III PEMBAHASAN. 3.1 Analisis Metode. dan (2.52) masing-masing merupakan penyelesaian dari persamaan

Ukuran: px
Mulai penontonan dengan halaman:

Download "III PEMBAHASAN. 3.1 Analisis Metode. dan (2.52) masing-masing merupakan penyelesaian dari persamaan"

Transkripsi

1 6, 1 (2.52) Berdasarkan persamaan (2.52), maka untuk 0 1 masing-masing memberikan persamaan berikut:, 0,0, 0, 1,1, 1. Sehingga menurut persamaan (2.51) persamaan (2.52) diperoleh bahwa fungsi, 0, 1 masing-masing merupakan penyelesaian dari persamaan, 0,0 0, 1,1 0. Dengan demikian peningkatan nilai dari 0 ke 1 menyatakan perubahan nilai, dari ke. Dalam topologi, proses ini disebut deformasi. III PEMBAHASAN Pada bagian ini akan dibahas kegunaan metode homotopi untuk penyelesaian suatu masalah taklinear. Metode ini akan digunakan untuk menyelesaikan model yang akan dinyatakan dalam bentuk persamaan KdV. Suatu contoh kasus akan diberikan penyelesaian numeriknya akan dibandingkan berdasarkan orde-orde yang digunakan untuk menjamin validitas metode ini. Metode homotopi yang diterapkan dalam tulisan ini mengikuti pustaka ( Song & Tao, 200 ). 3.1 Analisis Metode Dalam karya ilmiah ini akan digunakan metode homotopi untuk menyelesaikan masalah nilai awal yang diberikan pada persamaan (2.36). Masalah nilai awal tersebut dapat dinyatakan secara umum dalam bentuk persamaan (2.37). Perluasan dari konsep dasar metode homotopi yang telah diuraikan pada landasan teori memerlukan fungsi, ; yang bergantung pada,, parameter. Tinjau persamaan taklinear berikut:, 0, (3.1) dengan suatu operator turunan yang taklinear,, fungsi yang akan ditentukan bergantung pada peubah t. Selanjutnya,, akan diperoleh dari penyelesaian persamaan deformasi orde nol berikut: 1, ;,, ;, (3.2) dengan 0,1, ; adalah fungsi yang merupakan pemetaan dari,,, adalah penduga awal dari,, adalah parameter tak nol, adalah operator linear. Jika 0 1, maka dari persamaan (3.2) akan diperoleh:, ; 0,, (3.3), ; 1 0. (3.) Selanjutnya, karena parameter q bernilai dari 0 sampai 1, maka, ; memetakan dari penduga awal, ke penyelesaian eksak,. Dengan menggunakan teorema Taylor,, ; dapat diuraikan menjadi:, ;,,,, 1, ;!. (3.5) (3.6) Selanjutnya, penurunan m kali persamaan (3.2) terhadap q, dengan 0 dibagi m! akan diperoleh bentuk persamaan orde ke-m berikut:,,,, (3.7)

2 7, 1, ; 1!, (3.) 0, 1 1, 1, (3.9) Jika persamaan (3.5) dengan 1, maka diperoleh:,,. (3.10) dengan, adalah dugaan awal, diperoleh dari penyelesaian persamaan (3.7). Selanjutnya, untuk lebih memahami metode ini, misalkan diberikan suatu masalah yang dinyatakan dalam masalah nilai awal berikut: 10, (3.11) dengan syarat awal 0 0. Penyelesaian eksak masalah nilai awal (3.11) adalah: Berikut ini akan dicari solusi masalah nilai awal (3.11) dengan menggunakan metode homotopi. Misalkan 1, sehingga dengan menggunakan persamaan (3.7), diperoleh:. (3.12) dengan diberikan pada persamaan (3.). Karena u 0 () t = φ (;0) t, dipilih pendekatan awal u () t = t, 0 maka 1 2, Dengan demikian, diperoleh serangakaian penyelesaian,, Jika dipilih 1, maka penyelesaian masalah nilai awal (3.11) tersebut adalah: (lihat lampiran 1) Perbandingan penyelesaian masalah nilai awal (3.11) secara eksak penyelesaian dengan metode homotopi diberikan pada Gambar 1. Pada Gambar 1, terlihat bahwa penyelesaian eksak penyelesaian dengan menggunakan metode homotopi cukup dekat untuk daerah t tertentu. Penambahan daerah kekonvergenan bergantung pada parameter h uhtl t Gambar 1. Perbandingan penyelesaian eksak metode homotopi dari masalah nilai awal (3.11) 3.2 Aplikasi Metode Persamaan KdV adalah persamaan diferensial parsial yang berbentuk taklinear berikut: 6 0, (3.13) x t adalah koordinat ruang waktu. Persamaan (3.13) telah diturunkan pada landasan teori. Untuk menggunakan metode homotopi, maka misalkan, sehingga persamaan (3.13) menjadi: eksak homotopi 6 0, (3.1)

