAH ESTIMASI SAT DAN DA SAMPE 8.1 Statistik iferesial Statistik iferesial suatu metode megambil kesimpula dari suatu populasi. Ada dua pedekata yag diguaka dalam statistik iferesial. Pertama,

Lebih terperinci

BAB I PENDAHULUAN. Integral adalah salah satu konsep penting dalam Matematika yang

BAB I PENDAHULUAN. Integral adalah salah satu konsep penting dalam Matematika yang BAB I PENDAHULUAN 1.1 Latar Belakag Masalah Itegral adalah salah satu kosep petig dalam Matematika yag dikemukaka pertama kali oleh Isac Newto da Gottfried Wilhelm Leibiz pada akhir abad ke-17. Selajutya

Lebih terperinci

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4 Program Studi : Tekik Iformatika Miggu ke : 4 INDUKSI MATEMATIKA Hampir semua rumus da hukum yag berlaku tidak tercipta dega begitu saja sehigga diraguka kebearaya. Biasaya, rumus-rumus dapat dibuktika

Lebih terperinci

SIFAT-SIFAT FUNGSI EKSPONENSIAL BERBASIS BILANGAN NATURAL YANG DIDEFINISIKAN SEBAGAI LIMIT

SIFAT-SIFAT FUNGSI EKSPONENSIAL BERBASIS BILANGAN NATURAL YANG DIDEFINISIKAN SEBAGAI LIMIT Jural Matematika UNAND Vol. 4 No. 1 Hal. 12 22 ISSN : 2303 2910 c Jurusa Matematika FMIPA UNAND SIFAT-SIFAT FUNGSI EKSPONENSIAL BERBASIS BILANGAN NATURAL YANG DIDEFINISIKAN SEBAGAI LIMIT ENIVA RAMADANI

Lebih terperinci

Persamaan Non-Linear

Persamaan Non-Linear Persamaa No-Liear Peyelesaia persamaa o-liear adalah meghitug akar suatu persamaa o-liear dega satu variabel,, atau secara umum dituliska : = 0 Cotoh: 2 5. 5 4 9 2 0 2 5 5 4 9 2 2. 2 0 2 5. e 0 Metode

Lebih terperinci

Definisi Integral Tentu

Definisi Integral Tentu Defiisi Itegral Tetu Bila kita megedarai kedaraa bermotor (sepeda motor atau mobil) selama 4 jam dega kecepata 50 km / jam, berapa jarak yag ditempuh? Tetu saja jawabya sagat mudah yaitu 50 x 4 = 200 km.

Lebih terperinci

BAB 1 PENDAHULUAN. dimana f(x) adalah fungsi tujuan dan h(x) adalah fungsi pembatas.

BAB 1 PENDAHULUAN. dimana f(x) adalah fungsi tujuan dan h(x) adalah fungsi pembatas. BAB 1 PENDAHUUAN 1.1 atar Belakag Pada dasarya masalah optimisasi adalah suatu masalah utuk membuat ilai fugsi tujua mejadi maksimum atau miimum dega memperhatika pembatas pembatas yag ada. Dalam aplikasi

Lebih terperinci

BAB 3 METODE PENELITIAN

BAB 3 METODE PENELITIAN Sedagka itegrasi ruas kaa utuk ersamaa (3b) diperoleh ds / = S... (36) Dega demikia pesamaa yag harus dipecahka adalah l 1 1 u u = S (37) Dari ersamaa (37) diperoleh persamaa utuk u u S = exp S 1exp S...

Lebih terperinci

DERET TAK HINGGA (INFITITE SERIES)

DERET TAK HINGGA (INFITITE SERIES) MATEMATIKA II DERET TAK HINGGA (INFITITE SERIES) sugegpb.lecture.ub.ac.id aada.lecture.ub.ac.id BARISAN Barisa merupaka kumpula suatu bilaga (atau betuk aljabar) yag disusu sehigga membetuk suku-suku yag

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN JURAL MATEMATKA DA KOMPUTER Vol. 6. o., 77-85, Agustus 003, SS : 40-858 DSTRBUS WAKTU BERHET PADA PROSES PEMBAHARUA Sudaro Jurusa Matematika FMPA UDP Abstrak Dalam proses stokhastik yag maa kejadia dapat

