BAB 2 LANDASAN TEORI

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 2 LANDASAN TEORI"

Transkripsi

1 6 BAB LANDASAN TEORI Pada bab ini akan dibahas beberapa konsep dasar ang akan digunakan sebagai landasan berpikir seperti beberapa teorema dan definisi ang berkaitan dengan penelitian ini. Dengan begitu akan mempermudah dalam hal pembahasan pada bab berikutna.. Persamaan Diferensial Definisi Suatu persamaan diferensial biasa orde n adalah suatu persamaan ang dapat ditulis dalam bentuk ( n ( n F( x,,,..., (.. dimana ( n,,..., ditentukan nilaina oleh x. Peubah bebas x terletak dalam suatu selang I (I boleh berhingga atau tak terhingga, fungsi F diberikan dan fungsi (x tak diketahui. Pada umumna fungsi F dan akan bernilai real. Turunan fungsi (x menurut definisi adalah d. Dengan ketentuan ini, persamaan diferensial F( x, kadang kadang akan ditulis dalam bentuk diferensial d F( x, atau dalam bentuk padanan aljabar.

2 7 Sebagai contoh, persamaan diferensial Dapat ditulis dalam bentuk 3x ( + 3 x + (.. 3x d ( + 3 (..3 x + Ada beberapa tipe persaman diferensial biasa orde satu ang penelesaianna dapat dicari secara eksplisit atau implisit dengan pengintegralan. Dari semua tipe persamaan diferensial biasa orde satu ang mudah diselesaikan, dua hal perlu mendapat perhatian, persamaan diferensial peubah terpisah akni persamaan ang dapat ditulis dalam bentuk P( x atau Px ( Qd ( (..4 Qx ( dan persamaan linier, akni persamaan ang dapat ditulis dalam bentuk a x b x + ( ( (..5 Keduana sering muncul dalam penerapan dan banak tipe-tipe persamaan diferensial lain ang dapat direduksi menjadi salah satu dari kedua tipe itu dengan menggunakan pemetaan sederhana.. Persamaan Diferensial Linier Suatu persamaan diferensial linier orde n adalah persamaan ang berbentuk a ( x + a ( x a ( x + a ( x f( x. (.. n ( n ( n n Misalkan koefisien koefisien an( x, an ( x,..., a( x dan fungsi f(x merupakan fungsi-fungsi ang kontinu pada suatu selang I dan bahwa koefisien pertama an ( x untuk setiap x I. Selang I disebut selang definisi (selang asal dari persamaan diferensial itu. Jika fungsi f identik dengan nol maka disebut persaman homogen. Jika f(x tak identik nol disebut tak homogen. Bila semua koefisien an( x, a ( x,..., a ( x adalah tetap maka disebut persamaan diferensial linear dengan n

3 8 koefisien konstanta, dilain pihak ada persamaan diferensial dengan koefisien-koefisien peubah. Istilah linear berkaitan dengan kenataan bahwa tiap suku dalam persamaan diferensial itu, peubah peubah ( n,,..., berderajat satu atau nol. Penelesaian persamaan diferensial linear orde dua atau lebih tinggi dengan koefisien peubah tidak begitu sederhana. Tidak ada cara untuk mencari penelesaian umum persamaan diferensial linear orde dua (atau lebih tinggi dengan koefisien peubah secara eksplisit, kecuali bila persamaan diferensial itu berbentuk sangat khusus (bentuk Euler atau jika kita tahu salah satu dari penelesaianna. Cara untuk menghindarina adalah dengan hampiran (approximation ke penelesaian persamaan diferensial dengan koefisien peubah. Cara lain adalah mencari suatu penelesaian deret kuasa dari persamaan diferensial dengan koefisien peubah..3 Persamaan Diferensial Sturm-Liouville Di matematika teknik, berbagai himpunan ortogonal penting dari fungsi merupakan solusi dari persamaan diferensial linier orde dua berbentuk [ r( x ] + [ q( x + λp( x] di interval a x bk (.3. memenuhi kondisi dari bentuk k ( a + k ( a dan l ( b + l ( b K (.3. dimana λ adalah parameter dan k, k, l, l adalah konstanta riel tidak nol. Persamaan (.3. adalah persamaan Sturm-liouville. Legendre, Bessel dan persamaan lainna dapat ditulis kedalam bentuk (.3..Kondisi (.3.adalah kondisi batas, jika mengenai titik batas interval x a dan x b. Persamaan diferensial dengan kondisi batas merupakan masalah nilai batas. Masalah nilai batas (.3., (.3. disebut masalah Sturm-Liouville. Permasalahan ini terdapat di berbagai macam aplikasi teknik, contohna berhubungan dengan getaran senar dan membran serta konduksi panas.

4 Dari persamaan (.3., (.3. untuk setiap λ, permasalahan mempunai solusi trivial dimana ( x untuk semua x dalam interval. Bilangan λ ang masalahna mempunai solusi disebut nilai eigen dan solusina disebut fungsi eigen. 9 Contoh : Getaran senar elastis Tentukan nilai eigen dan fungsi eigen dari masalah Sturm-liouville + λ K (a (, ( π K (b Masalah ini muncul,contohna jika sebuah senar elastis (senar biola direntangkan sedikit kemudian posisi akhir di x dan x π dan diikuti getaran. Kemudian (x adalah space function dari penimpangan u( x, t senar, diasumsikan dalam bentuk u ( x, t ( x w( t, dimana t adalah waktu. Solusi: Untuk negatif λ v, solusi umum dari persamaan adalah ( x vx ce + c Dari (b diperoleh c c dan dimana bukan fungsi eigen. Untuk λ juga sama. Untuk positif λ v, solusi umum dari persamaan adalah ( x Acos vx + B sin vx. Dari kondisi batas pertama diperoleh ( A. Kondisi batas kedua ( π B sin vx atau v, ±, ±, K Untuk v diperoleh.untuk λ v,4,9,6k, diambil B, diperoleh ( x sin vx v,, K e vx Maka nilai eigen dari soal adalah λ v dimana v,, K, dan fungsi eigen adalah ( x sin vx dimana v,, K

5 .4 Metode Numerik Metode ini digunakan untuk memperoleh nilai pendekatan dari penelesaian ang berhubungan ke nilai x. Anggap merupakan penelesaian dari masalah d ( x f ( x,, (.4. Anggap h merupakan positif increment di x, dan,... merupakan nilai pendekatan dari di x x + h x x +,... Mulai dengan kondisi ang diketahui di (.4.,, h maka,... diperoleh. Sebuah metode ang hana memerlukan n agar diperoleh n+ disebut starting method. Diketahui,, 3,... Metode ini memerlukan n dan satu atau lebih nilai terdahulu n n,... untuk memperoleh nilai n+. Metode ini disebut continuing, method. Didalam metode numerik, keakuratan dan kesalahan dalam menelesaikan persoalan tidak terlalu dipertimbangkan..5 Metode Euler Anggap menatakan solusi eksak dari masalah nilai ang diberikan d ( x f ( x, (.5. Anggap h menatakan positif increment di x dan x x + h. Maka x x x d f ( x, ( x ( x x x x + f ( x, (.5. ( x

