REGRESI LINIER GANDA

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "REGRESI LINIER GANDA"

Transkripsi

1 REGRESI LINIER GANDA Secara umum, data hasil pegamata Y bisa terjadi karea akibat variabelvariabel bebas,,, k. Aka ditetuka hubuga atara Y da,,, k sehigga didapat regresi Y atas,,, k amu masih meujukka diagram hubuga yag liier. Peambaha variabel bebas ii diharapka dapat lebih mejelaska karakteristik hubuga yag ada, walaupu masih saja ada variabel yag terabaika. Model regresi liier gada Y atas,,, k aka ditaksir oleh : Ŷ a 0 + b + b + + b k k a. Persamaa resgresi liier bergada dega dua variabel bebas Ŷ a 0 + b + b Keteraga : Ŷ variabel terikat ilai duga Y, variabel bebas a, b, b koefisie regresi liier bergada a ilai Y, apabila 0 b besarya keaika/peurua Y dalam satua, jika aik/turu satu satua da kosta b besarya keaika/peurua Y dalam satua, jika aik/turu satu satua da kosta Nilai dari koefisie a, b, b dapat ditetuka dega cara Metode Kuadrat Terkecil : a b b b y y b Y y Y y y Y. Y y. Y. y. Y.. b. Persamaa resgresi liier bergada dega tiga variabel bebas Ŷ a 0 + b + b + b Keteraga : Ŷ variabel terikat ilai duga Y,, variabel bebas a, b, b, b koefisie regresi liier bergada a ilai Y, apabila 0

2 b b b besarya keaika/peurua Y dalam satua, jika aik/turu satu satua da da kosta besarya keaika/peurua Y dalam satua, jika aik/turu satu satua da da kosta besarya keaika/peurua Y dalam satua, jika aik/turu satu satua da da kosta Nilai dari koefisie a, b, b, b dapat ditetuka dega megguaka persamaa ormal : Y a. + b + b + b Y a + b + b Y a Y a + b atau dalam betuk deviasi dari mea : y b + b y b + b y b + b Y b b b a Y y Y y Y y + b + b + b + b + b + b + b + b + b

3 * Kesalaha Baku Regresi da Koefisie Regresi Bergada Kesalaha baku atau selisih taksir stadar regresi adalah ilai yag meyaktaka seberapa jauh meyimpagya ilai regresi tersebut terhadap ilai sebearya ilai observasi. Nilai ii diguaka utuk megukur tigkat ketepata suatu peduga dalam meduga suatu ilai. Jika ilai ii sama dega 0, maka peduga tersebut memiliki tigkat ketepata 00%. Kesalaha baku atau selisih taksir stadar regresi bergada, dirumuska : S e b y + b y y m Keteraga : S e Kesalaha baku regresi bergada jumlah pasaga observasi m jumlah kostata dalam persamaa regresi bergada. Utuk koefisie regresi bergada b da b, kesalaha bakuya dirumuska : Sb S e r Y. ; Sb S e r Keteraga : Sb da Sb Kesalaha baku koefisie regresi bergada b da b r Y. koefisie korelasi atara da ry. * Pedugaa Iterval Koefisie Regresi Bergada Parameter B da B Parameter B da B serig juga disebut sebagai koefisie regresi parsial. Pedugaa parameter B da B megguaka distribusi t dega derajat bebas db m secara umum, pedugaa B da B adalah : b i t α Sb i B i b i + t α Sb i ; i, ; m ; m * Pegujia Hipotesis Koefisie Regresi Bergada Parameter B da B a. Pegujia Hipotesis Seretak Pegujia hipotesis seretak merupaka pegujia hipótesis koefisie regresi bergada dega B da B seretak atau bersamasama mempegaruhi Y. Prosedur Pegujia Hipótesis : Meetuka formulasi hipotesis Ho : B B 0 da tidak mepegaruhi Y Ha : B B 0 da mempegaruhi Y atau palig sedikit ada yag mempegaruhi Y Meetuka taraf yata α da ilai F tabel F tabel ditetuka dega taraf yata α, derajat bebas v k da v k F tabel F αv;v Y.

4 Meetuka kriteria pegujia Jika F hitug F tabel, maka Ho diterima Jika F hitug > F tabel, maka Ho ditolak 4 Meetuka ilai uji statistik Jumlah Kuadrat Total JKT y Y.Y Jumlah Kuadrat Regresi JKR b y + b y Y. Y + b Jumlah Kuadrat Error JKE JKT JKR b Y. Y Sumber Variasi Jumlah Kuadrat Tabel ANOVA Derajat Bebas Regresi, JKR k Error JKE k Total JKT 5 Membuat kesimpula Meyimpulka apakah Ho diterima atau ditolak. RataRata Kuadrat JKR k JKE k F hitug RKR RKE b. Pegujia hipotesis idividual Pegujia hipotesis idividual merupaka pegujia hipotesis koefisie regresi bergada dega haya satu B B atau B yag mempegaruhi Y. Prosedur Pegujia Hipótesis : Meetuka formulasi hipotesis Ho : B i 0 tidak ada pegaruh i terhadap Y Ha : B i > 0 ada pegaruh positif i terhadap Y B i < 0 ada pegaruh egatif i terhadap Y B i 0 ada pegaruh i terhadap Y Meetuka taraf yata α dega t tabel t tabel t α ; db ; dega db k Meetuka kriteria pegujia Kriteria pegujia yag ditetuka sama dega kriteria pegujia dari pegujia hipotesis yag megguaka distribusi t 4 Meetuka ilai uji statistik bi Bi t hitug ; i, Sbi 5 Membuat kesimpula Meyimpulka apakah Ho diterima atau ditolak. 4

