*Corresponding Author:

Ukuran: px
Mulai penontonan dengan halaman:

Download "*Corresponding Author:"

Transkripsi

1 Prosdg Semar Sas da Tekolog FMIPA Umul Vol. No. Jul 0, Samarda, Idoesa ISSN : - 0 STRUCTURAL EQUATION MODELLING DENGAN PENDEKATAN PARTIAL LEAST SQUARE (Stud Kasus: Pegaruh Locus of Cotrol, Self Effcacy, da Lgkuga Kerja Terhadap Kerja Karyawa Kaltm Post Samarda) Rosa Nur Melta, Yuk Nova Nasuto,*, Mem Nor Hayat Laboratorum Statstka Komputas, Fakultas MIPA, Uverstas Mulawarma Program Stud Statstka FMIPA, Uverstas Mulawarma *Correspodg Author: Abstrak Structural Equato Modelg (SEM) merupaka salah satu metode multvarat yag dapat megaalss hubuga atar varabel secara lebh kompleks. Ada dua pedekata SEM yatu Covarace Based SEM (CBSEM) da Partal Least Square (PLS). Pada peelta megguaka pedekata PLS, dmaa PLS merupaka metode aalss yag powerfull dega tdak ddasarka bayak asums. Tujua peelta adalah utuk megetahu faktor-faktor yag mempegaruh kerja karyawa Kaltm Post Samarda yag tedr dar tga faktor yatu, locus of cotrol, self effcacy, da lgkuga kerja. Model ft yag yag dperoleh dar hasl peelta adalah η = 0,44 ξ Model tersebut meujuka bahwa self effcacy yag berpegaruh secara sgfka terhadap kerja karyawa. Kata-kata kuc: Kerja karyawa, model ft, partal least square, self effcacy, structural equato modelg. Pedahulua Structural Equato Modelg (SEM) merupaka tekk aalss multvarat yag dkembagka gua meutup keterbatasa yag dmlk oleh model-model aalss sebelumya yag telah dguaka secara luas dalam peelta statstk. []. Metode SEM memlk kemampua aalss da predks yag lebh bak dbadgka aalss jalur da regres bergada karea SEM mampu megaalss sampa pada level terdalam terhadap varabel atau model yag dtelt. Partal Least Square (PLS) adalah salah satu metode alteratf estmas model utuk megelola Structural Equato Modelg (SEM). PLS dbuat utuk megatas keterbatasa metode SEM. Pada metode SEM megharuska data berukura besar, tdak ada mssg value, harus berdstrbus ormal da tdak boleh memlk multkolertas []. Affah da Suaryo (0) meelt SEM dega Fte Mxture Partal Least Square (FMPLS) [], da Ulum (04) meelt SEM dega pedekata Partal Least Square (PLS) utuk sampel berukura kecl, dlakuka perbadga atara metode SEM- PLS da covara based SEM (CBSEM) [4]. Kedua peelta tersebut megguaka PLS sebaga metode aalss. Dar peelta tersebut peuls tertark utuk membahas peerapa metode SEM utuk kasus Pegaruh Locus of Cotrol, Self Effcacy, da Lgkuga Kerja Terhadap Kerja Karyawa Kaltm Post Samarda dmaa hasl peelta dharapka dapat megetahu faktor-faktor yag mempegaruh kerja karyawa tersebut, Kerja Karyawa adalah apa yag dlakuka da tdak dlakuka oleh karyawa. Kerja para karyawa ddukug oleh beberapa faktor atara la locus of cotrol (tgkat kepercayaa megea sumber peetu kehdupa mereka), self effcacy (keyaka seseorag megea kemampua da peluagya utuk berhasl mecapa tugas tertetu) da lgkuga kerja yag berpegaruh terhadap kerja karyawa []. Teor Dalam peelta aalss dlakuka dega lagkah-lagkah sebaga berkut:. Aalss Data Deskrptf Aalss tdak dmaksudka haya utuk meggambarka agka-agka dar objek peelta yag dperoleh dar hasl aalss deskrptf. 4

2 Prosdg Semar Sas da Tekolog FMIPA Umul Vol. No. Jul 0, Samarda, Idoesa ISSN : - 0. Spesfkas Model PLS a. Ier model (model struktural) meggambarka hubuga atar varabel late berdasarka pada teor substatf. () dmaa meggambarka vektor varabel late depede, adalah vektor varabel late eksoge, da adalah vektor varabel resdual. b. Outer Model (model pegukura) medefska bagamaa setap blok dkator berhubuga dega varabel lateya. x x x () y () y dmaa x da y adalah dkator utuk varabel late depede da depede ( da ). Sedagka da merupaka matrk loadg yag meggambarka koefse regres sederhaa yag meghubugka varabel late dega dkatorya. Resdual yag dukur dega da dapat dterpretaska sebaga kesalaha pegukura [].. Evaluas Model PLS a. Uj Valdtas Koverge dalam PLS dega dkator refleksf dla berdasarka faktor loadg dkatordkator yag megukur kostruk tersebut dega melhat korelas atara skor dkator dega skor varabel late yag dhtug PLS. r xy y Y Y Y Y (4) Ukura refleksf dvdual dkataka tgg jka berkorelas lebh dar 0,0 dega varabel late yag g dukur. Namu demka utuk peelta tahap awal dar pegembaga skala pegukura la loadg factor 0,0 sampa 0,0 daggap cukup b. Uj Valdtas Dskrma Valdtas dskrma dar model pegukura dega dkator refleksf dla berdasarka cross loadg pegukura dega kostruk. Rumus utuk meghtug cross loadg sama sepert rumus korelas Pearso yag serta terdapat pada software PLS. Metode la utuk mela valdtas dskrma adalah membadgka la akar kuadrat dar Average Varace Extracted (AVE) setap varabel late dega korelas atara varabel late yag satu dega varabel late laya dalam model. la AVE harus lebh besar dar 0,0. AVE m m m var () c. Uj Relabltas Relabltas meujukka akuras, kosstes da ketepata suatu alat ukur dalam melakuka pegukura. Uj relabltas dalam PLS megguaka la composte relablty. Dega megguaka output yag dhaslka PLS maka composte relablty dapat dhtug dega rumus sebaga berkut: pc m m m var () Nla composte relablty harus lebh besar dar 0,0 tetap la 0,0 mash dapat dterma. d. Goodess Of Ft Dalam mela model dega PLS dlakuka R utuk setap varabel late depede dar goodess of ft dega melhat R utuk setap varabel late depede. R dapat dhtug dega megguaka rumus berkut: ˆ R () ˆ e. Uj Sgfkas Parameter Utuk melakuka uj sgfkas parameter megguaka hpotess sebaga berkut: : γ = 0 (varabel late depede tdak berpegaruh secara sgfka terhadap varabel late depede). : γ 0 (varabel late depede berpegaruh secara sgfka terhadap varabel late depede). Statstk uj yatu dega meghtug la t ˆ jb thtug ; b,,..., k () S ˆ e jb H 0 dtolak jka t > t α/ [] 4