6 Asumsi bahwa f ( x, berada di interval x x x, f ( x, di persamaan (.5.dapat didekati oleh f ( x,. Maka ( x + f ( x x x + f ( x + hf ( x,,, ( x x Selanjutna nilai pendekatan dari di x x diberikan oleh formula + hf x, (.5.3 ( setelah diperoleh, nilai pendekatan,... dari untuk x x x,... diberikan oleh dan seterusna. 3 + hf ( x, + hf ( x Dalam bentuk umum, formulana adalah,, 3 ( hf ( x, (.5.5 n n n n Dengan mengambil h sekecil mungkin dan memproses dengan cara ini, integral dari (.5.dapat disusun sebagai himpunan ang berhubungan dengan nilai x dan., 3 Contoh : Selesaikan dengan metode Euler d x ( Solusi : Diberikan h. Diketahui f ( x, x Nilai diperoleh dari (.5.5untuk nilai ang berbeda dari x diberikan di tabel di bawah ini:

7 X d x Y d Solusi eksak untuk masalah nilai inisial ang diketahui adalah x e 4 x Dengan menggunakan solusi eksak maka nilai diperoleh seperti tabel berikut ini: X x Y Perbandingan kedua nilai dapat dilihat di tabel berikut: X cal Error x exact cal Error exact

8 Error tabel diatas dapat dikurangi dengan mengambil nilai h sekecil mungkin Masalah utama persamaan diferensial adalah menentukan suatu fungsi bila diturunkan dan disubstitusikan memenuhi persamaan diferensial ang diberikan. Misalkan diberikan sebarang fungsi, F( x dikatakan sebagai penelesaian dari suatu persamaan diferensial, jika F( x terdefinisikan dan diferensiabel. Sedemikian rupa, sehingga fungsi itu dan turunanturunanna disubstitusikan pada persamaan memenuhi persaman diferensial secara identik. Secara garis besar konsep penelesaian persamaan diferensial dapat digolongkan menjadi, 3 (a Penelesaian umum, bilamana penelesaian persamaan diferensial memuat sebarang konstanta. (b Penelesaian khusus, bilamana konstanta dari penelesaian umum persamaan diferensial diberikan oleh nilai tertentu. Penelesaian khusus demikian ini dikenal pula dengan masalah sarat batas persamaan diferensial. Ditinjau dari jenis fungsina, penelesaian persamaan diferensial dapat berupa fungsi ang eksplisit, atau fungsi dengan persamaan implisit. Persamaan diferensial ang paling sederhana dari berbagai macam jenis persamaan dferensial adalah persaman diferensial orde satu. Persamaan diferensial jenis ini banak sekali aplikasina dalam bidang ilmu ekonomi, fisika, kimia, teknik elektro, teknik mesin, maupun ilmu rekaasa secara umum. Untuk memudahkan menentukan penelesaian persamaan diferensial linear orde satu, persamaanna digolongkan menjadi: (a Persamaan diferensial variabel terpisah (b Persamaan diferensial homogen (c Persamaan diferensial eksak dan non eksak dengan faktor integrasi (d Persamaan diferensial linear orde satu.

9 4.6 Penelesaian Persamaan Diferensial Linear Homogen dengan Metode Deret Talor. Suatu pernataan deret Talor untuk suatu fungsi f berbentuk f ( x f ( x 3 f( x f( x + f ( x( x x + ( x x + ( x x +...! 3! atau dengan singkat f ( x f x x x ( n n ( (. n n! Contoh: 3 Perhatikan masalah nilai awal + x (, (. Akan dicari suatu uraian deret Talor untuk fungsi ang didefinisikan oleh masalah nilai awal tersebut. Solusi: Uraian deret Talor(Maclaurin berbentuk Diketahui, ( ( 3 x ( ( + ( x+ x + x +...! 3! (, ( dan ( diperoleh: Turunan kedua: x ( (( Turunan ketiga: x ( (( Turunan keempat: iv iv x ( Turunan kelima:

10 5 v v 3 x ( Turunan keenam: x vi 4 iv vi ( 4 Cara ini terus dilakukan untuk mendapatkan suku-suku uraian Talor sebanak ang diperlukan. Pada umumna, cara ini tidak dapat mencari semua suku karena ada tak berhingga banakna suku. Oleh karena itu, banakna suku harus ditentukan pada permulaan. Dengan mensubstitusikan hasil ini kedalam persamaan (, diperoleh 4 x + x + 3! 6! Reduksi Orde Reduksi orde adalah suatu cara untuk mencari penelesaian suatu persamaan diferensial linier tertentu dengan menurunkan orde persamaan diferensial itu kemudian mencari penelesaianna. Cara reduksi ini agak sistematis dan tergantung pada paling sedikit satu penelesaian ang diketahui secara khusus. Penerapan ang paling menarik dari reduksi orde adalah mendapatkan suatu penelesaian kedua ang bebas linear dari suatu persamaan diferensial orde dua dengan koefisien berbeda, asalkan diketahui satu penelesaian tak trivial (tidak identik nol dari persamaan diferensial itu. Metode ini diwujudkan dalam teorema berikut: Teorema Jika suatu penelesaian ang diketahui dari persamaan diferensial a( x + a ( x a( x + a( x (.7. n ( n ( n n ang bersifat bahwa tidak pernah nol dalam selang definisi dari persamaan diferensial tersebut, maka perubahan dari peubah tak bebas u (.7. menghasilkan suatu persamaan diferensial linear orde n untuk u.

11 6 Bukti : Perhatikan kasus n. Sekarang u u u u u u Dengan mensubstitusikan hasil hasil ini kedalam persamaan a( x + a ( x a( x + a( x (bila n dihasilkan n ( n ( n n a ( x[ u + u + u] + a( x[ u + u] + a ( x[ u] [ a( x ] u+ [ a( x + a( x ] u+ [ a( x + a( x + a( x ] u Karena suatu penelesaian persamaan diferensial tersebut, maka a ( x + a ( x + a ( x Jadi, [ a ( x ] u + [ a ( x + a ( x ] u. Dengan mengambil u v, persamaan menjadi persamaan diferensial linear orde satu. [ a ( x ] u + [ a ( x + a ( x ] u.

