BAB IV PRINSIP-PRINSIP KONVEKSI

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB IV PRINSIP-PRINSIP KONVEKSI"

Transkripsi

1 BAB IV PRINSIP-PRINSIP KONVEKSI Aliran Viscous Berdasarkan gambar 1 dan, aitu aliran fluida pada pelat rata, gaa viscous dijelaskan dengan tegangan geser τ diantara lapisan fluida dengan rumus: du τ µ (4-1) d dimana: µ viskositas dinamik u kecepatan Gambar 1. Sketsa ang menunjukkan daerah aliran lapisan batas ang berbeda pada pelat rata.

2 Gambar. Profil kecepatan laminar pada pelat rata. Daerah aliran ang bergerak dari sisi pelat d tempat observasi viskositas disebut lapisan batas (boundar laer). Pertama-tama perkembangan lapisan batas adalah laminar namun pada suatu jarak kritis dari sisi awal pelat, bergantung pada medan aliran dan sifat fluida, terjadi gangguan dan gangguan ini akan diperkuat, dan proses transisi terjadi hingga aliran menjadi turbulen. Daerah turbulen ini bisa digambarkan sebagai sebuah gaa kocok ang bekerja sehingga bagian fluida akan bergerak bolak balik. ransisi dari aliran laminar ke aliran turbulen terjadi ketika: u υ ρ u µ > dimana : u kecepatan aliran bebas jarak dari sisi awal υ µ/ρ viskositas kinematik Kelompok persamaan diatas disebut bilangan Renold dan tidak berdimensi. u Re (4-) υ Angka Renold kritis untuk transisi aliran dari laminar ke turbulen secara teoritis diambil 5 1 5, dalam praktekna harga ini bergantung pada kondisi kekasaran permukaan dan tingkat turbulensi aliran bebas. Kisaran normal untuk mulaina daerah transisi antara sampai dengan

3 Dengan adana disturbansi ang sangat besar di dalam aliran, transisi bisa mulai terjadi pada bilangan Renold serendah 1 5, dan untuk aliran ang bebas dari adana fluktuasi, daerah transisi bisa terjadi pada bilangan Renold 1 6 atau lebih. Bentuk relatif profil kecepatan pada aliran laminar dan turbulen ditunjukkan oleh gambar 1. Profil laminar berbentuk parabola, sedangkan profil turbulen berbentuk linier di dekat dinding. Bentuk linier ini karena adana sublapisan laminar pada dinding. Diluar sublapisan ini, profil kecepatan lebih rata jika dibandingkan dengan profil laminar. Mekanisme fisik dari viskositas adalah sebuah pertukaran momentum. Misalkan aliran adalah laminar, molekul bisa berpindah dari satu lamina ke lamina lainna, membawa momentum sesuai dengan kecepatan aliran. erdapat momentum netto ang bergerak dari daerah dengan kecepatan tinggi ke daerah kecepatan rendah, sehingga menimbulkan sebuah gaa dalam arah aliran fluida. Gaa ini adalah tegangan geser viskos ang bisa dihitung dengan persamaan 4.1. Pada daerah aliran turbulen, lapisan fluida ang jelas tidak lagi terlihat dan kita harus membuat konsep ang sedikit berbeda untuk aksi viskos. Gambaran kualitatif dari proses aliran turbulen bisa didapatkan dengan membaangkan bongkahan makroskopik fluida ang akan memindahkan energi dan momentum daripada pemindahan mikroskopik ang dilakukan oleh molekul tunggal. Misalkan terdapat aliran di dalam tabung seperti ang ditunjukkan gambar 3. Lapisan batas berkembang pada sisi masuk. Lapisan batas mengisi keseluruhan pipa, dan aliran disebut berkembang penuh. Jika aliran laminar, pprofil kecepatan berbentuk parabola akan didapatkan (Gambar 3a). Jika aliran adalah turbulen, akan didapatkan profile kecepatan ang lebih tumpul seperti ang ditunjukkan gambar 3b. Untuk menentukan aliran maka tetap digunakan bilangan Renold, dimana untuk aliran turbulen adalah: u Re m d d > 3 (4-3) υ 43

4 Gambar 3. Profil kecepatan untuk (a) aliran laminar di dalam pipa dan (b) aliran turbulen di dalam pipa. Angka Renold untuk daerah transisi bergantung pada kekasaran pipa dan kehalusan aliran. Umumna kisaran untuk daerah transisi adalah: < Re d < 4 Persamaan kontinuitas untuk aliran satu dimensi di dalam pipa adalah: m ρ u m A (4-4) dimana: m laju massa aliran u m kecepatan rata-rata A luas penampang Kecepatan massa didefinisikan sebagai: Kecepatan massa G m/a ρu m (4-5) Sehingga bilangan Renold bisa ditulis : 44

5 Re Gd d (4-6) µ Contoh Soal 1 Air pada suhu C mengalir dengan massa 8 kg/s melewati difuser seperti ditunjukkan gambar berikut ini. Diameter pada penampang 1 adalah 3, cm, dan diameter pada penampang adalah 7, cm. Carilah kenaikan tekanan statik antara penampang 1 dan penampang. Anggaplah aliran tanpa gesekan. Jawab: Luas penampang aliran adalah: A 1 πd 1 /4 π(,3) /4 7, m A πd /4 π(,7) /4 3, m Kerapatan air pada C adalah 1 kg/m 3, sehingga: u m ρ A u 1 8, 11,3 m/s (1)(7,691-4 ) u 8,,79 m/s (1)(3, ) 45

6 Perbedaan tekanan diperoleh dengan persamaan Bernouli : p p1 ( u1 u ρ g 1 c p p 1 1 [(11,3) (,79) ] 61,91 kpa ) Lapisan Batas Laminar Pada Pelat Rata Perhatikan unsur volume atur/kendali seperti gambar 4. Persamaan gerakan untuk lapisan batas dapat diturunkan dengan membuat neraca gaa dan momentum pada unsur volume tersebut. Gambar 4. Unsur volume atur untuk neraca gaa pada lapisan batas laminar. Untuk menederhanakan analisis diandaikan: 1. Fluida tak mampu mampat dan aliran stedi/tunak.. idak terdapat perubahan tekanan diarah tegak lurus pelat. 3. Viskositas tetap. 46

7 4. Gaa geser viskos di arah dapat diabaikan. Kita terapkan hukum kedua Newton tentang gerak. F d( mv ) dτ Persamaan diatas berlaku untuk massa tetap. Untuk memudahkan analisis, digunakan unsur volume atur/kendali seperti ang ditunjukkan gambar 4, dimana massa mengalir ke dalam dari satu sisi dan keluar dari sisi ang lain. Untuk sistem ini, neraca gaa dapat dituliskan sebagai: Σ F tambahan fluks momentum pada arah Fluks momentum pada arah adalah hasil perkalian massa melalui satu sisi tertentu dari volume kendali dan komponen kecepatan pada titik itu. Massa ang masuk dari muka kiri unsur itu persatuan waktu adalah: ρu d Jika kita andaikan satu satuan kedalaman pada arah z, jadi momentum masuk pada muka kiri persatuan waktu adalah: ρu d u ρu d Massa ang keluar dari muka kanan: ρ u u d d dan momentum ang keluar dari muka kanan adalah: ρ u u d d Aliran ang masuk dari muka bawah: ρυ d Aliran massa keluar dari muka atas adalah: 47

8 ρ υ υ d d Neraca massa pada unsur itu memberikan: u ρ ud ρ υd ρ u d d ρ υ u d d atau: u υ (4-7) Persamaan ini adalah persamaan kontinuitas untuk lapisan batas. Kembali kepada analisis momentum dan gaa, momentum pada arah ang masuk melalui muka bawah adalah : ρυu d dan momentum pada arah ang keluar dari muka atas adalah: ρ υ υ d u u d d Bagi kita hana momentum arah ang penting, karena gaa ang menjadi perhatian kita adalah gaa pada arah. Gaa-gaa ini adalah gaa-gaa ang disebabkan oleh geser viskos dan gaa tekanan pada unsur. Gaa tekanan pada muka kiri pd, dan pada muka kanan p p d d Sehingga gaa tekanan netto pada arah gerakan adalah: p dd Gaa geser viskos pada muka bawah: 48

9 u µ d Dan gaa geser pada muka atas: u µ d u d Gaa geser viskos netto pada arah gerakan adalah jumlah kedua gaa diatas. Gaa geser viskos netto u µ dd Dengan menamakan jumlah gaa geser viskos dan gaa tekanan dengan perpindahan momentum pada arah, diperoleh: u µ dd ρ υud p dd ρ u u d d ρ u d ρ υ υ d u u d d Disederhanakan dengan persaman kontinuitas (4-7) dan mengabaikan diferensial orde kedua, diperoleh: u u u p ρ u υ µ (4-8) Persamaan ini adalah persamaan momentum untuk lapisan batas laminar dengan sifat-sifat tetap. Dengan penurunan rumus, maka tinggi lapisan batas: 4,64 1 / R e dimana : δ tinggi lapisan batas jarak dari ujung pelat Re (u )/ν 49