3 Prosdg Semar Sas da Tekolog FMIPA Umul Vol. No. Jul 0, Samarda, Idoesa ISSN : - 0 Hasl da Pembahasa Statstka Deskrptf Tabel. Jumlah Respode Berdasarka Jes Kelam Jes Kelam Jumlah Pra 4 Wata Berdasarka jes kelam, 4% respode berjes kelam Pra da 4% berjes kelam Wata Tabel. Jumlah Respode Berdasarka Usa Usa Jumlah 0- tahu 0- tahu 40-4 tahu Berdasarka usa rata-rata karyawa kaltm post memlk usa 0- tahu sebesar %, usa 0- tahu sebesar % da usa 40-4 tahu sebesar %. Tabel. Jumlah Respode Berdasarka Dvs Dvs Jumlah Redaks Umum Bss Ikla 4 Berdasarka dvs karyawa kaltm post 4% respode yag berada d dvs redaks, % respode dvs bss, 0% respode dvs umum da % respode dvs kla. Tabel 4. Jumlah Respode Berdasarka Masa Kerja Masa Kerja Jumlah <th -th -4th -th >th Berdasarka lama mejad karyawa kaltm post sebayak 4% respode mempuya masa kerja <th, 4% masa kerja -th, 0% masa kerja -4th, % masa kerja - th da % respode mempuya masa kerja >th. Tabel Jumlah Respode Berdasarka Peddka Peddka Jumlah SMA Sarjaa 4 Berdasarka peddka karyawa kaltm post sebayak 4% respode adalah lulusa sarjaa da 4% respode adalah lulusa SMA. Kostruks Dagram Jalur Gambar. Racaga Ier Model da Outer Model Pada Gambar meujukka bahwa varabel late (dkator,,, ), (dkator,,, ) da (dkator,, ) yag telah terbetuk berpegaruh terhadap varabel late (dkator,,, ). Kovers Dagram Jalur ke dalam Persama a. Ier Model dar dagram jalur yag terbetuk adalah: () b. Outer Model dar dagram jalur yag terbetuk adalah: model refleksf : Y Y Y Y Y Y Y4 Y 4 4 model refleksf ξ () () 4

4 Prosdg Semar Sas da Tekolog FMIPA Umul Vol. No. Jul 0, Samarda, Idoesa ISSN : - 0 model refleksf ξ : model refleksf ξ :.. Evaluas Model. () (4) a. Ier Model: 0, 0, 0, 0 () b. Outer Model model refleksf : Y 0, () Y 0, 4 model formatf ξ, 0 4 () model refleksf ξ 0, 0, 0, model refleksf ξ () 0,4 () 0, Gambar. Dagram Jalur Proses Iteras Pada Gambar, la dkator,, 4,,,, Y, Y memlk la korelas kurag dar 0,0 da tdak sgfka. Oleh karea tu model dkator tersebut aka dkeluarka. Selajutya model aka destmas ulag, hasl re-estmas terlhat pada Gambar. Gambar. Dagram Jalur Proses Iteras Setelah destmas ulag sepert pada Gambar semua dkator memlk la korelas lebh dar 0,0 da sgfka. Sehgga ddapat persamaa model berkut: Uj Valdtas Koverge Tabel. Hasl Outer Loadg η ξ ξ ξ,000 0, 0, 0, 0, Y 0, Y 4 0, Uj Valdtas Dskrma Tabel. Hasl Cross Loadg η ξ ξ ξ 0,4,000 0,4 0,4 0, 0, 0, 0, 0,0 0, 0, 0, 0, 0,4 0, 0,0 0,0 0, 0, 0,4 0,4 0,44 0,4 0, Y 0, 0,0 0, 0,0 Y 4 0, 0,4 0,4 0,4 Tabel. Hasl AVE AVE η 0, ξ,000 ξ 0,0 ξ 0,4 Uj Relabltas Tabel. Composte Relablty Composte Relablty η 0, ξ,000 ξ 0,4 ξ 0, 44

5 Prosdg Semar Sas da Tekolog FMIPA Umul Vol. No. Jul 0, Samarda, Idoesa ISSN : - 0 Goodess of Ft Tabel. Nla R R η 0, Pada peelta dperoleh la sebesar 0, yag berart varas perubaha varabel yag dapat djelaska oleh varabel ξ, ξ, ξ sebesar,%, sedagka ssaya 4,% djelaska oleh varabel la d luar model yag dajuka. Uj Sgfkas Parameter Tabel. Nla Koefse Jalur da t htug Koefse t htug Keputusa 0,, Dterma 0,,4 Dtolak 0,0 0,4 Dterma Sehgga dapat dsmpulka bahwa (self effcacy) berpegaruh secara sgfka terhadap (kerja karyawa). Karea (locus of cotrol) da (lgkuga kerja) tdak berpegaruh terhadap (kerja karyawa) maka aka dlakuka dlakuka aalss ulag utuk medapatka model ft akhr. Tabel. Nla Koefse Jalur da t htug Koefse t htug 0,44,4 Model ft yag dperoleh berdasarka la koefse pada Tabel adalah: ˆ 0,44 (0) Terdapat pegaruh atara self effcacy terhadap kerja karyawa sebesar (0,44) yag artya, setap peambaha satu satua faktor self effcacy aka megkatka kerja karyawa sebesar 0,44 atau 44,%.. Self effcacy yag mempegaruh kerja karyawa Kaltm Post dega dkator yag berpegaruh yatu (yak) (meghadap tataga), da (hasl kerja). Ucapa Terma Kash Peuls megucapka terma kash kepada phak Kaltm Post Grup Samarda atas kesempata yag dberka utuk melakuka peelta. Selajutya, peuls berterma kash pada Laboratorum Statstka Statstka Komputas FMIPA UNMUL. Demka pula, peuls berterma kash kepada seluruh Cvtas Akademka FMIPA UNMUL atas dskus da bmbgaya yag bermafaat. Daftar Pustaka [] Sarjoo, H., & Julata, W. (0).Structural Equato Modellg (SEM). Jakarta: Salemba Empat [] Ghozal, I. (00). Structural Equato Modelg: Metode Alteratf dega Partal Least Square eds. Semarag: Uverstas Dpoegoro. [] Affah, Irma., & Suaryo, Soy (0). SEM dega Fte Mxture Partal Least Square (FMPLS). Prosdg Semar Nasoal Matematka da Peddka Matematka [4] Ulum, M. (04). Aalss Structural Equato Modelg (SEM) utuk Sampel Kecl dega Pedekata Partal Least Square (PLS) Skrps Jurusa Matematka, FMIPA Uverstas Jember. [] Maths, Robert L., & Joh, Harold J. (00). Huma Resources Maagemet. Texas: Thomso Learg. [] Sudjaa. (00). Tekk Aalss Regres da Korelas. Badug: Tarsto Kesmpula Berdasarka hasl aalss maka dperoleh kesmpula sebaga berkut:. Model ft yag dperoleh dega pedekata PLS yag meyataka hubuga atara locus of cotrol, self effcacy, da lgkuga kerja terhadap kerja karyawa Kaltm Post adalah : η = 0,44 ξ dega adalah estmas varabel late kerja karyawa, adalah varabel self effcacy. 4

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai BAB LANDASAN TEORI. Kosep Dasar Aalss Regres Aalss regres regressso aalyss merupaka suatu tekk utuk membagu persamaa da megguaka persamaa tersebut utuk membuat perkraa predcto. Dega demka, aalss regres

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu.

BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu. BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa yag varabel bebasya ( berpagkat palg tgg satu. Utuk regres ler sederhaa, regres ler haya melbatka dua varabel ( da. Persamaa regresya dapat dtulska

Lebih terperinci

BAB 2. Tinjauan Teoritis

BAB 2. Tinjauan Teoritis BAB Tjaua Teorts.1 Regres Lear Sederhaa Regres lear adalah alat statstk yag dperguaka utuk megetahu pegaruh atara satu atau beberapa varabel terhadap satu buah varabel. Varabel yag mempegaruh serg dsebut

Lebih terperinci

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM 1 Megetahu perhtuga persamaa regres ler Meggambarka persamaa regres ler ke dalam dagram pecar TEORI PENUNJANG Persamaa Regres adalah persamaa matematka

Lebih terperinci

ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas:

ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas: ANALISIS REGRESI Pedahulua Aalss regres berkata dega stud megea ketergatuga satu peubah (peubah terkat) terhadap satu atau lebh peubah laya (peubah pejelas). Jka Y dumpamaka sebaga peubah terkat da X1,X,...,X

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa merupaka baga regres yag mecakup hubuga ler satu peubah acak tak bebas dega satu peubah bebas. Hubuga ler da dar satu populas dsebut gars regres

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. melakukan smash sebelum dan sesudah latihan power otot lengan adalah sebagai

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. melakukan smash sebelum dan sesudah latihan power otot lengan adalah sebagai BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4. Deskrps Peelta Berdasarka hasl peelta, d peroleh data megea kemempua sswa melakuka smash sebelum da sesudah latha power otot lega adalah sebaga berkut : Tabel.

Lebih terperinci

11/10/2010 REGRESI LINEAR SEDERHANA DAN KORELASI TUJUAN

11/10/2010 REGRESI LINEAR SEDERHANA DAN KORELASI TUJUAN // REGRESI LINEAR SEDERHANA DAN KORELASI. Model Regres Lear. Peaksr Kuadrat Terkecl 3. Predks Nla Respos 4. Iferes Utuk Parameter-parameter Regres 5. Kecocoka Model Regres 6. Korelas Utrwe Mukhayar MA

Lebih terperinci

BAB 5. ANALISIS REGRESI DAN KORELASI

BAB 5. ANALISIS REGRESI DAN KORELASI BAB 5. ANALISIS REGRESI DAN KORELASI Tujua utama aalss regres adalah mecar ada tdakya hubuga ler atara dua varabel: Varabel bebas (X), yatu varabel yag mempegaruh Varabel terkat (Y), yatu varabel yag dpegaruh

Lebih terperinci

ANALISIS INDEKS DISTURBANCES STORM TIME DENGAN KOMPONEN H GEOMAGNET

ANALISIS INDEKS DISTURBANCES STORM TIME DENGAN KOMPONEN H GEOMAGNET Prosdg Semar Nasoal Peelta, Peddka da Peerapa MIPA Fakultas MIPA, Uverstas Neger Yogyakarta, 6 Me 9 ANALISIS INDEKS DISTURBANCES STORM TIME DENGAN KOMPONEN H GEOMAGNET Sty Rachyay Pusat Pemafaata Sas Atarksa,

Lebih terperinci

BAB 2 LANDASAN TEORI. Analisis regresi adalah suatu proses memperkirakan secara sistematis tentang apa yang paling

BAB 2 LANDASAN TEORI. Analisis regresi adalah suatu proses memperkirakan secara sistematis tentang apa yang paling BAB LANDASAN TEORI Kosep Dasar Aalss Regres Aalss regres adalah suatu proses memperkraka secara sstemats tetag apa yag palg mugk terjad dmasa yag aka datag berdasarka formas yag sekarag dmlk agar memperkecl

Lebih terperinci

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu KORELASI 1 D dua kta tdak dapat hdup sedr, tetap memerluka hubuga dega orag la. Hubuga tu pada umumya dlakuka dega maksud tertetu sepert medapat kergaa pajak, memperoleh kredt, memjam uag, serta mta pertologa/batua

Lebih terperinci

Uji Statistika yangb digunakan dikaitan dengan jenis data

Uji Statistika yangb digunakan dikaitan dengan jenis data Uj Statstka yagb dguaka dkata dega jes data Jes Data omal Ordal Iterval da Raso Uj Statstka Koefse Kotges Rak Spearma Kedall Tau Korelas Parsal Kedall Tau Koefse Kokordas Kedall W Pearso Korelas Gada Korelas

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 1 Pegerta Regres Istlah regres pertama kal dperkealka oleh Fracs Galto Meurut Galto, aalss regres berkeaa dega stud ketergatuga dar suatu varabel yag dsebut tak bebas depedet varable,

Lebih terperinci

X a, TINJAUAN PUSTAKA

X a, TINJAUAN PUSTAKA PENELITIAN SEBELUMNYA Statstka Deskrptf TINJAUAN PUSTAKA TINJAUAN STATISTIKA Uj Idepedes Uj depedes dguak utuk megetahu adaya hubuga atara dua varabel (Agrest, 1990). H 0 : tdak ada hubuga atara varabel

Lebih terperinci

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten BAB III METODE PENELITIAN 3. Tempat da Waktu Peelta 3.. Tempat Tempat peelta dlaksaaka d SMP Neger 4 Tlamuta Kabupate Boalemo pada sswa kelas VIII. 3.. Waktu Peelta dlaksaaka dalam waktu 3 bula yatu dar

Lebih terperinci

Jawablah pertanyaan berikut dengan ringkas dan jelas menggunakan bolpoin. Total nilai 100. A. ISIAN SINGKAT (Poin 20) 2

Jawablah pertanyaan berikut dengan ringkas dan jelas menggunakan bolpoin. Total nilai 100. A. ISIAN SINGKAT (Poin 20) 2 M 81 STTISTIK DSR SEMESTER II 11/1 KK STTISTIK, FMIP IT SOLUSI UJIN TENGH SEMESTER (UTS) Sabtu, 1 Me 1, Pukul 9. 1.4 WI (1 met) Kelas 1. Pegajar: Udjaa S. Pasarbu/Rr. Kura Novta Sar, Kelas. Pegajar: Utrwe

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. regresi berkenaan dengan studi ketergantungan antara dua atau lebih variabel yaitu

BAB 2 TINJAUAN TEORITIS. regresi berkenaan dengan studi ketergantungan antara dua atau lebih variabel yaitu BAB TINJAUAN TEORITIS. Pegerta Aalsa Regres Istlah regres pertama kal dperkealka oleh Fracs Galto. Meurutya, aalss regres berkeaa dega stud ketergatuga atara dua atau lebh varabel yatu varabel yag meeragka

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI. Defes Aalss Korelas da Regres a Aalss Korelas adalah metode statstka yag dguaka utuk meetuka kuatya atau derajat huuga lear atara dua varael atau leh. Semak yata huuga ler gars lurus,

Lebih terperinci

BAB 2 LANDASAN TEORI. disebut dengan bermacam-macam istilah: variabel penjelas, variabel

BAB 2 LANDASAN TEORI. disebut dengan bermacam-macam istilah: variabel penjelas, variabel BAB LANDASAN TEORI.1 Pegerta Regres Regres dalam statstka adalah salah satu metode utuk meetuka tgkat pegaruh suatu varabel terhadap varabel yag la. Varabel yag pertama dsebut dega bermacam-macam stlah:

Lebih terperinci

Uji Modifikasi Peringkat Bertanda Wilcoxon Untuk Masalah Dua Sampel Berpasangan 1 Wili Solidayah 2 Siti Sunendiari 3 Lisnur Wachidah