BAB 1 PERSAMAAN DIFERENSIAL ORDER SATU

BAB 1 PERSAMAAN DIFERENSIAL ORDER SATU BAB PERSAAA DIFERESIAL ORDER SATU PEDAHULUA Persamaan Diferensial adalah salah satu cabang ilmu matematika ang banak digunakan dalam memahami permasalahan-permasalahan di bidang fisika dan teknik Persamaan

Lebih terperinci

KAJIAN MODEL EPIDEMIK SIR DETERMINISTIK DAN STOKASTIK PADA WAKTU DISKRIT. Oleh: Arisma Yuni Hardiningsih

KAJIAN MODEL EPIDEMIK SIR DETERMINISTIK DAN STOKASTIK PADA WAKTU DISKRIT. Oleh: Arisma Yuni Hardiningsih KAJIAN MODEL EPIDEMIK SIR DETERMINISTIK DAN STOKASTIK PADA WAKTU DISKRIT Oleh: Arisma Yuni Hardiningsih 126 1 5 Dosen Pembimbing: Dra. Laksmi Prita Wardhani, M.Si Jurusan Matematika Fakultas Matematika

Lebih terperinci

2 Akar Persamaan NonLinear

2 Akar Persamaan NonLinear 2 Akar Persamaan NonLinear Beberapa metoda untuk mencari akar ang telah dikenal adalah dengan memfaktorkan atau dengan cara Horner Sebagai contoh, untuk mencari akar dari persamaan 2 6 = 0 ruas kiri difaktorkan

Lebih terperinci

Persamaan Diferensial Orde Satu

Persamaan Diferensial Orde Satu Modul Persamaan Diferensial Orde Satu P PENDAHULUAN Prof. SM. Nababan, Ph. ersamaan Diferensial (PD) adalah salah satu cabang matematika ang banak digunakan untuk menjelaskan masalah-masalah fisis. Masalahmasalah

Lebih terperinci

BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan

BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan BAB II KAJIAN TEORI Pada bab ini akan dibahas beberapa hal yang digunakan sebagai landasan pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan beberapa kajian matematika,

Lebih terperinci

MODUL MATEMATIKA II. Oleh: Dr. Eng. LILYA SUSANTI

MODUL MATEMATIKA II. Oleh: Dr. Eng. LILYA SUSANTI MODUL MATEMATIKA II Oleh: Dr. Eng. LILYA SUSANTI DEPARTEMEN RISET TEKNOLOGI DAN PENDIDIKAN TINGGI UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL KATA PENGANTAR Puji sukur kehadirat Allah SWT

Lebih terperinci

Matematika Teknik I. Prasyarat : Kalkulus I, Kalkulus II, Aljabar Vektor & Kompleks

Matematika Teknik I. Prasyarat : Kalkulus I, Kalkulus II, Aljabar Vektor & Kompleks Kode Mata Kuliah : TE 318 SKS : 3 Matematika Teknik I Prasarat : Kalkulus I, Kalkulus II, Aljabar Vektor & Kompleks Tujuan : Mahasiswa memahami permasalahan teknik dalam bentuk PD atau integral, serta

Lebih terperinci

PERSAMAAN DIFFERENSIAL ORDE I. Nurdinintya Athari

PERSAMAAN DIFFERENSIAL ORDE I. Nurdinintya Athari PERSAMAAN DIFFERENSIAL ORDE I Nurdininta Athari Definisi PERSAMAAN DIFERENSIAL Persamaan diferensial adalah suatu persamaan ang memuat satu atau lebih turunan fungsi ang tidak diketahui. Jika persamaan

Lebih terperinci

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran.

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran. 4 INTEGRAL Definisi 4.0. Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika untuk setiap D. F () f() Fungsi integral tak tentu f dinotasikan dengan f ( ) d dan f () dinamakan

Lebih terperinci

PERSAMAAN DIFERENSIAL I PERSAMAAN DIFERENSIAL BIASA

PERSAMAAN DIFERENSIAL I PERSAMAAN DIFERENSIAL BIASA PERSAMAAN DIFERENSIAL I PERSAMAAN DIFERENSIAL BIASA Persamaan Diferensial Biasa 1. PDB Tingkat Satu (PDB) 1.1. Persamaan diferensial 1.2. Metode pemisahan peubah dan PD koefisien fungsi homogen 1.3. Persamaan

Lebih terperinci

BAB II KAJIAN TEORI. syarat batas, deret fourier, metode separasi variabel, deret taylor dan metode beda

BAB II KAJIAN TEORI. syarat batas, deret fourier, metode separasi variabel, deret taylor dan metode beda BAB II KAJIAN TEORI Pada bab ini akan dibahas tentang beberapa teori dasar yang digunakan sebagai landasan pembahasan pada bab III. Beberapa teori dasar yang dibahas, diantaranya teori umum tentang persamaan

Lebih terperinci

Sistem Persamaan Linier FTI-UY

Sistem Persamaan Linier FTI-UY BAB V Sistem Persamaan Linier Salah satu hal penting dalam aljabar linear dan dalam banak masalah matematika terapan adalah menelesaikan suatu sistem persamaan linear. Representasi Sistem Persamaan Linear

Lebih terperinci

MATEMATIKA BISNIS BAB 2 FUNGSI LINIER

MATEMATIKA BISNIS BAB 2 FUNGSI LINIER MATEMATIKA BISNIS BAB FUNGSI LINIER Hikmah Agustin, S.P.,MM DEFINISI FUNGSI Fungsi adalah hubungan matematis antara suatu variabel dengan variabel lainna. Unsur-unsur pembentukan fungsi : 1. Variabel Variabel

Lebih terperinci

Persamaan Diferensial

Persamaan Diferensial TKS 4003 Matematika II Persamaan Diferensial Linier Homogen Tk. 2 (Differential: Linier Homogen Orde 2) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya PD linier homogen orde 2 Bentuk

Lebih terperinci

PENYELESAIAN MASALAH NILAI EIGEN UNTUK PERSAMAAN DIFERENSIAL STURM-LIOUVILLE DENGAN METODE NUMEROV

PENYELESAIAN MASALAH NILAI EIGEN UNTUK PERSAMAAN DIFERENSIAL STURM-LIOUVILLE DENGAN METODE NUMEROV Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 04, No. 3 (2015), hal 415-422 PENYELESAIAN MASALAH NILAI EIGEN UNTUK PERSAMAAN DIFERENSIAL STURM-LIOUVILLE DENGAN METODE NUMEROV Iyut Riani, Nilamsari

Lebih terperinci

Hendra Gunawan. 23 April 2014

Hendra Gunawan. 23 April 2014 MA1201 MATEMATIKA 2A Hendra Gunawan Semester II, 2013/2014 23 April 2014 Kuliah ang Lalu 13.11 Integral Lipat Dua atas Persegi Panjang 13.2 Integral Berulang 13.3 33Integral Lipat Dua atas Daerah Bukan

Lebih terperinci

BAB VIII PERSAMAAN DIFERENSIAL (PD)

BAB VIII PERSAMAAN DIFERENSIAL (PD) BAB VIII PERSAMAAN DIFERENSIAL (PD) Banak masalah dalam kehidupan sehari-hari ang dapat dimodelkan dalam persamaan diferensial. Untuk menelesaikan masalah tersebut kita perlu menelesaikan pula persamaan

Lebih terperinci

PENERAPAN METODE ELEMEN HINGGA UNTUK SOLUSI PERSAMAAN STURM-LIOUVILLE

PENERAPAN METODE ELEMEN HINGGA UNTUK SOLUSI PERSAMAAN STURM-LIOUVILLE PENERAPAN METODE ELEMEN HINGGA UNTUK SOLUSI PERSAMAAN STURM-LIOUVILLE Viska Noviantri Mathematics & Statistics Department, School of Computer Science, Binus University Jln. K.H. Syahdan No. 9, Palmerah,