10 Atau bisa juga dicari dengan rumus: 5, 1 / R e Contoh soal Udara pada 7 C dan 1 atm mengalir pada sepanjang pelat datar dengan kecepatan m/s. Hitunglah ketebalan lapisanbatas pada jarak dan 4 cm dari sisi masuk pelat. Hitung juga aliran massa ang memasuki lapisan batas antara cm dan 4 cm. Viskositas udara pada 7 C adalah 1, kg/m.s. Diasimsikan satuan kedalaman pada arah z. Jawab Kerapatan udara dihitung dari: p R 1, ,177 Angka Renold: Pada cm: Pada 4 cm: R e 1,177,, 1, R e 1,177,,4 1, Ketebalan lapisan batas: Pada cm: Pada 4 cm: 4,64,,559 1 / ,64,4,79 1/ 7.58 Untuk menghitung aliran massa ang memasuki lapisan batas antara cm dan 4 cm, adalah dengan mengukur perbedaan aliran massa ang masuk pada kedua posisi ini. Aliran massa lapisan batas dirumuskan: 5

11 u d o dimana kecepatan dicari dengan: uu [ 3 1 3] maka: u [ 3 1 3] d 5 8 u m 5 8 u ,177,,79,559 3, kg/s Persamaan Energi Lapisan Batas Perhatikan unsur volume atur seperti tampak pada gambar dibawah ini. Untuk menederhanakan analisis, diasumsikan: 1. Aliran stedi tak mampu-mampat (incompressible).. Viskositas, konduktivitas kalor, dan kalor spesifik tetap. 3. Konduksi kalor pada arah aliran (arah ) dapat diabaikan. 51

12 Gambar 5. Unsur volume atur untuk analisis energi lapisan batas laminar. Lalu untuk unsur tersebut dapat kita buat neraca energi: Energi dikonveksikan pada muka kiri energi dikonveksikan pada muka bawah kalor dikonduksikan pada muka bawah kerja viskos netto pada unsur Energi dikonveksikan pada muka kanan energi dikonveksikan pada muka atas kalor dikonduksikan dari muka atas. Besaran energi konduksi dan konveksi ditunjukkan oleh Gambar 5 di atas, dan suku energi untuk kerja viskos dapat diturunkan sebagai berikut, kerja viskos dapat dihitung sebagai hasil perkalian antara gaa geser viskos netto dengan jarak perpindahan gaa ini dalam satuan waktu. Gaa geser viskos ialah hasil perkalian gaa geser dengan luas d. u µ d 5

13 Dan jarak perpindahan per satuan waktu terhadap unsur volume atur d d adalah: d u Sehingga energi viskos netto ang diserahkan pada unsur itu adalah: dd u µ Neraca energi dengan besaran-besaran ang ditunjukkan pada Gambar 5, dan mengandaikan satu satuan tebal pada arah z, serta mengabaikan diferensial orde kedua, menghasilkan: dd u k dd u u c p µ υ υ ρ Dengan menggunakan persamaan kontinuitas: u υ (4-9) Dan membagi dengan ρc p, kita peroleh: u c p ρ µ α υ µ (4-1) Persamaan ini adalah persamaan energi lapisan batas laminar. Bagian kiri menunjukkan energi netto ke dalam volume atur, dan bagian kanan menunjukkan jumlah kalor netto ang dihantarkan ke luar volume atur dan kerja viskos ang dilakukan atas unsur itu. Suku viskos hana penting pada kecepatan tinggi karena hargana relatif kecil pada kecepatan rendah. 53

14 Lapisan Batas Kalor Lapisan batas kalor didefinisikan sebagai daerah di mana terdapat gradien suhu dalam aliran. Gradien suhu itu adalah akibat proses pertukaran kalor antara fluida dan dinding. Perhatikan gambar di bawah ini. Suhu pada dinding adalah w, dan suhu pada fluida di luar lapisan batas kalor adalah sedang tebal lapisan batas kalor adalah δ t. Gambar 6. Profil suhu pada lapisan batas kalor Pada dinding kecepatan aliran adalah nol, dan perpindahan kalor ke fluida berlangsung secara konduksi. Jadi fluks kalor setempat persatuan luas q'' adalah: q A q' ' k (4-11) dinding Dari hukum pendinginan Newton, q'' h ( w ) (4-1) dimana h adalah koefisien perpindahan kalor konveksi. Dengan menggabungkan kedua persamaan tersebut, diperoleh: h k( / w ) dinding 54

15 Sehingga kita hana perlu menemukan gradien suhu pada dinding untuk menilai koefisien perpindahan kalor. Hal ini berarti kita harus mendapatkan suatu persamaan tentang distribusi suhu. Kondisi ang harus dipenuhi oleh distribusi suhu itu adalah: w pada (a) / pada δ t (b) pada δ t (c) Dan dengan menuliskan persamaan (4-1) pada tanpa pemanasan viskos, maka: pada (d) karena kecepatan harus sama dengan nol pada dinding. Kondisi (a) sampai (d) dapat dipenuhi oleh polinomial kubus sebagaimana dalam hal profil kecepatan, sehingga θ θ w w 3 δ t 1 δ t 3 (4-13) di mana θ w. Sekarang kita tinggal menemukan persamaan untuk δ t aitu tebal lapisan batas kalor. Perhatikan volume atur ang dibatasi oleh bidang-bidang 1,,A-A dan dinding seperti gambar 7 dibawah ini. Kita andaikan lapisan kalor lebih tipis dari lapisan batas hidrodinamik, seperti pada gambar. Suhu dinding adalah w, suhu aliran bebas dan kalor ang dilepaskan ke fluida pada panjang d adalah dq w. 55

16 Gambar 7. Volume atur untuk analisis energi lapisan batas laminar. Sekarang kita buat neraca energi: Energi ang dikonversikan ke dalam kerja viskos dalam unsur perpindahan kalor pada dinding energi ang dikonversikan ke luar. Energi ang dikonversikan ke dalam melalui bidang 1 adalah: H α ρ C p ud Dan energi ang dikonversikan ke luar melalui bidang : ρ C p H ud d d ρ C H p ud d Aliran massa melalui bidang A-A adalah: d d ud d ρ Dengan membawa energi sebesar: C p α d d H ud d ρ 56

17 Kerja viskos netto ang dilakukan di dalam unsur itu adalah: µ H du d d d Dan perpindahan kalor melalui dinding: dq w kd w Dengan menggabungkan besaran-besaran energi ini sesuai dengan persamaan 4-13 dan mengumpulkan suku-sukuna, kita peroleh: d d H H µ du ( α ) ud d C p d α (4-14) ρ Persamaan ini adalah persamaan energi integral lapisan batas untuk keadaan sifat-sifat tetap dan suhu aliran bebas tetap w. Pelat ang dalam perhatian kita tidak perlu dipanaskan pada keseluruhan panjangna. Situasina dapat kita lihat pada gambar 8 di bawah ini, dimana lapisan batas hidrodinamik terbentuk pada tepi depan pelat, sedang pemanasan baru dimulai pada. Gambar 8. Lapisan batas hidrodinamika dan lapisan batas kalor diatas pelat rata. 57

18 Penelesaian akhir dari persamaan untuk tebal lapisan batas kalor adalah sebagai berikut: 3 / 4 1 / 3 δ 1 t 1 / 3 ξ Pr 1 (4-15) δ 1,6 P r disebut sebagai angka Prandtl aitu parameter ang meghubungkan ketebalan relatif antara lapisan batas hidrodinamika dan lapisan batas kalor. Angka Prandtl juga merupakan penghubung antara medan kecepatan dan medan suhu. υ µ / ρ C pµ Pr (4-16) α k / ρ C k p dengan: C p kapasitas kalor µ viskositas dinamik k konduktivitas kalor Kembali kepada analisis kita, kita mempunai: h k( / ) w w 3 k δ t 3 k ζ δ (4-17) Von Karman memberikan persamaan momentum untuk lapisan batas laminar dengan sifat-sifat tetap dengan : δ 4,64 Re 1 / (4-18) Dengan memasukkan tebal lapisan batas hidrodinamik dari persamaan (4-18) dan menggunakan persamaan (4-15), diperoleh: h,33pr 1 / 3 u υ 1 / 1 3 / 4 1 / 3 (4-19) 58

19 Persamaan ini dapat dibuat tak berdimensi dengan mengalikan kedua sisi persamaan dengan /k, sehingga menghasilkan kelompok tak berdimensi pada bagian kiri, h Nu k (4-) ang disebut bilangan Nusselt. Akhirna kita dapatkan: Nu 3 / 4 1 / 3 1 / 3 1 /,33Pr Re 1 (4-1) Untuk pelat ang dipanaskan di keseluruhan panjangna, maka persamaan (4-1) menjadi: 1 / 3 1 /,33.Pr Re Nu (4-) Persamaan (4-19), (4-1), dan (4-), menatakan harga lokal koefisien perpindahan kalor berhubungan dengan jarak dari sisi masuk pelat dan sifatsifat fluida. Untuk harga, koefisien perpindahan kalor rata-rata dan angka Nusselt bisa dicari dari integrasi sepanjang panjang pelat. h L L h d h L (4-3) d Nu L h L k Nu L (4-4) atau dimana Nu L h L k,664 R e 1/ L Pr 1/3 (4-5) R e L u L Dengan asumsi sifat-sifat fluida konstan sepanjang aliran, jika terdapat variasi antara kondisi dinding dengan aliran bebas, sifat-sifat fluida bisa dicari 59