Uji Modifikasi Peringkat Bertanda Wilcoxon Untuk Masalah Dua Sampel Berpasangan 1 Wili Solidayah 2 Siti Sunendiari 3 Lisnur Wachidah Prosdg Statstka ISSN 40-45 Uj Modfkas Pergkat Bertada Wlcoxo Utuk Masalah Dua Sampel Berpasaga 1 Wl Soldayah St Suedar 3 Lsur Wachdah 1, Statstka, Fakultas MIPA, Uverstas Islam Badug, Jl. Tamasar No. 1

Lebih terperinci

Regresi & Korelasi Linier Sederhana. Gagasan perhitungan ditetapkan oleh Sir Francis Galton ( )

Regresi & Korelasi Linier Sederhana. Gagasan perhitungan ditetapkan oleh Sir Francis Galton ( ) Regres & Korelas Ler Sederhaa 1. Pedahulua Gagasa perhtuga dtetapka oleh Sr Fracs Galto (18-1911) Persamaa regres :Persamaa matematk yag memugkka peramala la suatu peubah takbebas (depedet varable) dar

Lebih terperinci

III. METODE PENELITIAN. yang hidup dan berguna bagi masyarakat, maupun bagi peneliti sendiri

III. METODE PENELITIAN. yang hidup dan berguna bagi masyarakat, maupun bagi peneliti sendiri III. METODE PEELITIA A. Metodolog Peelta Metodolog peelta adalah cara yag dlakuka secara sstemats megkut atura-atura, recaaka oleh para peeltutuk memecahka permasalaha yag hdup da bergua bag masyarakat,

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Sampa saat, model Regres da model Aalss Varas telah dpadag sebaga dua hal ag tdak berkata. Meskpu merupaka pedekata ag umum dalam meeragka kedua cara pada taraf permulaa,

Lebih terperinci

BAB II TINJAUAN TEORITIS. Statistik merupakan cara cara tertentu yang digunakan dalam mengumpulkan,

BAB II TINJAUAN TEORITIS. Statistik merupakan cara cara tertentu yang digunakan dalam mengumpulkan, BAB II TINJAUAN TEORITIS.1 Kosep Dasar Statstka Statstk merupaka cara cara tertetu yag dguaka dalam megumpulka, meyusu atau megatur, meyajka, megaalsa da member terpretas terhadap sekumpula data, sehgga

Lebih terperinci

LANGKAH-LANGKAH UJI HIPOTESIS DENGAN 2 (Untuk Data Nominal)

LANGKAH-LANGKAH UJI HIPOTESIS DENGAN 2 (Untuk Data Nominal) LANGKAH-LANGKAH UJI HIPOTESIS DENGAN (Utuk Data Nomal). Merumuska hpotess (termasuk rumusa hpotess statstk). Data hasl peelta duat dalam etuk tael slag (tael frekues oservas) 3. Meetuka krtera uj atau

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel

BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel BAB I PENDAHULUAN 1.1 Statstka Deskrptf da Statstka Iferesal Dewasa d berbaga bdag lmu da kehdupa utuk memaham/megetahu sesuatu dperluka dat Sebaga cotoh utuk megetahu berapa bayak rakyat Idoesa yag memerluka

Lebih terperinci

REGRESI LINIER SEDERHANA

REGRESI LINIER SEDERHANA MODUL REGRESI LINIER SEDERHANA Dsusu oleh : I MADE YULIARA Jurusa Fska Fakultas Matematka Da Ilmu Pegetahua Alam Uverstas Udayaa Tahu 016 Kata Pegatar Puj syukur saya ucapka ke hadapa Tuha Yag Maha Kuasa

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1 Pedahulua Sebelum membahas megea prosedur peguja hpotess, terlebh dahulu aka djelaska beberapa teor da metode yag meujag utuk mempermudah pembahasa. Adapu teor da metode tersebut

Lebih terperinci

8. MENGANALISIS HASIL EVALUASI

8. MENGANALISIS HASIL EVALUASI 8. MENGANALISIS HASIL EVALUASI Tujua : Mampu megaalsa tgkat kesukara hasl evaluas utuk megkatka hasl proses pembelajara Kegata megaals hasl evaluas merupaka upaya utuk memperbak programprogram pembelajara

Lebih terperinci

III. METODOLOGI PENELITIAN. Metode penelitian merupakan strategi umum yang di anut dalam

III. METODOLOGI PENELITIAN. Metode penelitian merupakan strategi umum yang di anut dalam III. METODOLOGI PENELITIAN A. Metode Peelta Metode peelta merupaka strateg umum yag d aut dalam pegumpula data da aalss data yag dperluka, gua mejawab persoala yag dhadap. Meurut Arkuto (006 : 3) peelta

Lebih terperinci

Regresi Linier Sederhana Definisi Pengaruh

Regresi Linier Sederhana Definisi Pengaruh Regres Ler Sederhaa Dah Idra Baga Bostatstka da Kepeduduka Fakultas Kesehata Masyarakat Uverstas Arlagga Defs Pegaruh Jka terdapat varabel, msalka da yag data-dataya dplot sepert gambar dbawah 3 Defs Pegaruh

Lebih terperinci

S2 MP Oleh ; N. Setyaningsih

S2 MP Oleh ; N. Setyaningsih S2 MP Oleh ; N. Setyagsh MATERI PERTEMUAN 1-3 (1)Pedahulua pera statstka dalam peelta ; (2)Peyaja data : dalam betuk (a) tabel da (b) dagram; (3) ukura tedes setaral da ukura peympaga (4)dstrbus ormal

Lebih terperinci

ANALISIS PEUBAH PREDIKTOR YANG MEMUAT KESALAHAN PENGUKURAN DENGAN REGRESI ORTOGONAL

ANALISIS PEUBAH PREDIKTOR YANG MEMUAT KESALAHAN PENGUKURAN DENGAN REGRESI ORTOGONAL Prosdg Semar Nasoal Peelta, Peddka da Peerapa MIPA, Fakultas MIPA, Uverstas Neger Yogyakarta, 4 Me ANALISIS PEUBAH PREDIKTOR YANG MEMUAT KESALAHAN PENGUKURAN DENGAN REGRESI ORTOGONAL Ksmat Jurusa Peddka

Lebih terperinci

Metode Statistika Pertemuan XII. Analisis Korelasi dan Regresi

Metode Statistika Pertemuan XII. Analisis Korelasi dan Regresi Metode Statstka Pertemua XII Aalss Korelas da Regres Aalss Hubuga Jes/tpe hubuga Ukura Keterkata Skala pegukura varabel Pemodela Keterkata Relatoshp vs Causal Relatoshp Tdak semua hubuga (relatoshp) berupa

Lebih terperinci

* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES

* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES * PENYAJIAN DATA Secara umum, ada dua cara peyaja data, yatu : 1. Tabel atau daftar. Grafk atau dagram Macam-macam daftar yag dkeal : a. Daftar bars kolom b. Daftar kotges c. Daftar dstrbus frekues Sedagka

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Propinsi Gorontalo tahun pelajaran 2012/2013.