3 c a berturut-turut menyatakan kecepatan amplitudo gelombang. Misalkan untuk, ~, (3.15) dengan 0 B adalah konstanta. Jika persamaan (3.15) turunan-turunannya disubstitusikan ke persamaan (3.1), maka diperoleh:. (3.16) Misalkan, maka persamaan (3.1) menjadi : 6 0.(3.17) (lihat lampiran 2) Kemudian asumsikan nilai awalnya berbentuk: 0 1, 0 0, 0. (3.1) Penyelesaian dari masalah nilai awal persamaan (3.1) menggunakan fungsi basis berupa fungsi eksponensial, dengan himpunan basisnya sebagai berikut: exp 1,2,3,, (3.19) atau dinyatakan dalam bentuk: exp, (3.20) adalah koefisien yang akan ditentukan. Berikut ini akan ditentukan penyelesaian dari masalah nilai awal (3.17), dengan menggunakan pendekatan metode homotopi. Operator taklinear yang dipilih adalah: Φ, Φ 6ΦΦ Φ (3.21) operator linear adalah: Φ; Φ;, (3.22) Jika metode koefisien tak tentu digunakan pada persamaan diferensial biasa untuk Φ;, yaitu 0, maka diperoleh: exp exp 0,(3.23),, adalah konstanta. (lihat lampiran 3) Selanjutnya,, dapat diperoleh dari penyelesaian persamaan berikut: 1 Φ; ; Φ;,, (3.2) dengan 0,1 merupakan suatu parameter, ; adalah fungsi yang bergantung pada, A adalah fungsi yang bergantung pada nilai awal berikut: Φ0; 1,Φ 0; 0,Φ ; 0 (3.25) Berdasarkan persamaan (3.2), maka untuk 0 diperoleh, 0 0 yang masing-masing menunjukkan penyelesaian pendekatan awal dari. Selanjutnya, untuk 1, diperoleh, 1 1. Berdasarkan nilai awal (3.1) persamaan (3.20), dugaan awal yang dipilih berbentuk: 2exp exp 2. (3.26) Pemilihan pendekatan awal tersebut menjamin aya fungsi Φ, yang dapat diturunkan hingga m kali terhadap q. Turunan ke-m dari fungsi Φ, A terhadap q di 0 masing-masing dinotasikan sebagai berikut:!! ;, (3.27). (3.2) Deret Taylor dari fungsi Φ; di sekitar 0 masing-masing adalah: Φ; Φ, 0 (3.29)

4 9 A 0 (3.30) Berdasarkan persamaan (3.29), (3.30) Φ. 1,1, Φ, 0, 0, maka untuk 1, diperoleh:,. (3.31) (3.32) Hal ini menunjukkan hubungan antara solusi persamaan KdV (3.1) solusi pendekatan awal. Berikut ini akan ditentukan. Jika kedua ruas persamaan (3.2) persamaan (3.25) diturunkan terhadap q hingga m kali dihitung di 1 kemudian dibagi m!, maka akan diperoleh bentuk persamaan orde ke-m berikut:,, (3.33) dengan nilai awal: 0 0 0, (3.3), 1 1! Φ, (3.35),,,,, (3.36) (lihat lampiran ) Persamaan (3.35) dapat dinyatakan dalam bentuk:, 6. (3.3) (lihat lampiran 5) Jika persamaan (3.3) disustitusikan ke persamaan (3.33) berdasarkan persamaan (3.22), maka penyelesaian persamaan (3.33) dapat dinyatakan dalam bentuk: exp exp, (3.39) adalah penyelesaian khusus dari persamaan (3.33) dengan akan ditentukan berikut. Jika persamaan (3.39) disubstitusikan ke dalam persamaan (3.3), maka diperoleh: 0, 0, (3.0) 0 0 0, (3.1) (lihat lampiran 6) Berdasarkan persamaan (3.0) persamaan (3.1), dapat ditentukan dengan menyelesaikan persamaan (3.1). Untuk memahami penjelasan di atas, maka berikut ini diberikan suatu ilustrasi. Misalkan penyelesaian pendekatan awalnya 2exp exp2, maka dari persamaan (3.33) dengan pada persamaan (3.3), diperoleh:,,,,. (3.37)

5 Kemudian dari persamaan (3.1) diperoleh: (lihat lampiran 7) 3.3 Hasil Numerik Pada bagian ini akan ditentukan penyelesaian persamaan KdV (3.11) dengan menggunakan metode homotopi. Parameter yang dipilih adalah 1 misalkan gelombang yang ditinjau memiliki kecepatan 1. Berdasarkan persamaan (2.50) diperoleh penyelesaian persamaan KdV (3.13) dalam bentuk gelombang soliter, yaitu:, 2 2. Berdasarkan uraian pada bagian aplikasi metode, berikut ini algoritma untuk menentukan penyelesaian persamaan KdV: 1. Misalkan diberikan penyelesaian pendekatan awal dari persamaan KdV (3.11) sebagai berikut: 2exp exp2. 2. Menentukan penyelesaian pendekatan untuk orde ke-m dari persamaan KdV (3.9) dengan menggunakan software Mathematica. i. Menentukan, dari persamaan (3.3). ii. Menentukan dari persamaan (3.33) (3.39). iii. Menentukan dari persamaan (3.0) (3.1). iv. Menentukan penyelesaian persamaan (3.1) berdasarkan persamaan (3.31) (3.32). v. Penyelesaian persamaan KdV (3.13) diberikan dalam bentuk:,,. Gambar 2 berikut ini menunjukkan grafik fungsi, yang merupakan penyelesaian persamaan KdV untuk tertentu. U Orde 1 Orde 2 Orde 3 Eksak Gambar 2. Grafik fungsi U terhadap x dengan orde yang berbeda Berdasarkan Gambar 2, diperoleh bahwa untuk kecepatan gelombang 1 satuan yang ditinjau memberikan amplitudo sebesar 0,5 satuan, segkan dengan metode homotopi juga menghasilkan amplitudo yang sama. Semakin tinggi orde yang digunakan, amplitudo dengan metode homotopi semakin mendekati amplitudo gelombang soliter. x

II LANDASAN TEORI. dengan, 1,2,3,, menyatakan koefisien deret pangkat dan menyatakan titik pusatnya.