Lebih terperinci

Adalah : hubungan antara variabel bebas x, variabel

Adalah : hubungan antara variabel bebas x, variabel Adalah : hubungan antara variabel bebas, variabel Bentuk Umum : bebas dan turunanna. d d F(,,, n d,..., ) n Persamaan differensial (PD) menatakan hubungan dinamik, maksudna hubungan tersebut memuat besaran

Lebih terperinci

Unit 2 KONSEP DASAR ALJABAR. Clara Ika Sari Pendahuluan

Unit 2 KONSEP DASAR ALJABAR. Clara Ika Sari Pendahuluan Unit KONSEP DASAR ALJABAR Clara Ika Sari Pendahuluan P ada unit ini kita akan mempelajari beberapa konsep dasar dalam aljabar seperti persamaan dan pertidaksamaan ang berbentuk linear dan kuadrat, serta

Lebih terperinci

UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK

UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK UJI KONVERGENSI Januari 208 Tim Dosen Kalkulus 2 TPB ITK Uji Integral Teorema 3 Jika + k= u k adalah deret dengan suku-suku tak negatif, dan jika ada suatu konstanta M sedemikian hingga s n = u + u 2 +

Lebih terperinci

3.2 Teorema-Teorema Limit Fungsi

3.2 Teorema-Teorema Limit Fungsi . Teorema-Teorema Limit Fungsi Menghitung it fungsi di suatu titik dengan menggunakan definisi dan pembuktian seperti ang telah diuraikan di atas adalah pekerjaan rumit. Semakin rumit bentuk fungsina,

Lebih terperinci

PDP linear orde 2 Agus Yodi Gunawan

PDP linear orde 2 Agus Yodi Gunawan PDP linear orde 2 Agus Yodi Gunawan Pada bagian ini akan dipelajari tiga jenis persamaan diferensial parsial (PDP) linear orde dua yang biasa dijumpai pada masalah-masalah dunia nyata, yaitu persamaan

Lebih terperinci

Fungsi Peubah Banyak. Modul 1 PENDAHULUAN

Fungsi Peubah Banyak. Modul 1 PENDAHULUAN Modul 1 Fungsi Peubah Banak Prof. Dr. Bambang Soedijono PENDAHULUAN D alam modul ini dibahas masalah Fungsi Peubah Banak. Dengan sendirina para pengguna modul ini dituntut telah menguasai pengertian mengenai

Lebih terperinci

yang tak terdefinisikan dalam arti keberadaannya tidak perlu didefinisikan. yang sejajar dengan garis yang diberikan tersebut.

yang tak terdefinisikan dalam arti keberadaannya tidak perlu didefinisikan. yang sejajar dengan garis yang diberikan tersebut. 3 Gariis Lurus Dalam geometri aksiomatik/euclide konsep garis merupakan salah satu unsur ang tak terdefinisikan dalam arti keberadaanna tidak perlu didefinisikan. Karakteristik suatu garis diberikan pada

Lebih terperinci

Nurdinintya Athari PERSAMAAN DIFFERENSIAL ORDE 2

Nurdinintya Athari PERSAMAAN DIFFERENSIAL ORDE 2 Nurdininta Athari PERSAMAAN DIFFERENSIAL ORDE 2 2 PDB ORDE II Bentuk umum : + p() + g() = r() p(), g() disebut koefisien jika r() = 0, maka Persamaan Differensial diatas disebut homogen, sebalikna disebut

Lebih terperinci

KONSEP DASAR PERSAMAAN DIFERENSIAL

KONSEP DASAR PERSAMAAN DIFERENSIAL KONSEP DASAR PERSAMAAN DIFERENSIAL A. PENGERTIAN PERSAMAAN DIFERENSIAL Dalam pelajaran kalkulus, kita telah berkenalan dan mengkaji berbagai macam metode untuk mendiferensialkan suatu fungsi (dasar). Sebagai

Lebih terperinci

Triyana Muliawati, S.Si., M.Si.

Triyana Muliawati, S.Si., M.Si. SI 2201 - METODE NUMERIK Triyana Muliawati, S.Si., M.Si. Prodi Matematika Institut Teknologi Sumatera Lampung Selatan 35365 Hp. +6282260066546, Email. triyana.muliawati@ma.itera.ac.id 1. Pengenalan Metode

Lebih terperinci

PENDAHULUAN KALKULUS

PENDAHULUAN KALKULUS . BILANGAN REAL PENDAHULUAN KALKULUS Ada beberapa jenis bilangan ang telah kita kenal ketika di bangku sekolah. Bilangan-bilangan tersebut adalah bilangan asli, bulat, cacah, rasional, irrasional. Tahu

Lebih terperinci

3.2 Teorema-Teorema Limit Fungsi

3.2 Teorema-Teorema Limit Fungsi . Teorema-Teorema Limit Fungsi Menghitung it fungsi di suatu titik dengan menggunakan definisi dan pembuktian seperti ang telah diuraikan di atas adalah pekerjaan rumit. Semakin rumit bentuk fungsina,

Lebih terperinci

! " #" # $# % " "& " # ' ( ) #

!  # # $# %  &  # ' ( ) # ! "#"# $#%""&"#'# "*# *" " " #,#" " "# * # ""- # # "! " #" # $#%""&"# '# #" &# '&$'# # "'/0& " # #'"# ## # # #"""--* # #* #"* "'# #* 0 # # ***0" #""# ** #""# " #,#"##' ##' #*"#"#"'#"" #"#" ## # # "*###

Lebih terperinci

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. Menjelaskan cara penyelesaian soal dengan

Lebih terperinci

Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL

Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL A. PENGERTIAN PERSAMAAN DIFERENSIAL Dalam pelajaran kalkulus, kita telah berkenalan dan mengkaji berbagai macam metode untuk mendiferensialkan suatu

Lebih terperinci

Solusi Analitis Persamaan-persamaan Diferensial Orde-1 dengan Metode Analitis Persamaan Diferensial dengan konfigurasi VARIABEL TERPISAH

Solusi Analitis Persamaan-persamaan Diferensial Orde-1 dengan Metode Analitis Persamaan Diferensial dengan konfigurasi VARIABEL TERPISAH Solusi Analitis Persamaan-persamaan Diferensial Orde- dengan Metode Analitis.. Persamaan Diferensial dengan konfigurasi VARIABEL TERPISAH a. Bentuk Umum: f ( ) g( ), f dan g fungsi sembarang. b. Metode

Lebih terperinci

I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai.

