Tinjauan Aliran Fluida dengan Menggunakan Metode Homotopi

Ukuran: px
Mulai penontonan dengan halaman:

Download "Tinjauan Aliran Fluida dengan Menggunakan Metode Homotopi"

Transkripsi

1 Tinjauan Aliran Fluida dengan Menggunakan Metode Homotopi Abd. Djabar Mohidin Jurusan Matematika Fakultas MIPA Universitas Negeri Gorontalo Abstrak Dalam makalah ini, akan dibahas tinjauan matematis mengenai gelombang permukaan pada kedalaman ang cukup besar, aarat batas pada domain fluida ang ditunjukkan berupa fungsi taklinear, sehingga penelesaian masalah nilai batas ang muncul menjadi sulit dilakukan baik secara analitik, maupun secara numeric dengan metode penelesaian masalah nilai batas ang disebut metode homotopi. Air laut dianggap sebagai suatu fluida ideal, aitu fluida ang takmampat (incompressible) dan takkental (inviscid). Domain fluida dimisalkan hana berdimensi dua, meskipun kenataanna berdimensi tiga. Hal ini dapat dilakukan karena sifat homogen fluida, aitu garis arusna pararel dengan garis arus ang lain pada suatu bidang ang tetap, bahkan partikel-partikel pada bidang tersebut memiliki kecepatan dan arah ang sama (Streeter, 1984). Garis arus adalah garis ang digambarkan pada fluida ang memiliki kemiringan pada tiap titik sama dengan kecepatan partikel fluida di titik tersebut. Masalah gelombang baik permukaan maupun internal merupakan suatu masalah taklinear, ang sulit diselesaikan secara analitik sehingga menarik perhatian peneliti sejak pertengahan abad ke-19. Stokes menggunakan metode perturbasi untuk mendapatkan solusi hampiran sampai orde ke-5 dalam penghitungan amplitudo gelombang (Stokes, 1883). Beberapa peneliti telah menerapkan metode perturbasi ang dilakukan Stokes, seperti Schwartz dengan menghitung hingga orde ke-58 (Schwartz, 1974). Longuct-Higgins memperluas ang dilakukan Stokes untuk menghitung amplitudo gelombang sampai orde tinggi dan memeriksa pula kestabilan solusina (Longuct Higgins, 1978). Chen dan Saffman menggunakan analisis numerik untuk memperlihatkan bifurkasi pada titik tetap untuk gelombang internal ang tunak (Chen dan Saffman, 1980). Fluida adalah zat ang dapat mengalir, artina zat ang bergerak terhadap sekitarna. Persamaan dasar akan diturunkan berdasarkan hukum kekekalan massa dan momentum. Hukum kekekalan massa didasarkan pada kesetimbangan massa. Perubahan massa merupakan selisih antara massa ang masuk dan keluar. Misalkan (,, t) rapat massa fluida, u(,, t ) dan w(,, t ) masing-masing kecepatan partikel fluida pada arah horizontal dan arah vertikal. Massa ang masuk pada elemen luas tersebut adalah ( u) dan ( w), sedangkan massa ang keluar adalah ( u) dan ( w ). Jika selisih antara massa ang masuk dengan massa ang keluar pada arah horizontal adalah u u, sedangkan arah vertikal adalah w w, maka laju perubahan massa fluida pada arah horizontal dan vertikal adalah ( u) ( u) ( w) ( w). t (1) Jika persamaan (.1) dibagi oleh, maka diperoleh ( u) ( ) ( w) ( w) u. t Untuk 0 dan 0, diperoleh

2 ( u) ( w), t atau dapat dituliskan [ u u w w ] () t Persamaan () menatakan laju perubahan rapat massa ang disebabkan oleh perubahan massa. Penulisan bentuk lain dari persamaan () adalah dengan menggunakan operator D/ sebagai simbol untuk turunan total suatu fungsi dengan variabel,, t terhadap waktu t, aitu D u w. (3) t Sehingga turunan total dari terhadap waktu t adalah D. t u w (4) Jika persamaan () disubstitusikan ke dalam persamaan (4), maka diperoleh D ( u w) (5) Dengan notasi vektor persamaan (5) dapat dituliskan sebagai berikut D q, dengan q u, w. Jika digunakan asumsi fluida takmampat (incompressible), maka rapat massa konstan sehingga persamaan (.5) menjadi D 0 sehingga u w 0. (6) Persamaan (4) dan (6) masing masing dapat ditulis menjadi t u w 0, (7) u w 0. Persamaan (7) merupakan persamaan kontinuitas untuk fluida takmampat. Selanjutna, jika diasumsikan bahwa partikel fluida takberotasi (irrotational), aitu maka terdapat fungsi kecepatan potensial, sehingga q(,, t) (,, t). Jadi persamaan (6) dapat ditulis 0 atau 0. (8) Persamaan (8) disebut persamaan kontinuitas fluida ang tak termampatkan. Selanjutna hukum kekekalan momentum dinatakan sebagai laju perubahan momentum ang memengaruhi gaa pada permukaan fluida pada elemen luas pada Laju perubahan momentum merupakan selisih antara momentum masuk dan keluar serta ditambah dengan gaa-gaa ang berkerja pada elemen luas tersebut. Faktor lain ang perlu diperhatikan adalah gaa-gaa ang terjadi pada elemen luas tersebut aitu akibat tekanan fluida p, dan gaa gravitasi g. Gaa gesekan diabaikan karena fluida takkental (inviscid).

3 Dalam arah sumbu-, momentum ang masuk adalah ( uu) dan ang keluar ( uu), sedangkan dalam arah sumbu-, momentum ang masuk dan keluar berturut - turut adalah ( wu) dan ( wu). Jadi perubahan rata- rata momentum pada arah sumbu- adalah ( u) ( uu) ( uu) ( wu) ( wu) t ( p p ) g (9) sedangkan perubahan rata rata momentum pada arah sumbu- adalah ( w) ( uw) ( uw) ( ww) ( ww) t ( p p ) g. (10) ( u) Bentuk t dan ( w) adalah laju perubahan t Momentum dalam elemen luas untuk arah sumbu- dan sumbu-. Karena fluida ideal, berarti fluida takkental, maka tegangan geser diabikan. Sedangkan bentuk ( p p ) g pada persamaan (9) menatakan jumlah gaa ang berkerja pada sumbu-, sedangkan bentuk ( p p ) g pada persamaan (10) menatakan jumlah gaa ang berkerja pada sumbu-. Untuk menederhanakan persamaan (9) dan (10) kedua ruas persamaan tersebut dibagi oleh dan dengan menatakan 0 dan 0, diperoleh: ( u) ( uu) ( wu) p g t, (11) ( w) ( uw) ( ww) p g t (1) Dengan menggunakan persamaan kontinuitas untuk fluida tak termampatkan, persamaan (11) dan (1) menjadi Du p, Dw p g, (13) atau dapat ditulis ( ut uu wu ) p 0, ( wt uw ww ) p g 0 (14) Dengan demikian, dari persamaan (7) dan (14), persamaan dasar fluida ideal diberikan dalam sistem persamaan berikut : t u w 0 u w 0 ( ut uu wu ) p 0 ( wt uw ww ) p g 0. (15) Dua persamaan pertama adalah persamaan kontinuitas, sedangkan dua persamaan terakhir adalah persamaan Euler.