II LANDASAN TEORI. dengan, 1,2,3,, menyatakan koefisien deret pangkat dan menyatakan titik pusatnya. 2 II LANDASAN TEORI Pada bagian ini akan dibahas teoriteori yang mendukung karya tulis ini. Teoriteori tersebut meliputi persamaan diferensial penurunan persamaan KdV yang disarikan dari (Ihsanudin, 2008;

Lebih terperinci

III PEMBAHASAN. Berdasarkan persamaan (2.15) dan persamaan (2.16), fungsi kontinu dan masing-masing sebagai berikut : dan = 3

III PEMBAHASAN. Berdasarkan persamaan (2.15) dan persamaan (2.16), fungsi kontinu dan masing-masing sebagai berikut : dan = 3 8 III PEMBAHASAN Pada bagian ini akan dibahas penggunaan metode iterasi variasi untuk menyelesaikan suatu persamaan diferensial integral Volterra orde satu yang terdapat pada masalah osilasi berpasangan.

Lebih terperinci

III PEMBAHASAN. (3.3) disubstitusikan ke dalam sistem koordinat silinder yang ditinjau pada persamaan (2.4), maka diperoleh

III PEMBAHASAN. (3.3) disubstitusikan ke dalam sistem koordinat silinder yang ditinjau pada persamaan (2.4), maka diperoleh III PEMBAHASAN Pada bagian ini akan dibahas penggunaan metode perturbasi homotopi untuk menyelesaikan suatu masalah taklinear. Metode ini digunakan untuk menyelesaikan model Sisko dalam masalah aliran

Lebih terperinci

TINJAUAN PUSTAKA. diketahui) dengan dua atau lebih peubah bebas dinamakan persamaan. Persamaan diferensial parsial memegang peranan penting di dalam

TINJAUAN PUSTAKA. diketahui) dengan dua atau lebih peubah bebas dinamakan persamaan. Persamaan diferensial parsial memegang peranan penting di dalam II. TINJAUAN PUSTAKA 2.1 Persamaan Diferensial Parsial Persamaan yang mengandung satu atau lebih turunan parsial suatu fungsi (yang diketahui) dengan dua atau lebih peubah bebas dinamakan persamaan diferensial

Lebih terperinci

II. TINJAUAN PUSTAKA. Masalah taklinear dalam sains dan teknik dituliskan dalam bentuk

II. TINJAUAN PUSTAKA. Masalah taklinear dalam sains dan teknik dituliskan dalam bentuk 4 II. TINJAUAN PUSTAKA 2.1 Definisi Masalah Taklinear (Urroz, 2001) Masalah taklinear dalam sains dan teknik dituliskan dalam bentuk persamaan taklinear. Persamaan tersebut dituliskan dalam bentuk fungsi

Lebih terperinci

II. TINJAUAN PUSTAKA. 2.1 Persamaan Diferensial (Bronson dan Costa, 2007) terhadap satu atau lebih dari variabel-variabel bebas (independent

II. TINJAUAN PUSTAKA. 2.1 Persamaan Diferensial (Bronson dan Costa, 2007) terhadap satu atau lebih dari variabel-variabel bebas (independent 4 II. TINJAUAN PUSTAKA 2.1 Persamaan Diferensial (Bronson dan Costa, 2007) Persamaan differensial adalah suatu persamaan yang memuat turunan terhadap satu atau lebih dari variabel-variabel bebas (independent

Lebih terperinci

PEMBAHASAN. (29) Dalam (Grosen 1992), kondisi kinematik (19) dan kondisi dinamik (20) dapat dinyatakan dalam sistem Hamiltonian berikut : = (30)

PEMBAHASAN. (29) Dalam (Grosen 1992), kondisi kinematik (19) dan kondisi dinamik (20) dapat dinyatakan dalam sistem Hamiltonian berikut : = (30) 5 η = η di z = η (9) z x x z x x Dalam (Grosen 99) kondisi kinematik (9) kondisi dinamik () dapat dinyatakan dalam sistem Hamiltonian : δ H t = () δη δ H ηt = δ Dengan mengenalkan variabel baru u = x maka

Lebih terperinci

PENYELESAIAN PERSAMAAN KORTEWEG-DE VRIES ORDE TINGGI DENGAN METODE EKSPANSI RESTY BANGUN PRATIWI

PENYELESAIAN PERSAMAAN KORTEWEG-DE VRIES ORDE TINGGI DENGAN METODE EKSPANSI RESTY BANGUN PRATIWI PENYELESAIAN PERSAMAAN KORTEWEG-DE VRIES ORDE TINGGI DENGAN METODE EKSPANSI RESTY BANGUN PRATIWI DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2015

Lebih terperinci

PENGGUNAAN METODE HOMOTOPI PADA MASALAH PERAMBATAN GELOMBANG INTERFACIAL

PENGGUNAAN METODE HOMOTOPI PADA MASALAH PERAMBATAN GELOMBANG INTERFACIAL PENGGUNAAN METODE HOMOTOPI PADA MASALAH PERAMBATAN GELOMBANG INTERFACIAL JAHARUDDIN Departeen Mateatika Fakultas Mateatika Ilu Pengetahuan Ala Institut Pertanian Bogor Jl Meranti, Kapus IPB Daraga, Bogor

Lebih terperinci

II LANDASAN TEORI. Misalkan adalah suatu fungsi skalar, maka turunan vektor kecepatan dapat dituliskan sebagai berikut :

II LANDASAN TEORI. Misalkan adalah suatu fungsi skalar, maka turunan vektor kecepatan dapat dituliskan sebagai berikut : 2 II LANDASAN TEORI Pada bagian ini akan dibahas teori-teori yang digunakan dalam menyusun karya ilmiah ini. Teori-teori tersebut meliputi sistem koordinat silinder, aliran fluida pada pipa lurus, persamaan

Lebih terperinci

PENYELESAIAN MODEL MANGSA PEMANGSA TIGA SPESIES DENGAN METODE HOMOTOPI YULI RAHMAWATI

PENYELESAIAN MODEL MANGSA PEMANGSA TIGA SPESIES DENGAN METODE HOMOTOPI YULI RAHMAWATI PENYELESAIAN MODEL MANGSA PEMANGSA TIGA SPESIES DENGAN METODE HOMOTOPI YULI RAHMAWATI DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2014 PERNYATAAN