BAB III METODOLOGI PENELITIAN. Propinsi Gorontalo tahun pelajaran 2012/2013. BAB III METODOLOGI PENELITIAN 3.. Tempat da Waktu Peelta Peelta dlaksaaka d SMP Neger 3 Gorotalo kota Gorotalo Props Gorotalo tahu pelajara 0/03. D SMP Neger 3 Gorotalo memlk 6 romboga belajar yag terdr

Lebih terperinci

BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI

BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI 9.1. Dstrbus Kotu Dstrbus memlk sfat kotu dmaa data yag damat berjala secara kesambuga da tdak terputus. Maksudya adalah bahwa data yag damat tersebut tergatug

Lebih terperinci

METODOLOGI PENELITIAN. pengaruh atau akibat dari suatu perlakuan atau treatment, dalam hal ini yaitu

METODOLOGI PENELITIAN. pengaruh atau akibat dari suatu perlakuan atau treatment, dalam hal ini yaitu 47 III. METODOLOGI PENELITIAN A. Metode Peelta Metode peelta yag dguaka dalam peelta adalah metode eksperme. Metode dguaka atas pertmbaga bahwa sfat peelta ekspermetal yatu mecobaka suatu program latha

Lebih terperinci

TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM. Sudarno Jurusan Matematika FMIPA UNDIP

TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM. Sudarno Jurusan Matematika FMIPA UNDIP JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 11-19, Aprl 004, ISSN : 1410-8518 TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM Sudaro Jurusa Matematka FMIPA UNDIP Abstrak Sstem yag dbetuk

Lebih terperinci

ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS

ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS ANALISIS REGRESI LINIER BERGANDA : PERSOALAN ESTIMASI DAN PENGUJIAN HIPOTESIS = 1 + + + + k k + u PowerPot Sldes baa Rohmaa Educato Uverst of Idoesa 007 Laboratorum Ekoom & Koperas Publshg Jl. Dr. Setabud

Lebih terperinci

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu BAB II LADASA TEORI Dalam pegambla sampel dar suatu populas, dperluka suatu tekk pegambla sampel yag tepat sesua dega keadaa populas tersebut. Sehgga sampel yag dperoleh adalah sampel yag dapat mewakl

Lebih terperinci

Penerapan Model Regresi Ensemble Non-Hybrid pada Data Kemiskinan di Provinsi Jawa Tengah

Penerapan Model Regresi Ensemble Non-Hybrid pada Data Kemiskinan di Provinsi Jawa Tengah The 6 th Uversty Research Colloquum 7 Peerapa Model Regres Esemble No-Hybrd pada Data Kemska d Provs Jawa Tegah Corela Ardaa Savta, Sr Sulstjowat Hadaja, Bowo Waro 3,3 Program Stud Matematka FMIPA, Uverstas

Lebih terperinci

TINJAUAN PUSTAKA Evaluasi Pengajaran

TINJAUAN PUSTAKA Evaluasi Pengajaran TINJAUAN PUSTAKA Evaluas Pegajara Evaluas adalah suatu proses merecaaka, memperoleh da meyedaka formas yag sagat dperluka utuk membuat alteratf- alteratf keputusa. Dalam hubuga dega kegata pegajara evaluas

Lebih terperinci

3 Departemen Statistika FMIPA IPB

3 Departemen Statistika FMIPA IPB Supleme Respos Pertemua ANALISIS DATA KATEGORIK (STK51) Departeme Statstka FMIPA IPB Pokok Bahasa Sub Pokok Bahasa Referes Waktu U potess Tga Cotoh atau Lebh U Kruskal-Walls (aalss ragam satu-arah berdasarka

Lebih terperinci

III BAHAN/OBJEK DAN METODE PENELITIAN. Objek yang digunakan dalam penelitian ini adalah 50 ekor sapi Pasundan

III BAHAN/OBJEK DAN METODE PENELITIAN. Objek yang digunakan dalam penelitian ini adalah 50 ekor sapi Pasundan III BAHAN/OBJEK DAN METODE PENELITIAN 3.1. Baha da Alat Peelta 3.1.1. Baha Peelta Objek yag dguaka dalam peelta adalah 50 ekor sap Pasuda jata da beta dewasa dega umur -3 tahu da tdak butg utuk meghdar

Lebih terperinci

Regresi & Korelasi Linier Sederhana

Regresi & Korelasi Linier Sederhana Regres & Korelas Ler Sederhaa. Pedahulua Gagasa perhtuga dtetapka oleh Sr Fracs Galto (8-9) Persamaa regres :Persamaa matematk ag memugkka peramala la suatu peubah takbebas (depedet varable) dar la peubah

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi dalam statistika adalah salah satu metode untuk menentukan tingkat

BAB 2 LANDASAN TEORI. Regresi dalam statistika adalah salah satu metode untuk menentukan tingkat 0 BAB LANDASAN TEORI. Pegerta Regres Regres dalam statstka adalah salah satu metode utuk meetuka tgkat pegaruh suatu varael terhadap varael yag la. Varael yag pertama dseut dega ermacam-macam stlah: varael

Lebih terperinci

III. METODOLOGI PENELITIAN. Menurut Arikunto (1991 : 3) penelitian eksperimendalah suatu penelitian yang

III. METODOLOGI PENELITIAN. Menurut Arikunto (1991 : 3) penelitian eksperimendalah suatu penelitian yang 37 III. METODOLOGI PENELITIAN A. Metode Peelta Metode peelta merupaka suatu cara tertetu yag dguaka utuk meelt suatu permasalaha sehgga medapatka hasl atau tujua yag dgka. Meurut Arkuto (1991 : 3) peelta

Lebih terperinci

KARAKTERISTIK INFLASI KOTA-KOTA DI INDONESIA BAGIAN BARAT

KARAKTERISTIK INFLASI KOTA-KOTA DI INDONESIA BAGIAN BARAT Prosdg Semar Nasoal Sas da Peddka Sas I, Fakultas Sas da Matematka, UKSW Salatga, 2 Ju 204, Vol 5, No., ISSN :2087-0922 KARAKTERISTIK INFLASI KOTA-KOTA DI INDONESIA BAGIAN BARAT Ad Setawa Program Stud

Lebih terperinci

Jurnal Matematika Murni dan Terapan Vol. 4 No.2 Desember 2010: ANALISIS REGRESI LINEAR BERGANDA DENGAN SATU VARIABEL BONEKA (DUMMY VARIABLE)

Jurnal Matematika Murni dan Terapan Vol. 4 No.2 Desember 2010: ANALISIS REGRESI LINEAR BERGANDA DENGAN SATU VARIABEL BONEKA (DUMMY VARIABLE) Jural Matematka Mur da Terapa Vol. 4 No. esember : 4 - ANALISIS REGRESI LINEAR BERGANA ENGAN SATU VARIABEL BONEKA (UMMY VARIABLE Tat Krsawardha Nur Salam da ew Aggra Program Stud Matematka Uverstas Lambug

Lebih terperinci

Analisis Regresi dan Korelasi

Analisis Regresi dan Korelasi Metode Statstka Pertemua III Aalss Regres da Korelas Pegatar Apa tu aalss regres? Apa edaya dega korelas? Aalss Regres Aalss statstka yag memafaatka huuga atara dua atau leh peuah kuattatf sehgga salah

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di SMP Negeri 15 di kota Gorontalo

BAB III METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di SMP Negeri 15 di kota Gorontalo BAB III METODOLOGI PENELITIAN 3. Tempat Da Waktu Peelta 3.. Tempat peelta Peelta dlaksaaka d SMP Neger 5 d kota Gorotalo 3.. Waktu peelta Peelta dlaksaaka sejak bula oktober hgga bula desember, yag melput

Lebih terperinci

SUM BER BELA JAR Menerap kan aturan konsep statistika dalam pemecah an masalah INDIKATOR MATERI TUGAS

SUM BER BELA JAR Menerap kan aturan konsep statistika dalam pemecah an masalah INDIKATOR MATERI TUGAS C. Pembelajara 3 1. Slabus N o STANDA R KOMPE TENSI KOMPE TENSI DASAR INDIKATOR MATERI TUGAS BUKTI BELAJAR KON TEN INDIKA TOR WAK TU SUM BER BELA JAR Meerap ka atura kosep statstka dalam pemecah a masalah