4 PEMBAHASAN Berikut ini akan dibahas persamaan dasar untuk aliran tunak. Ilustrasi aliran tunak adalah sebagai berikut. Misalkan suatu gelombang difoto dan gelombang tersebut bergerak seakanakan bingkai foto ang bergerak, sehingga kecepatan gelombang sama dengan kecepatan bingkai. Misalkan gelombang tersebut hana bergerak ke arah kanan dengan kecepatan c, maka koordinat dapat dituliskan = ct sehingga, t c. Selanjutna bentuk tunak dari persamaan (15) dapat ditulis c u w 0 (16) atau U w 0, dengan U u c, sedangkan persamaan (15) dapat dituliskan sebagai berikut U w 0. Dengan cara ang sama diperoleh bentuk tunak dari persamaan (15) sebagai berikut ( UU wu ) p 0 ( Uw ww ) p g 0. Untuk memudahkan penulisan, notasi dan U pada setiap persamaan ditulis dalam notasi dan u, sehingga persamaan dasar fluida ideal untuk aliran tunak adalah: u w 0 u w 0 (17) ( uu wu ) p 0 ( uw ww ) p g 0. Keempat persamaan ini akan disederhanakan untuk memperoleh persamaan gerak partikel fluida dengan aliran tunak sebagai berikut. Eliminasi p pada persamaan (17) dengan terlebih dahulu menurunkan masing-masing persamaan berturut-turut terhadap peubah dan, diperoleh uw ww uu uw uw ww uu uw 1 1 g uw ww uu u 0 (18) Substitusikan persamaan (17 ke persamaan (18), diperoleh g uw ww uu uw uu ww uu ww 0 (19) Misalkan w u dan gunakan diferensial total terhadap, persamaan (19) dapat dituliskan sebagai berikut D 1 1 u w u w g 0, (0) dengan D u w z Karena ( ) dan (, ), persamaan (0) menjadi 1 D g 0 (1)

5 Jika persamaan (1) diintegralkan terhadap t, maka diperoleh 1 g H( ) atau 1 g H( ). () Misalkan fungsi H( ) menggambarkan perubahan rapat massa dalam fluida ang ditentukan dengan cara berikut. Misalkan diberikan kondisi upstream, aitu C di, maka diperoleh 0, 0, C, dan 0, sehingga dari persamaan () diperoleh C H( ) g C (3) Substitusikan persamaan () ke persamaan (3), diperoleh 1 C g 0 C (4) Misal fluida ang di tinjau memiliki rapat massa ang konstan, maka persamaan (4) menjadi persamaan Laplace berikut: 0, (5) dengan sarat batas sebagai berikut C g ( ) C 0 di ( ) (6) 1 1 ( )= C di ( ). (7) g Masalah nilai batas pada persamaan (5)-(7) akan digunakan dalam penelitian ini sebagai model persamaan untuk menjelaskan gerak gelombang permukaan pada fluida dengan kedalaman ang cukup besar. Berikut ini diberikan ilustrasi konsep metode homotopi. Misalkan diberikan persamaan diferensial berikut: 1 A[ u( t)] 0, (8) dengan A operator turunan, t variabel bebas dan u(t) fungsi ang akan ditentukan. Selanjutna didefinisikan pula suatu operator linear ang memenuhi (9) Misalkan operator A dibagi menjadi dua bagian, aitu dan ang masing-masing merupakan operator ang linear dan taklinear, sehingga persamaan (8) menjadi : Misalkan u () 0 t merupakan pendekatan awal dari penelesaian persamaan (8) dan q [0,1] suatu parameter. Definisikan fungsi real dan suatu fungsi H sebagai berikut : (30) atau Berdasarkan persamaan (.30), untuk q = 0 dan q =1 masing-masing memberikan persamaan berikut: dan (31)

6 Menurut persamaan (8), (9) dan (31) diperoleh bahwa fungsi ( t,0) u0( t) dan ( t,1) u( t) masing-masing merupakan penelesaian dari persamaan H[ ( t,0),0] 0 dan H[ ( t,1),1] 0. Dengan demikian peningkatan nilai q dari 0 ke 1 menatakan perubahan nilai H[ ( t), q] dari ke A[ ( t)]. Dalam topologi hal ini disebut dengan deformasi, sedangkan dan A[ ( t)] disebut dengan homotopi. SIMPULAN Kajian ini menunjukan bahwa metode homotopi dapat digunakan untuk memecahkan masalah taklinear ang komplek dengan kondisi batas taklinear. Pendekatan terbaru tidak melibatkan parameter perturbasi dan menunjukan kekonvergenan ang lebih baik jika dibandingkan dengan penggunaan jenis pendekatan lainna. Parameter digunakan di dalam ekspansi barisan tidak dijumpai pada ukuran batas permukaan ang diperoleh maupun pada solusina. Yang paling penting adalah penggunaan metode ekspansi homotopi pade dapat menentukan solusi dari suatu barisan. Selanjutna aplikasi dari metode homotopi pade epansi mengeliminir dari parameter tambahan ang digunakan untuk memformula daerah kekonvergenan. DAFTAR PUSTAKA Chen B, Saffman, P.G Numerical evidence for the eistence of new tpes of gravit waves of permanent form of deep water. Studies in appl. Math 6:1-1. Gerkema T Nonlinear Dispersive Internal Tides: Generation Modeis for a Rotating Ocean [PhD-Thesis]. The Netherlands: Univ. of Utrecht. Hollowa P, Pelinovsk E, Talipova T Internal Tide Transformation and Oceanic Internal Solitar wave. Dalam Grimshaw R.(Ed) Stratified Flows. Dordrecht: Kluwer. Liao, Shinjun, Cheung Kwok Fai Homotop analsis of nonlinear progressive waves in deep water. Journal of Engineering Mathematics. 45: Liao, Shijun Beond Pertubation: Introduction to the Homotop Analsis Method. Boca Raton, London, New York Washington, D.C. Longuet, Higgins M.S The instabilit of gravit of finite amplitude in deep water: subharmonics. Proc. R. Soc. Lond. A 360: Osborne A.R, T.L Burch Internal Soliton in the Andaman Sea. Science 08: Schwartz, L.W Computer etension and analtic continuitas of Stokes epansion for gravit waves. J.of Fluid Mech 6(3): Stokes, G.G On the highest waves of uniform propagation. Proc. Cambridge Phil. Soc 4: Streeter, V. L Fluid Dnamics. McGraw-Hill Book Compan, New York Washington, D.C. Inc.

7

II LANDASAN TEORI. dengan, 1,2,3,, menyatakan koefisien deret pangkat dan menyatakan titik pusatnya.

II LANDASAN TEORI. dengan, 1,2,3,, menyatakan koefisien deret pangkat dan menyatakan titik pusatnya. 2 II LANDASAN TEORI Pada bagian ini akan dibahas teoriteori yang mendukung karya tulis ini. Teoriteori tersebut meliputi persamaan diferensial penurunan persamaan KdV yang disarikan dari (Ihsanudin, 2008;

Lebih terperinci

II LANDASAN TEORI. Misalkan adalah suatu fungsi skalar, maka turunan vektor kecepatan dapat dituliskan sebagai berikut :

II LANDASAN TEORI. Misalkan adalah suatu fungsi skalar, maka turunan vektor kecepatan dapat dituliskan sebagai berikut : 2 II LANDASAN TEORI Pada bagian ini akan dibahas teori-teori yang digunakan dalam menyusun karya ilmiah ini. Teori-teori tersebut meliputi sistem koordinat silinder, aliran fluida pada pipa lurus, persamaan

Lebih terperinci

III PEMBAHASAN. (3.3) disubstitusikan ke dalam sistem koordinat silinder yang ditinjau pada persamaan (2.4), maka diperoleh

III PEMBAHASAN. (3.3) disubstitusikan ke dalam sistem koordinat silinder yang ditinjau pada persamaan (2.4), maka diperoleh III PEMBAHASAN Pada bagian ini akan dibahas penggunaan metode perturbasi homotopi untuk menyelesaikan suatu masalah taklinear. Metode ini digunakan untuk menyelesaikan model Sisko dalam masalah aliran

Lebih terperinci

PENGGUNAAN METODE PERTURBASI HOMOTOPI UNTUK MENYELESAIKAN PERSAMAAN BURGERS DAN PENERAPANNYA PADA MASALAH ARUS LALU LINTAS CHRISTOPHER DANNY

PENGGUNAAN METODE PERTURBASI HOMOTOPI UNTUK MENYELESAIKAN PERSAMAAN BURGERS DAN PENERAPANNYA PADA MASALAH ARUS LALU LINTAS CHRISTOPHER DANNY PENGGUNAAN METODE PERTURBASI HOMOTOPI UNTUK MENYELESAIKAN PERSAMAAN BURGERS DAN PENERAPANNYA PADA MASALAH ARUS LALU LINTAS CHRISTOPHER DANNY DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