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN Dalam bab ini dijelaskan metode Adams Bashforth-Moulton multiplikatif (M) orde empat beserta penerapannya. Metode tersebut memuat metode Adams Bashforth multiplikatif orde empat

Lebih terperinci

II LANDASAN TEORI 2.1 Sistem Persamaan Diferensial Definisi 1 [Sistem Persamaan Diferensial Linear (SPDL)]

II LANDASAN TEORI 2.1 Sistem Persamaan Diferensial Definisi 1 [Sistem Persamaan Diferensial Linear (SPDL)] II LANDASAN TEORI 2.1 Sistem Persamaan Diferensial Definisi 1 [Sistem Persamaan Diferensial Linear (SPDL)] Suatu sistem persamaan diferensial dinyatakan sebagai berikut: A adalah matriks koefisien konstan

Lebih terperinci

MODEL LOGISTIK PENGARUH POHON TERHADAP POPULASI BURUNG

MODEL LOGISTIK PENGARUH POHON TERHADAP POPULASI BURUNG Bab 4 MODEL LOGISTIK PENGARUH POHON TERHADAP POPULASI BURUNG Seperti dijelaskan pada bagian awal, burung sebagai makhluk hidup memerlukan tempat tinggal. Pohon sebagai salah satu tempat alami yang dapat

Lebih terperinci

BAB II KAJIAN TEORI. syarat batas, deret fourier, metode separasi variabel, deret taylor dan metode beda

BAB II KAJIAN TEORI. syarat batas, deret fourier, metode separasi variabel, deret taylor dan metode beda BAB II KAJIAN TEORI Pada bab ini akan dibahas tentang beberapa teori dasar yang digunakan sebagai landasan pembahasan pada bab III. Beberapa teori dasar yang dibahas, diantaranya teori umum tentang persamaan

Lebih terperinci

Pengantar Metode Perturbasi Bab 1. Pendahuluan

Pengantar Metode Perturbasi Bab 1. Pendahuluan Pengantar Metode Perturbasi Bab 1. Pendahuluan Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas PAM 454 KAPITA SELEKTA MATEMATIKA TERAPAN II Semester Ganjil 2016/2017 Review Teori Dasar Terkait

Lebih terperinci

I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai.

I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai. I. PENDAHULUAN 1.1 Latar Belakang dan Masalah Dalam kehidupan, polusi yang ada di sungai disebabkan oleh limbah dari pabrikpabrik dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk

Lebih terperinci

III HASIL DAN PEMBAHASAN

III HASIL DAN PEMBAHASAN 7 III HASIL DAN PEMBAHASAN 3. Analisis Metode Dala penelitian ini akan digunakan etode hootopi untuk enyelesaikan persaaan Whitha-Broer-Koup (WBK), yaitu persaaan gerak bagi perabatan gelobang pada perairan

Lebih terperinci

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal (SWE)

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal (SWE) Bab 2 Landasan Teori Dalam bab ini akan dibahas mengenai Persamaan Air Dangkal dan dasar-dasar teori mengenai metode beda hingga untuk menghampiri solusi dari persamaan diferensial parsial. 2.1 Persamaan

Lebih terperinci

PERSAMAAN DIFERENSIAL I PERSAMAAN DIFERENSIAL BIASA

PERSAMAAN DIFERENSIAL I PERSAMAAN DIFERENSIAL BIASA PERSAMAAN DIFERENSIAL I PERSAMAAN DIFERENSIAL BIASA Persamaan Diferensial Biasa 1. PDB Tingkat Satu (PDB) 1.1. Persamaan diferensial 1.2. Metode pemisahan peubah dan PD koefisien fungsi homogen 1.3. Persamaan

Lebih terperinci

II LANDASAN TEORI. Contoh. Ditinjau dari sistem yang didefinisikan oleh:

II LANDASAN TEORI. Contoh. Ditinjau dari sistem yang didefinisikan oleh: 5 II LANDASAN TEORI 2.1 Keterkontrolan Untuk mengetahui persoalan sistem kontrol mungkin tidak ada, jika sistem yang ditinjau tidak terkontrol. Walaupun sebagian besar sistem terkontrol ada, akan tetapi

Lebih terperinci

BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT

BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT 29 BAB 4 KEKONSISTENAN PENDUGA DARI FUNGSI SEBARAN DAN FUNGSI KEPEKATAN WAKTU TUNGGU DARI PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT 4.1 Perumusan Penduga Misalkan adalah proses Poisson nonhomogen

Lebih terperinci

TINJAUAN MATA KULIAH... Kegiatan Belajar 2: PD Variabel Terpisah dan PD Homogen Latihan Rangkuman Tes Formatif

TINJAUAN MATA KULIAH... Kegiatan Belajar 2: PD Variabel Terpisah dan PD Homogen Latihan Rangkuman Tes Formatif iii Daftar Isi TINJAUAN MATA KULIAH... xiii MODUL 1: PERSAMAAN DIFERENSIAL ORDE SATU 1.1 Pengertian PD Orde Satu dan Solusinya... 1.2 Latihan... 1.7 Rangkuman... 1.9 Tes Formatif 1..... 1.10 PD Variabel

Lebih terperinci

BAB 3 REVIEW SIFAT-SIFAT STATISTIK PENDUGA KOMPONEN PERIODIK

BAB 3 REVIEW SIFAT-SIFAT STATISTIK PENDUGA KOMPONEN PERIODIK BAB 3 REVIEW SIFAT-SIFAT STATISTIK PENDUGA KOMPONEN PERIODIK 3. Perumusan Penduga Misalkan N adalah proses Poisson non-homogen pada interval 0, dengan fungsi intensitas yang tidak diketahui. Fungsi intensitas