I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai. I. PENDAHULUAN 1.1 Latar Belakang dan Masalah Dalam kehidupan, polusi yang ada di sungai disebabkan oleh limbah dari pabrikpabrik dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Didunia nyata banyak soal matematika yang harus dimodelkan terlebih dahulu untuk mempermudah mencari solusinya. Di antara model-model tersebut dapat berbentuk sistem

Lebih terperinci

DIKTAT. Persamaan Diferensial

DIKTAT. Persamaan Diferensial Diktat Persamaan Diferensial; Dwi Lestari, M.S. 3 DIKTAT Persamaan Diferensial Disusun oleh: Dwi Lestari, M.S email: dwilestari@un.a.id JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

Lebih terperinci

FUNGSI TRIGONOMETRI, FUNGSI EKSPONENSIAL, dan FUNGSI LOGARITMA

FUNGSI TRIGONOMETRI, FUNGSI EKSPONENSIAL, dan FUNGSI LOGARITMA FUNGSI TRIGONOMETRI, FUNGSI EKSPONENSIAL, dan FUNGSI LOGARITMA Makalah ini disusun untuk memenuhi tugas Mata Kuliah Kalkulus 1 Dosen Pengampu : Muhammad Istiqlal, M.Pd Disusun Oleh : 1. Sufi Anisa (23070160086)

Lebih terperinci

TURUNAN DALAM RUANG DIMENSI-n

TURUNAN DALAM RUANG DIMENSI-n TURUNAN DALAM RUANG DIMENSI-n A. Fungsi Dua Variabel atau Lebih Dalam subbab ini, fungsi dua variabel atau lebih dikaji dari tiga sudut pandang: secara verbal (melalui uraian dalam kata-kata) secara aljabar

Lebih terperinci

BAB II LANDASAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi

BAB II LANDASAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi BAB II LANDASAN TEORI Pada bab ini akan dibahas tentang landasan teori yang digunakan pada bab selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi yang diuraikan berupa definisi-definisi

Lebih terperinci

8. Deret Fourier yang Diperumum dan Hampiran Terbaik di L 2 (a, b)

8. Deret Fourier yang Diperumum dan Hampiran Terbaik di L 2 (a, b) 8. Deret Fourier yang Diperumum dan Hampiran Terbaik di L (a, b) 8.1 Deret Fourier yang Diperumum Jika {ϕ n } 1 adalah basis ortonormal untuk L (a, b) dan f L (a, b), maka f, ϕ n disebut koefisien Fourier

Lebih terperinci

Pengantar Metode Perturbasi Bab 1. Pendahuluan

Pengantar Metode Perturbasi Bab 1. Pendahuluan Pengantar Metode Perturbasi Bab 1. Pendahuluan Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas PAM 454 KAPITA SELEKTA MATEMATIKA TERAPAN II Semester Ganjil 2016/2017 Review Teori Dasar Terkait

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Persamaan diferensial adalah persamaan yang memuat derivatif dari satu atau lebih variabel tak bebas terhadap satu atau lebih variabel bebas. Persamaan diferensial

Lebih terperinci

METODE ITERASI VARIASIONAL PADA MASALAH STURM-LIOUVILLE

METODE ITERASI VARIASIONAL PADA MASALAH STURM-LIOUVILLE METODE ITERASI VARIASIONAL PADA MASALAH STURM-LIOUVILLE oleh HILDA ANGGRIYANA M0109035 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Sains Matematika JURUSAN

Lebih terperinci

II. TINJAUAN PUSTAKA. variabel x, sehingga nilai y bergantung pada nilai x. Adanya relasi kebergantungan

II. TINJAUAN PUSTAKA. variabel x, sehingga nilai y bergantung pada nilai x. Adanya relasi kebergantungan II. TINJAUAN PUSTAKA 2.1 Persamaan Diferensial Differential Equation Fungsi mendeskripsikan bahwa nilai variabel y ditentukan oleh nilai variabel x, sehingga nilai y bergantung pada nilai x. Adanya relasi

Lebih terperinci

SOLUSI PERSAMAAN DIFFERENSIAL

SOLUSI PERSAMAAN DIFFERENSIAL SOLUSI PERSAMAAN DIFFERENSIAL PENGERTIAN SOLUSI. Solusi dari suatu persamaan differensial adalah persamaan yang memuat variabelvariabel dari persamaan differensial dan memenuhi persamaan differensial yang

Lebih terperinci

BAB II LANDASAN TEORI. Pada Bab Landasan Teori ini akan dibahas mengenai definisi-definisi, dan

BAB II LANDASAN TEORI. Pada Bab Landasan Teori ini akan dibahas mengenai definisi-definisi, dan BAB II LANDASAN TEORI Pada Bab Landasan Teori ini akan dibahas mengenai definisi-definisi, dan teorema-teorema yang akan menjadi landasan untuk pembahasan pada Bab III nanti, diantaranya: fungsi komposisi,

Lebih terperinci

BAB II PERSAMAAN TINGKAT SATU DERAJAT SATU

BAB II PERSAMAAN TINGKAT SATU DERAJAT SATU BAB II PERSAAA TIGKAT SATU DERAJAT SATU Standar Kompetensi Setelah mempelajari pokok bahasan ini diharapkan mahasiswa dapat memahami ara-ara menentukan selesaian umum persamaan diferensial tingkat satu

Lebih terperinci

TINJAUAN MATA KULIAH... Kegiatan Belajar 2: PD Variabel Terpisah dan PD Homogen Latihan Rangkuman Tes Formatif

TINJAUAN MATA KULIAH... Kegiatan Belajar 2: PD Variabel Terpisah dan PD Homogen Latihan Rangkuman Tes Formatif iii Daftar Isi TINJAUAN MATA KULIAH... xiii MODUL 1: PERSAMAAN DIFERENSIAL ORDE SATU 1.1 Pengertian PD Orde Satu dan Solusinya... 1.2 Latihan... 1.7 Rangkuman... 1.9 Tes Formatif 1..... 1.10 PD Variabel

Lebih terperinci

TINJAUAN PUSTAKA. Jika y = f(x) dengan f(x) adalah suatu fungsi yang terdiferensialkan terhadap

TINJAUAN PUSTAKA. Jika y = f(x) dengan f(x) adalah suatu fungsi yang terdiferensialkan terhadap II. TINJAUAN PUSTAKA 2.1 Diferensial Jika y = f(x) dengan f(x) adalah suatu fungsi yang terdiferensialkan terhadap variabel bebas x, maka dy adalah diferensial dari variabel tak bebas (terikat) y, yang

Lebih terperinci

BAB V DIAGONALISASI DAN DEKOMPOSISI MATRIKS. Sub bab ini membahas tentang faktorisasi matriks A berorde nxn ke dalam hasil

BAB V DIAGONALISASI DAN DEKOMPOSISI MATRIKS. Sub bab ini membahas tentang faktorisasi matriks A berorde nxn ke dalam hasil BAB V DIAGONALISASI DAN DEKOMPOSISI MATRIKS. Diagonalisasi Sub bab ini membahas tentang faktorisasi matriks A berorde nn ke dalam hasil kali berbentuk PDP, di mana D adalah matriks diagonal. Jika diperoleh

Lebih terperinci

BAB III HASIL DAN PEMBAHASAN. analitik dengan metode variabel terpisah. Selanjutnya penyelesaian analitik dari

BAB III HASIL DAN PEMBAHASAN. analitik dengan metode variabel terpisah. Selanjutnya penyelesaian analitik dari BAB III HASIL DAN PEMBAHASAN Pada bab ini akan dibahas penurunan model persamaan panas dimensi satu. Setelah itu akan ditentukan penyelesaian persamaan panas dimensi satu secara analitik dengan metode