20 dari temperatur film, f, ang disebut juga rata-rata aritmatik antara temperatur dinding dan aliran bebas, f w (4-6) f emperatur film Fluks Kalor Konstan Analisis di atas menganggap perpindahan kalor laminar pada permukaan isotermal. Dalam praktek, fluks kalor di permukaan biasana konstan, dan perlu dicari distribusi temperatur permukaan pelat untuk suatu fluida tertentu. Untuk fluks kalor konstan, bilangan Nusselt dicari dengan rumus: Nu h k,453 R e 1/ Pr 1/ 3 (4-7) q w Nu k w (4-8) Perbedaan temperatur rata-rata sepanjang pelat untuk fluks kalor konstan diperoleh dengan integrasi: L w 1 L w d 1 L L q w k Nu d q w L/ k 1/,6795 R e L Pr 1/3 (4-9) q w 3 h L w 6

DEFINISI DAN SIFAT-SIFAT FLUIDA

DEFINISI DAN SIFAT-SIFAT FLUIDA DEFINISI DAN SIFAT-SIFAT FLUIDA Mekanika fluida dan hidrolika adalah bagian dari mekanika terpakai (Applied Mechanics) yang merupakan salah satu cabang ilmu pengetahuan dasar bagi teknik sipil. Mekanika

Lebih terperinci

BAB 2 TINJAUAN SINGKAT DASAR TERMODINAMIKA DAN PERPINDAHAN PANAS.

BAB 2 TINJAUAN SINGKAT DASAR TERMODINAMIKA DAN PERPINDAHAN PANAS. BAB INJAUAN SINGKA DASAR ERMODINAMIKA DAN PERPINDAHAN PANAS.. Dasar ermodinamika. ermodinamika merupakan suatu bidang ilmu pengetahuan tentang/ yang berurusan dengan kalor, kerja dan sifat substansi yang

Lebih terperinci

KERJA PERPINDAHAN PANAS DAN PENURUNAN TEKANAN RADIATOR OTOMOTIF

KERJA PERPINDAHAN PANAS DAN PENURUNAN TEKANAN RADIATOR OTOMOTIF PENGARUH KECEPATAN UDARA TERHADAP UNJUK KERJA PERPINDAHAN PANAS DAN PENURUNAN TEKANAN RADIATOR OTOMOTIF SKRIPSI Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik Oleh: HINDRAWAN

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Potensi Energi Air Potensi energi air pada umumnya berbeda dengaan pemanfaatan energi lainnya. Energi air merupakan salah satu bentuk energi yang mampu diperbaharui karena sumber

Lebih terperinci

MEKANIKA FLUIDA DAN HIDROLIKA

MEKANIKA FLUIDA DAN HIDROLIKA Modul ke: 07 MEKANIKA FLUIDA DAN HIDROLIKA KINEMATIKA FLUIDA Fakultas FTPD Acep Hidayat,ST,MT Program Studi Teknik Sipil Soal :Tekanan Hidrostatis. Tangki dengan ukuran panjangxlebarxtinggi (LBH) = 4mxmxm

Lebih terperinci

TERMODINAMIKA TEKNIK HUKUM PERTAMA TERMODINAMIKA BAGI VOLUME ATUR. Chandrasa Soekardi, Prof.Dr.Ir. 1 Sistem termodinamika volume atur

TERMODINAMIKA TEKNIK HUKUM PERTAMA TERMODINAMIKA BAGI VOLUME ATUR. Chandrasa Soekardi, Prof.Dr.Ir. 1 Sistem termodinamika volume atur TERMODINAMIKA TEKNIK Modul ke: HUKUM PERTAMA TERMODINAMIKA BAGI VOLUME ATUR Chandrasa Soekardi, Prof.Dr.Ir Fakultas 03TEKNIK Program Studi Teknik Mesin 1 Sistem termodinamika volume atur 2. Sistem volume

Lebih terperinci

BAB I VEKTOR DALAM BIDANG

BAB I VEKTOR DALAM BIDANG BAB I VEKTOR DALAM BIDANG I. KURVA BIDANG : Penyajian secara parameter Suatu kurva bidang ditentukan oleh sepasang persamaan parameter. ; dalam I dan kontinue pada selang I, yang pada umumnya sebuah selang

Lebih terperinci

DINAMIKA GERAK FISIKA DASAR (TEKNIK SIPIL) Mirza Satriawan. menu. Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta email: mirza@ugm.ac.

DINAMIKA GERAK FISIKA DASAR (TEKNIK SIPIL) Mirza Satriawan. menu. Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta email: mirza@ugm.ac. 1/30 FISIKA DASAR (TEKNIK SIPIL) DINAMIKA GERAK Mirza Satriawan Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta email: mirza@ugm.ac.id Definisi Dinamika Cabang dari ilmu mekanika yang meninjau

Lebih terperinci

BAB II VEKTOR DAN GERAK DALAM RUANG

BAB II VEKTOR DAN GERAK DALAM RUANG BAB II VEKTOR DAN GERAK DALAM RUANG 1. KOORDINAT CARTESIUS DALAM RUANG DIMENSI TIGA SISTEM TANGAN KANAN SISTEM TANGAN KIRI RUMUS JARAK,,,, 16 Contoh : Carilah jarak antara titik,, dan,,. Solusi :, Persamaan

Lebih terperinci

1. Dua batang logam P dan Q disambungkan dengan suhu ujung-ujung berbeda (lihat gambar). D. 70 E. 80

1. Dua batang logam P dan Q disambungkan dengan suhu ujung-ujung berbeda (lihat gambar). D. 70 E. 80 1. Dua batang logam P dan Q disambungkan dengan suhu ujung-ujung berbeda (lihat gambar). Apabila koefisien kondutivitas Q, logam P kali koefisien konduktivitas logam Q, serta AC = 2 CB, maka suhu di C

Lebih terperinci

PROFIL GERAK PELURU DENGAN SPIN DAN HAMBATAN LINIER SKRIPSI. Oleh : A. RIDO NIM 051810101112

PROFIL GERAK PELURU DENGAN SPIN DAN HAMBATAN LINIER SKRIPSI. Oleh : A. RIDO NIM 051810101112 i PROFIL GERAK PELURU DENGAN SPIN DAN HAMBATAN LINIER SKRIPSI Oleh : A. RIDO NIM 051810101112 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS JEMBER 2013 i ii PROFIL GERAK

Lebih terperinci

Sifat Sifat Material

Sifat Sifat Material Sifat Sifat Material Secara garis besar material mempunyai sifat-sifat yang mencirikannya, pada bidang teknik mesin umumnya sifat tersebut dibagi menjadi tiga sifat. Sifat sifat itu akan mendasari dalam

Lebih terperinci

JENIS DAN SIFAT FLUIDA BOR. Kelompok I

JENIS DAN SIFAT FLUIDA BOR. Kelompok I JENIS DAN SIFAT FLUIDA BOR Kelompok I FUNGSI FLUIDA BOR 1. Fungsi Pembuatan Lubang (Mendinginkan Mata bor, membersihkan mata bor dan dasar lubang, melumasi stangbor dan mata bor, menghambat proses korosi

Lebih terperinci

v adalah kecepatan bola A: v = ωr. Dengan menggunakan I = 2 5 mr2, dan menyelesaikan persamaanpersamaan di atas, kita akan peroleh: ω =

v adalah kecepatan bola A: v = ωr. Dengan menggunakan I = 2 5 mr2, dan menyelesaikan persamaanpersamaan di atas, kita akan peroleh: ω = v adalah kecepatan bola A: v = ωr. ω adalah kecepatan sudut bola A terhadap sumbunya (sebenarnya v dapat juga ditulis sebagai v = d θ dt ( + r), tetapi hubungan ini tidak akan kita gunakan). Hukum kekekalan

Lebih terperinci

SIMULASI PROSES PEMESINAN MENGGUNAKAN UDARA-DINGIN DENGAN TABUNG VORTEK

SIMULASI PROSES PEMESINAN MENGGUNAKAN UDARA-DINGIN DENGAN TABUNG VORTEK SIMULASI PROSES PEMESINAN MENGGUNAKAN UDARA-DINGIN DENGAN TABUNG VORTEK Paryanto, Rusnaldy, Yusuf Umardani dan Norman Iskandar Laboratorium Metrologi Industri, Jurusan Teknik Mesin Fakultas Teknik UNDIP

Lebih terperinci

Perbandingan Konfigurasi Pipa Paralel dan Unjuk Kerja Kolektor Surya Plat Datar

Perbandingan Konfigurasi Pipa Paralel dan Unjuk Kerja Kolektor Surya Plat Datar JURNAL TEKNIK MESIN Vol., No. 1, April : 68-7 Perbandingan Konfigurasi Pipa Paralel dan Unjuk Kerja Kolektor Surya Plat Datar Terhadap Ekadewi Anggraini Handoyo Dosen Fakultas Teknik, Jurusan Teknik Mesin