Lebih terperinci

BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan

BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan BAB II KAJIAN TEORI Pada bab ini akan dibahas beberapa hal yang digunakan sebagai landasan pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan beberapa kajian matematika,

Lebih terperinci

ANALISIS HOMOTOPI DALAM PENYELESAIAN SUATU MASALAH TAKLINEAR

ANALISIS HOMOTOPI DALAM PENYELESAIAN SUATU MASALAH TAKLINEAR ANALISIS HOMOTOPI DALAM PENYELESAIAN SUATU MASALAH TAKLINEAR JAHARUDDIN Departeen Mateatika, Fakultas Mateatika dan Iu Pengetahuan Ala, Institut Pertanian Bogor Jln. Meranti, Kapus IPB Draaga, Bogor 1668,

Lebih terperinci

II LANDASAN TEORI. Besaran merupakan frekuensi sudut, merupakan amplitudo, merupakan konstanta fase, dan, merupakan konstanta sembarang.

II LANDASAN TEORI. Besaran merupakan frekuensi sudut, merupakan amplitudo, merupakan konstanta fase, dan, merupakan konstanta sembarang. 2 II LANDASAN TEORI Pada bagian ini akan dibahas teori-teori yang digunakan dalam penyusunan karya ilmiah ini. Teori-teori tersebut meliputi osilasi harmonik sederhana yang disarikan dari [Halliday,1987],

Lebih terperinci

PENYELESAIAN MASALAH GELOMBANG PERMUKAAN DENGAN MENGGUNAKAN METODE PERTURBASI HOMOTOPI ANGGRAENI PUTRISIA

PENYELESAIAN MASALAH GELOMBANG PERMUKAAN DENGAN MENGGUNAKAN METODE PERTURBASI HOMOTOPI ANGGRAENI PUTRISIA PENYELESAIAN MASALAH GELOMBANG PERMUKAAN DENGAN MENGGUNAKAN METODE PERTURBASI HOMOTOPI ANGGRAENI PUTRISIA DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR

Lebih terperinci

BAB II KAJIAN TEORI. homogen yang dikenal sebagai persamaan forced Korteweg de Vries (fkdv). Persamaan fkdv yang dikaji dalam makalah ini adalah

BAB II KAJIAN TEORI. homogen yang dikenal sebagai persamaan forced Korteweg de Vries (fkdv). Persamaan fkdv yang dikaji dalam makalah ini adalah BAB II KAJIAN TEORI Pada bab ini akan dibahas suatu jenis persamaan differensial parsial tak homogen yang dikenal sebagai persamaan forced Korteweg de Vries (fkdv). Persamaan fkdv yang dikaji dalam makalah

Lebih terperinci

1 BAB 4 ANALISIS DAN BAHASAN

1 BAB 4 ANALISIS DAN BAHASAN 1 BAB 4 ANALISIS DAN BAHASAN Pada bab ini akan dibahas pengaruh dasar laut tak rata terhadap perambatan gelombang permukaan secara analitik. Pengaruh dasar tak rata ini akan ditinjau melalui simpangan

Lebih terperinci

BAB II LANDASAN TEORI. eigen dan vektor eigen, persamaan diferensial, sistem persamaan diferensial, titik

BAB II LANDASAN TEORI. eigen dan vektor eigen, persamaan diferensial, sistem persamaan diferensial, titik BAB II LANDASAN TEORI Pada bab ini, akan dijelaskan landasan teori yang akan digunakan dalam bab selanjutnya sebagai bahan acuan yang mendukung dan memperkuat tujuan penelitian. Landasan teori yang dimaksud

Lebih terperinci

Department of Mathematics FMIPAUNS

Department of Mathematics FMIPAUNS Lecture 2: Metode Operator A. Metode Operator untuk Sistem Linear dengan Koefisien Konstan Pada bagian ini akan dibicarakan cara menentukan penyelesaian sistem persamaan diferensial linear dengan menggunakan

Lebih terperinci

MATERI PERKULIAHAN. Gambar 1. Potensial tangga

MATERI PERKULIAHAN. Gambar 1. Potensial tangga MATERI PERKULIAHAN 3. Potensial Tangga Tinjau suatu partikel bermassa m, bergerak dari kiri ke kanan pada suatu daerah dengan potensial berbentuk tangga, seperti pada Gambar 1. Pada daerah < potensialnya

Lebih terperinci

PENYELESAIAN PERSAMAAN DIFERENSIAL BIASA NONLINIER ORDE DUA DENGAN MENGGUNAKAN METODE DEKOMPOSISI ADOMIAN LAPLACE

PENYELESAIAN PERSAMAAN DIFERENSIAL BIASA NONLINIER ORDE DUA DENGAN MENGGUNAKAN METODE DEKOMPOSISI ADOMIAN LAPLACE PENYELESAIAN PERSAMAAN DIFERENSIAL BIASA NONLINIER ORDE DUA DENGAN MENGGUNAKAN METODE DEKOMPOSISI ADOMIAN LAPLACE TUGAS AKHIR Diajukan Sebagai Salah Satu Syarat Untuk Memperoleh Gelar Sarjana Sains Pada

Lebih terperinci

BAB II LANDASAN TEORI. Pada Bab Landasan Teori ini akan dibahas mengenai definisi-definisi, dan

BAB II LANDASAN TEORI. Pada Bab Landasan Teori ini akan dibahas mengenai definisi-definisi, dan BAB II LANDASAN TEORI Pada Bab Landasan Teori ini akan dibahas mengenai definisi-definisi, dan teorema-teorema yang akan menjadi landasan untuk pembahasan pada Bab III nanti, diantaranya: fungsi komposisi,