5 SOAL :. Berikut ii data megeai pedapata, jumlah karyawa, da luas kamar dari 5 sampel radom. Y Y pedapata Rp juta jumlah karyawa luas kamar m a. Buatlah persamaa regresi liier bergada! b. Tetuka ilai duga Y, jika 6 da 40 c. Tetuka kesalaha baku regresi bergadaya! d. Tetuka kesalaha baku koefisie b da b! e. Buatlah pedugaa iterval bagi parameter B da B pada tigkat keyakia 95%! f. Ujilah hipotesis, apakah da tidak mempegaruhi Y, dega alteratif palig tidak ada satu yag mempegaruhi Y pada taraf yata % g. Ujilah pedapat bahwa tidak ada pegaruh jumlah karyawa atau luas kamar terhadap pedapata! guaka taraf yata 5%.. Y pajag bada aak cm berat aak pada waktu lahir kg umur aak hari Y 57,5, ,8,5 69 6, 4, ,0 5,5 88 5,5, 67 6,7 4, 80 56,, 74 68,5 4, ,,7 0 a. buatlah persamaa regresi liier bergadaya! b. Tetuka kesalaha baku regresi da koefesie regresi bergadaya! c. Buatlah pedugaa iterval bagi parameter B da B pada tigkat keyakia 90%! d. Ujilah da secara seretak da idividual terhadap Y! guaka α % e. Ramallah pajag bada ratarata bagi aak yag berumur 00 hari dega berat bada,75kg! Sumber : Hasa, Iqbal PokokPokok Materi Statistik Statistik Iferesif. Jakarta : Bumi Aksara. 5

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Aalisis Regresi Istilah regresi pertama kali diperkealka oleh seorag ahli yag berama Facis Galto pada tahu 1886. Meurut Galto, aalisis regresi berkeaa dega studi ketergatuga dari suatu

Lebih terperinci

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP

STATISTICS. Hanung N. Prasetyo Week 11 TELKOM POLTECH/HANUNG NP STATISTICS Haug N. Prasetyo Week 11 PENDAHULUAN Regresi da korelasi diguaka utuk megetahui hubuga dua atau lebih kejadia (variabel) yag dapat diukur secara matematis. Ada dua hal yag diukur atau diaalisis,

Lebih terperinci

STATISTIKA ANALISIS REGRESI DAN KORELASI LINIER SEDERHANA

STATISTIKA ANALISIS REGRESI DAN KORELASI LINIER SEDERHANA STATISTIKA ANALISIS REGRESI DAN KORELASI LINIER SEDERHANA OUTLINE LANJUTAN Peetua garis duga regresi dega Metode OLS kostata a da koefisie b Aalisis Varias komposisi variasi sekitar garis r da r Stadard

Lebih terperinci

Suhu (X) Gula yang Dihasilkan (Y)

Suhu (X) Gula yang Dihasilkan (Y) Regresi Liear Sederhaa da Korelasi MA 208 Statistika Dasar Sei, 27 April 2009 2008 by USP & RFU Dose : Udjiaa S. Pasaribu Utriwei i Mukhaiyar Model Regresi Liear Tujua :. Meetuka/meaksir parameter-parameter

Lebih terperinci

A. Pengertian Hipotesis

A. Pengertian Hipotesis PENGUJIAN HIPOTESIS A. Pegertia Hipotesis Hipotesis statistik adalah suatu peryataa atau dugaa megeai satu atau lebih populasi Ada macam hipotesis:. Hipotesis ol (H 0 ), adalah suatu hipotesis dega harapa

Lebih terperinci

Nama : INDRI SUCI RAHMAWATI NIM : ANALISIS REGRESI SESI 01 HAL

Nama : INDRI SUCI RAHMAWATI NIM : ANALISIS REGRESI SESI 01 HAL Nama : INDRI SUCI RAHMAWATI NIM : 2015-32-005 ANALISIS REGRESI SESI 01 HAL. 86-88 Latiha 2 Pelajari data dibawah ii, tetuka depede da idepede variabel serta : a. Hitug Sum of Square for Regressio (X) b.

Lebih terperinci

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan REGRESI LINIER DAN KORELASI Variabel dibedaka dalam dua jeis dalam aalisis regresi: Variabel bebas atau variabel prediktor -> variabel yag mudah didapat atau tersedia. Dapat diyataka dega X 1, X,, X k

Lebih terperinci

Nama : INDRI SUCI RAHMAWATI NIM : ANALISIS REGRESI SESI 01 HAL

Nama : INDRI SUCI RAHMAWATI NIM : ANALISIS REGRESI SESI 01 HAL Nama : INDRI SUCI RAHMAWATI NIM : 2015-32-005 ANALISIS REGRESI SESI 01 HAL. 85-88 Latiha 1 Pelajari data dibawah ii, tetuka depede da idepedet variabel serta a. Hitug Sum of for Regressio (X) b. Hitug

Lebih terperinci

Penyelesaian: Variables Entered/Removed a. a. Dependent Variable: Tulang b. All requested variables entered.

Penyelesaian: Variables Entered/Removed a. a. Dependent Variable: Tulang b. All requested variables entered. 2. Pelajari data dibawah ii, tetuka depede da idepede variabel serta : a) Hitug Sum of Square for Regressio (X) b) Hitug Sum of Square for Residual c) Hitug Meas Sum of Square for Regressio (X) d) Hitug

Lebih terperinci

ANALISIS REGRESI DAN KORELASI SEDERHANA

ANALISIS REGRESI DAN KORELASI SEDERHANA LATAR BELAKANG DAN KORELASI SEDERHANA Aalisis regresi da korelasi megkaji da megukur keterkaita seara statistik atara dua atau lebih variabel. Keterkaita atara dua variabel regresi da korelasi sederhaa.

Lebih terperinci

Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya PENS. Probability and Random Process. Topik 10. Regresi

Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya PENS. Probability and Random Process. Topik 10. Regresi Program Pasca Sarjaa Terapa Politekik Elektroika Negeri Surabaya Probability ad Radom Process Topik 10. Regresi Prima Kristalia Jui 015 1 Outlie 1. Kosep Regresi Sederhaa. Persamaa Regresi Sederhaa 3.

Lebih terperinci

4/19/2016. Regresi Linier Berganda. Regresi Berganda. Model Regresi Berganda. Model Regresi Berganda. Asumsi Regresi Berganda. Model Regresi Berganda

4/19/2016. Regresi Linier Berganda. Regresi Berganda. Model Regresi Berganda. Model Regresi Berganda. Asumsi Regresi Berganda. Model Regresi Berganda 4/9/06 Regresi Liier Bergada Program Studi Tekik Idustri Uiversitas Brawijaa Ihwa Hamdala, ST., MT SI - Regresi & Korelasi Bergada Regresi Bergada Cotoh SI - Regresi & Korelasi Bergada Meguji huuga liier

Lebih terperinci

Makalah ANALISIS REGRESI DAN REGRESI GANDA

Makalah ANALISIS REGRESI DAN REGRESI GANDA 1 Makalah ANALISIS REGRESI DAN REGRESI GANDA Disusu oleh : 1. Rudii mulya ( 41610010035 ). Falle jatu awar try ( 41610010036 ) 3. Novia ( 41610010034 ) Tekik Idustri Uiversitas Mercu Buaa Jakarta 010 Rudii