Lebih terperinci

GELOMBANG MEKANIK. (Rumus) www.aidianet.co.cc

GELOMBANG MEKANIK. (Rumus) www.aidianet.co.cc GELOMBANG MEKANIK (Rumus) Gelombang adalah gejala perambatan energi. Gelombang Mekanik adalah gelombang yang memerlukan medium untuk merambat. A = amplitudo gelombang (m) = = = panjang gelombang (m) v

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 3 BAB II TINJAUAN PUSTAKA 2.1 Daya Dukung Pondasi Tiang Pondasi tiang adalah pondasi yang mampu menahan gaya orthogonal ke sumbu tiang dengan jalan menyerap lenturan. Pondasi tiang dibuat menjadi satu

Lebih terperinci

BAB III. Universitas Sumatera Utara MULAI PENGISIAN MINYAK PELUMAS PENGUJIAN SELESAI STUDI LITERATUR MINYAK PELUMAS SAEE 20 / 0 SAE 15W/40 TIDAK

BAB III. Universitas Sumatera Utara MULAI PENGISIAN MINYAK PELUMAS PENGUJIAN SELESAI STUDI LITERATUR MINYAK PELUMAS SAEE 20 / 0 SAE 15W/40 TIDAK BAB III METODE PENGUJIAN 3.1. Diagram Alir Penelitian MULAI STUDI LITERATUR PERSIAPAN BAHAN PENGUJIAN MINYAK PELUMAS SAE 15W/40 MINYAK PELUMAS SAEE 20 / 0 TIDAK PENGUJIAN KEKENTALAN MINYAK PELUMAS PENGISIAN

Lebih terperinci

LAPORAN PKM PENELITIAN ALAT PENJERNIH AIR TENAGA SURYA DENGAN SOLAR KOLEKTOR

LAPORAN PKM PENELITIAN ALAT PENJERNIH AIR TENAGA SURYA DENGAN SOLAR KOLEKTOR LAPORAN PKM PENELITIAN ALAT PENJERNIH AIR TENAGA SURYA DENGAN SOLAR KOLEKTOR Disusun Oleh : 1. Fitria Hastami / M0207004 2. Nurul Khotimah / M0207050 3. Zuhdi Ismail / M0208062 Jurusan Fisika Fakultas

Lebih terperinci

KALOR. Keterangan Q : kalor yang diperlukan atau dilepaskan (J) m : massa benda (kg) c : kalor jenis benda (J/kg 0 C) t : kenaikan suhu

KALOR. Keterangan Q : kalor yang diperlukan atau dilepaskan (J) m : massa benda (kg) c : kalor jenis benda (J/kg 0 C) t : kenaikan suhu KALOR Standar Kompetensi : Memahami wujud zat dan perubahannya Kompetensi Dasar : Mendeskripsikan peran kalor dalam mengubah wujud zat dan suhu suatu benda serta penerapannya dalam kehidupan sehari-hari

Lebih terperinci

a. Hubungan Gerak Melingkar dan Gerak Lurus Kedudukan benda ditentukan berdasarkan sudut θ dan jari jari r lintasannya Gambar 1

a. Hubungan Gerak Melingkar dan Gerak Lurus Kedudukan benda ditentukan berdasarkan sudut θ dan jari jari r lintasannya Gambar 1 . Pengantar a. Hubungan Gerak Melingkar dan Gerak Lurus Gerak melingkar adalah gerak benda yang lintasannya berbentuk lingkaran dengan jari jari r Kedudukan benda ditentukan berdasarkan sudut θ dan jari

Lebih terperinci

Pendahuluan. Angka penting dan Pengolahan data

Pendahuluan. Angka penting dan Pengolahan data Angka penting dan Pengolahan data Pendahuluan Pengamatan merupakan hal yang penting dan biasa dilakukan dalam proses pembelajaran. Seperti ilmu pengetahuan lain, fisika berdasar pada pengamatan eksperimen

Lebih terperinci

SIFAT-SIFAT PRODUK PERTANIAN TPG 326

SIFAT-SIFAT PRODUK PERTANIAN TPG 326 RENCANA PROGRAM KEGIATAN PEMBELAJARAN SEMESTER (RPKPS) SIFAT-SIFAT PRODUK PERTANIAN TPG 326 OLEH: Dr. ANDASURYANI, S.TP, M.Si MISLAINI R., S.TP, MP PROGRAM STUDI TEKNIK PERTANIAN JURUSAN TEKNIK PERTANIAN

Lebih terperinci

Jurusan Teknik Sipil Fakultas Teknik Sipil dan Perencanaan Universitas Mercu Buana MODUL PERTEMUAN KE 3. MATA KULIAH : FISIKA DASAR (4 sks)

Jurusan Teknik Sipil Fakultas Teknik Sipil dan Perencanaan Universitas Mercu Buana MODUL PERTEMUAN KE 3. MATA KULIAH : FISIKA DASAR (4 sks) MODUL PERTEMUAN KE 3 MATA KULIAH : (4 sks) MATERI KULIAH: Jarak, Kecepaan dan Percepaan; Gerak Lurus Berauran, Percepaan; Gerak Lurus Berauran, Gerak Lurus Berubah Berauran POKOK BAHASAN: GERAK LURUS 3-1

Lebih terperinci

BAB V HUKUM NEWTON TENTANG GERAK

BAB V HUKUM NEWTON TENTANG GERAK BAB V HUKUM NEWTON TENTANG GERAK Ilmuwan yang sangat berjasa dalam mempelajari hubungan antara gaya dan gerak adalah Isaac Newton, seorang ilmuwan Inggris. Newton mengemukakan tiga buah hukumnya yang dikenal

Lebih terperinci

17. SOAL-SOAL PROGRAM LINEAR

17. SOAL-SOAL PROGRAM LINEAR 17. SOAL-SOAL PROGRAM LINEAR EBTANAS2000 1. Himpunan penelesaian sistem pertidaksamaan 5x + 10 2x + 8 2 x = 2 titik (2,0 titk potong dengan sumbu jika x = 0 = 10 titik (0,10 daerah 5x + 10 berada pada

Lebih terperinci

Aliran berubah lambat laun. surut di muara saluran atau. air atau pasang surut air laut. berpengaruh sampai ke hulu dan atau ke hilir.

Aliran berubah lambat laun. surut di muara saluran atau. air atau pasang surut air laut. berpengaruh sampai ke hulu dan atau ke hilir. Aliran berubah lambat laun banyak terjadi akibat pasang surut di muara saluran atau akibat adanya bangunan-bangunan air atau pasang surut air laut terutama pada saat banjir akan berpengaruh sampai ke hulu

Lebih terperinci

V. Medan Magnet. Ditemukan sebuah kota di Asia Kecil (bernama Magnesia) lebih dahulu dari listrik

V. Medan Magnet. Ditemukan sebuah kota di Asia Kecil (bernama Magnesia) lebih dahulu dari listrik V. Medan Magnet Ditemukan sebuah kota di Asia Kecil (bernama Magnesia) lebih dahulu dari listrik Di tempat tersebut ada batu-batu yang saling tarik menarik. Magnet besar Bumi [sudah dari dahulu dimanfaatkan

Lebih terperinci

Sistem pendingin siklus kompresi uap merupakan daur yang terbanyak. daur ini terjadi proses kompresi (1 ke 2), 4) dan penguapan (4 ke 1), seperti pada

Sistem pendingin siklus kompresi uap merupakan daur yang terbanyak. daur ini terjadi proses kompresi (1 ke 2), 4) dan penguapan (4 ke 1), seperti pada Siklus Kompresi Uap Sistem pendingin siklus kompresi uap merupakan daur yang terbanyak digunakan dalam daur refrigerasi, pada daur ini terjadi proses kompresi (1 ke 2), pengembunan( 2 ke 3), ekspansi (3

Lebih terperinci

Teliti dalam menerap kan sistem satuan dalam mengukur suatu besaran fisis.