Lebih terperinci

, serta notasi turunan total ρ

, serta notasi turunan total ρ LANDASAN TEORI Lanasan teori ini berasarkan rujukan Jaharuin (4 an Groesen et al (99, berisi penurunan persamaan asar fluia ieal, sarat batas fluia ua lapisan an sistem Hamiltonian Penentuan karakteristik

Lebih terperinci

PENGARUH ARUS PADA GERAK GELOMBANG SOLITER INTERNAL STUDI KASUS PADA FLUIDA DUA LAPISAN RIDZAN DJAFRI

PENGARUH ARUS PADA GERAK GELOMBANG SOLITER INTERNAL STUDI KASUS PADA FLUIDA DUA LAPISAN RIDZAN DJAFRI PENGARUH ARUS PADA GERAK GELOMBANG SOLITER INTERNAL STUDI KASUS PADA FLUIDA DUA LAPISAN RIDZAN DJAFRI SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2009 PERNYATAAN MENGENAI TESIS DAN SUMBER INFORMASI

Lebih terperinci

BAB II DASAR TEORI. 2.1 Persamaan Kontinuitas dan Persamaan Gerak

BAB II DASAR TEORI. 2.1 Persamaan Kontinuitas dan Persamaan Gerak BAB II DASAR TEORI Ada beberapa teori yang berkaitan dengan konsep-konsep umum mengenai aliran fluida. Beberapa akan dibahas pada bab ini. Diantaranya adalah hukum kekekalan massa dan hukum kekekalan momentum.

Lebih terperinci

III PEMBAHASAN. 3.1 Analisis Metode. dan (2.52) masing-masing merupakan penyelesaian dari persamaan

III PEMBAHASAN. 3.1 Analisis Metode. dan (2.52) masing-masing merupakan penyelesaian dari persamaan 6, 1 (2.52) Berdasarkan persamaan (2.52), maka untuk 0 1 masing-masing memberikan persamaan berikut:, 0,0, 0, 1,1, 1. Sehingga menurut persamaan (2.51) persamaan (2.52) diperoleh bahwa fungsi, 0, 1 masing-masing

Lebih terperinci

J M A. Jurnal Matematika dan Aplikasinya. Journal of Mathematics and Its Applications. Volume 8, No. 1 Juli 2009 ISSN: X

J M A. Jurnal Matematika dan Aplikasinya. Journal of Mathematics and Its Applications. Volume 8, No. 1 Juli 2009 ISSN: X DEPARTEMEN MATEMATIKA F MIPA - INSTITUT PERTANIAN BOGOR ISSN: 4-677X Journal of Mathematics and Its Applications J M A Jurnal Matematika dan Aplikasinya Volume 8, No. Juli 009 Strong Convergence of a Uniform

Lebih terperinci

PENYELESAIAN PERSAMAAN KORTEWEG-DE VRIES ORDE TINGGI DENGAN METODE EKSPANSI RESTY BANGUN PRATIWI

PENYELESAIAN PERSAMAAN KORTEWEG-DE VRIES ORDE TINGGI DENGAN METODE EKSPANSI RESTY BANGUN PRATIWI PENYELESAIAN PERSAMAAN KORTEWEG-DE VRIES ORDE TINGGI DENGAN METODE EKSPANSI RESTY BANGUN PRATIWI DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2015

Lebih terperinci

BAB 3 PERAMBATAN GELOMBANG MONOKROMATIK

BAB 3 PERAMBATAN GELOMBANG MONOKROMATIK BAB 3 PERAMBATAN GELOMBANG MONOKROMATIK Dalam bab ini, kita akan mengamati perambatan gelombang pada fluida ideal dengan dasar rata. Perhatikan gambar di bawah ini. Gambar 3.1 Aliran Fluida pada Dasar

Lebih terperinci

1 BAB 4 ANALISIS DAN BAHASAN

1 BAB 4 ANALISIS DAN BAHASAN 1 BAB 4 ANALISIS DAN BAHASAN Pada bab ini akan dibahas pengaruh dasar laut tak rata terhadap perambatan gelombang permukaan secara analitik. Pengaruh dasar tak rata ini akan ditinjau melalui simpangan

Lebih terperinci

PENYELESAIAN MASALAH GELOMBANG PERMUKAAN DENGAN MENGGUNAKAN METODE PERTURBASI HOMOTOPI ANGGRAENI PUTRISIA

PENYELESAIAN MASALAH GELOMBANG PERMUKAAN DENGAN MENGGUNAKAN METODE PERTURBASI HOMOTOPI ANGGRAENI PUTRISIA PENYELESAIAN MASALAH GELOMBANG PERMUKAAN DENGAN MENGGUNAKAN METODE PERTURBASI HOMOTOPI ANGGRAENI PUTRISIA DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR

Lebih terperinci

PENYELESAIAN MASALAH ROTASI ALIRAN FLUIDA KENTAL VON KARMAN MENGGUNAKAN METODE HOMOTOPI RANDITA GUSTIAN PUTRI

PENYELESAIAN MASALAH ROTASI ALIRAN FLUIDA KENTAL VON KARMAN MENGGUNAKAN METODE HOMOTOPI RANDITA GUSTIAN PUTRI PENYELESAIAN MASALAH ROTASI ALIRAN FLUIDA KENTAL VON KARMAN MENGGUNAKAN METODE HOMOTOPI RANDITA GUSTIAN PUTRI DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR

Lebih terperinci

BAB IV KAJIAN CFD PADA PROSES ALIRAN FLUIDA

BAB IV KAJIAN CFD PADA PROSES ALIRAN FLUIDA BAB IV KAJIAN CFD PADA PROSES ALIRAN FLUIDA IV. KAJIAN CFD PADA PROSES ALIRAN FLUIDA 4.1. Penelitian Sebelumna Computational Fluid Dnamics (CFD) merupakan program computer perangkat lunak untuk memprediksi

Lebih terperinci

Bab 1. Pendahuluan. 1.1 Latar Belakang Masalah

Bab 1. Pendahuluan. 1.1 Latar Belakang Masalah Bab 1 Pendahuluan 1.1 Latar Belakang Masalah Gelombang air laut merupakan salah satu fenomena alam yang terjadi akibat adanya perbedaan tekanan. Panjang gelombang air laut dapat mencapai ratusan meter

Lebih terperinci

Penentuan Distribusi Suhu pada Permukaan Geometri Tak Tentu Menggunakan Metode Random Walk Balduyanus Yosep Godja a), Andi Ihwan a)*, Apriansyah b)

Penentuan Distribusi Suhu pada Permukaan Geometri Tak Tentu Menggunakan Metode Random Walk Balduyanus Yosep Godja a), Andi Ihwan a)*, Apriansyah b) POSITRON, Vol. VI, No. 1 (1), Hal. 17 - ISSN : 1-9 Penentuan Distribusi Suhu pada Permukaan Geometri Tak Tentu Menggunakan Metode Random Walk Balduanus Yosep Godja a), Andi Ihwan a)*, Apriansah b) a Jurusan

Lebih terperinci

Kestabilan Aliran Fluida Viskos Tipis pada Bidang Inklinasi

Kestabilan Aliran Fluida Viskos Tipis pada Bidang Inklinasi 1 Jurnal Matematika, Statistika, & Komputasi Vol 5 No 1, 1-9, Juli 2008 Kestabilan Aliran Fluida Viskos Tipis pada Bidang Inklinasi Sri Sulasteri Jurusan Pend. Matematika UIN Alauddin Makassar Jalan Sultan

Lebih terperinci

PENGGUNAAN METODE HOMOTOPI PADA MASALAH PERAMBATAN GELOMBANG INTERFACIAL

PENGGUNAAN METODE HOMOTOPI PADA MASALAH PERAMBATAN GELOMBANG INTERFACIAL PENGGUNAAN METODE HOMOTOPI PADA MASALAH PERAMBATAN GELOMBANG INTERFACIAL JAHARUDDIN Departeen Mateatika Fakultas Mateatika Ilu Pengetahuan Ala Institut Pertanian Bogor Jl Meranti, Kapus IPB Daraga, Bogor