Lebih terperinci

PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT

PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT Prosidig Semiar Nasioal Matematika da Terapaya 06 p-issn : 0-0384; e-issn : 0-039 PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT Liatus

Lebih terperinci

Selang Kepercayaan (Confidence Interval) Pengantar Penduga titik (point estimator) telah dibahas pada kuliah-kuliah sebelumnya. Walau statistikawan

Selang Kepercayaan (Confidence Interval) Pengantar Penduga titik (point estimator) telah dibahas pada kuliah-kuliah sebelumnya. Walau statistikawan Selag Kepercayaa (Cofidece Iterval) Pegatar Peduga titik (poit estimator) telah dibahas pada kuliah-kuliah sebelumya. Walau statistikawa telah berusaha memperoleh peduga titik yag baik, amu hampir bisa

Lebih terperinci

mempunyai sebaran yang mendekati sebaran normal. Dalam hal ini adalah PKM (penduga kemungkinan maksimum) bagi, ˆ ˆ adalah simpangan baku dari.

mempunyai sebaran yang mendekati sebaran normal. Dalam hal ini adalah PKM (penduga kemungkinan maksimum) bagi, ˆ ˆ adalah simpangan baku dari. Selag Kepercayaa Cotoh Besar Jika ukura cotoh (sample size) besar, maka meurut Teorema Limit Pusat, bayak statistik megikuti/mempuyai sebara yag medekati ormal (dapat diaggap ormal). Artiya jika adalah

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 3, , Desember 2003, ISSN : INTERVAL SELISIH RATA-RATA DENGAN METODE BOOTSTRAP PERSENTIL

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 3, , Desember 2003, ISSN : INTERVAL SELISIH RATA-RATA DENGAN METODE BOOTSTRAP PERSENTIL JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 3, 118-70, Desember 003, ISSN : 1410-8518 INTERVAL SELISIH RATA-RATA DENGAN METODE BOOTSTRAP PERSENTIL Akhmad Fauzy Statistika FMIPA UII Yogyakarta & siswa Ph.D

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakag Dalam keadaa dimaa meghadapi persoala program liier yag besar, maka aka berusaha utuk mecari peyelesaia optimal dega megguaka algoritma komputasi, seperti algoritma

Lebih terperinci

Deret Fourier. Modul 1 PENDAHULUAN

Deret Fourier. Modul 1 PENDAHULUAN Modul Deret Fourier Prof. Dr. Bambag Soedijoo P PENDAHULUAN ada modul ii dibahas masalah ekspasi deret Fourier Sius osius utuk suatu fugsi periodik ataupu yag diaggap periodik, da dibahas pula trasformasi

Lebih terperinci

POSITRON, Vol. II, No. 2 (2012), Hal. 1-5 ISSN : Penentuan Energi Osilator Kuantum Anharmonik Menggunakan Teori Gangguan

POSITRON, Vol. II, No. 2 (2012), Hal. 1-5 ISSN : Penentuan Energi Osilator Kuantum Anharmonik Menggunakan Teori Gangguan POSITRON, Vol. II, No. (0), Hal. -5 ISSN : 30-4970 Peetua Eergi Osilator Kuatum Aharmoik Megguaka Teori Gaggua Iklas Saubary ), Yudha Arma ), Azrul Azwar ) )Program Studi Fisika Fakultas Matematika da

Lebih terperinci

SIFAT-SIFAT SEMIGRUP SIMETRIS INTERVAL

SIFAT-SIFAT SEMIGRUP SIMETRIS INTERVAL SIFAT-SIFAT SEMIGRUP SIMETRIS INTERVAL Riza Febri Yusma Sri Gemawati Asli Sirait *riza_febri@yahoo.com Mahasiswa Program S Matematika Dose Jurusa Matematika Fakultas Matematika da Ilmu Pegetahua Alam Uiveritas

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Permasalaha peugasa atau assigmet problem adalah suatu persoala dimaa harus melakuka peugasa terhadap sekumpula orag yag kepada sekumpula job yag ada, sehigga tepat satu