Teliti dalam menerap kan sistem satuan dalam mengukur suatu besaran fisis. DESKRIPSI PEMELAJARAN MATA DIKLAT TUJUAN : FISIKA : 1. Mengembangkan pengetahuan,pemahaman dan kemampuan analisis peserta didik terhadap lingkungan alam dan sekitarnya. 2. Memberikan pemahaman dan kemampuan

Lebih terperinci

1. TURBIN AIR. 1.1 Jenis Turbin Air. 1.1.1 Turbin Impuls

1. TURBIN AIR. 1.1 Jenis Turbin Air. 1.1.1 Turbin Impuls 1. TURBIN AIR Dalam suatu sistim PLTA, turbin air merupakan salah satu peralatan utama selain generator. Turbin air adalah alat untuk mengubah energi air menjadi energi puntir. Energi puntir ini kemudian

Lebih terperinci

Kompetensi Siswa Hakikat Fisika

Kompetensi Siswa Hakikat Fisika MENGUKUR Kompetensi Siswa 1. Menghayati dan mengamalkan ajaran agama yang dianutnya 2. Mengembangkan perilaku (jujur, disiplin, tanggung jawab, peduli, santun, ramah lingkungan, gotong royong, kerjasama,

Lebih terperinci

EFISIENSI DAN EFEKTIVITAS SIRIP LONGITUDINAL DENGAN PROFIL SIKU EMPAT KEADAAN TAK TUNAK KASUS 2D

EFISIENSI DAN EFEKTIVITAS SIRIP LONGITUDINAL DENGAN PROFIL SIKU EMPAT KEADAAN TAK TUNAK KASUS 2D EFISIENSI DAN EFEKIVIAS SIRIP LONGIUDINAL DENGAN PROFIL SIKU EMPA KEADAAN AK UNAK KASUS 2D PK Purwadi Jurusan eknik Mesin, FS, Universitas Sanata Dharma Yogyakarta Email: pur@mailcity.com ABSRAK Penelitian

Lebih terperinci

PERANCANGAN STRUKTUR ATAS APARTEMEN KALIBATA RESIDENCE TOWER D JAKARTA. Laporan Tugas Akhir. Atma Jaya Yogyakarta. Oleh :

PERANCANGAN STRUKTUR ATAS APARTEMEN KALIBATA RESIDENCE TOWER D JAKARTA. Laporan Tugas Akhir. Atma Jaya Yogyakarta. Oleh : PERANCANGAN STRUKTUR ATAS APARTEMEN KALIBATA RESIDENCE TOWER D JAKARTA Laporan Tugas Akhir sebagai salah satu syarat untuk memperoleh gelar Sarjana dari Universitas Atma Jaya Yogyakarta Oleh : ERWIN OLIVER

Lebih terperinci

SPMB/Fisika/UMPTN Tahun 1992

SPMB/Fisika/UMPTN Tahun 1992 1. Akibat rotasi bumi, keadaan Ida yang bermassa a dan ada di Bandung, dan David yang bermassa a dan ada di London, akan sama dalam hal... A. laju linearnya B. kecepatan linearnya C. gaya gravitasi buminya

Lebih terperinci

Bahan Ajar IPA Terpadu

Bahan Ajar IPA Terpadu Setelah mempelajari materi gerak lurus diharapkan ananda mampu 1. Mendefinisikan gaya 2. Mengidentifikasi jenis-jenis gaya dalam kehidupan sehari-hari 3. Mengidentifikasi gaya gesekan yang menguntungkan

Lebih terperinci

TERMODINAMIKA LANJUT: ENTROPI

TERMODINAMIKA LANJUT: ENTROPI SELF-PROPAGATING ENTREPRENEURIAL EDUCATION DEVELOPMENT (SPEED) Termodinamika Lanjut Brawijaya University 2012 TERMODINAMIKA LANJUT: ENTROPI Dr.Eng Nurkholis Hamidi; Dr.Eng Mega Nur Sasongko Program Master

Lebih terperinci

PENGARUH KEDALAMAN GEOTEKSTIL TERHADAP KAPASITAS DUKUNG MODEL PONDASI TELAPAK BUJURSANGKAR DI ATAS TANAH PASIR DENGAN KEPADATAN RELATIF (Dr) = ± 23%

PENGARUH KEDALAMAN GEOTEKSTIL TERHADAP KAPASITAS DUKUNG MODEL PONDASI TELAPAK BUJURSANGKAR DI ATAS TANAH PASIR DENGAN KEPADATAN RELATIF (Dr) = ± 23% PENGARUH KEDALAMAN GEOTEKSTIL TERHADAP KAPASITAS DUKUNG MODEL PONDASI TELAPAK BUJURSANGKAR DI ATAS TANAH PASIR DENGAN KEPADATAN RELATIF (Dr) = ± 23% Jemmy NRP : 0021122 Pembimbing : Herianto Wibowo, Ir,

Lebih terperinci

PENGARUH BENTUK DIFUSER TERHADAP TRANSFER OKSIGEN Edi Haryanto, Irene Arum AS, Retno Susetyaningsih Staf Pengajar di STTL YLH Yogyakarta

PENGARUH BENTUK DIFUSER TERHADAP TRANSFER OKSIGEN Edi Haryanto, Irene Arum AS, Retno Susetyaningsih Staf Pengajar di STTL YLH Yogyakarta PENGARUH BENTUK DIFUSER TERHADAP TRANSFER OKSIGEN Edi Haryanto, Irene Arum AS, Retno Susetyaningsih Staf Pengajar di STTL YLH Yogyakarta ABSTRACT A study of oxygen transfer is develop to investigate the

Lebih terperinci

PENGARUH JARAK SALURAN KELUAR AIR DAN UDARA TERHADAP KARAKTERISTIK SPRAY PADA TWIN FLUID ATOMIZER

PENGARUH JARAK SALURAN KELUAR AIR DAN UDARA TERHADAP KARAKTERISTIK SPRAY PADA TWIN FLUID ATOMIZER PENGARUH JARAK SALURAN KELUAR AIR DAN UDARA TERHADAP KARAKTERISTIK SPRAY PADA TWIN FLUID ATOMIZER An Nisaa Maharani, ING Wardana, Lilis Yuliati Jurnal Teknik Mesin Fakultas Teknik Universitas Brawijaya

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN

RENCANA PELAKSANAAN PEMBELAJARAN RENCANA PELAKSANAAN PEMBELAJARAN Mata Pelajaran : Matematika Kelas/ Semester: XI Program IPA/ Alokasi Waktu: jam Pelajaran (3 Pertemuan) A. Standar Kompetensi Menggunakan konsep limit ungsi dan turunan

Lebih terperinci

PENINGKATAN UNJUK KERJA PERALATAN AIR WASHER

PENINGKATAN UNJUK KERJA PERALATAN AIR WASHER PENINGKATAN UNJUK KERJA PERALATAN AIR WASHER Fandi D. Suprianto, Ekadewi A Handoyo Jurusan Teknik Mesin, Fakultas Teknologi Industri Universitas Kristen Petra Jl Siwalankerto 142-144, 236 fandi@peter.petra.ac.id

Lebih terperinci

TKS-4101: Fisika. KULIAH 3: Gerakan dua dan tiga dimensi J U R U S A N T E K N I K S I P I L UNIVERSITAS BRAWIJAYA

TKS-4101: Fisika. KULIAH 3: Gerakan dua dan tiga dimensi J U R U S A N T E K N I K S I P I L UNIVERSITAS BRAWIJAYA J U R U S A N T E K N I K S I P I L UNIVERSITAS BRAWIJAYA TKS-4101: Fisika KULIAH 3: Gerakan dua dan tiga dimensi Dosen: Tim Dosen Fisika Jurusan Teknik Sipil FT-UB 1 Gerak 2 dimensi lintasan berada dalam

Lebih terperinci

Pertemuan IV,V,VI,VII II. Sambungan dan Alat-Alat Penyambung Kayu

Pertemuan IV,V,VI,VII II. Sambungan dan Alat-Alat Penyambung Kayu Pertemuan IV,V,VI,VII II. Sambungan dan Alat-Alat Penyambung Kayu II.1 Sambungan Kayu Karena alasan geometrik, konstruksi kayu sering kali memerlukan sambungan perpanjang untuk memperpanjang kayu atau

Lebih terperinci

PD Orde 2 Lecture 3. Rudy Dikairono

PD Orde 2 Lecture 3. Rudy Dikairono PD Orde Lecture 3 Rudy Dikairono Today s Outline PD Orde Linear Homogen PD Orde Linear Tak Homogen Metode koefisien tak tentu Metode variasi parameter Beberapa Pengelompokan Persamaan Diferensial Order

Lebih terperinci

ANALISA DAN SIMULASI PROSES EVAPORASI PADA PIPA-PIPA EVAPORATOR KETEL UAP PIPA AIR DENGAN KAPASITAS 40 000 kg/jam

ANALISA DAN SIMULASI PROSES EVAPORASI PADA PIPA-PIPA EVAPORATOR KETEL UAP PIPA AIR DENGAN KAPASITAS 40 000 kg/jam ANALISA DAN SIMULASI PROSES EVAPORASI PADA PIPA-PIPA EVAPORATOR KETEL UAP PIPA AIR DENGAN KAPASITAS 40 000 kg/jam SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik PARLOT

Lebih terperinci

MODUL PERCOBAAN TERMOKIMIA

MODUL PERCOBAAN TERMOKIMIA MODUL PERCOBAAN TERMOKIMIA Tujuan Percobaan Mempelajari bahwa setiap reaksi kimia selalu disertai dengan perubahan energi Mempelajari bahwa perubahan kalor dapt diukur atau dipelajari dengan percobaan

Lebih terperinci

BABAK PENYISIHAN SELEKSI TINGKAT PROVINSI BIDANG KOMPETISI

BABAK PENYISIHAN SELEKSI TINGKAT PROVINSI BIDANG KOMPETISI LAMPIRAN 5 BABAK PENYISIHAN SELEKSI TINGKAT PROVINSI BIDANG KOMPETISI Laporan 2 Pelaksanaan OSN-PERTAMINA 2012 69 Olimpiade Sains Nasional Pertamina 2012 Petunjuk : 1. Tuliskan secara lengkap Nama, Nomor