Lebih terperinci

TINJAUAN PUSTAKA. diketahui) dengan dua atau lebih peubah bebas dinamakan persamaan. Persamaan diferensial parsial memegang peranan penting di dalam

TINJAUAN PUSTAKA. diketahui) dengan dua atau lebih peubah bebas dinamakan persamaan. Persamaan diferensial parsial memegang peranan penting di dalam II. TINJAUAN PUSTAKA 2.1 Persamaan Diferensial Parsial Persamaan yang mengandung satu atau lebih turunan parsial suatu fungsi (yang diketahui) dengan dua atau lebih peubah bebas dinamakan persamaan diferensial

Lebih terperinci

Bab 2 LANDASAN TEORI. 2.1 Penurunan Persamaan Air Dangkal

Bab 2 LANDASAN TEORI. 2.1 Penurunan Persamaan Air Dangkal Bab 2 LANDASAN TEORI 2.1 Penurunan Persamaan Air Dangkal Persamaan air dangkal atau Shallow Water Equation (SWE) berlaku untuk fluida homogen yang memiliki massa jenis konstan, inviscid (tidak kental),

Lebih terperinci

II. TINJAUAN PUSTAKA. 2.1 Persamaan Diferensial (Bronson dan Costa, 2007) terhadap satu atau lebih dari variabel-variabel bebas (independent

II. TINJAUAN PUSTAKA. 2.1 Persamaan Diferensial (Bronson dan Costa, 2007) terhadap satu atau lebih dari variabel-variabel bebas (independent 4 II. TINJAUAN PUSTAKA 2.1 Persamaan Diferensial (Bronson dan Costa, 2007) Persamaan differensial adalah suatu persamaan yang memuat turunan terhadap satu atau lebih dari variabel-variabel bebas (independent

Lebih terperinci

Klasifikasi Aliran Fluida (Fluids Flow Classification)

Klasifikasi Aliran Fluida (Fluids Flow Classification) Klasifikasi Aliran Fluida (Fluids Flow Classification) Didasarkan pada tinjauan tertentu, aliran fluida dapat diklasifikasikan dalam beberapa golongan. Dalam ulasan ini, fluida yang lebih banyak dibahas

Lebih terperinci

Visualisasi Aliran Fluida Menggunakan Variabel Kompleks pada Model Dinamika Air Tanah

Visualisasi Aliran Fluida Menggunakan Variabel Kompleks pada Model Dinamika Air Tanah PROSIDING SNIPS 016 Visualisasi Aliran Fluida Menggunakan Variabel Kompleks pada Model Dinamika Air Tanah Santi Hatmanti 1,a), Acep Purqon,b) 1 Sains Komputasi, Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

PENGGUNAAN METODE PERTURBASI HOMOTOPI UNTUK MENYELESAIKAN MASALAH ALIRAN FLUIDA SISKO PADA PIPA LURUS ISNA ALDILLA

PENGGUNAAN METODE PERTURBASI HOMOTOPI UNTUK MENYELESAIKAN MASALAH ALIRAN FLUIDA SISKO PADA PIPA LURUS ISNA ALDILLA PENGGUNAAN METODE PERTURBASI HOMOTOPI UNTUK MENYELESAIKAN MASALAH ALIRAN FLUIDA SISKO PADA PIPA LURUS ISNA ALDILLA DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN

Lebih terperinci

Bab II Model Lapisan Fluida Viskos Tipis Akibat Gaya Gravitasi

Bab II Model Lapisan Fluida Viskos Tipis Akibat Gaya Gravitasi Bab II Model Lapisan Fluida Viskos Tipis Akibat Gaya Gravitasi II.1 Gambaran Umum Model Pada bab ini, kita akan merumuskan model matematika dari masalah ketidakstabilan lapisan fluida tipis yang bergerak

Lebih terperinci

METODE PEMOTONGAN DERET FOURIER UNTUK MENYELESAIKAN PERSAMAAN GERAK GELOMBANG INTERNAL YANG PERIODIK PADA FLUIDA DUA LAPISAN MUHBAHIR

METODE PEMOTONGAN DERET FOURIER UNTUK MENYELESAIKAN PERSAMAAN GERAK GELOMBANG INTERNAL YANG PERIODIK PADA FLUIDA DUA LAPISAN MUHBAHIR METODE PEMOTONGAN DERET FOURIER UNTUK MENYELESAIKAN PERSAMAAN GERAK GELOMBANG INTERNAL YANG PERIODIK PADA FLUIDA DUA LAPISAN MUHBAHIR SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2008 PERNYATAAN

Lebih terperinci

BAB III PEMODELAN PERSAMAAN INTEGRAL PADA ALIRAN FLUIDA

BAB III PEMODELAN PERSAMAAN INTEGRAL PADA ALIRAN FLUIDA BAB III PEMODELAN PERSAMAAN INTEGRAL PADA ALIRAN FLUIDA 3.1 Deskripsi Masalah Permasalahan yang dibahas di dalam Tugas Akhir ini adalah mengenai aliran fluida yang mengalir keluar melalui sebuah celah

Lebih terperinci

BAB III PEMBAHASAN. dengan menggunakan penyelesaian analitik dan penyelesaian numerikdengan. motode beda hingga. Berikut ini penjelasan lebih lanjut.

BAB III PEMBAHASAN. dengan menggunakan penyelesaian analitik dan penyelesaian numerikdengan. motode beda hingga. Berikut ini penjelasan lebih lanjut. BAB III PEMBAHASAN Pada bab ini akan dibahas tentang penurunan model persamaan gelombang satu dimensi. Setelah itu akan ditentukan persamaan gelombang satu dimensi dengan menggunakan penyelesaian analitik

Lebih terperinci

Pengantar Oseanografi V

Pengantar Oseanografi V Pengantar Oseanografi V Hidro : cairan Dinamik : gerakan Hidrodinamika : studi tentang mekanika fluida yang secara teoritis berdasarkan konsep massa elemen fluida or ilmu yg berhubungan dengan gerak liquid

Lebih terperinci

Metode Beda Hingga untuk Penyelesaian Persamaan Diferensial Parsial

Metode Beda Hingga untuk Penyelesaian Persamaan Diferensial Parsial Metode Beda Hingga untuk Penyelesaian Persamaan Diferensial Parsial Ikhsan Maulidi Jurusan Matematika,Universitas Syiah Kuala, ikhsanmaulidi@rocketmail.com Abstract Artikel ini membahas tentang salah satu

Lebih terperinci

FORMULASI HAMILTONIAN UNTUK MENGGAMBARKAN GERAK GELOMBANG INTERNAL PADA LAUT DALAM RINA PRASTIWI

FORMULASI HAMILTONIAN UNTUK MENGGAMBARKAN GERAK GELOMBANG INTERNAL PADA LAUT DALAM RINA PRASTIWI FORMULASI HAMILTONIAN UNTUK MENGGAMBARKAN GERAK GELOMBANG INTERNAL PADA LAUT DALAM RINA PRASTIWI SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2009 PERYATAAN MENGENAI TESIS DAN SUMBER INFORMASI Dengan

Lebih terperinci

PENYELESAIAN MODEL MANGSA PEMANGSA TIGA SPESIES DENGAN METODE HOMOTOPI YULI RAHMAWATI

PENYELESAIAN MODEL MANGSA PEMANGSA TIGA SPESIES DENGAN METODE HOMOTOPI YULI RAHMAWATI PENYELESAIAN MODEL MANGSA PEMANGSA TIGA SPESIES DENGAN METODE HOMOTOPI YULI RAHMAWATI DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2014 PERNYATAAN

Lebih terperinci

PEMODELAN KARAKTERISTIK GELOMBANG SOLITER INTERNAL AIR LAUT MENGGUNAKAN SOLUSI SOLITON PERSAMAAN KORTEWEG DE VRIES.