Lebih terperinci

APLIKASI REGRESI RIDGE LEAST ABSOLUTE DEVIATION PADA KASUS PELANGGARAN ASUMSI KENORMALAN DAN MULTIKOLINIERITAS

APLIKASI REGRESI RIDGE LEAST ABSOLUTE DEVIATION PADA KASUS PELANGGARAN ASUMSI KENORMALAN DAN MULTIKOLINIERITAS APLIKASI REGRESI RIDGE LEAST ABSOLUTE DEVIATION PADA KASUS PELANGGARAN ASUMSI KENORMALAN DAN MULTIKOLINIERITAS Idah Ayustia, Aa Islamiyati, Raupog Program Studi Statistika, FMIPA, Uiversitas Hasauddi ABSTRAK

Lebih terperinci

9 Departemen Statistika FMIPA IPB

9 Departemen Statistika FMIPA IPB Supleme Resposi Pertemua ANALISIS DATA KATEGORIK (STK351 9 Departeme Statistika FMIPA IPB Pokok Bahasa Sub Pokok Bahasa Referesi Waktu Pegatar Aalisis utuk Data Respo Kategorik Data respo kategorik Sebara

Lebih terperinci

ARTIKEL. Menentukan rumus Jumlah Suatu Deret dengan Operator Beda. Markaban Maret 2015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN

ARTIKEL. Menentukan rumus Jumlah Suatu Deret dengan Operator Beda. Markaban Maret 2015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN ARTIKEL Meetuka rumus Jumlah Suatu Deret dega Operator Beda Markaba 191115198801005 Maret 015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN PUSAT PENGEMBANGAN DAN PEMBERDAYAAN PENDIDIK DAN TENAGA KEPENDIDIKAN

Lebih terperinci

BAB III PEMBAHASAN. Pada BAB III ini akan dibahas mengenai bentuk program linear fuzzy

BAB III PEMBAHASAN. Pada BAB III ini akan dibahas mengenai bentuk program linear fuzzy BAB III PEMBAHASAN Pada BAB III ii aka dibahas megeai betuk program liear fuzzy dega koefisie tekis kedala berbetuk bilaga fuzzy da pembahasa peyelesaia masalah optimasi studi kasus pada UD FIRDAUS Magelag

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakag Dalam duia iformatika, assigmet Problem yag biasa dibetuk dega matriks berbobot merupaka salah satu masalah terbesar, dimaa masalah ii merupaka masalah yag metode peyelesaiaya

Lebih terperinci

BAB 1 PENDAHULUAN. Analisis regresi menjadi salah satu bagian statistika yang paling banyak aplikasinya.

BAB 1 PENDAHULUAN. Analisis regresi menjadi salah satu bagian statistika yang paling banyak aplikasinya. BAB 1 PENDAHULUAN 1.1 Latar Belakag Aalisis regresi mejadi salah satu bagia statistika yag palig bayak aplikasiya. Aalisis regresi memberika keleluasaa kepada peeliti utuk meyusu model hubuga atau pegaruh

Lebih terperinci

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR Nur Aei Prodi Matematika, FST-UINAM uraeiatullah@gmail.com Ifo: Jural MSA Vol. 3 No. 2 Edisi: Juli Desember

Lebih terperinci

Pendugaan Parameter Model Produksi Constant Elasticity of Subtitutions (CES) dengan Metode Kuadrat Terkecil Nonlinear

Pendugaan Parameter Model Produksi Constant Elasticity of Subtitutions (CES) dengan Metode Kuadrat Terkecil Nonlinear Vol., 017 Pedugaa Parameter Model Produksi Costat Elasticity of Subtitutios (CES) dega Metode Kuadrat Terkecil Noliear Dia Kuriasari 1*, Noferdis Setiawa, Warsoo 3 da Yeftaus Atoio 4 Jurusa Matematika,

Lebih terperinci

Himpunan/Selang Kekonvergenan

Himpunan/Selang Kekonvergenan oki eswa (fmipa-itb) Deret Pagkat Kita aka mempelajari beberapa tehik utuk meyajika suatu fugsi f (x) dalam betuk deret pagkat (power series), yaitu meetuka derat pagkat c (x a) sehigga f (x) = c (x a)