Lebih terperinci

UJI BATAS BATAS ATTERBERG ASTM D-4318-00

UJI BATAS BATAS ATTERBERG ASTM D-4318-00 1. LINGKUP Percobaan ini mencakup penentuan batas-batas Atterberg yang meliputi Batas Susut, Batas Plastis, dan Batas Cair. 2. DEFINISI a. Batas Susut (Shrinkage Limit), w S adalah batas kadar air dimana

Lebih terperinci

Untuk terang ke 3 maka Maka diperoleh : adalah

Untuk terang ke 3 maka Maka diperoleh : adalah JAWABAN LATIHAN UAS 1. INTERFERENSI CELAH GANDA YOUNG Dua buah celah terpisah sejauh 0,08 mm. Sebuah berkas cahaya datang tegak lurus padanya dan membentuk pola gelap terang pada layar yang berjarak 120

Lebih terperinci

KELARUTAN DAN HASIL KALI KELARUTAN (Ksp)

KELARUTAN DAN HASIL KALI KELARUTAN (Ksp) KELARUTAN DAN HASIL KALI KELARUTAN (Ksp) Kelarutan (s) Kelarutan (solubilit) adalah suatu zat dalam suatu pelarut menatakan jumlah maksimum suatu zat ang dapat larut dalam suatu pelarut. Satuan kelarutan

Lebih terperinci

yang tinggi, dengan pencelupan sedang dan di bagian tengah baja dapat dicapai kekerasan yang tinggi meskipun laju pendinginan lebih lambat.

yang tinggi, dengan pencelupan sedang dan di bagian tengah baja dapat dicapai kekerasan yang tinggi meskipun laju pendinginan lebih lambat. 10: HARDENABILITY 10.1 Hardenability Mampu keras merujuk kepada sifat baja yang menentukan dalamnya pengerasan sebagai akibat proses quench dari temperatur austenisasinya. Mampu keras tidak dikaitkan dengan

Lebih terperinci

BAB III PERENCANAAN DAN PERHITUNGAN DESAIN RANGKA DAN BODY. Perhitungan Kekuatan Rangka. Menghitung Element Mesin Baut.

BAB III PERENCANAAN DAN PERHITUNGAN DESAIN RANGKA DAN BODY. Perhitungan Kekuatan Rangka. Menghitung Element Mesin Baut. BAB III PERENCANAAN DAN PERHITUNGAN DESAIN RANGKA DAN BODY.1 Diagram Alir Proses Perancangan Data proses perancangan kendaraan hemat bahan bakar seperti terlihat pada diagram alir berikut ini : Mulai Perhitungan

Lebih terperinci

Macam-macam fungsi. Fungsi Polinomial. Fungsi Linier. Grafik Fungsi Linier. Fungsi

Macam-macam fungsi. Fungsi Polinomial. Fungsi Linier. Grafik Fungsi Linier. Fungsi Fungsi Macam-macam fungsi Polinomial (sampai dengan derajat 2) Akar kuadrat Rasional Ekponensial Logaritma Fungsi Polinomial Bentuk Umum: f (x) = a 0 + a 1 x + a 2 x 2 + + a n x n, dengan a 0, a 1, a 2,

Lebih terperinci

INVESTIGASI PENGARUH RETAK RADIAL PADA PELET EKSENTRIS TERHADAP PARAMETER TERMAL ELEMEN BAKAR PWR

INVESTIGASI PENGARUH RETAK RADIAL PADA PELET EKSENTRIS TERHADAP PARAMETER TERMAL ELEMEN BAKAR PWR INVESTIGASI PENGARUH RETAK RADIAL PADA PELET EKSENTRIS TERHADAP PARAMETER TERMAL ELEMEN BAKAR PWR Hendro Tjahjono Pusat Teknologi Reaktor dan Keselamatan Nuklir (PTRKN)-BATAN Kawasan Puspiptek Serpong

Lebih terperinci

Metode Koefisien Tak Tentu untuk Penyelesaian PD Linier Homogen Tak Homogen orde-2 Matematika Teknik I_SIGIT KUSMARYANTO

Metode Koefisien Tak Tentu untuk Penyelesaian PD Linier Homogen Tak Homogen orde-2 Matematika Teknik I_SIGIT KUSMARYANTO Metode Koefisien Tak Tentu untuk Penyelesaian Persamaan Diferensial Linier Tak Homogen orde-2 Solusi PD pada PD Linier Tak Homogen ditentukan dari solusi umum PD Linier Homogen dan PD Linier Tak Homogen.

Lebih terperinci

DINAMIKA GERAK. 2) Apakah yang menyebabkan benda yang sedang bergerak dapat menjadi diam?

DINAMIKA GERAK. 2) Apakah yang menyebabkan benda yang sedang bergerak dapat menjadi diam? DINAMIKA GERAK KEGIATAN TATAP MUKA A. Pendahuluan Mengapa buah nangka yang tergantung di pohon, bila sudah matang jatuh ke Bumi? Gerak apa yang dialami nangka yang jatuh itu? Ya benar, buah nangka yang

Lebih terperinci

BAB V TRANSFORMASI 2D

BAB V TRANSFORMASI 2D BAB V TRANSFORMASI 2D OBJEKTIF : Pada Bab ini mahasiswa mempelajari tentang : Transformasi Dasar 2D 1. Translasi 2. Rotasi 3. Scalling Transformasi Lain 1. Refleksi 2. Shear TUJUAN DAN SASARAN: Setelah

Lebih terperinci

02. Jika laju fotosintesis (v) digambarkan terhadap suhu (T), maka grafik yang sesuai dengan bacaan di atas adalah (A) (C)

02. Jika laju fotosintesis (v) digambarkan terhadap suhu (T), maka grafik yang sesuai dengan bacaan di atas adalah (A) (C) Pengaruh Kadar Gas Co 2 Pada Fotosintesis Tumbuhan yang mempunyai klorofil dapat mengalami proses fotosintesis yaitu proses pengubahan energi sinar matahari menjadi energi kimia dengan terbentuknya senyawa

Lebih terperinci

1. Nilai Tempat Bilangan 10.000 s.d. 100.000 Lambang bilangan Hindu-Arab yang setiap kali kita gunakan menggunakan sistem desimal dengan nilai

1. Nilai Tempat Bilangan 10.000 s.d. 100.000 Lambang bilangan Hindu-Arab yang setiap kali kita gunakan menggunakan sistem desimal dengan nilai 1. Nilai Tempat Bilangan 10.000 s.d. 100.000 Lambang bilangan Hindu-Arab yang setiap kali kita gunakan menggunakan sistem desimal dengan nilai tempat. Menggunakan sistem desimal (dari kata decem, bahasa

Lebih terperinci

1. Pendahuluan. Annual Engineering Seminar 2012 Sutrisno, Herman Sasongko, Heru Mirmanto

1. Pendahuluan. Annual Engineering Seminar 2012 Sutrisno, Herman Sasongko, Heru Mirmanto Analisa Numerik Efek Ketebalan Bluff Rectangular Terhadap Karakteristik Aliran Di Dekat Dinding Institut Teknologi Sepuluh November, Teknik Mesin, Surabaya,60111,Indonesia Abstract Bluff rectangular is

Lebih terperinci

BAB VII PROSES THERMAL LOGAM PADUAN

BAB VII PROSES THERMAL LOGAM PADUAN BAB VII PROSES THERMAL LOGAM PADUAN Annealing adalah : sebuah perlakukan panas dimana material dipanaskan pada temperatur tertentu dan waktu tertentu dan kemudian dengan perlahan didinginkan. Annealing

Lebih terperinci

Bab III. 3.1.1 Kecepatan relatif dua buah titik pada satu penghubung kaku. Penghubung berputar terhadap satu titik tetap

Bab III. 3.1.1 Kecepatan relatif dua buah titik pada satu penghubung kaku. Penghubung berputar terhadap satu titik tetap Diktat KINEMTIK leh : Ir. Erwin Sulito - Ir. Endi Sutikno ab III KECEPTN RELTIF DN PERCEPTN RELTIF 3.1 KECEPTN RELTIF 3.1.1 Kecepatan relatif dua buah titik pada satu penghubung kaku Penghubung berputar

Lebih terperinci

EFEK RASIO TEKANAN KOMPRESOR TERHADAP UNJUK KERJA SISTEM REFRIGERASI R 141B

EFEK RASIO TEKANAN KOMPRESOR TERHADAP UNJUK KERJA SISTEM REFRIGERASI R 141B EFEK RASIO TEKANAN KOMPRESOR TERHADAP UNJUK KERJA SISTEM REFRIGERASI R 141B Kristian Selleng * * Abstract The purpose of this research is to find the effect of compressor pressure ratio with respect to

Lebih terperinci

BAB 4. WUJUD ZAT 1. WUJUD GAS 2. HUKUM GAS 3. HUKUM GAS IDEAL 4. GAS NYATA 5. CAIRAN DAN PADATAN 6. GAYA ANTARMOLEKUL 7. TRANSISI FASA 8.