PEMODELAN KARAKTERISTIK GELOMBANG SOLITER INTERNAL AIR LAUT MENGGUNAKAN SOLUSI SOLITON PERSAMAAN KORTEWEG DE VRIES. PILLAR OF PHYSICS, Vol. 4. November 04, 4-48 PEMODELAN KARAKTERISTIK GELOMBANG SOLITER INTERNAL AIR LAUT MENGGUNAKAN SOLUSI SOLITON PERSAMAAN KORTEWEG DE VRIES Yogi Febriano ), Akmam ) dan Hidaati ) )

Lebih terperinci

Bab 9 DEFLEKSI ELASTIS BALOK

Bab 9 DEFLEKSI ELASTIS BALOK Bab 9 DEFLEKSI ELASTIS BALOK Tinjauan Instruksional Khusus: Mahasiswa diharapkan mampu memahami konsep dasar defleksi (lendutan) pada balok, memahami metode-metode penentuan defleksi dan dapat menerapkan

Lebih terperinci

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal (SWE)

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal (SWE) Bab 2 Landasan Teori Dalam bab ini akan dibahas mengenai Persamaan Air Dangkal dan dasar-dasar teori mengenai metode beda hingga untuk menghampiri solusi dari persamaan diferensial parsial. 2.1 Persamaan

Lebih terperinci

LAMPIRAN. Hubungan antara koordinat kartesian dengan koordinat silinder:

LAMPIRAN. Hubungan antara koordinat kartesian dengan koordinat silinder: LAMPIRAN A.TRANSFORMASI KOORDINAT 1. Koordinat silinder Hubungan antara koordinat kartesian dengan koordinat silinder: Vector kedudukan adalah Jadi, kuadrat elemen panjang busur adalah: Maka: Misalkan

Lebih terperinci

BAB IV PRINSIP-PRINSIP KONVEKSI

BAB IV PRINSIP-PRINSIP KONVEKSI BAB IV PRINSIP-PRINSIP KONVEKSI Aliran Viscous Berdasarkan gambar 1 dan, aitu aliran fluida pada pelat rata, gaa viscous dijelaskan dengan tegangan geser τ diantara lapisan fluida dengan rumus: du τ µ

Lebih terperinci

KAJIAN MODEL EPIDEMIK SIR DETERMINISTIK DAN STOKASTIK PADA WAKTU DISKRIT. Oleh: Arisma Yuni Hardiningsih

KAJIAN MODEL EPIDEMIK SIR DETERMINISTIK DAN STOKASTIK PADA WAKTU DISKRIT. Oleh: Arisma Yuni Hardiningsih KAJIAN MODEL EPIDEMIK SIR DETERMINISTIK DAN STOKASTIK PADA WAKTU DISKRIT Oleh: Arisma Yuni Hardiningsih 126 1 5 Dosen Pembimbing: Dra. Laksmi Prita Wardhani, M.Si Jurusan Matematika Fakultas Matematika

Lebih terperinci

Bab 2 TEORI DASAR. 2.1 Linearisasi Persamaan Air Dangkal

Bab 2 TEORI DASAR. 2.1 Linearisasi Persamaan Air Dangkal Bab 2 TEORI DASAR 2.1 Linearisasi Persamaan Air Dangkal Persamaan air dangkal merupakan persamaan untuk gelombang permukaan air yang dipengaruhi oleh kedalaman air tersebut. Kedalaman air dapat dikatakan

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 5. No. 1, 25-31, April 2002, ISSN :

JURNAL MATEMATIKA DAN KOMPUTER Vol. 5. No. 1, 25-31, April 2002, ISSN : Vol. 5. No., 5-3, April 00, ISSN : 40-858 PEMODELAN ALIRAN FLUIDA DIMENSI DUA YANG MELALUI SILINDER BERPENAMPANG AIRFOIL DARI PENJUMLAHAN DUA LINGKARAN Idha Sihwaningrum Fakultas Biologi UNSOED Abstract

Lebih terperinci

BAB II KAJIAN TEORI. homogen yang dikenal sebagai persamaan forced Korteweg de Vries (fkdv). Persamaan fkdv yang dikaji dalam makalah ini adalah

BAB II KAJIAN TEORI. homogen yang dikenal sebagai persamaan forced Korteweg de Vries (fkdv). Persamaan fkdv yang dikaji dalam makalah ini adalah BAB II KAJIAN TEORI Pada bab ini akan dibahas suatu jenis persamaan differensial parsial tak homogen yang dikenal sebagai persamaan forced Korteweg de Vries (fkdv). Persamaan fkdv yang dikaji dalam makalah

Lebih terperinci

Persamaan Diferensial Orde Satu

Persamaan Diferensial Orde Satu Modul Persamaan Diferensial Orde Satu P PENDAHULUAN Prof. SM. Nababan, Ph. ersamaan Diferensial (PD) adalah salah satu cabang matematika ang banak digunakan untuk menjelaskan masalah-masalah fisis. Masalahmasalah

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Daerah Penelitian Kecamatan Muara Gembong merupakan daerah pesisir di Kabupaten Bekasi yang berada pada zona 48 M (5 0 59 12,8 LS ; 107 0 02 43,36 BT), dikelilingi oleh perairan

Lebih terperinci

MEKANIKA FLUIDA DI SUSUN OLEH : ADE IRMA

MEKANIKA FLUIDA DI SUSUN OLEH : ADE IRMA MEKANIKA FLUIDA DI SUSUN OLEH : ADE IRMA 13321070 4 Konsep Dasar Mekanika Fluida Fluida adalah zat yang berdeformasi terus menerus selama dipengaruhi oleh suatutegangan geser.mekanika fluida disiplin ilmu

Lebih terperinci

Analisis Kestabilan Aliran Fluida Viskos Tipis pada Model Slip di Bawah Pengaruh Gaya Gravitasi

Analisis Kestabilan Aliran Fluida Viskos Tipis pada Model Slip di Bawah Pengaruh Gaya Gravitasi Vol. 14, No. 1, 69-76, Juli 017 Analisis Kestabilan Aliran Fluida Viskos Tipis pada Model Slip di Bawah Pengaruh Gaya Gravitasi Sri Sulasteri Abstrak Hal yang selalu menjadi perhatian dalam lapisan fluida

Lebih terperinci

Fungsi dan Grafik Diferensial dan Integral

Fungsi dan Grafik Diferensial dan Integral Sudaratno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral i Darpublic Hak cipta pada penulis, 010 SUDIRHAM, SUDARYATNO Fungsi dan Grafik, Diferensial dan Integral Oleh: Sudaratmo Sudirham

Lebih terperinci

Penyelesaian Persamaan Painleve Menggunakan Metode Dekomposisi Adomian Laplace

Penyelesaian Persamaan Painleve Menggunakan Metode Dekomposisi Adomian Laplace Penyelesaian Persamaan Painleve Menggunakan Metode Dekomposisi Adomian Laplace M. Nizam Muhaijir 1, Wartono 2 Jurusan Matematika Fakultas Sains dan Teknologi Universitas Islam Negeri Sultan Syarif Kasim

Lebih terperinci

Created by : Firman Dwi Setiawan Approved by : Ir. Suntoyo, M.Eng., Ph.D Ir. Sujantoko, M.T.