Lebih terperinci

BAB VI DERET TAYLOR DAN DERET LAURENT

BAB VI DERET TAYLOR DAN DERET LAURENT BAB VI DERET TAYLOR DAN DERET LAURENT. Deret Taylor Misal fugsi f() aalitik pada - < R ( ligkara dega pusat di da jari-jari R ). Maka utuk setiap titik pada ligkara itu, f() dapat diyataka sebagai : f

Lebih terperinci

BAB I PENDAHULUAN. X Y X Y X Y sampel

BAB I PENDAHULUAN. X Y X Y X Y sampel BAB I PENDAHULUAN 1.1 Latar Belakag Masalah Aalisis regresi merupaka metode aalisis data yag meggambarka hubuga atara variabel respo dega satu atau beberapa variabel prediktor. Aalisis regresi tersebut

Lebih terperinci

METODE TRAPESIUM NONLINEAR UNTUK MENYELESAIKAN PERSAMAAN DIFERENSIAL ORDE SATU ABSTRACT

METODE TRAPESIUM NONLINEAR UNTUK MENYELESAIKAN PERSAMAAN DIFERENSIAL ORDE SATU ABSTRACT METODE TRAPESIUM NONLINEAR UNTUK MENYELESAIKAN PERSAMAAN DIFERENSIAL ORDE SATU Rahma Dodi 1, Musraii M 1 Mahasiswa Program Studi S1 Matematika Dose Jurusa Matematika Fakultas Matematika da Ilmu Pegetahua

Lebih terperinci

BAB 2 LANDASAN TEORI. Statistika merupakan salah satu cabang penegtahuan yang paling banyak mendapatkan

BAB 2 LANDASAN TEORI. Statistika merupakan salah satu cabang penegtahuan yang paling banyak mendapatkan BAB LANDASAN TEORI. Pegertia Regresi Statistika merupaka salah satu cabag peegtahua yag palig bayak medapatka perhatia da dipelajari oleh ilmua dari hamper semua bidag ilmu peegtahua, terutama para peeliti

Lebih terperinci

Taksiran Interval bagi Rata-rata Parameter Distribusi Poisson Interval Estimate for The Average of Parameter Poisson Distribution

Taksiran Interval bagi Rata-rata Parameter Distribusi Poisson Interval Estimate for The Average of Parameter Poisson Distribution Prosidig Statistika ISSN: 460-6456 Taksira Iterval bagi Rata-rata Parameter Distribusi Poisso Iterval Estimate for The Average of Parameter Poisso Distributio 1 Putri Aggita Nuraei, Teti Sofia Yati, 3

Lebih terperinci

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR

PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR PENERAPAN TEOREMA TITIK TETAP UNTUK MENUNJUKKAN ADANYA PENYELESAIAN PADA SISTEM PERSAMAAN LINEAR Nur Aei Prodi Matematika, FST-UINAM uraeiatullah@gmail.com Ifo: Jural MSA Vol. 3 No. 2 Edisi: Juli Desember

Lebih terperinci

h h h n 2! 3! n! h h h 2! 3! n!

h h h n 2! 3! n! h h h 2! 3! n! Dieresiasi Numerik Sala satu perituga kalkulus yag serig diguaka adala turua/ dieresial. Coto pegguaa dieresial adala utuk meetuka ilai optimum (maksimum atau miimum) suatu ugsi y x mesyaratka ilai turua

Lebih terperinci

REGRESI DAN KORELASI SEDERHANA

REGRESI DAN KORELASI SEDERHANA REGRESI DAN KORELASI SEDERHANA Apa yag disebut Regresi? Korelasi? Aalisa regresi da korelasi sederhaa membahas tetag keterkaita atara sebuah variabel (variabel terikat/depede) dega (sebuah) variabel lai

Lebih terperinci

Kestabilan Rangkaian Tertutup Waktu Kontinu Menggunakan Metode Transformasi Ke Bentuk Kanonik Terkendali

Kestabilan Rangkaian Tertutup Waktu Kontinu Menggunakan Metode Transformasi Ke Bentuk Kanonik Terkendali Jural Tekika ISSN : 285-859 Fakultas Tekik Uiversitas Islam Lamoga Volume No.2 Tahu 29 Kestabila Ragkaia Tertutup Waktu Kotiu Megguaka Metode Trasformasi Ke Betuk Kaoik Terkedali Suhariyato ) Dose Fakultas