BAB 4. WUJUD ZAT 1. WUJUD GAS 2. HUKUM GAS 3. HUKUM GAS IDEAL 4. GAS NYATA 5. CAIRAN DAN PADATAN 6. GAYA ANTARMOLEKUL 7. TRANSISI FASA 8. BAB 4. WUJUD ZAT 1. WUJUD GAS 2. HUKUM GAS 3. HUKUM GAS IDEAL 4. GAS NYATA 5. CAIRAN DAN PADATAN 6. GAYA ANTARMOLEKUL 7. TRANSISI FASA 8. DIAGRAM FASA WUJUD ZAT: GAS CAIRAN PADATAN PERMEN (sukrosa) C 12

Lebih terperinci

Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f.

Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f. Pertemuan ke 8 GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(,y): y = f(), D f } disebut grafik fungsi f. Grafik metode yang paling umum untuk menyatakan hubungan antara dua himpunan yaitu dengan menggunakan

Lebih terperinci

BAB VI. PENGGUNAAN INTEGRAL. Departemen Teknik Kimia Universitas Indonesia

BAB VI. PENGGUNAAN INTEGRAL. Departemen Teknik Kimia Universitas Indonesia BAB VI. PENGGUNAAN INTEGRAL Departemen Teknik Kimia Universitas Indonesia BAB VI. PENGGUNAAN INTEGRAL Luas Daerah di Bidang Volume Benda Pejal di Ruang: Metode Cincin Metode Cakram Metode Kulit Tabung

Lebih terperinci

BAB II LANDASAN TEORI. membandingkan tersebut tiada lain adalah pekerjaan pengukuran atau mengukur.

BAB II LANDASAN TEORI. membandingkan tersebut tiada lain adalah pekerjaan pengukuran atau mengukur. BAB II LANDASAN TEORI II.I. Pengenalan Alat Ukur. Pengukuran merupakan suatu aktifitas dan atau tindakan membandingkan suatu besaran yang belum diketahui nilainya atau harganya terhadap besaran lain yang

Lebih terperinci

MEMASANG RANGKA DAN PENUTUP PLAFON

MEMASANG RANGKA DAN PENUTUP PLAFON KODE MODUL KYU.BGN.214 (2) A Milik Negara Tidak Diperdagangkan SEKOLAH MENENGAH KEJURUAN BIDANG KEAHLIAN TEKNIK BANGUNAN PROGRAM KEAHLIAN TEKNIK INDUSTRI KAYU MEMASANG RANGKA DAN PENUTUP PLAFON DIREKTORAT

Lebih terperinci

Peningkatan Performance dengan Pendingin Udara Masuk pada Motor Diesel 4JA1

Peningkatan Performance dengan Pendingin Udara Masuk pada Motor Diesel 4JA1 Peningkatan Performance dengan Pendingin Udara Masuk pada Motor Diesel 4JA1 (Rahardjo Tirtoatmodjo) Peningkatan Performance dengan Pendingin Udara Masuk pada Motor Diesel 4JA1 Rahardjo Tirtoatmodjo Dosen

Lebih terperinci

LAPORAN AKHIR STANDAR DAN PENGUJIAN PRODUK QSEAL

LAPORAN AKHIR STANDAR DAN PENGUJIAN PRODUK QSEAL LAPORAN AKHIR STANDAR DAN PENGUJIAN PRODUK QSEAL SEPULUH SUKU CADANG OTOMOTIF JULI 2008 B2TKS TESTING HOUSE LAPORAN INI DISUSUN UNTUK DITELAAH OLEH THE UNITED STATES AGENCY FOR INTERNATIONAL DEVELOPMENT.

Lebih terperinci

ANALISA PENGARUH PRATEGANG PADA KONSTRUKSI PELAT LANTAI DITINJAU DARI ASPEK DAYA LAYAN DAN PERILAKU DINAMIK SKRIPSI

ANALISA PENGARUH PRATEGANG PADA KONSTRUKSI PELAT LANTAI DITINJAU DARI ASPEK DAYA LAYAN DAN PERILAKU DINAMIK SKRIPSI ANALISA PENGARUH PRATEGANG PADA KONSTRUKSI PELAT LANTAI DITINJAU DARI ASPEK DAYA LAYAN DAN PERILAKU DINAMIK SKRIPSI Oleh LUNGGUK PARLUHUTAN 1000860394 BINUS UNIVERSITY JAKARTA 2010 ANALISA PENGARUH PRATEGANG

Lebih terperinci

BAB 5 KOMPONEN DASAR SISTEM KONTROL

BAB 5 KOMPONEN DASAR SISTEM KONTROL BAB 5 KOMPONEN ASAR SISTEM KONTROL 5. SENSOR AN TRANSMITER Sensor: menghasilkan fenomena, mekanik, listrik, atau sejenisnya yang berhubungan dengan variabel proses yang diukur. Trasmiter: mengubah fenomena

Lebih terperinci

Universitas Indonusa Esa Unggul Fakultas Ilmu Komputer Teknik Informatika

Universitas Indonusa Esa Unggul Fakultas Ilmu Komputer Teknik Informatika Univesitas Indonusa Esa Unggul Fakultas Ilmu Kompute Teknik Infomatika Integal Gais Integal Gais Definisi Integal gais Integal gais di bidang Misalkan pesamaan paamete kuva mulus ( di bidang (t (t ; a

Lebih terperinci

Bab I. Fungsi Dua Peubah atau Lebih. Pengantar

Bab I. Fungsi Dua Peubah atau Lebih. Pengantar Bab I Fungsi Dua Peubah atau Lebih Pengantar Seperti halna dengan fungsi satu peubah kita dapat mendefinisikan fungsi dua peubah atau lebih sebagai pemetaan dan sebagai pasangan berurut.fungsi dengan peubah

Lebih terperinci

PERSAMAAN DAN PERTIDAKSAMAAN DENGAN HARGA MUTLAK PENDAHULUAN

PERSAMAAN DAN PERTIDAKSAMAAN DENGAN HARGA MUTLAK PENDAHULUAN Drs. Karso Modul 9 PERSAMAAN DAN PERTIDAKSAMAAN DENGAN HARGA MUTLAK PENDAHULUAN Modul ang sekarang Anda pelajri ini adalah modul ang kesembilan dari mata kuliah Matematika Sekolah Dasar Lanjut. Adapun

Lebih terperinci

CONTOH SOAL DAN PEMBAHASANNYA

CONTOH SOAL DAN PEMBAHASANNYA CONTOH SOAL DAN PEMBAHASANNYA MATA PELAJARAN IPA - FISIKA SUMBER: Bp. Setiawan BESARAN DAN SATUAN Perhatikan tabel berikut! Besaran pokok menurut SI dengan alat ukurnya yang benar adalah... A. 1 dan 2

Lebih terperinci

BAB 3 PROSES-PROSES MESIN KONVERSI ENERGI

BAB 3 PROSES-PROSES MESIN KONVERSI ENERGI BAB 3 PROSES-PROSES MESIN KONVERSI ENERGI Motor penggerak mula adalah suatu alat yang merubah tenaga primer menjadi tenaga sekunder, yang tidak diwujudkan dalam bentuk aslinya, tetapi diwujudkan dalam

Lebih terperinci

MEKANIKA KUANTUM DALAM TIGA DIMENSI

MEKANIKA KUANTUM DALAM TIGA DIMENSI MEKANIKA KUANTUM DALAM TIGA DIMENSI Sebelumnya telah dibahas mengenai penerapan Persamaan Schrödinger dalam meninjau sistem kuantum satu dimensi untuk memperoleh fungsi gelombang serta energi dari sistem.

Lebih terperinci

STUDI EKSPERIMENTAL DAN NUMERIK KARAKTERISTIK ALIRAN DUA FASE AIR-UDARA MELEWATI ELBOW 75⁰ DARI PIPA VERTIKAL MENUJU PIPA DENGAN SUDUT KEMIRINGAN 15

STUDI EKSPERIMENTAL DAN NUMERIK KARAKTERISTIK ALIRAN DUA FASE AIR-UDARA MELEWATI ELBOW 75⁰ DARI PIPA VERTIKAL MENUJU PIPA DENGAN SUDUT KEMIRINGAN 15 STUDI EKSPERIMENTAL DAN NUMERIK KARAKTERISTIK ALIRAN DUA FASE AIR-UDARA MELEWATI ELBOW 75⁰ DARI PIPA VERTIKAL MENUJU PIPA DENGAN SUDUT KEMIRINGAN 15 I Kadek Ervan Hadi Wiryanta 1, Triyogi Yuwono 2 Program

Lebih terperinci

52 Geometri Analitik Datar dan Ruang 4.1. DEFINISI PARABOLA

52 Geometri Analitik Datar dan Ruang 4.1. DEFINISI PARABOLA 5 Geetri Analitik Datar dan Ruang 4.. DEFINISI PARABOLA Parabla adalah tepat kedudukan titik (hipunan titik) ang berjarak saa terhadap suatu titik dan suatu garis tertentu. Titik tertentu itu disebut Fkus