Lebih terperinci

BAB 4 BAB 3 HASIL DAN PEMBAHASAN METODE PENELITIAN. 3.2 Peralatan

BAB 4 BAB 3 HASIL DAN PEMBAHASAN METODE PENELITIAN. 3.2 Peralatan 4 3.2 Peralatan..(9) dimana,, dan.(10) substitusi persamaan (10) ke persamaan (9) maka diperoleh persamaan gelombang soliton DNA model PBD...(11) agar persamaan (11) dapat dipecahkan sehingga harus diterapkan

Lebih terperinci

BAB II LANDASAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi

BAB II LANDASAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi BAB II LANDASAN TEORI Pada bab ini akan dibahas tentang landasan teori yang digunakan pada bab selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi yang diuraikan berupa definisi-definisi

Lebih terperinci

I PENDAHULUAN II LANDASAN TEORI

I PENDAHULUAN II LANDASAN TEORI 1 I PENDAHULUAN 1.1 Latar Belakang Dewasa ini pemodelan matematika telah berkembang seiring perkembangan matematika sebagai alat analisis berbagai masalah nyata. Dalam pengajaran mata kuliah pemodelan

Lebih terperinci

PENYELESAIAN MASALAH ROTASI ALIRAN FLUIDA KENTAL VON KARMAN MENGGUNAKAN METODE HOMOTOPI RANDITA GUSTIAN PUTRI

PENYELESAIAN MASALAH ROTASI ALIRAN FLUIDA KENTAL VON KARMAN MENGGUNAKAN METODE HOMOTOPI RANDITA GUSTIAN PUTRI PENYELESAIAN MASALAH ROTASI ALIRAN FLUIDA KENTAL VON KARMAN MENGGUNAKAN METODE HOMOTOPI RANDITA GUSTIAN PUTRI DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR

Lebih terperinci

Bab 2 TEORI DASAR. 2.1 Linearisasi Persamaan Air Dangkal

Bab 2 TEORI DASAR. 2.1 Linearisasi Persamaan Air Dangkal Bab 2 TEORI DASAR 2.1 Linearisasi Persamaan Air Dangkal Persamaan air dangkal merupakan persamaan untuk gelombang permukaan air yang dipengaruhi oleh kedalaman air tersebut. Kedalaman air dapat dikatakan

Lebih terperinci

APLIKASI METODE ANALISIS TRANSFORMASI HOMOTOPI PADA PERSAMAAN ( ) ( ) (Skripsi) Oleh DONGKY PRANATA PUTRA

APLIKASI METODE ANALISIS TRANSFORMASI HOMOTOPI PADA PERSAMAAN ( ) ( ) (Skripsi) Oleh DONGKY PRANATA PUTRA APLIKASI METODE ANALISIS TRANSFORMASI HOMOTOPI PADA PERSAMAAN ( ) ( ) (Skripsi) Oleh DONGKY PRANATA PUTRA JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS LAMPUNG BANDAR LAMPUNG

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 6 BAB LANDASAN TEORI Pada bab ini akan dibahas beberapa konsep dasar ang akan digunakan sebagai landasan berpikir seperti beberapa teorema dan definisi ang berkaitan dengan penelitian ini. Dengan begitu

Lebih terperinci

BAB III PEMBAHASAN. dengan menggunakan penyelesaian analitik dan penyelesaian numerikdengan. motode beda hingga. Berikut ini penjelasan lebih lanjut.

BAB III PEMBAHASAN. dengan menggunakan penyelesaian analitik dan penyelesaian numerikdengan. motode beda hingga. Berikut ini penjelasan lebih lanjut. BAB III PEMBAHASAN Pada bab ini akan dibahas tentang penurunan model persamaan gelombang satu dimensi. Setelah itu akan ditentukan persamaan gelombang satu dimensi dengan menggunakan penyelesaian analitik

Lebih terperinci

PENGGUNAAN METODE ANALISIS HOMOTOPI PADA PENYELESAIAN PERSAMAAN SCHRODINGER-KdV DINI FITRI

PENGGUNAAN METODE ANALISIS HOMOTOPI PADA PENYELESAIAN PERSAMAAN SCHRODINGER-KdV DINI FITRI PENGGUNAAN METODE ANALISIS HOMOTOPI PADA PENYELESAIAN PERSAMAAN SCHRODINGER-KdV DINI FITRI DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 015 PERNYATAAN

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 21 Beberapa Pengertian Definisi 1 [Ruang Contoh] Ruang contoh adalah himpunan semua hasil yang mungkin dari suatu percobaan acak, dan dinotasikan dengan (Grimmet dan Stirzaker,1992)

Lebih terperinci

METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR ABSTRACT

METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR ABSTRACT METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR Birmansyah 1, Khozin Mu tamar 2, M. Natsir 2 1 Mahasiswa Program Studi S1 Matematika

Lebih terperinci

PENGGUNAAN METODE HOMOTOPI UNTUK MENYELESAIKAN MODEL POPULASI VOLTERRA ERNI JUNI ARTI

PENGGUNAAN METODE HOMOTOPI UNTUK MENYELESAIKAN MODEL POPULASI VOLTERRA ERNI JUNI ARTI PENGGUNAAN METODE HOMOTOPI UNTUK MENYELESAIKAN MODEL POPULASI VOLTERRA ERNI JUNI ARTI DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2010 ABSTRACT ERNI

Lebih terperinci

Tinjauan Aliran Fluida dengan Menggunakan Metode Homotopi

Tinjauan Aliran Fluida dengan Menggunakan Metode Homotopi Tinjauan Aliran Fluida dengan Menggunakan Metode Homotopi Abd. Djabar Mohidin Jurusan Matematika Fakultas MIPA Universitas Negeri Gorontalo Abstrak Dalam makalah ini, akan dibahas tinjauan matematis mengenai

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI. Sistem Pendulum Terbalik Dalam penelitian ini diperhatikan sistem pendulum terbalik seperti pada Gambar di mana sebuah pendulum terbalik dimuat dalam motor yang bisa digerakkan.