Lebih terperinci

Mata Kuliah: Statistik Inferensial

Mata Kuliah: Statistik Inferensial PENGUJIAN HIPOTESIS SAMPEL KECIL Prof. Dr. H. Almasdi Syahza, SE., MP Email: asyahza@yahoo.co.id DEFINISI Pegertia Sampel Kecil Sampel kecil yag jumlah sampel kurag dari 30, maka ilai stadar deviasi (s)

Lebih terperinci

REGRESI DAN KORELASI

REGRESI DAN KORELASI REGRESI DAN KORELASI Pedahulua Dalam kehidupa sehari-hari serig ditemuka masalah/kejadia yagg salig berkaita satu sama lai. Kita memerluka aalisis hubuga atara kejadia tersebut Dalam bab ii kita aka membahas

Lebih terperinci

x = μ...? 2 2 s = σ...? x x s = σ...?

x = μ...? 2 2 s = σ...? x x s = σ...? Pedugaa Parameter x 2 sx s = μ...? 2 = σ x...? = σ...? Peduga Parameter Peduga titik yaitu parameter populasi p diduga dega suatu besara statistik, misal: rata-rata, proporsi, ragam, dll Peduga Selag (Iterval)

Lebih terperinci

Kuliah Statistika Industri II Regresi & Korelasi Berganda

Kuliah Statistika Industri II Regresi & Korelasi Berganda Regresi & Korelasi Berganda Regresi & Korelasi Berganda Model regresi linier berganda melibatkan lebih dari satu variabel bebas. Persamaan n Contoh: - Hubungan antara suhu warehouse dan viskositas cat

Lebih terperinci

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya

BAB II LANDASAN TEORI. Dalam tugas akhir ini akan dibahas mengenai penaksiran besarnya 5 BAB II LANDASAN TEORI Dalam tugas akhir ii aka dibahas megeai peaksira besarya koefisie korelasi atara dua variabel radom kotiu jika data yag teramati berupa data kategorik yag terbetuk dari kedua variabel

Lebih terperinci

Pertemuan Ke-11. Teknik Analisis Komparasi (t-test)_m. Jainuri, M.Pd

Pertemuan Ke-11. Teknik Analisis Komparasi (t-test)_m. Jainuri, M.Pd Pertemua Ke- Komparasi berasal dari kata compariso (Eg) yag mempuyai arti perbadiga atau pembadiga. Tekik aalisis komparasi yaitu salah satu tekik aalisis kuatitatif yag diguaka utuk meguji hipotesis tetag

Lebih terperinci

III BAHAN DAN METODE PENELITIAN. Ternak yang digunakan dalam penelitian ini adalah kuda berjumlah 25

III BAHAN DAN METODE PENELITIAN. Ternak yang digunakan dalam penelitian ini adalah kuda berjumlah 25 18 III BAHAN DAN METODE PENELITIAN 3.1 Baha Peelitia 3.1.1 Objek Peelitia Terak yag diguaka dalam peelitia ii adalah kuda berjumlah 25 ekor terdiri dari 5 jata da 20 betia dega umur berkisar atara 10 15

Lebih terperinci

Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai

Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai PENGUJIAN HIPOTESIS Pedahulua Hipotesis: asumsi atau dugaa semetara megeai sesuatu hal. Ditutut utuk dilakuka pegeceka kebearaya. Jika asumsi atau dugaa dikhususka megeai ilai-ilai parameter populasi,

Lebih terperinci

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL

BAB VIII MASALAH ESTIMASI SATU DAN DUA SAMPEL BAB VIII MASAAH ESTIMASI SAT DAN DA SAMPE 8.1 Statistik iferesial Statistik iferesial suatu metode megambil kesimpula dari suatu populasi. Ada dua pedekata yag diguaka dalam statistik iferesial. Pertama,

Lebih terperinci

ANALISIS REGRESI DAN KORELASI

ANALISIS REGRESI DAN KORELASI MODUL KULIAH ANALISIS REGRESI DAN KORELASI Oleh: Drs. I WAYAN SANTIYASA, M.Si JURUSAN ILMU KOMPUTER FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS UDAYANA 016 RANCANGAN AKTIVITAS TUTORIAL (RAT)

Lebih terperinci

III. METODE PENELITIAN. Variabel X merupakan variabel bebas adalah kepemimpinan dan motivasi,

III. METODE PENELITIAN. Variabel X merupakan variabel bebas adalah kepemimpinan dan motivasi, 7 III. METODE PENELITIAN 3.1 Idetifikasi Masalah Variabel yag diguaka dalam peelitia ii adalah variabel X da variabel Y. Variabel X merupaka variabel bebas adalah kepemimpia da motivasi, variabel Y merupaka

Lebih terperinci

Pengenalan Pola. Regresi Linier

Pengenalan Pola. Regresi Linier Pegeala Pola Regresi Liier PTIIK - 014 Course Cotets 1 Defiisi Regresi Liier Model Regresi Liear 3 Estimasi Regresi Liear 4 Studi Kasus da Latiha Defiisi Regresi Liier Regresi adalah membagu model utuk

Lebih terperinci

L A T I H A N S O A L A N R E G 1 Muhamad Ferdiansyah, S. Stat.

L A T I H A N S O A L A N R E G 1 Muhamad Ferdiansyah, S. Stat. L A T I H A N S O A L A N R E G Muhamad Ferdiasyah, S. Stat. *Saya saraka utuk mecoba sediri baru lihat jawabaya **Jawaba saya BELUM TENTU BENAR karea saya mausia biasa. Silaka dikosultasika jika ada jawaba

Lebih terperinci

REGRESI DAN KORELASI SEDERHANA

REGRESI DAN KORELASI SEDERHANA REGRESI DAN KORELASI SEDERHANA Apa yag disebut Regresi? Korelasi? Aalisa regresi da korelasi sederhaa membahas tetag keterkaita atara sebuah variabel (variabel terikat/depede) dega (sebuah) variabel lai

Lebih terperinci

PENGUJIAN HIPOTESA BAB 7

PENGUJIAN HIPOTESA BAB 7 PENGUJIAN IPOTESA BAB 7 Pedahulua ipotesis ( upo : lemah, Thesis : peryataa ) Diartika :. Peryataa yag masih lemah kebearaya da perlu dibuktika. Dugaa yag sifatya masih semetara ipotesis ii perlu utuk