Lebih terperinci

Pendahuluan. Relasi Antar Variabel. Relasi Antar Variabel. Relasi Antar Variabel 4/6/2015. Oleh : Fauzan Amin

Pendahuluan. Relasi Antar Variabel. Relasi Antar Variabel. Relasi Antar Variabel 4/6/2015. Oleh : Fauzan Amin 4/6/015 Oleh : Fauza Am Se, 06 Aprl 015 GDL 11 (07.30-10.50) Pedahulua Aalsa regres dguaka utuk mempelajar da megukur hubuga statstk ag terjad atara dua atau lebh varbel. Dalam regres sederhaa dkaj dua

Lebih terperinci

Analisis Pola Hubungan PDRB dengan Faktor Pencemaran Lingkungan di Indonesia Menggunakan Pendekatan Geographically Weighted Regression (GWR)

Analisis Pola Hubungan PDRB dengan Faktor Pencemaran Lingkungan di Indonesia Menggunakan Pendekatan Geographically Weighted Regression (GWR) JURNAL SAINS DAN SENI IS Vol. 5, No., (6) 337-35 (3-98X Prt) D-7 Aalss Pola ubuga PDRB dega Faktor Pecemara Lgkuga d Idoesa Megguaka Pedekata Geographcally Weghted Regresso (GWR) Rza Damayat da Mutah Salamah

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah BAB 1 PENDAHULUAN 1.1 Latar Belakag Masalah Regres merupaka suatu metode statstka yag dguaka utuk meyeldk pola hubuga atara dua atau lebh varabel.betuk atau pola hubuga varabelvarabel tersebut dapat ddetfkas

Lebih terperinci

UKURAN GEJALA PUSAT DAN UKURAN LETAK

UKURAN GEJALA PUSAT DAN UKURAN LETAK UKURAN GEJALA PUSAT DAN UKURAN LETAK MODUL 4 UKURAN GEJALA PUSAT DAN UKURAN LETAK. Pedahulua Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu persoala, bak megea sampel atau pu

Lebih terperinci

Pemodelan Regresi Linier Menggunakan Metode Theil (Studi Kasus: Kompensasi Pegawai di Badan Kepegawaian Daerah Kota Samarinda)

Pemodelan Regresi Linier Menggunakan Metode Theil (Studi Kasus: Kompensasi Pegawai di Badan Kepegawaian Daerah Kota Samarinda) Jural EKSPONENSIAL Volume 4, Nomor 1, Me 2013 ISSN 2085-7829 Pemodela Regres Ler Megguaka Metode Thel (Stud Kasus: Kompesas Pegawa d Bada Kepegawaa Daerah Kota Samarda) Lear Regresso Modelg Wth Thel Method

Lebih terperinci

WAKTU PERGANTIAN ALAT BERAT JENIS WHEEL LOADER DENGAN METODE LEAST COST

WAKTU PERGANTIAN ALAT BERAT JENIS WHEEL LOADER DENGAN METODE LEAST COST Koferes Nasoal Tekk Spl 3 (KoNTekS 3) Jakarta, 6 7 Me 009 WAKTU PERGANTIAN ALAT BERAT JENIS WHEEL LOADER DENGAN METODE LEAST COST Maksum Taubrata Program Stud Tekk Spl, Uverstas Krste Maraatha Badug Jl.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 0 BAB LANDASAN TEORI. Pegerta Regres da Korelas.. Pegerta Regres Regres adalah suatu metode statstka yag ergua utuk memerksa atau memodelka huuga datara varael-varael. Varael-varael terseut dega megguaka

Lebih terperinci

PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN

PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN Idah Vltr, Harso, Haposa Srat Mahassa Program S Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu

Lebih terperinci

FMDAM (2) TOPSIS TOPSIS TOPSIS. Charitas Fibriani

FMDAM (2) TOPSIS TOPSIS TOPSIS. Charitas Fibriani FMDAM (2) Chartas Fbra Techque for Order Preferece by Smlarty to Ideal Soluto () ddasarka pada kosep dmaa alteratf terplh yag terbak tdak haya memlk jarak terpedek dar solus deal postf, amu juga memlk

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Metode penelitian sangat diperlukan dalam sebuah penelitian untuk

BAB III METODOLOGI PENELITIAN. Metode penelitian sangat diperlukan dalam sebuah penelitian untuk BAB III METODOLOGI PENELITIAN A. Metode Peelta Metode peelta sagat dperluka dalam sebuah peelta utuk memaham suatu objek peelta da utuk medapatka sejumlah formas tetag masalah pokok yag aka dpecahka. Ada

Lebih terperinci

REGRESI & KORELASI LINIER SEDERHANA

REGRESI & KORELASI LINIER SEDERHANA 1. Pedahulua REGRESI & KORELASI LINIER SEDERHANA Gagasa perhtuga dtetapka oleh Sr Fracs Galto (18-1911) Persamaa regres :Persamaa matematk ag memugkka peramala la suatu peubah takbebas (depedet varable)

Lebih terperinci

REGRESI SEDERHANA Regresi

REGRESI SEDERHANA Regresi P a g e REGRESI SEDERHANA.. Regres Istlah regres dkemukaka utuk pertama kal oleh seorag atropolog da ahl meteorology Fracs Galto dalam artkelya Famly Lkeess Stature pada tahu 886. Ada juga sumber la yag

Lebih terperinci

Beberapa Metode Alternatif untuk Analisis Data Sampel Berpasangan

Beberapa Metode Alternatif untuk Analisis Data Sampel Berpasangan Prosdg Statstka ISSN 46-6456 Beberapa Metode Alteratf utuk Aalss Data Sampel Berpasaga Rma Rzka Yuar Tet Sofa Yat, 3 Abdul Kudus,,3 Statstka, Fakultas MIPA, Uverstas Islam Badug, Jl Tamasar No Badug 46

Lebih terperinci

PENGARUH MODAL KERJA TERHADAP PENDAPATAN PENGRAJIN INDUSTRI KECIL TEMPE DI DESA SAMBAK KECAMATAN KAJORAN KABUPATEN MAGELANG

PENGARUH MODAL KERJA TERHADAP PENDAPATAN PENGRAJIN INDUSTRI KECIL TEMPE DI DESA SAMBAK KECAMATAN KAJORAN KABUPATEN MAGELANG PENGARUH MODAL KERJA TERHADAP PENDAPATAN PENGRAJIN INDUSTRI KECIL TEMPE DI DESA SAMBAK KECAMATAN KAJORAN KABUPATEN MAGELANG Asa Kurat Peddka Ekoom, FKIP Uverstas Muhammadah Purworejo asachaca8@ahoo.com

Lebih terperinci

TEKNIK SAMPLING. Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Universitas Andalas

TEKNIK SAMPLING. Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Universitas Andalas TEKNIK SAMPLING Hazmra Yozza Izzat Rahm HG Jurusa Matematka FMIPA Uverstas Adalas Defs Suatu cotoh gerombol adalah suatu cotoh acak sederhaa dmaa setap ut pearka cotoh adalah kelompok atau gerombol dar

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Bab aka mejelaska megea ladasa teor yag dpaka oleh peuls dalam peelta. Bab dbag mejad beberapa baga, yag masg masg aka mejelaska Prcpal Compoet Aalyss (PCA), Egeface, Klusterg K-Meas,