Lebih terperinci

Pendugaan Parameter. Debrina Puspita Andriani /

Pendugaan Parameter. Debrina Puspita Andriani    / Pedugaa Parameter 7 Debria Puspita Adriai E-mail : debria.ub@gmail.com / debria@ub.ac.id Outlie Pedahulua Pedugaa Titik Pedugaa Iterval Pedugaa Parameter: Kasus Sampel Rataa Populasi Pedugaa Parameter:

Lebih terperinci

BAB III ESTIMASI PARAMETER MODEL DENGAN GS2SLS. Pada bab ini akan dibahas tentang bentuk model spasial lag sekaligus

BAB III ESTIMASI PARAMETER MODEL DENGAN GS2SLS. Pada bab ini akan dibahas tentang bentuk model spasial lag sekaligus BAB III ESTIMASI PARAMETER MODEL DENGAN GS2SLS Pada bab ii aka dibahas tetag betuk model spasial lag sekaligus spasial error da prosedur Geeralized Spatial Two Stage Least Squares (GS2SLS) utuk megestimasi

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 31-41, April 2004, ISSN :

JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 31-41, April 2004, ISSN : Vol. 7. No. 1, 31-41, April 24, ISSN : 141-8518 Peetua Kestabila Sistem Kotrol Lup Tertutup Waktu Kotiu dega Metode Trasformasi ke Betuk Kaoik Terkotrol Robertus Heri Jurusa Matematika FMIPA UNDIP Abstrak

Lebih terperinci

Penyelesaian: Variables Entered/Removed a. a. Dependent Variable: Tulang b. All requested variables entered.

Penyelesaian: Variables Entered/Removed a. a. Dependent Variable: Tulang b. All requested variables entered. 2. Pelajari data dibawah ii, tetuka depede da idepede variabel serta : a) Hitug Sum of Square for Regressio (X) b) Hitug Sum of Square for Residual c) Hitug Meas Sum of Square for Regressio (X) d) Hitug

Lebih terperinci

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP STATISTICS Haug N. Prasetyo Week 11 PENDAHULUAN Regresi da korelasi diguaka utuk megetahui hubuga dua atau lebih kejadia (variabel) yag dapat diukur secara matematis. Ada dua hal yag diukur atau diaalisis,

Lebih terperinci

Galat dan Perambatannya

Galat dan Perambatannya Modul 1 Galat da Perambataya Prof. Dr. Bambag Soedijoo P PENDHULUN ada Modul 1 ii dibahas masalah galat atau derajat kesalaha da perambataya, dega demikia para peggua modul ii diharapka telah memahami

Lebih terperinci

BARISAN DAN DERET. Nurdinintya Athari (NDT)

BARISAN DAN DERET. Nurdinintya Athari (NDT) BARISAN DAN DERET Nurdiitya Athari (NDT) BARISAN Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) = a Fugsi tersebut dikeal sebagai barisa bilaga

Lebih terperinci

SEMI MODUL POLINOMIAL FUZZY ATAS ALJABAR MAX-PLUS FUZZY

SEMI MODUL POLINOMIAL FUZZY ATAS ALJABAR MAX-PLUS FUZZY JMP : Volume 3 Nomor 1, Jui 2011 SEMI MODUL POLINOMIAL FUZZY ATAS ALJABAR MAX-PLUS FUZZY Ari Wardayai da Suroto Prodi Matematika, Jurusa MIPA, Fakultas Sais da Tekik Uiversitas Jederal Soedirma (email

Lebih terperinci

Analisis Regresi Ordinal Untuk Mengetahui Faktor-Faktor Yang Mempengaruhi Kualitas Pelayanan Kesehatan Pada Komunitas Latino

Analisis Regresi Ordinal Untuk Mengetahui Faktor-Faktor Yang Mempengaruhi Kualitas Pelayanan Kesehatan Pada Komunitas Latino Jural Gradie Vol 8 No 2 Juli 22 82-88 Aalisis Regresi Ordial Utuk Megetahui Faktor-Faktor Yag Mempegaruhi Kualitas Pelayaa Kesehata Pada Komuitas Latio Idhia Sriliaa Jurusa Matematika, Fakultas Matematika