Created by : Firman Dwi Setiawan Approved by : Ir. Suntoyo, M.Eng., Ph.D Ir. Sujantoko, M.T. Created by : Firman Dwi Setiawan Approved by : Ir. Suntoyo, M.Eng., Ph.D Ir. Sujantoko, M.T. Latar belakang permasalahan Awal gerak butiran sedimen dasar merupakan awal terjadinya angkutan sedimen di suatu

Lebih terperinci

METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR. Rino Martino 1 ABSTRACT

METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR. Rino Martino 1 ABSTRACT METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR Rino Martino 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya

Lebih terperinci

Sudaryatno Sudirham. Studi Mandiri. Diferensiasi. Darpublic

Sudaryatno Sudirham. Studi Mandiri. Diferensiasi. Darpublic Sudaratno Sudirham Studi Mandiri Diferensiasi ii Darpublic BAB Turunan Fungsi-Fungsi () (Fungsi Perkalian Fungsi, Fungsi Pangkat Dari Fungsi, Fungsi Rasional, Fungsi Implisit).1. Fungsi Yang Merupakan

Lebih terperinci

MODUL MATEMATIKA II. Oleh: Dr. Eng. LILYA SUSANTI

MODUL MATEMATIKA II. Oleh: Dr. Eng. LILYA SUSANTI MODUL MATEMATIKA II Oleh: Dr. Eng. LILYA SUSANTI DEPARTEMEN RISET TEKNOLOGI DAN PENDIDIKAN TINGGI UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL KATA PENGANTAR Puji sukur kehadirat Allah SWT

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 6 BAB LANDASAN TEORI Pada bab ini akan dibahas beberapa konsep dasar ang akan digunakan sebagai landasan berpikir seperti beberapa teorema dan definisi ang berkaitan dengan penelitian ini. Dengan begitu

Lebih terperinci

ANALISIS METODE DEKOMPOSISI SUMUDU DAN MODIFIKASINYA DALAM MENENTUKAN PENYELESAIAN PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR

ANALISIS METODE DEKOMPOSISI SUMUDU DAN MODIFIKASINYA DALAM MENENTUKAN PENYELESAIAN PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 05, No. 2 (2016), hal 103-112 ANALISIS METODE DEKOMPOSISI SUMUDU DAN MODIFIKASINYA DALAM MENENTUKAN PENYELESAIAN PERSAMAAN DIFERENSIAL PARSIAL

Lebih terperinci

Matematika Teknik I. Prasyarat : Kalkulus I, Kalkulus II, Aljabar Vektor & Kompleks

Matematika Teknik I. Prasyarat : Kalkulus I, Kalkulus II, Aljabar Vektor & Kompleks Kode Mata Kuliah : TE 318 SKS : 3 Matematika Teknik I Prasarat : Kalkulus I, Kalkulus II, Aljabar Vektor & Kompleks Tujuan : Mahasiswa memahami permasalahan teknik dalam bentuk PD atau integral, serta

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI. Sistem Pendulum Terbalik Dalam penelitian ini diperhatikan sistem pendulum terbalik seperti pada Gambar di mana sebuah pendulum terbalik dimuat dalam motor yang bisa digerakkan.

Lebih terperinci

PENYELESAIAN PERSAMAAN DIFERENSIAL BIASA NONLINIER ORDE DUA DENGAN MENGGUNAKAN METODE DEKOMPOSISI ADOMIAN LAPLACE

PENYELESAIAN PERSAMAAN DIFERENSIAL BIASA NONLINIER ORDE DUA DENGAN MENGGUNAKAN METODE DEKOMPOSISI ADOMIAN LAPLACE PENYELESAIAN PERSAMAAN DIFERENSIAL BIASA NONLINIER ORDE DUA DENGAN MENGGUNAKAN METODE DEKOMPOSISI ADOMIAN LAPLACE TUGAS AKHIR Diajukan Sebagai Salah Satu Syarat Untuk Memperoleh Gelar Sarjana Sains Pada

Lebih terperinci

Model Matematika dan Analisanya Dari Pemenuhan Kebutuhan Air Bersih di Suatu Kompleks Perumahan

Model Matematika dan Analisanya Dari Pemenuhan Kebutuhan Air Bersih di Suatu Kompleks Perumahan J. of Math. and Its Appl. ISSN: 189-605X Vol. 1, No. 1 004, 63 68 Model Matematika dan Analisanya Dari Pemenuhan Kebutuhan Air Bersih di Suatu Kompleks Perumahan Basuki Widodo Jurusan Matematika Institut

Lebih terperinci

BAB 2. Landasan Teori. 2.1 Persamaan Dasar

BAB 2. Landasan Teori. 2.1 Persamaan Dasar BAB 2 Landasan Teori Objek yang diamati pada permasalahan ini adalah lapisan fluida tipis, yaitu akan dilihat perubahan ketebalan dari lapisan fluida tipis tersebut dengan adanya penambahan surfaktan ke

Lebih terperinci

PENGGUNAAN METODE PERTURBASI HOMOTOPI PADA PENYELESAIAN PERSAMAAN ALIRAN BUSA CAIR RISA SAWITRI

PENGGUNAAN METODE PERTURBASI HOMOTOPI PADA PENYELESAIAN PERSAMAAN ALIRAN BUSA CAIR RISA SAWITRI PENGGUNAAN METODE PERTURBASI HOMOTOPI PADA PENYELESAIAN PERSAMAAN ALIRAN BUSA CAIR RISA SAWITRI DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2014 PERNYATAAN

Lebih terperinci

Simulasi Model Gelombang Pasang Surut dengan Metode Beda Hingga

Simulasi Model Gelombang Pasang Surut dengan Metode Beda Hingga J. Math. and Its Appl. ISSN: 1829-605X Vol. 2, No. 2, Nov 2005, 93 101 Simulasi Model Gelombang Pasang Surut dengan Metode Beda Hingga Lukman Hanafi, Danang Indrajaya Jurusan Matematika FMIPA ITS Kampus

Lebih terperinci

PEMBAHASAN. (29) Dalam (Grosen 1992), kondisi kinematik (19) dan kondisi dinamik (20) dapat dinyatakan dalam sistem Hamiltonian berikut : = (30)

PEMBAHASAN. (29) Dalam (Grosen 1992), kondisi kinematik (19) dan kondisi dinamik (20) dapat dinyatakan dalam sistem Hamiltonian berikut : = (30) 5 η = η di z = η (9) z x x z x x Dalam (Grosen 99) kondisi kinematik (9) kondisi dinamik () dapat dinyatakan dalam sistem Hamiltonian : δ H t = () δη δ H ηt = δ Dengan mengenalkan variabel baru u = x maka

Lebih terperinci

Distribusi Tekanan pada Fluida

Distribusi Tekanan pada Fluida Distribusi Tekanan pada Fluida Ref: White, Frank M., 2011, Fluid Mechanics, 7th edition, Chapter 2, The McGraw-Hill Book Co., New York 2/21/17 1 Tekanan pada Fluida Tekanan fluida (fluid pressure): tegangan

Lebih terperinci

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal Linier (Linier Shallow Water Equation)

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal Linier (Linier Shallow Water Equation) Bab 2 Landasan Teori Dalam bab ini akan dijelaskan mengenai Persamaan Air Dangkal linier (Linear Shallow Water Equation), metode beda hingga, metode ekspansi asimtotik biasa, dan metode ekspansi asimtotik

Lebih terperinci

SEDIMENTASI AKIBAT PEMBANGUNAN SHEET PILE BREAKWATER TELUK BINTUNI, PAPUA BARAT

SEDIMENTASI AKIBAT PEMBANGUNAN SHEET PILE BREAKWATER TELUK BINTUNI, PAPUA BARAT SEDIMENTASI AKIBAT PEMBANGUNAN SHEET PILE BREAKWATER TELUK BINTUNI, PAPUA BARAT Jundana Akhyar 1 dan Muslim Muin 2 Program Studi Teknik Kelautan Fakultas Teknik Sipil dan Lingkungan, Institut Teknologi

Lebih terperinci

DERET TAYLOR UNTUK METODE DEKOMPOSISI ADOMIAN ABSTRACT

DERET TAYLOR UNTUK METODE DEKOMPOSISI ADOMIAN ABSTRACT DERET TAYLOR UNTUK METODE DEKOMPOSISI ADOMIAN Lucy L. Batubara 1, Deswita. Leli 2, Zulkarnain 2 1 Mahasiswa Program Studi S1 Matematika 2 Laboratorium Matematika Terapan, Jurusan Matematika Fakultas Matematika

Lebih terperinci

I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai.