Lebih terperinci

Analisis Korelasi dan Regresi

Analisis Korelasi dan Regresi Aalss Korelas da Regres Hazmra Yozza Izzat Rahm HG Jurusa Matematka FMIPA Uad LOGO www.themegaller.com LOGO Data varat Data dega dua varael Terhadap satu pegamata dlakuka pegukurapegamata terhadap varael

Lebih terperinci

PENDAHULUAN Metode numerik merupakan suatu teknik atau cara untuk menganalisa dan menyelesaikan masalah masalah di dalam bidang rekayasa teknik dan

PENDAHULUAN Metode numerik merupakan suatu teknik atau cara untuk menganalisa dan menyelesaikan masalah masalah di dalam bidang rekayasa teknik dan Aalsa Numerk Baha Matrkulas PENDAHULUAN Metode umerk merupaka suatu tekk atau cara utuk megaalsa da meyelesaka masalah masalah d dalam bdag rekayasa tekk da sa dega megguaka operas perhtuga matematk Masalah-masalah

Lebih terperinci

KARAKTERISTIK INFLASI BULANAN KOTA-KOTA DI INDONESIA TAHUN

KARAKTERISTIK INFLASI BULANAN KOTA-KOTA DI INDONESIA TAHUN KARAKTERISTIK INFLASI BULANAN KOTA-KOTA DI INDONESIA TAHUN 009 03 S - Ad Setawa Program Stud Matematka Fakultas Sas da Matematka Uverstas Krste Satya Wacaa, Jl. Dpoegoro 5-60 Salatga 507 Emal : ad_seta_03@yahoo.com

Lebih terperinci

REGRESI & KORELASI LINIER SEDERHANA

REGRESI & KORELASI LINIER SEDERHANA . Pedahulua REGRESI & KORELASI LINIER SEDERHANA Gagasa perhtuga dtetapka oleh Sr Fracs Galto (8-9) Persamaa regres :Persamaa matematk ag memugkka peramala la suatu peubah takbebas (depedet varable) dar

Lebih terperinci

IMPLEMENTASI DAN KOMPARASI ATURAN SEGIEMPAT UNTUK PENYELESAIAN INTEGRAL DENGAN BATAS MENGGUNAKAN MATLAB

IMPLEMENTASI DAN KOMPARASI ATURAN SEGIEMPAT UNTUK PENYELESAIAN INTEGRAL DENGAN BATAS MENGGUNAKAN MATLAB Semar Nasoal Tekolog 007 (SNT 007) ISSN : 978 9777 IMPLEMENTASI DAN KOMPARASI ATURAN SEGIEMPAT UNTUK PENYELESAIAN INTEGRAL DENGAN BATAS MENGGUNAKAN MATLAB Krsawat STMIK AMIKOM Yogyakarta e-mal : krsa@amkom.ac.d

Lebih terperinci

BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL. Masalah regresi invers dengan bentuk linear dapat dijumpai dalam

BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL. Masalah regresi invers dengan bentuk linear dapat dijumpai dalam BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL 3. Pegerta Masalah regres vers dega betuk lear dapat djumpa dalam berbaga bdag kehdupa, dataraya dalam bdag ekoom, kesehata, fska, kma

Lebih terperinci

Pemodelan Faktor-Faktor yang Mempengaruhi Jumlah Kasus HIV & AIDS di Provinsi Jawa Timur Tahun 2013 Menggunakan Bivariate Poisson.

Pemodelan Faktor-Faktor yang Mempengaruhi Jumlah Kasus HIV & AIDS di Provinsi Jawa Timur Tahun 2013 Menggunakan Bivariate Poisson. JURNAL SAINS DAN SENI IS Vol. 4, No., (5) 337-35 (3-98X Prt) D45 Pemodela Faktor-Faktor yag Mempegaruh Jumlah Kasus IV & AIDS d Provs Jawa mur ahu 3 Megguaka Bvarate Posso Regresso Lucy Da Pusptasar da

Lebih terperinci

Analisis Regresi Double Hurdle terhadap Faktor-Faktor yang Mempengaruhi Partisipasi Perempuan Kawin dalam Kegiatan Ekonomi di Jawa Timur

Analisis Regresi Double Hurdle terhadap Faktor-Faktor yang Mempengaruhi Partisipasi Perempuan Kawin dalam Kegiatan Ekonomi di Jawa Timur JURNAL SAINS DAN SENI POMITS Vol., No., (03) 337-350 (30-98X Prt) D-9 Aalss Regres Double Hurdle terhadap Faktor-Faktor yag Mempegaruh Partspas Perempua Kaw dalam Kegata Ekoom d Jawa Tmur Devma Chrst Mukt

Lebih terperinci

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL Hesty ala, Arsma Ada, Bustam hestyfala@ymalcom Mahasswa Program S Matematka MIPA-UR Dose Matematka MIPA-UR

Lebih terperinci

BAB 6 PRINSIP INKLUSI DAN EKSKLUSI

BAB 6 PRINSIP INKLUSI DAN EKSKLUSI BB 6 PRINSIP INKLUSI DN EKSKLUSI Pada baga aka ddskuska topk berkutya yatu eumeras yag damaka Prsp Iklus da Eksklus. Kosep dalam bab merupaka perluasa de dalam Dagram Ve beserta oepras rsa da gabuga, amu

Lebih terperinci

2.2.3 Ukuran Dispersi

2.2.3 Ukuran Dispersi 3 Ukura Dspers Yag aka dbahas ds adalah smpaga baku da varas karea dua ukura dspers yag palg serg dguaka Hubuga atara smpaga baku dega varas adalah Varas = Kuadrat dar Smpaga baku otas yag umum dguaka

Lebih terperinci

STATISTIKA A. Definisi Umum B. Tabel Distribusi Frekuensi

STATISTIKA A. Definisi Umum B. Tabel Distribusi Frekuensi STATISTIKA A. Des Umum. Pegerta statstk Statstk adalah kumpula akta yag berbetuk agka da dsusu dalam datar atau tabel yag meggambarka suatu persoala. Cotoh: statstk kurs dolar Amerka, statstk pertumbuha

Lebih terperinci

BAB III UKURAN PEMUSATAN DATA

BAB III UKURAN PEMUSATAN DATA BAB III UKURAN PEMUSATAN DATA A. Ukura Gejala Pusat Ukura pemusata adalah suatu ukura yag meujukka d maa suatu data memusat atau suatu kumpula pegamata memusat (megelompok). Ukura pemusata data adalah

Lebih terperinci

UKURAN GEJALA PUSAT (UGP)

UKURAN GEJALA PUSAT (UGP) UKURAN GEJALA PUSAT (UGP) Pegerta: Rata-rata (average) alah suatu la yag mewakl suatu kelompok data. Nla dsebut juga ukura gejala pusat karea pada umumya mempuya kecederuga terletak d tegah-tegah da memusat

Lebih terperinci

ANALISIS REGRESI DOUBLE HURDLE TERHADAP FAKTOR- FAKTOR YANG MEMPENGARUHI PARTISIPASI PEREMPUAN KAWIN DALAM KEGIATAN EKONOMI DI JAWA TIMUR

ANALISIS REGRESI DOUBLE HURDLE TERHADAP FAKTOR- FAKTOR YANG MEMPENGARUHI PARTISIPASI PEREMPUAN KAWIN DALAM KEGIATAN EKONOMI DI JAWA TIMUR ANALISIS REGRESI DOUBLE HURDLE TERHADAP FAKTOR- FAKTOR YANG MEMPENGARUHI PARTISIPASI PEREMPUAN KAWIN DALAM KEGIATAN EKONOMI DI JAWA TIMUR Devma Chrst Mukt Ratau (), Dr. Dra. Isma Za, M. S. () Jurusa Statstka,