Lebih terperinci

Pendugaan Parameter. Debrina Puspita Andriani /

Pendugaan Parameter. Debrina Puspita Andriani    / Pedugaa Parameter 7 Debria Puspita Adriai E-mail : debria.ub@gmail.com / debria@ub.ac.id Outlie Pedahulua Pedugaa Titik Pedugaa Iterval Pedugaa Parameter: Kasus Sampel Rataa Populasi Pedugaa Parameter:

Lebih terperinci

TUGAS ANALISIS REGRESI (HALAMAN

TUGAS ANALISIS REGRESI (HALAMAN TUGAS ANALISIS REGRESI (HALAMAN 85-88) 1. Tetuka depede da idepede variabel serta : a. Hitug Sum of Square for Regressio (X) b. Hitug Sum of Square for Residual c. Hitug Mea Sum of Square for Regresssio

Lebih terperinci

Ukuran Pemusatan. Pertemuan 3. Median. Quartil. 17-Mar-17. Modus

Ukuran Pemusatan. Pertemuan 3. Median. Quartil. 17-Mar-17. Modus -Mar- Ukura Pemusata Pertemua STATISTIKA DESKRIPTIF Statistik deskripti adalah pegolaha data utuk tujua medeskripsika atau memberika gambara terhadap obyek yag diteliti dega megguaka sampel atau populasi.

Lebih terperinci

Pengujian Hipotesis Statistika. Sigit Nugroho. Universitas Bengkulu. Disusun oleh. (7 sesi)

Pengujian Hipotesis Statistika. Sigit Nugroho. Universitas Bengkulu. Disusun oleh. (7 sesi) Pegujia Hipotesis Statistika (7 sesi) Disusu oleh Sigit Nugroho Uiversitas Begkulu Hipotesis Hipotesis merupaka dugaa semetara yag diaggap bear. Dalam Statistika, Hipotesis merupaka peryataa yag bisa diuji

Lebih terperinci

Pendugaan Parameter. Statistika Industri 1 Semester Genap 2017/2018 Jurusan Teknik Industri - Universitas Brawijaya

Pendugaan Parameter. Statistika Industri 1 Semester Genap 2017/2018 Jurusan Teknik Industri - Universitas Brawijaya Pedugaa Parameter 4 Statistika Idustri Semester Geap 07/08 Jurusa Tekik Idustri - Uiversitas Brawijaya Outlie Pedahulua Pedugaa Titik Pedugaa Iterval Pedugaa Parameter: Kasus Sampel Rataa Populasi Pedugaa

Lebih terperinci

Chapter 7 Student Lecture Notes 7-1

Chapter 7 Student Lecture Notes 7-1 Chapter 7 Studet Lecture Notes 7-1 DASAR-DASAR UJI Hipotesis: Hipo (di bawah) da Tesis (peryataa yag telah diuji) Hipotesis Statistik:suatu proposisi atau aggapa megeai parameter populasi yag dapat diuji

Lebih terperinci

BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan

BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan BAB III METODE PENELITAN. Tempat Da Waktu Peelitia Peelitia dilakuka di SMP Negeri Batudaa Kab. Gorotalo dega subject Peelitia adalah siswa kelas VIII. Pemiliha SMP Negeri Batudaa Kab. Gorotalo. Adapu

Lebih terperinci

Regresi Linier Berganda

Regresi Linier Berganda Regresi Linier Berganda Regresi Berganda Contoh Menguji hubungan linier antara variabel dependen (y) dan atau lebih variabel independen (x n ) Hubungan antara suhu warehouse dan viskositas cat dengan jumlah

Lebih terperinci

BAB III METODE PENELITIAN. penelitian yaitu PT. Sinar Gorontalo Berlian Motor, Jl. H. B Yassin no 28

BAB III METODE PENELITIAN. penelitian yaitu PT. Sinar Gorontalo Berlian Motor, Jl. H. B Yassin no 28 5 BAB III METODE PENELITIAN 3.1 Lokasi Peelitia da Waktu Peelitia Sehubuga dega peelitia ii, lokasi yag dijadika tempat peelitia yaitu PT. Siar Gorotalo Berlia Motor, Jl. H. B Yassi o 8 Kota Gorotalo.

Lebih terperinci

STATISTIKA NON PARAMETRIK

STATISTIKA NON PARAMETRIK . PENDAHULUAN STATISTIKA NON PARAMETRIK Kelebiha Uji No Parametrik: - Perhituga sederhaa da cepat - Data dapat berupa data kualitatif (Nomial atau Ordial) - Distribusi data tidak harus Normal Kelemaha

Lebih terperinci

III BAHAN DAN METODE PENELITIAN. Objek yang diamati dalam penelitian ini adalah telur tetas itik Mojosari yang

III BAHAN DAN METODE PENELITIAN. Objek yang diamati dalam penelitian ini adalah telur tetas itik Mojosari yang III BAHAN DAN METODE PENELITIAN 1.1 Baha da Alat Peelitia 3.1.1 Baha peelitia Objek yag diamati dalam peelitia ii adalah telur tetas itik Mojosari yag diperoleh dari Duck Complex Balai Peelitia Terak Ciawi,

Lebih terperinci

JENIS PENDUGAAN STATISTIK

JENIS PENDUGAAN STATISTIK ENDUGAAN STATISTIK ENDAHULUAN Kosep pedugaa statistik diperluka utuk membuat dugaa dari gambara populasi. ada pedugaa statistik dibutuhka pegambila sampel utuk diaalisis (statistik sampel) yag ati diguaka

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN

BAB IV HASIL PENELITIAN DAN PEMBAHASAN BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4.1. Data Respode Respode dalam peelitia ii adalah karyawa PT. Lucky Samudra Pratama di wilayah Jakarta Utara. Respode yag mejawab kuesioer sebayak orag. Kuesioer

Lebih terperinci

BAB III MATERI DAN METODE. Penelitian dilaksanakan pada bulan September November 2014 di Satker

BAB III MATERI DAN METODE. Penelitian dilaksanakan pada bulan September November 2014 di Satker BAB III MATERI DAN METODE Peelitia dilaksaaka pada bula September November 04 di Satker Sumberejo, Kedal. Satker Sumberejo Kedal merupaka satua kerja milik Balai Pembibita da Budidaya Terak Rumiasia (BPBTR).