I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai. I. PENDAHULUAN 1.1 Latar Belakang dan Masalah Dalam kehidupan, polusi yang ada di sungai disebabkan oleh limbah dari pabrikpabrik dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk

Lebih terperinci

III PEMBAHASAN. Berdasarkan persamaan (2.15) dan persamaan (2.16), fungsi kontinu dan masing-masing sebagai berikut : dan = 3

III PEMBAHASAN. Berdasarkan persamaan (2.15) dan persamaan (2.16), fungsi kontinu dan masing-masing sebagai berikut : dan = 3 8 III PEMBAHASAN Pada bagian ini akan dibahas penggunaan metode iterasi variasi untuk menyelesaikan suatu persamaan diferensial integral Volterra orde satu yang terdapat pada masalah osilasi berpasangan.

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Persamaan diferensial merupakan persamaan yang didalamnya terdapat beberapa derivatif. Persamaan diferensial menyatakan hubungan antara derivatif dari satu variabel

Lebih terperinci

Methode Aplikasi Bangunan Krib Sebagai Pelindung terhadap Bahaya Erosi Tebing Sungai ABSTRAK

Methode Aplikasi Bangunan Krib Sebagai Pelindung terhadap Bahaya Erosi Tebing Sungai ABSTRAK Jurnal APLIKASI Volume 5, Nomor 1, Agustus 008 Methode Aplikasi Bangunan Krib Sebagai Pelindung terhadap Bahaa Erosi Tebing Sungai Suharjoko Staft Pengajar Program Studi D-III Teknik Sipil FTSP ITS email:

Lebih terperinci

BAB 1 Keseimban gan dan Dinamika Rotasi

BAB 1 Keseimban gan dan Dinamika Rotasi BAB 1 Keseimban gan dan Dinamika Rotasi titik berat, dan momentum sudut pada benda tegar (statis dan dinamis) dalam kehidupan sehari-hari.benda tegar (statis dan Indikator Pencapaian Kompetensi: 3.1.1

Lebih terperinci

Solusi Penyelesaian Persamaan Laplace dengan Menggunakan Metode Random Walk Gapar 1), Yudha Arman 1), Apriansyah 2)

Solusi Penyelesaian Persamaan Laplace dengan Menggunakan Metode Random Walk Gapar 1), Yudha Arman 1), Apriansyah 2) Solusi Penyelesaian Persamaan Laplace dengan Menggunakan Metode Random Walk Gapar 1), Yudha Arman 1), Apriansyah 2) 1) Program Studi Fisika Jurusan Fisika Universitas Tanjungpura 2)Program Studi Ilmu Kelautan

Lebih terperinci

MEKANIKA FLUIDA A. Statika Fluida

MEKANIKA FLUIDA A. Statika Fluida MEKANIKA FLUIDA Fluida atau zat alir adalah zat yang dapat mengalir. Zat cair dan gas adalah fluida, jelas bahwa bukan benda tegar, sebab jarak antara dua partikel di dalam fluida tidaklah tetap. Molekul-molekul

Lebih terperinci

BAB III APLIKASI METODE EULER PADA KAJIAN TENTANG GERAK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1.

BAB III APLIKASI METODE EULER PADA KAJIAN TENTANG GERAK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. BAB III APLIKASI METODE EULER PADA KAJIAN TENTANG GERAK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. Menentukan solusi persamaan gerak jatuh bebas berdasarkan pendekatan

Lebih terperinci

PENGGUNAAN METODE HOMOTOPI UNTUK MENYELESAIKAN MASALAH GETARAN TAKLINEAR TIKA PURWANTI

PENGGUNAAN METODE HOMOTOPI UNTUK MENYELESAIKAN MASALAH GETARAN TAKLINEAR TIKA PURWANTI PENGGUNAAN METODE HOMOTOPI UNTUK MENYELESAIKAN MASALAH GETARAN TAKLINEAR TIKA PURWANTI DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2012 ABSTRAK TIKA

Lebih terperinci

JMP : Volume 1 Nomor 1, April 2009 KETAKSAMAAN CAUCHY SCHWARZ PADA RUANG HASIL KALI DALAM-2

JMP : Volume 1 Nomor 1, April 2009 KETAKSAMAAN CAUCHY SCHWARZ PADA RUANG HASIL KALI DALAM-2 JMP : Volume Nomor April 009 KETAKSAMAAN CAUCHY SCHWARZ PADA RUANG HASIL KALI DALAM- Sri Marani Program Studi Matematika Fakultas Sains dan Tekink Universitas Jenderal Soedirman Purwokerto Email : srimar_math_97@ahoo.com

Lebih terperinci

KESETIMBANGAN MOMEN GAYA

KESETIMBANGAN MOMEN GAYA 43 MDUL PERTEMUAN KE 5 MATA KULIAH : ( sks) MATERI KULIAH: Momen gaa, sarat kedua kesetimbangan, resultan gaa sejajar, pusat berat, kopel. PKK BAHASAN: KESETIMBANGAN MMEN GAYA 5. PENGERTIAN MMEN GAYA Besar

Lebih terperinci

Penerapan Metode Multiple Scales untuk Masalah Galloping pada DuaSpans Kabel Transmisi

Penerapan Metode Multiple Scales untuk Masalah Galloping pada DuaSpans Kabel Transmisi Penerapan Metode Multiple Scales untuk Masalah Galloping pada DuaSpans Kabel Transmisi Eristia Arfi 1 1 Prodi Matematika terapan Fakultas Sains dan Teknologi Universitas Islam Negeri Sultan Syarif Kasim

Lebih terperinci

DINAMIKA FLUIDA II. Makalah Mekanika Fluida KELOMPOK 8: YONATHAN SUROSO RISKY MAHADJURA SWIT SIMBOLON

DINAMIKA FLUIDA II. Makalah Mekanika Fluida KELOMPOK 8: YONATHAN SUROSO RISKY MAHADJURA SWIT SIMBOLON Makalah Mekanika Fluida KELOMPOK 8: YONATHAN SUROSO 12300041 RISKY MAHADJURA 12304716 SWIT SIMBOLON 12300379 Jurusan Fisika Universitas Negeri Manado Fakultas Matematika dan Ilmu Pengetahuan Alam Program

Lebih terperinci

Fungsi dan Grafik Diferensial dan Integral

Fungsi dan Grafik Diferensial dan Integral Sudaratno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral ii Darpublic BAB Fungsi Linier.. Fungsi Tetapan Fungsi tetapan bernilai tetap untuk rentang nilai x dari sampai +. Kita tuliskan

Lebih terperinci

METODE FLOATING OBJECT UNTUK PENGUKURAN ARUS MENYUSUR PANTAI

METODE FLOATING OBJECT UNTUK PENGUKURAN ARUS MENYUSUR PANTAI Jurnal Riset dan Teknologi Kelautan (JRTK) Volume 10, Nomor 2, Juli - Desember 2012 METODE FLOATING OBJECT UNTUK PENGUKURAN ARUS MENYUSUR PANTAI Hasdinar Umar Jurusan Teknik Perkapalan - Fakultas Teknik

Lebih terperinci

METODE PSEUDOSPEKTRAL CHEBYSHEV PADA APROKSIMASI TURUNAN FUNGSI

METODE PSEUDOSPEKTRAL CHEBYSHEV PADA APROKSIMASI TURUNAN FUNGSI Jurnal Matematika UNAND Vol. VI No. 1 Hal. 50 57 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND METODE PSEUDOSPEKTRAL CHEBYSHEV PADA APROKSIMASI TURUNAN FUNGSI ILHAM FEBRI RAMADHAN Program Studi Matematika

Lebih terperinci

1. PENDAHULUAN, PROBLEM HIDRAULIKA SEDERHANA UNTUK APLIKASI METODE ELEMEN HINGGA

1. PENDAHULUAN, PROBLEM HIDRAULIKA SEDERHANA UNTUK APLIKASI METODE ELEMEN HINGGA 1. PENDAHULUAN, PROBLEM HIDRAULIKA SEDERHANA UNTUK APLIKASI METODE ELEMEN HINGGA 1.1. Pengantar Problem sederhana yang dapat mengantarkan pembaca kepada pemahaman Metode Elemen Hingga untuk problem hidraulika