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN A. Jes Peelta Dalam pelta peelt megguaka racaga eksperme. Eksperme adalah observas dbawah kods buata (artfcal codto), dmaa kods tersebut dbuat da d atur oleh s peelt. Dega

Lebih terperinci

Pemodelan Jumlah Kematian Ibu di Jawa Timur dengan Pendekatan Generalized Poisson Regression (GPR) dan Regresi Binomial Negatif

Pemodelan Jumlah Kematian Ibu di Jawa Timur dengan Pendekatan Generalized Poisson Regression (GPR) dan Regresi Binomial Negatif Pemodela Jumlah Kemata Ibu d Jawa mur dega Pedekata Geeralzed Posso Regresso (GPR) da Regres Bomal Negatf Retdasyah Rsky Agga Permaa, Mutah Salamah Jurusa Statstka, Fakultas MIPA, Isttut ekolog Sepuluh

Lebih terperinci

METODE PENELITIAN. Kota Bogor. Kecamatan Bogor Barat. Purposive. Kelurahan Cilendek Barat RW 05 N1= 113. Cluster random sampling.

METODE PENELITIAN. Kota Bogor. Kecamatan Bogor Barat. Purposive. Kelurahan Cilendek Barat RW 05 N1= 113. Cluster random sampling. METODE PENELITIAN Desa, Tempat da Waktu Peelta Peelta megguaka desa cross sectoal study. Lokas peelta d Kota Bogor. Pemlha lokas peelta secara purposve dega pertmbaga merupaka salah satu kecamata dega

Lebih terperinci

Analisis Survival Pada Pasien Demam Berdarah Dengue (DBD) di RSU Haji Surabaya Menggunakan Model Regresi Weibull

Analisis Survival Pada Pasien Demam Berdarah Dengue (DBD) di RSU Haji Surabaya Menggunakan Model Regresi Weibull JURNAL SAINS DAN SENI ITS Vol. 5 No. (16) 337-35 (31-98X Pr D-31 Aalss Survval Pada Pase Demam Berdarah Degue (DBD) d RSU Haj Surabaya Megguaka Model Regres Webull Alfa Slf Mufdah da Purhad Jurusa Statstka,

Lebih terperinci

JURNAL SAINS DAN SENI ITS Vol. 5 No. 2 (2016) ( X Print) D-277

JURNAL SAINS DAN SENI ITS Vol. 5 No. 2 (2016) ( X Print) D-277 JURNAL SAINS DAN SENI ITS Vol. 5 No. (06 337-350 (30-98X Prt D-77 Pemodela da Pemetaa Kasus Demam Berdarah Degue d Provs Jawa Tmur Tahu 04 dega Geeralzed Posso Regresso, Regres Bomal Negatf da Flexbly

Lebih terperinci

Bab II Teori Pendukung

Bab II Teori Pendukung Bab II Teor Pedukug.. asar Statstka Utuk keperlua peaksra outstadg clams lablty, pegetahua dalam statstka mead hal yag petg. asar statstka yag dguaka dalam tess atara la :. strbus ormal Sebuah peubah acak

Lebih terperinci

BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP

BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP Msal dguaka kode ler C[, k, d] dega matrks pembagu G da matrks cek partas H. Sebuah blok formas x = x 1 x 2 x k, x = 0 atau 1, yag aka dkrm terlebh

Lebih terperinci

ABSTRAK. Ika Dewi Ariyanti 1 dan Sutikno 2

ABSTRAK. Ika Dewi Ariyanti 1 dan Sutikno 2 Pemodela Aomal Luas Pae Pad da Curah Huja Terbobot (Weghted Rafall Idex) dega Pedekata Robust Bootstrap LTS (Stud Kasus: Pemodela Luas Pae d Kabupate Subag) Ika Dew Aryat da Sutko Mahasswa S Statstka ITS,

Lebih terperinci

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD Eka Mer Krst ), Arsma Ada ), Sgt Sugarto ) ekamer_tross@ymal.com ) Mahasswa Program S Matematka FMIPA-UR

Lebih terperinci

PENAKSIR RATIO-CUM-PRODUCT YANG EFISIEN UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN KOEFISIEN VARIASI DAN KOEFISIEN KURTOSIS

PENAKSIR RATIO-CUM-PRODUCT YANG EFISIEN UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN KOEFISIEN VARIASI DAN KOEFISIEN KURTOSIS PEASIR RATIO-UM-PRODUT AG EFISIE UTU RATA-RATA POPULASI PADA SAMPLIG AA SEDERHAA MEGGUAA OEFISIE VARIASI DA OEFISIE URTOSIS Lza armata *, Arsma Ada, Frdaus Mahasswa Program S Matematka Dose Jurusa Matematka

Lebih terperinci

SIFAT-SIFAT LANJUT FUNGSI TERBATAS

SIFAT-SIFAT LANJUT FUNGSI TERBATAS Bulet Ilmah Mat. Stat. da Terapaya (Bmaster) Volume 03, No. 2(204), hal 35 42. SIFAT-SIFAT LANJUT FUNGSI TERBATAS Suhard, Helm, Yudar INTISARI Fugs terbatas merupaka fugs yag memlk batas atas da batas

Lebih terperinci

SOLUSI TUGAS I HIMPUNAN

SOLUSI TUGAS I HIMPUNAN Program Stud S1 Tekk Iformatka Fakultas Iformatka, Telkom Uversty SOLUSI TUGAS I HIMPUNAN Matematka Dskrt (MUG2A3) Halama 1 dar 6 Soal 1 Tetukalah eleme-eleme dar hmpua berkut! 2 x x adalah blaga real

Lebih terperinci

PENENTUAN MODEL KURVA PERTUMBUHAN PADA TULANG RAMUS

PENENTUAN MODEL KURVA PERTUMBUHAN PADA TULANG RAMUS Prosdg SPMIPA. pp. 6-69. 6 ISBN : 979.74.47. PENENUAN MODEL KURVA PERUMBUHAN PADA ULANG RAMUS Sudaro Jurusa Matematka FMIPA UNDIP Jl. Prof. Soedarto, Kampus UNDIP embalag, Semarag Abstrak: Model kurva

Lebih terperinci

ANALISIS SURVIVAL DENGAN MODEL REGRESI COX WEIBULL PADA PENDERITA DEMAM BERDARAH DENGUE (DBD) DI RUMAH SAKIT HAJI SUKOLILO SURABAYA

ANALISIS SURVIVAL DENGAN MODEL REGRESI COX WEIBULL PADA PENDERITA DEMAM BERDARAH DENGUE (DBD) DI RUMAH SAKIT HAJI SUKOLILO SURABAYA ANALISIS SURVIVAL DENGAN MODEL REGRESI COX WEIBULL PADA PENDERITA DEMAM BERDARAH DENGUE (DBD) DI RUMAH SAKIT HAJI SUKOLILO SURABAYA Edhy Bastya, da I Nyoma Latra Jurusa Statstka, Fakultas Matematka da

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Dalam pemodela program ler, semua parameter yag dguaka dalam model dasumska dapat dketahu secara past. Parameter-parameter terdr dar koefse batasa ( ) a, la kuattas batasa

Lebih terperinci