Lebih terperinci

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika

ESTIMASI. (PENDUGAAN STATISTIK) Ir. Tito Adi Dewanto. Statistika Wed 6/0/3 ETIMAI (PENDUGAAN TATITIK) Ir. Tito Adi Dewato tatistika Deskriptif Iferesi Estimasi Uji Hipotesis Titik Retag Estimasi da Uji Hipotesis Dilakuka setelah peelitia dalam tahap pegambila suatu

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN 10 BAB III METODOLOGI PENELITIAN 3.1 Lokasi da Waktu Peelitia Peelitia ii dilaksaaka di areal kerja IUPHHK-HA PT. Sarmieto Parakatja Timber, Kalimata Tegah selama satu bula pada bula April higga Mei 01.

Lebih terperinci

DISTRIBUSI SAMPLING. Oleh : Dewi Rachmatin

DISTRIBUSI SAMPLING. Oleh : Dewi Rachmatin DISTRIBUSI SAMPLING Oleh : Dewi Rachmati Distribusi Rata-rata Misalka sebuah populasi berukura higga N dega parameter rata-rata µ da simpaga baku. Dari populasi ii diambil sampel acak berukura, jika tapa

Lebih terperinci

III. MATERI DAN METODE PENELITIAN. Penelitian telah dilakukan pada bulan November - Desember 2013 di

III. MATERI DAN METODE PENELITIAN. Penelitian telah dilakukan pada bulan November - Desember 2013 di III. MATERI DAN METODE PENELITIAN 3.. Waktu da Tempat Peelitia telah dilakuka pada bula November - Desember 203 di peteraka Kambig yag ada di Kota Pekabaru Provisi Riau. 3.2. Alat da Baha Materi yag diguaka

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Metode Peelitia Peelitia ii megguaka metode peelitia Korelasioal. Peelitia korelasioaal yaitu suatu metode yag meggambarka secara sistematis da obyektif tetag hubuga atara

Lebih terperinci

METODE PENELITIAN. dalam tujuh kelas dimana tingkat kemampuan belajar matematika siswa

METODE PENELITIAN. dalam tujuh kelas dimana tingkat kemampuan belajar matematika siswa 19 III. METODE PENELITIAN A. Populasi da Sampel Populasi dalam peelitia ii adalah seluruh siswa kelas VIII SMP Negeri 8 Badar Lampug tahu pelajara 2009/2010 sebayak 279 orag yag terdistribusi dalam tujuh

Lebih terperinci

TEORI PENAKSIRAN. Bab 8. A. Pendahuluan. Kompetensi Mampu menjelaskan dan menganalisis teori penaksiran

TEORI PENAKSIRAN. Bab 8. A. Pendahuluan. Kompetensi Mampu menjelaskan dan menganalisis teori penaksiran Bab 8 TEORI PENAKSIRAN Kompetesi Mampu mejelaska da megaalisis teori peaksira Idikator 1. Mejelaska da megaalisis data dega megguaka peaksira titik 2. Mejelaska da megaalisis data dega megguaka peaksira

Lebih terperinci

Bab 3 Metode Interpolasi

Bab 3 Metode Interpolasi Baha Kuliah 03 Bab 3 Metode Iterpolasi Pedahulua Iterpolasi serig diartika sebagai mecari ilai variabel tergatug tertetu, misalya y, pada ilai variabel bebas, misalya, diatara dua atau lebih ilai yag diketahui

Lebih terperinci

METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc.

METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc. METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/0 SUGENG00 Copyright 996-98 Dale Caregie & Associates, Ic. Kesalaha ERROR: Selisih atara ilai perkiraa dega ilai eksakilai

Lebih terperinci

BAB III METOE PENELITIAN. penelitian ini, hanya menggunakan kelas eksperimen tanpa adanya kelas

BAB III METOE PENELITIAN. penelitian ini, hanya menggunakan kelas eksperimen tanpa adanya kelas BAB III METOE PENELITIAN A. Jeis Peelitia Jeis peelitia ii adalah peelitia eksperime. Karea pada peelitia ii, haya megguaka kelas eksperime tapa adaya kelas cotrol. Peelitia ii megguaka pedekata kuatitatif.

Lebih terperinci

Statistika Inferensial

Statistika Inferensial Cofidece Iterval Ara Fariza Statistika Iferesial Populasi Sampel Simpulka (estimasi) tetag parameter Medapatka statistik Estimasi: estimasi titik, estimasi iterval, uji hipotesa 2 1 Proses Estimasi Populasi

Lebih terperinci

Analisa Data Statistik. Ratih Setyaningrum, MT

Analisa Data Statistik. Ratih Setyaningrum, MT Aalisa Data tatistik Ratih etyaigrum, MT Referesi Agoes oehiaie, Ph.D Daftar Isi Iferesi tatistik Hipotesa tatistik : Kosep Umum Hipotesa statistik adalah sebuah klaim/peryataa atau cojecture tetag populasi.

Lebih terperinci

SEBARAN t dan SEBARAN F

SEBARAN t dan SEBARAN F SEBARAN t da SEBARAN F 1 Tabel uji t disebut juga tabel t studet. Sebara t pertama kali diperkealka oleh W.S. Gosset pada tahu 1908. Saat itu, Gosset bekerja pada perusahaa bir Irladia yag melarag peerbita

Lebih terperinci

BAB V ANALISA PEMECAHAN MASALAH

BAB V ANALISA PEMECAHAN MASALAH 89 BAB V ANALISA PEMECAHAN MASALAH Dalam upaya mearik kesimpula da megambil keputusa, diperluka asumsi-asumsi da perkiraa-perkiraa. Secara umum hipotesis statistik merupaka peryataa megeai distribusi probabilitas

Lebih terperinci

STATISTIK PERTEMUAN VIII

STATISTIK PERTEMUAN VIII STATISTIK PERTEMUAN VIII Pegertia Estimasi Merupaka bagia dari statistik iferesi Estimasi = pedugaa, atau meaksir harga parameter populasi dega harga-harga statistik sampelya. Misal : suatu populasi yag

Lebih terperinci

REGRESI LINIER BERGANDA. Semester Ganjil 2018/2019 Jurusan Teknik Industri Universitas Brawijaya

REGRESI LINIER BERGANDA. Semester Ganjil 2018/2019 Jurusan Teknik Industri Universitas Brawijaya REGRESI LINIER BERGANDA Semester Ganjil 08/09 Jurusan Teknik Industri Universitas Brawijaya Outline 03//04 Regresi Berganda : PENGERTIAN 3 Menguji hubungan linier antara variabel dependen (y) dan atau