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Aljabar Linear Definisi 2.1.1 Matriks Matriks A adalah susunan persegi panjang yang terdiri dari skalar-skalar yang biasanya dinyatakan dalam bentuk berikut: [ ] Definisi 2.1.2

Lebih terperinci

BAB II LANDASAN TEORI. dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta

BAB II LANDASAN TEORI. dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta BAB II LANDASAN TEORI Pada bab ini akan diuraikan beberapa teori-teori yang digunakan sebagai acuan dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta teorema-teorema

Lebih terperinci

BAB VI PENYELESAIAN DERET UNTUK PERSAMAAN DIFERENSIAL

BAB VI PENYELESAIAN DERET UNTUK PERSAMAAN DIFERENSIAL BAB VI PENYELESAIAN DERET UNTUK PERSAMAAN DIFERENSIAL Bila persamaan diferensial linear homogen memiliki koefisien constant maka persamaan tersebut dapat diselesaikan dengan metoda aljabar (seperti yang

Lebih terperinci

Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk :

Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk : Persamaan Linear Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk : a x + a y = b Persamaan jenis ini disebut sebuah persamaan linear dalam peubah x dan y. Definisi

Lebih terperinci

PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A

PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A PENGANTAR MATEMATIKA TEKNIK 1 By : Suthami A MATEMATIKA TEKNIK 1??? MATEMATIKA TEKNIK 1??? MATEMATIKA TEKNIK Matematika sebagai ilmu dasar yang digunakan sebagai alat pemecahan masalah di bidang keteknikan

Lebih terperinci

PERSAMAAN DIFERENSIAL LINIER NON HOMOGEN

PERSAMAAN DIFERENSIAL LINIER NON HOMOGEN LINIER NON HOMOGEN Contoh PD linier non homogen orde 2. Bentuk umum persamaan PD Linier Non Homogen Orde 2, adalah sebagai berikut : y + f(x) y + g(x) y = r(x) ( 2-35) Solusi umum y(x) akan didapatkan

Lebih terperinci

BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU

BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU Sistem persamaan linear orde/ tingkat satu memiliki bentuk standard : = = = = = = = = = + + + + + + + + + + Diasumsikan koefisien = dan fungsi adalah menerus

Lebih terperinci

yang tak terdefinisikan dalam arti keberadaannya tidak perlu didefinisikan.

yang tak terdefinisikan dalam arti keberadaannya tidak perlu didefinisikan. 3 Gariis Lurus Dalam geometri aksiomatik/euclide konsep garis merupakan salah satu unsur ang tak terdefinisikan dalam arti keberadaanna tidak perlu didefinisikan. Karakteristik suatu garis diberikan pada

Lebih terperinci

III PEMBAHASAN. 3.1 Analisis Metode. dan (2.52) masing-masing merupakan penyelesaian dari persamaan

III PEMBAHASAN. 3.1 Analisis Metode. dan (2.52) masing-masing merupakan penyelesaian dari persamaan 6, 1 (2.52) Berdasarkan persamaan (2.52), maka untuk 0 1 masing-masing memberikan persamaan berikut:, 0,0, 0, 1,1, 1. Sehingga menurut persamaan (2.51) persamaan (2.52) diperoleh bahwa fungsi, 0, 1 masing-masing

Lebih terperinci

TUGAS MANDIRI KULIAH PERSAMAAN DIFERENSIAL BIASA Tahun Ajaran 2016/2017

TUGAS MANDIRI KULIAH PERSAMAAN DIFERENSIAL BIASA Tahun Ajaran 2016/2017 A. Pengantar Persamaan Diferensial TUGAS MANDIRI KULIAH PERSAMAAN DIFERENSIAL BIASA Tahun Ajaran 016/017 1. Tentukan hasil turunan dari fungsi sebagai berikut: a. f() = c e b. f() = c cos k + c sin k c.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Persamaan Diferensial Banyak sekali masalah terapan dalam ilmu teknik, ilmu fisika, biologi, dan lain-lain yang telah dirumuskan dengan model matematika dalam bentuk pesamaan

Lebih terperinci

Persamaan Diferensial

Persamaan Diferensial TKS 4003 Matematika II Persamaan Diferensial Linier Homogen & Non Homogen Tk. n (Differential: Linier Homogen & Non Homogen Orde n) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan

Lebih terperinci

Penentuan Distribusi Suhu pada Permukaan Geometri Tak Tentu Menggunakan Metode Random Walk Balduyanus Yosep Godja a), Andi Ihwan a)*, Apriansyah b)

Penentuan Distribusi Suhu pada Permukaan Geometri Tak Tentu Menggunakan Metode Random Walk Balduyanus Yosep Godja a), Andi Ihwan a)*, Apriansyah b) POSITRON, Vol. VI, No. 1 (1), Hal. 17 - ISSN : 1-9 Penentuan Distribusi Suhu pada Permukaan Geometri Tak Tentu Menggunakan Metode Random Walk Balduanus Yosep Godja a), Andi Ihwan a)*, Apriansah b) a Jurusan

Lebih terperinci

Bab I. Fungsi Dua Peubah atau Lebih. Pengantar

Bab I. Fungsi Dua Peubah atau Lebih. Pengantar Bab I Fungsi Dua Peubah atau Lebih Pengantar Seperti halna dengan fungsi satu peubah kita dapat mendefinisikan fungsi dua peubah atau lebih sebagai pemetaan dan sebagai pasangan berurut.fungsi dengan peubah

Lebih terperinci

Dari contoh di atas fungsi yang tak diketahui dinyatakan dengan y dan dianggap

Dari contoh di atas fungsi yang tak diketahui dinyatakan dengan y dan dianggap BAB II TINJAUAN PUSTAKA A. Persamaan Diferensial Definisi 2.1 Persamaan diferensial Persamaan diferensial adalah suatu persamaan yang memuat variabel bebas, variabel tak bebas, dan derivatif-derivatif

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah

BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Pemodelan matematika merupakan bidang matematika yang berusaha untuk merepresentasikan dan menjelaskan masalah dunia nyata dalam pernyataan matematik. Representasi

Lebih terperinci

MODIFIKASI METODE RUNGE-KUTTA ORDE-4 KUTTA BERDASARKAN RATA-RATA HARMONIK TUGAS AKHIR. Oleh : EKA PUTRI ARDIANTI

MODIFIKASI METODE RUNGE-KUTTA ORDE-4 KUTTA BERDASARKAN RATA-RATA HARMONIK TUGAS AKHIR. Oleh : EKA PUTRI ARDIANTI MODIFIKASI METODE RUNGE-KUTTA ORDE-4 KUTTA BERDASARKAN RATA-RATA HARMONIK TUGAS AKHIR Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika Oleh : EKA PUTRI ARDIANTI

Lebih terperinci

dy = f(x,y) = p(x) q(y), dx dy = p(x) dx,

dy = f(x,y) = p(x) q(y), dx dy = p(x) dx, 5. Persamaan Diferensian Dengan Variabel Terpisah Persamaan diferensial berbentuk y = f(), dengan f suatu fungsi kontinu pada suatu interval real, dapat dicari penyelesaiannya dengan cara mengintegralkan