Lebih terperinci

PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A

PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A PENGANTAR MATEMATIKA TEKNIK 1 By : Suthami A MATEMATIKA TEKNIK 1??? MATEMATIKA TEKNIK 1??? MATEMATIKA TEKNIK Matematika sebagai ilmu dasar yang digunakan sebagai alat pemecahan masalah di bidang keteknikan

Lebih terperinci

Analisis Kestabilan Linear dan Simulasi

Analisis Kestabilan Linear dan Simulasi BAB 4 Analisis Kestabilan Linear dan Simulasi Pada bab ini kita akan membahas mengenai ketidakstabilan dari lapisan fluida tipis. Analisis kestabilan linear kita gunakan untuk melihat kondisi serta parameter

Lebih terperinci

ANALISIS METODE DEKOMPOSISI SUMUDU DAN MODIFIKASINYA DALAM MENENTUKAN PENYELESAIAN PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR

ANALISIS METODE DEKOMPOSISI SUMUDU DAN MODIFIKASINYA DALAM MENENTUKAN PENYELESAIAN PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 05, No. 2 (2016), hal 103-112 ANALISIS METODE DEKOMPOSISI SUMUDU DAN MODIFIKASINYA DALAM MENENTUKAN PENYELESAIAN PERSAMAAN DIFERENSIAL PARSIAL

Lebih terperinci

pada Definisi 2.28 ada dan nilainya sama dengan ( ) ( ) Untuk memperoleh hasil di atas, ruas kiri persamaan (25) ditulis sebagai berikut ( )

pada Definisi 2.28 ada dan nilainya sama dengan ( ) ( ) Untuk memperoleh hasil di atas, ruas kiri persamaan (25) ditulis sebagai berikut ( ) LAMPIRAN 21 Lampiran 1 (Pembuktian Lema 2.1 Lema 2.1 (Eksistensi Fungsi Intensitas global Jika ([ ] adalah proses Poisson periodik dengan fungsi intensitas, maka ([ ] pada Definisi 2.28 ada dan nilainya

Lebih terperinci

SILABUS PENGALAMAN BELAJAR ALOKASI WAKTU

SILABUS PENGALAMAN BELAJAR ALOKASI WAKTU SILABUS Mata Pelajaran : Matematika Satuan Pendidikan : SMA Ungguan BPPT Darus Sholah Jember kelas : XII IPA Semester : Ganjil Jumlah Pertemuan : 44 x 35 menit (22 pertemuan) STANDAR 1. Menggunakan konsep

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Didunia nyata banyak soal matematika yang harus dimodelkan terlebih dahulu untuk mempermudah mencari solusinya. Di antara model-model tersebut dapat berbentuk sistem

Lebih terperinci

BAB 3 SMOOTH TRANSITON AUTOREGRESSIVE. waktu nonlinear yang merupakan perluasan dari model Autoregressive (AR).

BAB 3 SMOOTH TRANSITON AUTOREGRESSIVE. waktu nonlinear yang merupakan perluasan dari model Autoregressive (AR). BAB 3 SMOOTH TRANSITON AUTOREGRESSIVE 3.1. Model Smooth Transition Autoregressive Model Smooth Transition Autoregressive adalah salah satu model runtun waktu nonlinear yang merupakan perluasan dari model

Lebih terperinci

DERET TAYLOR UNTUK METODE DEKOMPOSISI ADOMIAN ABSTRACT

DERET TAYLOR UNTUK METODE DEKOMPOSISI ADOMIAN ABSTRACT DERET TAYLOR UNTUK METODE DEKOMPOSISI ADOMIAN Lucy L. Batubara 1, Deswita. Leli 2, Zulkarnain 2 1 Mahasiswa Program Studi S1 Matematika 2 Laboratorium Matematika Terapan, Jurusan Matematika Fakultas Matematika

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Persamaan diferensial adalah suatu persamaan diantara derivatif-derivatif yang dispesifikasikan pada suatu fungsi yang tidak diketahui nilainya dan diketahui jumlah

Lebih terperinci

TINJAUAN PUSTAKA. Jika y = f(x) dengan f(x) adalah suatu fungsi yang terdiferensialkan terhadap

TINJAUAN PUSTAKA. Jika y = f(x) dengan f(x) adalah suatu fungsi yang terdiferensialkan terhadap II. TINJAUAN PUSTAKA 2.1 Diferensial Jika y = f(x) dengan f(x) adalah suatu fungsi yang terdiferensialkan terhadap variabel bebas x, maka dy adalah diferensial dari variabel tak bebas (terikat) y, yang

Lebih terperinci

Solusi Numerik Persamaan Gelombang Dua Dimensi Menggunakan Metode Alternating Direction Implicit

Solusi Numerik Persamaan Gelombang Dua Dimensi Menggunakan Metode Alternating Direction Implicit Vol. 11, No. 2, 105-114, Januari 2015 Solusi Numerik Persamaan Gelombang Dua Dimensi Menggunakan Metode Alternating Direction Implicit Rezki Setiawan Bachrun *,Khaeruddin **,Andi Galsan Mahie *** Abstrak

Lebih terperinci

PENGGUNAAN METODE HOMOTOPI UNTUK MENYELESAIKAN MASALAH GETARAN TAKLINEAR TIKA PURWANTI

PENGGUNAAN METODE HOMOTOPI UNTUK MENYELESAIKAN MASALAH GETARAN TAKLINEAR TIKA PURWANTI PENGGUNAAN METODE HOMOTOPI UNTUK MENYELESAIKAN MASALAH GETARAN TAKLINEAR TIKA PURWANTI DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2012 ABSTRAK TIKA

Lebih terperinci

LANDASAN TEORI. Model ini memiliki nilai kesetimbangan positif pada saat koordinat berada di titik

LANDASAN TEORI. Model ini memiliki nilai kesetimbangan positif pada saat koordinat berada di titik LANDASAN TEORI Model Mangsa Pemangsa Lotka Volterra Bagian ini membahas model mangsa pemangsa klasik Lotka Volterra. Model Lotka Volterra menggambarkan laju perubahan populasi dua spesies yang saling berinteraksi.