Lebih terperinci

MAKALAH STATISTIKA MATEMATIKA 2 REGRESI LINEAR BERGANDA

MAKALAH STATISTIKA MATEMATIKA 2 REGRESI LINEAR BERGANDA MAKALAH STATISTIKA MATEMATIKA 2 REGRESI LINEAR BERGANDA Oleh : Magdalea Iriai Kehi (2013220030) Maria Liliaa Jeia (2013220038) FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN PRODI PENDIDIKAN MATEMATIKA UNIVERSITAS

Lebih terperinci

: XII (Dua Belas) Semua Program Studi. : Gisoesilo Abudi, S.Pd

: XII (Dua Belas) Semua Program Studi. : Gisoesilo Abudi, S.Pd R e f r e s h Program Diklat K e l a s M a t e r i Pegajar : M A T E M A T I K A : XII (Dua Belas) Semua Program Studi : S t a t i s t i k a : Gisoesilo Abudi, S.Pd Kajia Materi Peyampaia Data Diagram

Lebih terperinci

III BAHAN DAN METODE PENELITIAN

III BAHAN DAN METODE PENELITIAN 27 III BAHAN DAN METODE PENELITIAN 3.1 Baha Peelitia 3.1.1 Objek Peelitia Objek yag diguaka dalam peelitia ii adalah kuda Sumba (Sadelwood) betia da jata berjumlah 30 ekor dega umur da berat yag relatif

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI.1 Distribusi Ekspoesial Fugsi ekspoesial adalah salah satu fugsi yag palig petig dalam matematika. Biasaya, fugsi ii ditulis dega otasi exp(x) atau e x, di maa e adalah basis logaritma

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini dilaksanakan di SMA Negeri 1 Way Tuba Tahun Ajaran

III. METODE PENELITIAN. Penelitian ini dilaksanakan di SMA Negeri 1 Way Tuba Tahun Ajaran III. METODE PENELITIAN A. Waktu da Tempat Peelitia ii dilaksaaka di SMA Negeri 1 Way Tuba Tahu Ajara 013-014 pada bula september tahu 013. B. Populasi da Sampel Populasi dalam peelitia ii adalah seluruh

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN 14 BAB III METODOLOGI PENELITIAN 3.1 Lokasi da Waktu Peelitia Peelitia ii dilaksaaka di IUPHHK-HA PT. Mamberamo Alasmadiri, Provisi Papua pada bula Jui higga Juli 2011. 3.2 Alat da Baha Alat da baha yag

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN 9 BAB III METODOLOGI PENELITIAN 3.1 Lokasi da Waktu Peelitia Peelitia ii dilaksaaka di IUPHHK-HA PT. Mamberamo Alasmadiri, Kabupate Mamberamo Raya, Propisi Papua. Waktu pelaksaaa peelitia dilakuka pada

Lebih terperinci

BAB 5 UKURAN DISPERSI

BAB 5 UKURAN DISPERSI BAB 5 UKURAN DISPERSI A. Ukura Dispersi Meurut Hasa (011 : 101) ukura dispersi atau ukura variasi atau ukura peyimpaga adalah ukura yag meyataka seberapa jauh peyimpaga ilai-ilai data dari ilai-ilai pusatya

Lebih terperinci

BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL)

BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) BAB V UKURAN GEJALA PUSAT (TENDENSI CENTRAL) Setiap peelitia selalu berkeaa dega sekelompok data. Yag dimaksud kelompok disii adalah: Satu orag mempuyai sekelompok data, atau sekelompok orag mempuyai satu

Lebih terperinci

UKURAN PEMUSATAN UKURAN PENYEBARAN

UKURAN PEMUSATAN UKURAN PENYEBARAN UKURAN PEMUSATAN DATA TUNGGAL DATA KELOMPOK. MEAN / RATA-RATA. MODUS 3. MEDIAN 4. KUARTIL. MEAN / RATA-RATA. MODUS 3. MEDIAN 4. KUARTIL UKURAN PENYEBARAN JANGKAUAN HAMPARAN RAGAM / VARIANS SIMPANGAN BAKU

Lebih terperinci

STATISTIKA ANALISIS REGRESI ANALISIS REGRESI LINIER LEKTION ACHT(#8) ANALISIS REGRESI

STATISTIKA ANALISIS REGRESI ANALISIS REGRESI LINIER LEKTION ACHT(#8) ANALISIS REGRESI ANALISIS REGRESI STATISTIKA LEKTION ACHT(#8) ANALISIS REGRESI Regresi: kembali ke tahap perkembaga sebelumya (psi.). Aalisis regresi: aalisis yag diguaka utuk megetahui relasi depedesi (pegaruh) dari satu

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN 5 BAB III METODOLOGI PENELITIAN 3.. Tempat da waktu Peelitia Kegiata pegambila data dilakuka di IUPHHK-HA PT Ratah Timber Kalimata Timur. Waktu pegambila data dilakuka pada bula Februari sampai April 009.

Lebih terperinci

BAB III METODE PENELITIAN. Penelitian ini merupakan jenis penelitian deskriptif-kuantitatif, karena

BAB III METODE PENELITIAN. Penelitian ini merupakan jenis penelitian deskriptif-kuantitatif, karena 7 BAB III METODE PENELITIAN A. Jeis Peelitia Peelitia ii merupaka jeis peelitia deskriptif-kuatitatif, karea melalui peelitia ii dapat dideskripsika fakta-fakta yag berupa kemampua siswa kelas VIII SMP

Lebih terperinci

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak:

PENGUJIAN HIPOTESIS. Atau. Pengujian hipotesis uji dua pihak: PENGUJIAN HIPOTESIS A. Lagkah-lagkah pegujia hipotesis Hipotesis adalah asumsi atau dugaa megeai sesuatu. Jika hipotesis tersebut tetag ilai-ilai parameter maka hipotesis itu disebut hipotesis statistik.