Lebih terperinci

PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL LINEAR HOMOGEN DENGAN KOEFISIEN KONSTAN MENGGUNAKAN METODE ADAMS BASHFORTH MOULTON

PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL LINEAR HOMOGEN DENGAN KOEFISIEN KONSTAN MENGGUNAKAN METODE ADAMS BASHFORTH MOULTON Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 03, No. 2 (2014), hal 125 134. PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL LINEAR HOMOGEN DENGAN KOEFISIEN KONSTAN MENGGUNAKAN METODE ADAMS BASHFORTH

Lebih terperinci

PERSAMAAN DIFFERENSIAL LINIER

PERSAMAAN DIFFERENSIAL LINIER PERSAMAAN DIFFERENSIAL LINIER Persamaan Differensial Linier Pengertian : Suatu persamaan differensial orde satu dikatakan linier jika persamaan tersebut dapat dituliskan sbb: y + p x y = r(x) (1) linier

Lebih terperinci

SYARAT PERLU DAN SYARAT CUKUP MATRIKS CLEAN PADA M 2 (Z) ABSTRACT

SYARAT PERLU DAN SYARAT CUKUP MATRIKS CLEAN PADA M 2 (Z) ABSTRACT SYARAT PERLU DAN SYARAT CUKUP MATRIKS CLEAN PADA M 2 (Z) Miftakhul Rohmah 1, Sri Gemawati 2, Asli Sirait 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu

Lebih terperinci

Sudaryatno Sudirham. Integral dan Persamaan Diferensial

Sudaryatno Sudirham. Integral dan Persamaan Diferensial Sudaratno Sudirham Integral dan Persamaan Diferensial Bahan Kuliah Terbuka dalam format pdf tersedia di www.buku-e.lipi.go.id dalam format pps beranimasi tersedia di www.ee-cafe.org Bahasan akan mencakup

Lebih terperinci

BAB 2 PERSAMAAN DIFFERENSIAL BIASA

BAB 2 PERSAMAAN DIFFERENSIAL BIASA BAB 2 BIASA 2.1. KONSEP DASAR Persamaan Diferensial (PD) Biasa adalah persamaan yang mengandung satu atau beberapa penurunan y (varibel terikat) terhadap x (variabel bebas) yang tidak spesifik dan ditentukan

Lebih terperinci

II LANDASAN TEORI. Contoh. Ditinjau dari sistem yang didefinisikan oleh:

II LANDASAN TEORI. Contoh. Ditinjau dari sistem yang didefinisikan oleh: 5 II LANDASAN TEORI 2.1 Keterkontrolan Untuk mengetahui persoalan sistem kontrol mungkin tidak ada, jika sistem yang ditinjau tidak terkontrol. Walaupun sebagian besar sistem terkontrol ada, akan tetapi

Lebih terperinci

MATEMATIKA TEKNIK 1 3 SKS TEKNIK ELEKTRO UDINUS

MATEMATIKA TEKNIK 1 3 SKS TEKNIK ELEKTRO UDINUS MATEMATIKA TEKNIK 3 SKS TEKNIK ELEKTRO UDINUS BAB I BILANGAN KOMPLEKS Dengan memiliki sistem bilangan real R saja kita tidak dapat menelesaikan persamaan +=0. Jadi disamping bilangan real kita perlu bilangan

Lebih terperinci

I. Sistem Persamaan Diferensial Linier Orde 1 (Review)

I. Sistem Persamaan Diferensial Linier Orde 1 (Review) I. Sistem Persamaan Diferensial Linier Orde (Review) November 0 () I. Sistem Persamaan Diferensial Linier Orde (Review) November 0 / 6 Teori Umum Bentuk umum sistem persamaan diferensial linier orde satu

Lebih terperinci

Matematika Teknik 1, Bab 3 BAB III LIMIT. (Pertemuan ke 4)

Matematika Teknik 1, Bab 3 BAB III LIMIT. (Pertemuan ke 4) BAB III LIMIT (Pertemuan ke 4) PENDAHULUAN Diskripsi singkat Pada bab ini dibahas tentang limit, antara lain mengenai pengertian limit secara intuisi/tak formal, pengertian persis tentang limit, pengkajian

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab II ini dibahas teori-teori pendukung yang digunakan untuk pembahasan selanjutnya yaitu tentang Persamaan Nonlinier, Metode Newton, Aturan Trapesium, Rata-rata Aritmatik dan

Lebih terperinci

FUNGSI BESSEL. 1. PERSAMAAN DIFERENSIAL BESSEL Fungsi Bessel dibangun sebagai penyelesaian persamaan diferensial.

FUNGSI BESSEL. 1. PERSAMAAN DIFERENSIAL BESSEL Fungsi Bessel dibangun sebagai penyelesaian persamaan diferensial. FUNGSI BESSEL 1. PERSAMAAN DIFERENSIAL BESSEL Fungsi Bessel dibangun sebagai penyelesaian persamaan diferensial. x 2 y ''+xy'+(x 2 - n 2 )y = 0, n ³ 0 (1) yang dinamakan persamaan diferensial Bessel. Penyelesaian

Lebih terperinci

BAB III PD LINIER HOMOGEN

BAB III PD LINIER HOMOGEN BAB III PD LINIER HOMOGEN Kompetensi Mahasiswa diharapkan. Mampu menentukan selesaian umum dari PD linier homogen orde dua dengan jenis akar-akar karakteristik ang berbeda-beda. Memahami pengertian kebebaslinieran

Lebih terperinci

kkkk EKSPONEN 1. SIMAK UI Matematika Dasar 911, 2009 A. 4 2 B. 3 2 C. 2 D. 1 E. 0 Solusi: [B] 2. SIMAK UI Matematika Dasar 911, 2009 Jika x1

kkkk EKSPONEN 1. SIMAK UI Matematika Dasar 911, 2009 A. 4 2 B. 3 2 C. 2 D. 1 E. 0 Solusi: [B] 2. SIMAK UI Matematika Dasar 911, 2009 Jika x1 kkkk. SIMAK UI Matematika Dasar 9, 009... EKSPONEN A. 4 B. C. D. E. 0 Solusi: [B]. SIMAK UI Matematika Dasar 9, 009 Jika dan merupakan akar-akar persamaan 6, maka... A. B. C. D. E. Solusi: [C] 6 6 0. SIMAK

Lebih terperinci

PROGRAM LINIER. B. Grafik Himpunan Penyelesaian Pertidaksamaan Linier Dua Variabel

PROGRAM LINIER. B. Grafik Himpunan Penyelesaian Pertidaksamaan Linier Dua Variabel PROGRAM LINIER A. Pengertian Program Linier Program linier adalah suatu cara ang dapat digunakan untuk memecahkan permasalahan ang berhubungan dengan optimasi linier (nilai maksimum atau nilai minimum).