Lebih terperinci

PENAKSIR BAYES UNTUK PARAMETER DISTRIBUSI EKSPONENSIAL BERDASARKAN FUNGSI KERUGIAN KUADRATIK DAN FUNGSI KERUGIAN ENTROPI

PENAKSIR BAYES UNTUK PARAMETER DISTRIBUSI EKSPONENSIAL BERDASARKAN FUNGSI KERUGIAN KUADRATIK DAN FUNGSI KERUGIAN ENTROPI PENAKSIR BAYES UNTUK PARAMETER DISTRIBUSI EKSPONENSIAL BERDASARKAN FUNGSI KERUGIAN KUADRATIK DAN FUNGSI KERUGIAN ENTROPI Nadya Zulfa Negsih, Bustami Mahasiswa Program Studi S Matematika Dose Jurusa Matematika

Lebih terperinci

Kekeliruan dalam Perhitungan Numerik dan Selisih Terhingga Biasa

Kekeliruan dalam Perhitungan Numerik dan Selisih Terhingga Biasa Modul 1 Kekelirua dalam Perhituga Numerik da Selisih Terhigga Biasa D PENDAHULUAN Dr. Wahyudi, M.Pd. i dalam pemakaia praktis, peyelesaia akhir yag diigika dari solusi suatu permasalaha (soal) dalam matematika

Lebih terperinci

4.7 TRANSFORMASI UNTUK MENDEKATI KENORMALAN

4.7 TRANSFORMASI UNTUK MENDEKATI KENORMALAN 4.7 TRANSFORMASI UNTUK MENDEKATI KENORMALAN Saat asumsi keormala tidak dipuhi maka kesimpula yag kita buat berdasarka suatu metod statistik yag mesyaratka asumsi keormala meadi tidak baik, sehigga mucul

Lebih terperinci

SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS

SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS Prosidig Semiar Nasioal Peelitia, Pedidika da Peerapa MIPA, Fakultas MIPA, Uiversitas Negeri Yogyakarta, 4 Mei 0 SISTEM PERSAMAAN LINEAR PADA ALJABAR MIN-PLUS Musthofa Jurusa Pedidika Matematika FMIPA

Lebih terperinci

III PEMBAHASAN. λ = 0. Ly = 0, maka solusi umum dari persamaan diferensial (3.3) adalah

III PEMBAHASAN. λ = 0. Ly = 0, maka solusi umum dari persamaan diferensial (3.3) adalah III PEMBAHASAN Pada bagia ii aka diformulasika masalah yag aka dibahas. Solusi masalah aka diselesaika dega Metode Dekomposisi Adomia. Selajutya metode ii aka diguaka utuk meyelesaika model yag diyataka

Lebih terperinci

BARISAN TAK HINGGA DAN DERET TAK HINGGA

BARISAN TAK HINGGA DAN DERET TAK HINGGA BARIAN TAK HINGGA DAN DERET TAK HINGGA Bajar/Barisa Tak Higga Barisa tak higga { } adalah suatu fugsi dari dimaa daerah domaiya adalah himpua bilaga bulat positif (bilaga asli). Cotoh: Bila.. maka fugsi

Lebih terperinci

METODE NUMERIK TKM4104. Kuliah ke-2 DERET TAYLOR DAN ANALISIS GALAT

METODE NUMERIK TKM4104. Kuliah ke-2 DERET TAYLOR DAN ANALISIS GALAT METODE NUMERIK TKM4104 Kuliah ke- DERET TAYLOR DAN ANALISIS GALAT DERET TAYLOR o Deret Taylor adalah alat yag utama utuk meuruka suatu metode umerik. o Deret Taylor bergua utuk meghampiri ugsi ke dalam

Lebih terperinci

PERTEMUAN 13. VEKTOR dalam R 3

PERTEMUAN 13. VEKTOR dalam R 3 PERTEMUAN VEKTOR dalam R Pegertia Ruag Vektor Defiisi R Jika adalah sebuah bilaga bulat positif, maka tupel - - terorde (ordered--tuple) adalah sebuah uruta bilaga riil ( a ),a,..., a. Semua tupel - -terorde

Lebih terperinci