Lebih terperinci

TINJAUAN PUSTAKA Pengertian

TINJAUAN PUSTAKA Pengertian TINJAUAN PUSTAKA Pegertia Racaga peelitia kasus-kotrol di bidag epidemiologi didefiisika sebagai racaga epidemiologi yag mempelajari hubuga atara faktor peelitia dega peyakit, dega cara membadigka kelompok

Lebih terperinci

REGRESI LINIER BERGANDA. Debrina Puspita Andriani /

REGRESI LINIER BERGANDA. Debrina Puspita Andriani    / REGRESI LINIER BERGANDA 9 Debrina Puspita Andriani E-mail : debrina.ub@gmail.com / debrina@ub.ac.id Outline 03//04 Regresi Berganda : PENGERTIAN 3 Menguji hubungan linier antara variabel dependen (y) dan

Lebih terperinci

BAB III METODE PENELITIAN. Metode yang digunakan dalam penelitian ini adalah penelitian korelasi,

BAB III METODE PENELITIAN. Metode yang digunakan dalam penelitian ini adalah penelitian korelasi, BAB III METODE PENELITIAN 3.1 Metode Peelitia Metode yag diguaka dalam peelitia ii adalah peelitia korelasi, yaitu suatu metode yag secara sistematis meggambarka tetag hubuga pola asuh orag tua dega kosep

Lebih terperinci

BAB II LANDASAN TEORI. matematika secara numerik dan menggunakan alat bantu komputer, yaitu:

BAB II LANDASAN TEORI. matematika secara numerik dan menggunakan alat bantu komputer, yaitu: 4 BAB II LANDASAN TEORI 2.1 Model matematis da tahapa matematis Secara umum tahapa yag harus ditempuh dalam meyelesaika masalah matematika secara umerik da megguaka alat batu komputer, yaitu: 2.1.1 Tahap

Lebih terperinci

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi.

Masih ingat beda antara Statistik Sampel Vs Parameter Populasi? Perhatikan tabel berikut: Ukuran/Ciri Statistik Sampel Parameter Populasi. Distribusi Samplig (Distribusi Pearika Sampel). Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

BAB III MATERI DAN METODE. Penelitian dilaksanakan pada tanggal 2 Maret sampai 1 Mei 2016 di Balai

BAB III MATERI DAN METODE. Penelitian dilaksanakan pada tanggal 2 Maret sampai 1 Mei 2016 di Balai 11 BAB III MATERI DAN METODE Peelitia dilaksaaka pada taggal 2 Maret sampai 1 Mei 2016 di Balai Pembibita da Budidaya Terak No Rumiasia (BPBTNR) Satker Balekambag, Surakarta, Jawa Tegah. 3.1 Materi Materi

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di SMA Negeri 1 Way Jepara Kabupaten Lampung Timur

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di SMA Negeri 1 Way Jepara Kabupaten Lampung Timur III. METODOLOGI PENELITIAN A. Lokasi da Waktu Peelitia Peelitia ii dilakuka di SMA Negeri Way Jepara Kabupate Lampug Timur pada bula Desember 0 sampai dega Mei 03. B. Populasi da Sampel Populasi dalam

Lebih terperinci

BAB III MATERI DAN METODE. Ettawa Berdasarkan Bobot Lahir dan Bobot Sapih Cempe di Satuan Kerja

BAB III MATERI DAN METODE. Ettawa Berdasarkan Bobot Lahir dan Bobot Sapih Cempe di Satuan Kerja 8 BAB III MATERI DAN METODE Peelitia tetag Pedugaa Keuggula Pejata Kambig Peraaka Ettawa Berdasarka Bobot Lahir da Bobot Sapih Cempe di Satua Kerja Sumberejo Kedal dilakuka di Satua Kerja Sumberejo Kedal.

Lebih terperinci

Statistika MAT 2 A. PENDAHULUAN NILAI MATEMATIKA B. PENYAJIAN DATA NILAI MATEMATIKA NILAI MATEMATIKA STATISTIKA. materi78.co.nr

Statistika MAT 2 A. PENDAHULUAN NILAI MATEMATIKA B. PENYAJIAN DATA NILAI MATEMATIKA NILAI MATEMATIKA STATISTIKA. materi78.co.nr materio.r Statistika A. PENDAHULUAN Statistika adalah ilmu yag mempelajari pegambila, peyajia, pegolaha, da peafsira data. Data terdiri dari dua jeis, yaitu data kualitatif (sifat) da data kuatitatif (agka).

Lebih terperinci

REGRESI LINIER SEDERHANA

REGRESI LINIER SEDERHANA REGRESI LINIER SEDERHANA REGRESI, KAUSALITAS DAN KORELASI DALAM EKONOMETRIKA Regresi adalah salah satu metode aalisis statistik yag diguaka utuk melihat pegaruh atara dua atau lebih variabel Kausalitas

Lebih terperinci

Statistika Inferensia: Pendugaan Parameter. Dr. Kusman Sadik, M.Si Dept. Statistika IPB, 2015

Statistika Inferensia: Pendugaan Parameter. Dr. Kusman Sadik, M.Si Dept. Statistika IPB, 2015 Statistika Iferesia: Pedugaa Parameter Dr. Kusma Sadik, M.Si Dept. Statistika IPB, 05 Populasi : Parameter Sampel : Statistik Statistik merupaka PENDUGA bagi parameter populasi Pegetahua megeai distribusi

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Variabel-variabel yang digunakan pada penelitian ini adalah:

BAB III METODOLOGI PENELITIAN. Variabel-variabel yang digunakan pada penelitian ini adalah: BAB III METODOLOGI PENELITIAN 3. Variabel da Defiisi Operasioal Variabel-variabel yag diguaka pada peelitia ii adalah: a. Teaga kerja, yaitu kotribusi terhadap aktivitas produksi yag diberika oleh para

Lebih terperinci

STATISTIKA MAT 2 NILAI MATEMATIKA NILAI MATEMATIKA NILAI MATEMATIKA A. PENDAHULUAN B. PENYAJIAN DATA. Diagram garis

STATISTIKA MAT 2 NILAI MATEMATIKA NILAI MATEMATIKA NILAI MATEMATIKA A. PENDAHULUAN B. PENYAJIAN DATA. Diagram garis materio.r A. PENDAHULUAN Statistika adalah ilmu yag mempelajari pegambila, peyajia, pegolaha, da peafsira data. Data terdiri dari dua jeis, yaitu data kualitatif (sifat) da data kuatitatif (agka). B. PENYAJIAN

Lebih terperinci

BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP. Permasalahan dalam tugas akhir ini dibatasi hanya pada penaksiran

BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP. Permasalahan dalam tugas akhir ini dibatasi hanya pada penaksiran BAB III TAKSIRAN KOEFISIEN KORELASI POLYCHORIC DUA TAHAP Permasalaha dalam tugas akhir ii dibatasi haya pada peaksira besarya koefisie korelasi polychoric da tidak dilakuka peguia terhadap koefisie korelasi