Lebih terperinci

MODUL 7 TAHANAN FONDASI TERHADAP GAYA ANGKAT KE ATAS

MODUL 7 TAHANAN FONDASI TERHADAP GAYA ANGKAT KE ATAS Program Studi Teknik Sipil Fakultas Teknik Sipil dan Perencanaan Universitas Mercu Buana 7 MODUL 7 TAHANAN FONDASI TERHADAP GAYA ANGKAT KE ATAS Fondasi menara (tower) sering menerima gaya angkat ke atas

Lebih terperinci

Penggorengan impian yang memiliki hal-hal baik penggorengan. besi, sangat tahan karat dan tidak memerlukan perawatan yang rumit

Penggorengan impian yang memiliki hal-hal baik penggorengan. besi, sangat tahan karat dan tidak memerlukan perawatan yang rumit Petunjuk Penggunaan Kiwame/Kiwame ROOTS Penggorengan impian yang memiliki hal-hal baik penggorengan besi, sangat tahan karat dan tidak memerlukan perawatan yang rumit Buatan Jepang Perhatian Harap baca

Lebih terperinci

Pengukuran Diameter dan Tinggi Pohon

Pengukuran Diameter dan Tinggi Pohon Pengukuran Diameter dan Tinggi Pohon Pengukuran Diameter (DBH) Diameter atau keliling merupakan salahsatu dimensi batang (pohon) yang sangat menentukan luas penampang lintang batang pohon saat berdiri

Lebih terperinci

BAB VI TRANSFORMASI FASE PADA LOGAM

BAB VI TRANSFORMASI FASE PADA LOGAM BAB VI TRANSFORMASI FASE PADA LOGAM Sebagian besar transformasi bahan padat tidak terjadi terus menerus sebab ada hambatan yang menghalangi jalannya reaksi dan bergantung terhadap waktu. Contoh : umumnya

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Bendung atau pelimpah adalah bangunan yang melintang sungai yang berfungsi untuk menaikkan elevasi muka air untuk keperluan irigasi, PLTA, dan air bersih dan keperluan

Lebih terperinci

1. Siklus, Hukum Termodinamika II dan Mesin Kalor. Pada gambar di atas siklus terdiri dari 3 proses

1. Siklus, Hukum Termodinamika II dan Mesin Kalor. Pada gambar di atas siklus terdiri dari 3 proses 1. Siklus, Hukum Termodinamika II dan Mesin Kalor a. Siklus dan Perhitungan Usaha Siklus adalah rangkaian beberapa proses termodinamika yang membuat keadaan akhir sistem kembali ke keadaan awalnya. Pada

Lebih terperinci

Potensi Optimasi Reaksi Laboratorium Aturan Dasar untuk Sintesis Berkelanjutan

Potensi Optimasi Reaksi Laboratorium Aturan Dasar untuk Sintesis Berkelanjutan Potensi Optimasi Reaksi Laboratorium Aturan Dasar untuk Sintesis Berkelanjutan Selama mengamati beberapa reaksi dalam NOP, dapat diidentifikasi adanya beberapa kelemahan. Kelemahan ini terutama berpengaruh

Lebih terperinci

PRINSIP KONSERVASI ENERGI PADA PROSES PRODUKSI. Ir. Parlindungan Marpaung HIMPUNAN AHLI KONSERVASI ENERGI

PRINSIP KONSERVASI ENERGI PADA PROSES PRODUKSI. Ir. Parlindungan Marpaung HIMPUNAN AHLI KONSERVASI ENERGI PRINSIP KONSERVASI ENERGI PADA PROSES PRODUKSI Ir. Parlindungan Marpaung HIMPUNAN AHLI KONSERVASI ENERGI Elemen Kompetensi III Elemen Kompetensi 1. Menjelaskan prinsip-prinsip konservasi energi 2. Menjelaskan

Lebih terperinci

a b. 1.5 l c d. 1.75 l 2 l

a b. 1.5 l c d. 1.75 l 2 l 160 1. Sebuah batu yang massanya sama digantung pada seutas tali yang berbeda panjangnya. Gambar manakah yang akan menghasilkan jumlah ayunan terbanyak untuk selang waktu tertentu. a b. l 1.5 l c d. 1.75

Lebih terperinci

UJIAN NASIONAL TAHUN 2010

UJIAN NASIONAL TAHUN 2010 UJIN NSIONL THUN 00 Pilihlah satu jawaban yang paling benar. Seorang anak berjalan lurus 0 meter ke barat, kemudian belok ke selatan sejauh meter, dan belok lagi ke timur sejauh meter. Perpindahan yang

Lebih terperinci

Pertemuan ke 11. Segiempat Segiempat adalah bidang datar yang dibatasi oleh empat potong garis yang saling bertemu dan menutup D C

Pertemuan ke 11. Segiempat Segiempat adalah bidang datar yang dibatasi oleh empat potong garis yang saling bertemu dan menutup D C Pertemuan ke Segiempat Segiempat adalah bidang datar yang dibatasi oleh empat potong garis yang saling bertemu dan menutup D C B Empat persegi panjang d D E a c C B b B = CD dan B // CD D = BC dan D //

Lebih terperinci

KAJIAN TENTANG RANCANGAN MOTOR ROKET RX100 MENGGUNAKAN PENDEKATAN GAYA DORONG OPTIMAL

KAJIAN TENTANG RANCANGAN MOTOR ROKET RX100 MENGGUNAKAN PENDEKATAN GAYA DORONG OPTIMAL KAJIAN TENTANG RANCANGAN MOTOR ROKET RX100 MENGGUNAKAN PENDEKATAN GAYA DORONG OPTIMAL Errya Satrya 1 ; Holder Simorangkir 2 1 Staf peneliti Pusat Roket LAPAN, Rumpin Serpong 2 Universitas IndoNusa Esa

Lebih terperinci

10/14/2012. Gas Nyata. Faktor pemampatan (kompresi), Z. Faktor Kompresi, Z. TERMODINAMIKA KIMIA (KIMIA FISIK 1 ) Sistem Gas Nyata

10/14/2012. Gas Nyata. Faktor pemampatan (kompresi), Z. Faktor Kompresi, Z. TERMODINAMIKA KIMIA (KIMIA FISIK 1 ) Sistem Gas Nyata 10/14/01 Jurusan Kimia - FMIA Universitas Gadjah Mada (UGM) ERMODINAMIKA KIMIA (KIMIA FISIK 1 ) Sistem Gas Nyata Gas Nyata engamatan bahwa gas-gas nyata menyimpang dari hukum gas ideal terutama sangat

Lebih terperinci

Cara uji sifat kekekalan agregat dengan cara perendaman menggunakan larutan natrium sulfat atau magnesium sulfat

Cara uji sifat kekekalan agregat dengan cara perendaman menggunakan larutan natrium sulfat atau magnesium sulfat Standar Nasional Indonesia Cara uji sifat kekekalan agregat dengan cara perendaman menggunakan larutan natrium sulfat atau magnesium sulfat ICS 91.100.15 Badan Standardisasi Nasional Daftar Isi Daftar

Lebih terperinci

Fungsi, Persamaaan, Pertidaksamaan

Fungsi, Persamaaan, Pertidaksamaan Fungsi, Persamaaan, Pertidaksamaan Disampaikan pada Diklat Instruktur/Pengembang Matematika SMA Jenjang Dasar Tanggal 6 s.d. 9 Agustus 004 di PPPG Matematika Oleh: Drs. Markaban, M.Si. Widyaiswara PPPG

Lebih terperinci

PERKAKAS TANGAN YUSRON SUGIARTO

PERKAKAS TANGAN YUSRON SUGIARTO PERKAKAS TANGAN YUSRON SUGIARTO RAGUM berfungsi untuk menjepit benda kerja secara kuat dan benar, artinya penjepitan oleh ragum tidak boleh merusak benda kerja Untuk menghasilkan penjepitan yang kuat maka

Lebih terperinci

DESAIN BENTUK FISIK KERETA DORONG SESUAI ANTROPOMETRI ANAK-ANAK UNTUK PENJUAL COBEK ANAK

DESAIN BENTUK FISIK KERETA DORONG SESUAI ANTROPOMETRI ANAK-ANAK UNTUK PENJUAL COBEK ANAK DESAIN BENTUK FISIK KERETA DORONG SESUAI ANTROPOMETRI ANAK-ANAK UNTUK PENJUAL COBEK Abstrak ANAK Delta Pralian - NPM : 30402264 Program Studi Teknik Industri, Universitas Gunadarma E-mail : dpralian@yahoo.com

Lebih terperinci

BAB V PENUTUP. Dari hasil penyelesaian tugas akhir dapat ditarik kesimpulan sebagai berikut :

BAB V PENUTUP. Dari hasil penyelesaian tugas akhir dapat ditarik kesimpulan sebagai berikut : BAB V PENUTUP 5.1. Kesimpulan Dari hasil penyelesaian tugas akhir dapat ditarik kesimpulan sebagai berikut : a. Cooling tower yang dibuat dapat disirkulasikan dengan lancer dan layak untuk dilakukan pengujian

Lebih terperinci