Lebih terperinci

9. Teori Aproksimasi

9. Teori Aproksimasi 44 Hendra Gunawan 9 Teori Aproksimasi Mulai bab ini tema kita adalah aproksimasi fungsi dan interpolasi Diberikan sebuah fungsi f, baik secara utuh ataupun hanya beberapilai di titik-titik tertentu saja,

Lebih terperinci

BAB II KAJIAN TEORI. dalam penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema,

BAB II KAJIAN TEORI. dalam penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, BAB II KAJIAN TEORI Pada bab ini akan dibahas tentang beberapa hal yang menjadi landasan dalam penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan beberapa kajian matematika,

Lebih terperinci

II. TINJAUAN PUSTAKA. Model Matematika adalah uraian secara matematika (sering kali menggunakan

II. TINJAUAN PUSTAKA. Model Matematika adalah uraian secara matematika (sering kali menggunakan II. TINJAUAN PUSTAKA 2.1 Model Matematika Model Matematika adalah uraian secara matematika (sering kali menggunakan fungsi atau persamaan) dari fenomena dunia nyata seperti populasi, permintaan untuk suatu

Lebih terperinci

Persamaan diferensial adalah suatu persamaan yang memuat satu atau lebih turunan fungsi yang tidak diketahui.

Persamaan diferensial adalah suatu persamaan yang memuat satu atau lebih turunan fungsi yang tidak diketahui. 1 Persamaan diferensial adalah suatu persamaan yang memuat satu atau lebih turunan fungsi yang tidak diketahui. Jika persamaan diferensial memiliki satu peubah tak bebas maka disebut Persamaan Diferensial

Lebih terperinci

BAB V PERSAMAAN LINEAR TINGKAT TINGGI (HIGHER ORDER LINEAR EQUATIONS) Persamaan linear tingkat tinggi menarik untuk dibahas dengan 2 alasan :

BAB V PERSAMAAN LINEAR TINGKAT TINGGI (HIGHER ORDER LINEAR EQUATIONS) Persamaan linear tingkat tinggi menarik untuk dibahas dengan 2 alasan : BAB V PERSAMAAN LINEAR TINGKAT TINGGI (HIGHER ORDER LINEAR EQUATIONS) Bentuk Persamaan Linear Tingkat Tinggi : ( ) Diasumsikan adalah kontinu (menerus) pada interval I. Persamaan linear tingkat tinggi

Lebih terperinci

Ilustrasi Persoalan Matematika

Ilustrasi Persoalan Matematika Pendahuluan Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan, seperti dalam bidang fisika, kimia, ekonomi, atau pada persoalan rekayasa (engineering), seperti

Lebih terperinci

SOAL ToT MATEMATIKA BISNIS-MANAJEMEN adalah...

SOAL ToT MATEMATIKA BISNIS-MANAJEMEN adalah... SOAL ToT MATEMATIKA BISNIS-MANAJEMEN 08. Bentuk sederhana dari 0 0 3 0 3 8 0 4 0 3 5 8 adalah.... Nilai dari log 6 3 log 4 log6 log 48 adalah... 7 3 3 3. Jika diketahui log 5 = a dan log 3 = b maka nilai

Lebih terperinci

Bab 4. Sistem Persamaan Linier dan Variabel. Standar Kompetensi

Bab 4. Sistem Persamaan Linier dan Variabel. Standar Kompetensi Bab 4 Sistem Persamaan Linier dan Variabel Standar Kompetensi Memahami sistem persamaan linear dua variabel, dan menggunakanna dalam pemecahan masalah Kompetensi Dasar.1 Menelesaikan sistem persamaan linear

Lebih terperinci

perpindahan, kita peroleh persamaan differensial berikut :

perpindahan, kita peroleh persamaan differensial berikut : 1.1 Pengertian Persamaan Differensial Banyak sekali masalah terapan (dalam ilmu teknik, ilmu fisika, biologi, kimia, sosial, dan lain-lain), yang telah dirumuskan dengan model matematika dalam bentuk persamaan

Lebih terperinci

Suatu persamaan diferensial biasa orde n adalah persamaan bentuk :

Suatu persamaan diferensial biasa orde n adalah persamaan bentuk : PERSAMAAN DIFERENSIAL BIASA PERSAMAAN DIFERENSIAL Suatu persamaan iferensial biasa ore n aalah persamaan bentuk : F n, ', '', ''',......, 0 Yang menatakan hubungan antara, fungsi () an turunanna ', '',

Lebih terperinci

Pertemuan Ke 2 SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST.,MT

Pertemuan Ke 2 SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST.,MT Pertemuan Ke SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST,MT Pendahuluan Suatu sistem persamaan linier (atau himpunan persaman linier simultan) adalah satu set persamaan dari sejumlah unsur yang tak diketahui

Lebih terperinci

BAB I PENDAHULUAN. Tahap-tahap memecahkan masalah dengan metode numeric : 1. Pemodelan 2. Penyederhanaan model 3.

BAB I PENDAHULUAN. Tahap-tahap memecahkan masalah dengan metode numeric : 1. Pemodelan 2. Penyederhanaan model 3. BAB I PENDAHULUAN Tujuan Pembelajaran: Mengetahui apa yang dimaksud dengan metode numerik. Mengetahui kenapa metode numerik perlu dipelajari. Mengetahui langkah-langkah penyelesaian persoalan numerik.

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Persamaan diferensial adalah suatu persamaan diantara derivatif-derivatif yang dispesifikasikan pada suatu fungsi yang tidak diketahui nilainya dan diketahui jumlah

Lebih terperinci

BAB 3 REVIEW SIFAT-SIFAT STATISTIK PENDUGA KOMPONEN PERIODIK

BAB 3 REVIEW SIFAT-SIFAT STATISTIK PENDUGA KOMPONEN PERIODIK BAB 3 REVIEW SIFAT-SIFAT STATISTIK PENDUGA KOMPONEN PERIODIK 3. Perumusan Penduga Misalkan N adalah proses Poisson non-homogen pada interval 0, dengan fungsi intensitas yang tidak diketahui. Fungsi intensitas

Lebih terperinci

MAT. 03 Persamaan dan Ketidaksamaan

MAT. 03 Persamaan dan Ketidaksamaan MAT. 0 Persamaan dan Ketidaksamaan i Kode MAT. 0 Persamaan dan Ketidaksamaan + = - 5 6 - - + = BAGIAN PROYEK PENGEMBANGAN KURIKULUM DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN DIREKTORAT JENDERAL PENDIDIKAN

Lebih terperinci

PENYELESAIAN PERSAMAAN DIFERENSIAL BIASA NONLINIER ORDE DUA DENGAN MENGGUNAKAN METODE DEKOMPOSISI ADOMIAN LAPLACE

PENYELESAIAN PERSAMAAN DIFERENSIAL BIASA NONLINIER ORDE DUA DENGAN MENGGUNAKAN METODE DEKOMPOSISI ADOMIAN LAPLACE PENYELESAIAN PERSAMAAN DIFERENSIAL BIASA NONLINIER ORDE DUA DENGAN MENGGUNAKAN METODE DEKOMPOSISI ADOMIAN LAPLACE TUGAS AKHIR Diajukan Sebagai Salah Satu Syarat Untuk Memperoleh Gelar Sarjana Sains Pada

Lebih terperinci