Lebih terperinci

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI MIA SMA Negeri 5

III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI MIA SMA Negeri 5 III. METODOLOGI PENELITIAN A. Populasi da Sampel Peelitia Populasi dalam peelitia ii adalah semua siswa kelas I MIA SMA Negeri 5 Badar Lampug Tahu Pelajara 04-05 yag berjumlah 48 siswa. Siswa tersebut

Lebih terperinci

Distribusi Sampling (Distribusi Penarikan Sampel)

Distribusi Sampling (Distribusi Penarikan Sampel) Distribusi Samplig (Distribusi Pearika Sampel) 1. Pedahulua Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 36 BAB III METODE PENELITIAN A. Racaga Peelitia 1. Pedekata Peelitia Peelitia ii megguaka pedekata kuatitatif karea data yag diguaka dalam peelitia ii berupa data agka sebagai alat meetuka suatu keteraga.

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di MTs Muhammadiyah 1 Natar Lampung Selatan.

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di MTs Muhammadiyah 1 Natar Lampung Selatan. 9 III. METODOLOGI PENELITIAN A. Populasi Da Sampel Peelitia ii dilaksaaka di MTs Muhammadiyah Natar Lampug Selata. Populasiya adalah seluruh siswa kelas VIII semester geap MTs Muhammadiyah Natar Tahu Pelajara

Lebih terperinci

BAB 6: ESTIMASI PARAMETER (2)

BAB 6: ESTIMASI PARAMETER (2) Bab 6: Estimasi Parameter () BAB 6: ESTIMASI PARAMETER (). ESTIMASI PROPORSI POPULASI Proporsi merupaka perbadiga atara terjadiya suatu peristiwa dega semua kemugkiaa peritiwa yag bisa terjadi. Besara

Lebih terperinci

BAB 7 PEN P GUJ GU IAN HIPO P T O ES T A

BAB 7 PEN P GUJ GU IAN HIPO P T O ES T A BAB 7 PENGUJIAN HIPOTESA Meguji Rata-rata µ Umpamakalah kita mempuyai sebuah populasi berdistribusi ormal dega rata-rata µ da simpaga baku σ. Aka diuji megeai parameter rata-rata µ Utuk pasaga hipotesa

Lebih terperinci

Bab III METODE PENELITIAN

Bab III METODE PENELITIAN perpustakaa.us.ac.id digilib.us.ac.id Bab III METODE PENELITIAN Metode yag diguaka dalam peelitia ii adalah studi literatur beserta peerapaya yaitu dega megumpulka referesi berupa buku, artikel, jural

Lebih terperinci

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X

Pendugaan Selang: Metode Pivotal Langkah-langkahnya 1. Andaikan X1, X Pedugaa Selag: Metode Pivotal Lagkah-lagkahya 1. Adaika X1, X,..., X adalah cotoh acak dari populasi dega fugsi kepekata f( x; ), da parameter yag tidak diketahui ilaiya. Adaika T adalah peduga titik bagi..

Lebih terperinci

STATISTIKA SMA (Bag.1)

STATISTIKA SMA (Bag.1) SMA - STATISTIKA SMA (Bag. A. DATA TUNGGAL. Ukura Pemusata : Terdapat ilai statistika yag dapat dimiliki oleh sekumpula data yag diperoleh yaitu : a. Rata-rata Rata-rata jumlah seluruh data bayakya data

Lebih terperinci

BAB III METODE PENELITIAN. Metode yang digunakan dalam penelitian ini adalah metode korelasional, yaitu

BAB III METODE PENELITIAN. Metode yang digunakan dalam penelitian ini adalah metode korelasional, yaitu BAB III METODE PENELITIAN 3.1 Metode Peelitia Metode yag diguaka dalam peelitia ii adalah metode korelasioal, yaitu Peelitia korelasi bertujua utuk meemuka ada atau tidakya hubuga atara dua variabel atau

Lebih terperinci

Kuliah : Rekayasa Hidrologi II TA : Genap 2015/2016 Dosen : 1. Novrianti.,MT. Novrianti.,MT_Rekayasa Hidrologi II 1

Kuliah : Rekayasa Hidrologi II TA : Genap 2015/2016 Dosen : 1. Novrianti.,MT. Novrianti.,MT_Rekayasa Hidrologi II 1 Kuliah : Rekayasa Hidrologi II TA : Geap 2015/2016 Dose : 1. Novriati.,MT 1 Materi : 1.Limpasa: Limpasa Metoda Rasioal 2. Uit Hidrograf & Hidrograf Satua Metoda SCS Statistik Hidrologi Metode Gumbel Metode

Lebih terperinci

Proses Pendugaan. 95% yakin bahwa diantara 40 & 60. Mean X = 50. Mean,, tdk diketahui. Contoh Prentice-Hall, Inc. Chap. 7-1

Proses Pendugaan. 95% yakin bahwa diantara 40 & 60. Mean X = 50. Mean,, tdk diketahui. Contoh Prentice-Hall, Inc. Chap. 7-1 Proses Pedugaa Populasi Mea,, tdk diketahui Cotoh Acak Mea = 50 95% yaki bahwa diatara 40 & 60. Cotoh 1999 Pretice-Hall, Ic. Chap. 7-1 Pedugaa Parameter Populasi Meduga Parameter Populasi... Mea dg Statistik

Lebih terperinci

E Ukuran Penyebaran Data. Evaluasi Materi 2.4. Kata Kunci

E Ukuran Penyebaran Data. Evaluasi Materi 2.4. Kata Kunci Evaluasi Materi 4 Kerjaka soal-soal berikut di buku latiha Ada 1 Berikut ii meujukka data berat balita yag ditimbag di Posyadu Kasih Ibu yaitu 5 kg 4 kg 3 kg 1 kg 9 kg 4 kg kg 8 kg 5 kg Berdasarka data

Lebih terperinci

DISTRIBUSI SAMPLING (Distribusi Penarikan Sampel)

DISTRIBUSI SAMPLING (Distribusi Penarikan Sampel) DISTRIBUSI SAMPLING (Distribusi Pearika Sampel) I. PENDAHULUAN Bidag Iferesia Statistik membahas geeralisasi/pearika kesimpula da prediksi/ peramala. Geeralisasi da prediksi tersebut melibatka sampel/cotoh,

Lebih terperinci