Lebih terperinci

Treefy Education Pelatihan OSN Online Nasional Jl Mangga III, Sidoarjo, Jawa WhatsApp:

Treefy Education Pelatihan OSN Online Nasional Jl Mangga III, Sidoarjo, Jawa  WhatsApp: PEMBAHASAN SOAL LATIHAN 2 1. Bola awalnya bergerak dengan lintasan lingkaran hingga sudut sebelum bergerak dengan lintasan parabola seperti sketsa di bawah ini. Koordinat pada titik B adalah. Persamaan

Lebih terperinci

II. TINJAUAN PUSTAKA. Masalah taklinear dalam sains dan teknik dituliskan dalam bentuk

II. TINJAUAN PUSTAKA. Masalah taklinear dalam sains dan teknik dituliskan dalam bentuk 4 II. TINJAUAN PUSTAKA 2.1 Definisi Masalah Taklinear (Urroz, 2001) Masalah taklinear dalam sains dan teknik dituliskan dalam bentuk persamaan taklinear. Persamaan tersebut dituliskan dalam bentuk fungsi

Lebih terperinci

METODE ITERASI ORDE EMPAT DAN ORDE LIMA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Imaddudin ABSTRACT

METODE ITERASI ORDE EMPAT DAN ORDE LIMA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR. Imaddudin ABSTRACT METODE ITERASI ORDE EMPAT DAN ORDE LIMA UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Imaddudin Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

BAB VIII PERSAMAAN DIFERENSIAL (PD)

BAB VIII PERSAMAAN DIFERENSIAL (PD) BAB VIII PERSAMAAN DIFERENSIAL (PD) Banak masalah dalam kehidupan sehari-hari ang dapat dimodelkan dalam persamaan diferensial. Untuk menelesaikan masalah tersebut kita perlu menelesaikan pula persamaan

Lebih terperinci

Fungsi dan Grafik Diferensial dan Integral

Fungsi dan Grafik Diferensial dan Integral Sudaratno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral Darpublic ii BAB 3 Gabungan Fungsi Linier Fungsi-fungsi linier banak digunakan untuk membuat model dari perubahan-perubahan besaran

Lebih terperinci

BAB II LANDASAN TEORI. eigen dan vektor eigen, persamaan diferensial, sistem persamaan diferensial, titik

BAB II LANDASAN TEORI. eigen dan vektor eigen, persamaan diferensial, sistem persamaan diferensial, titik BAB II LANDASAN TEORI Pada bab ini, akan dijelaskan landasan teori yang akan digunakan dalam bab selanjutnya sebagai bahan acuan yang mendukung dan memperkuat tujuan penelitian. Landasan teori yang dimaksud

Lebih terperinci

JAWABAN ANALITIK SEBAGAI VALIDASI JAWABAN NUMERIK PADA MATA KULIAH FISIKA KOMPUTASI ABSTRAK

JAWABAN ANALITIK SEBAGAI VALIDASI JAWABAN NUMERIK PADA MATA KULIAH FISIKA KOMPUTASI ABSTRAK JAWABAN ANALITIK SEBAGAI VALIDASI JAWABAN NUMERIK PADA MATA KULIAH FISIKA KOMPUTASI ABSTRAK Kasus-kasus fisika yang diangkat pada mata kuliah Fisika Komputasi akan dijawab secara numerik. Validasi jawaban

Lebih terperinci

ANALISIS KESTABILAN MODEL DINAMIK ALIRAN FLUIDA DUA FASE PADA SUMUR PANAS BUMI. Jl. Prof. H. Soedarto, S.H. Semarang 50275

ANALISIS KESTABILAN MODEL DINAMIK ALIRAN FLUIDA DUA FASE PADA SUMUR PANAS BUMI. Jl. Prof. H. Soedarto, S.H. Semarang 50275 ANALISIS KESTABILAN MODEL DINAMIK ALIRAN FLUIDA DUA FASE PADA SUMUR PANAS BUMI R Heri SU 1 Widowati 2 R Heru Tj 3 L Niswah 3 1234 Jurusan Matematika FSM Universitas Diponegoro Jl Prof H Soedarto SH Semarang

Lebih terperinci

MODEL MATEMATIKA DENGAN SYARAT BATAS DAN ANALISA ALIRAN FLUIDA KONVEKSI BEBAS PADA PELAT HORIZONTAL. Leli Deswita 1)

MODEL MATEMATIKA DENGAN SYARAT BATAS DAN ANALISA ALIRAN FLUIDA KONVEKSI BEBAS PADA PELAT HORIZONTAL. Leli Deswita 1) MODEL MATEMATIKA DENGAN SYARAT BATAS DAN ANALISA ALIRAN FLUIDA KONVEKSI BEBAS PADA PELAT HORIZONTAL Leli Deswita ) ) Jurusan Matematika FMIPA Universitas Riau Email: deswital@yahoo.com ABSTRACT In this

Lebih terperinci

Bab III Model Proses Deformasi Benang Viscoelastis Linear di Lingkungan Fluida Newton

Bab III Model Proses Deformasi Benang Viscoelastis Linear di Lingkungan Fluida Newton Bab III Model Proses Deformasi Benang Viscoelastis Linear di Lingkungan Fluida Newton III.1 Stress dan Strain Salah satu hal yang penting dalam pengkonstruksian model proses deformasi suatu fluida adalah

Lebih terperinci

Solusi Persamaan Helmholtz untuk Material Komposit

Solusi Persamaan Helmholtz untuk Material Komposit Vol. 13, No. 1, 39-45, Juli 2016 Solusi Persamaan Helmholtz untuk Material Komposit Jeffry Kusuma Abstrak Propagasi gelombang pada material homogen telah banyak dibahas dan didiskusikan oleh banyak ahli.

Lebih terperinci

PENYELESAIAN NUMERIK DARI PERSAMAAN DIFERENSIAL NONLINIER ADVANCE-DELAY

PENYELESAIAN NUMERIK DARI PERSAMAAN DIFERENSIAL NONLINIER ADVANCE-DELAY Jurnal Matematika UNAND Vol. VI No. 1 Hal. 97 104 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENYELESAIAN NUMERIK DARI PERSAMAAN DIFERENSIAL NONLINIER ADVANCE-DELAY YOSI ASMARA Program Studi Magister

Lebih terperinci

METODE TRANSFORMASI DIFERENSIAL UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA JENIS KEDUA. Edo Nugraha Putra ABSTRACT ABSTRAK 1.

METODE TRANSFORMASI DIFERENSIAL UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA JENIS KEDUA. Edo Nugraha Putra ABSTRACT ABSTRAK 1. METODE TRANSFORMASI DIFERENSIAL UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA JENIS KEDUA Edo Nugraha Putra Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar belakang

BAB I PENDAHULUAN 1.1 Latar belakang BAB I PENDAHULUAN Pada bab pendahuluan dijelaskan mengenai latar belakang yang mendasari penelitian ini yang kemudian dirumuskan dalam rumusan masalah. Berdasarkan latar belakang dan rumusan masalah yang

Lebih terperinci

Bab 3 MODEL DAN ANALISIS MATEMATIKA

Bab 3 MODEL DAN ANALISIS MATEMATIKA Bab 3 MODEL DAN ANALISIS MATEMATIKA Pada bab ini akan dimodelkan permasalahan penyebaran virus flu burung yang bergantung pada ruang dan waktu. Pada bab ini akan dibahas pula analisis dari model hingga

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1. Mekanika Fluida Zat yang tersebar di alam dibedakan dalam tiga keadaan (fase), yaitu fase padat, cair dan gas. Karena fase cair dan gas memiliki karakter tidak mempertahankan

Lebih terperinci

BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL

BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL BAB I DASAR-DASAR PEMODELAN MATEMATIKA DENGAN PERSAMAAN DIFERENSIAL Pendahuluan Persamaan diferensial adalah persamaan yang memuat diferensial Kita akan membahas tentang Persamaan Diferensial Biasa yaitu

Lebih terperinci