Lebih terperinci

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal Linier (Linier Shallow Water Equation)

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal Linier (Linier Shallow Water Equation) Bab 2 Landasan Teori Dalam bab ini akan dijelaskan mengenai Persamaan Air Dangkal linier (Linear Shallow Water Equation), metode beda hingga, metode ekspansi asimtotik biasa, dan metode ekspansi asimtotik

Lebih terperinci

PENYELESAIAN MODEL EPIDEMI SEIV DENGAN MENGGUNAKAN METODE PERTURBASI HOMOTOPI HANI ASRI GUARDIANI

PENYELESAIAN MODEL EPIDEMI SEIV DENGAN MENGGUNAKAN METODE PERTURBASI HOMOTOPI HANI ASRI GUARDIANI PENYELESAIAN MODEL EPIDEMI SEIV DENGAN MENGGUNAKAN METODE PERTURBASI HOMOTOPI HANI ASRI GUARDIANI DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2014

Lebih terperinci

Pengantar Gelombang Nonlinier 1. Ekspansi Asimtotik. Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas

Pengantar Gelombang Nonlinier 1. Ekspansi Asimtotik. Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Pengantar Gelombang Nonlinier 1. Ekspansi Asimtotik Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas PAM 672 Topik dalam Matematika Terapan Semester Ganjil 2016/2017 Pendahuluan Metode perturbasi

Lebih terperinci

EKSISTENSI SOLITON PADA PERSAMAAN KORTEWEG-DE VRIES

EKSISTENSI SOLITON PADA PERSAMAAN KORTEWEG-DE VRIES Jurnal Matematika UNND Vol. 3 No. 1 Hal. 9 16 ISSN : 2303 2910 c Jurusan Matematika FMIP UNND EKSISTENSI SOLITON PD PERSMN KORTEWEG-DE VRIES ULI OKTVI, MHDHIVN SYFWN Program Studi Matematika, Fakultas

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Dalam matematika ada beberapa persamaan yang dipelajari, diantaranya adalah persamaan polinomial tingkat tinggi, persamaan sinusioda, persamaan eksponensial atau persamaan

Lebih terperinci

II. LANDASAN TEORI. Definisi 1 (Sistem Persamaan Diferensial Biasa Linear) Definisi 2 (Sistem Persamaan Diferensial Biasa Taklinear)

II. LANDASAN TEORI. Definisi 1 (Sistem Persamaan Diferensial Biasa Linear) Definisi 2 (Sistem Persamaan Diferensial Biasa Taklinear) 3 II. LANDASAN TEORI 2.1 Sistem Persamaan Diferensial Biasa Definisi 1 (Sistem Persamaan Diferensial Biasa Linear) Misalkan suatu sistem persamaan diferensial biasa dinyatakan sebagai = + ; =, R (1) dengan

Lebih terperinci

BAB I PENDAHULUAN. terbagi dalam berberapa tingkatan, gelombang pada atmosfir yang berotasi

BAB I PENDAHULUAN. terbagi dalam berberapa tingkatan, gelombang pada atmosfir yang berotasi BAB I PENDAHULUAN 1.1. Latar Belakang. Fenomena gelombang Korteweg de Vries (KdV) merupakan suatu gejala yang penting untuk dipelajari, karena mempunyai pengaruh terhadap studi rekayasa yang terkait dengan

Lebih terperinci

Pertemuan Ke 2 SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST.,MT

Pertemuan Ke 2 SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST.,MT Pertemuan Ke SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST,MT Pendahuluan Suatu sistem persamaan linier (atau himpunan persaman linier simultan) adalah satu set persamaan dari sejumlah unsur yang tak diketahui

Lebih terperinci

APLIKASI METODE TRANSFORMASI ANALISIS HOMOTOPI (HATM) PADA PERSAMAAN + =

APLIKASI METODE TRANSFORMASI ANALISIS HOMOTOPI (HATM) PADA PERSAMAAN + = APLIKASI METODE TRANSFORMASI ANALISIS HOMOTOPI (HATM) PADA PERSAMAAN + = (Skripsi) Oleh NOVIANTI SAGITA JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS LAMPUNG 2016 ABSTRAK

Lebih terperinci

PENGGUNAAN METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN PADA KALKULUS VARIASI ABSTRACT

PENGGUNAAN METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN PADA KALKULUS VARIASI ABSTRACT PENGGUNAAN METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN PADA KALKULUS VARIASI Febrian Lisnan, Asmara Karma 2 Mahasiswa Program Studi S Matematika 2 Dosen Jurusan Matematika Fakultas Matematika

Lebih terperinci

Dari contoh di atas fungsi yang tak diketahui dinyatakan dengan y dan dianggap

Dari contoh di atas fungsi yang tak diketahui dinyatakan dengan y dan dianggap BAB II TINJAUAN PUSTAKA A. Persamaan Diferensial Definisi 2.1 Persamaan diferensial Persamaan diferensial adalah suatu persamaan yang memuat variabel bebas, variabel tak bebas, dan derivatif-derivatif

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan

BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan Ilmu fisika merupakan ilmu yang mempelajari berbagai macam fenomena alam dan berperan penting dalam kehidupan sehari-hari. Salah satu peran ilmu fisika

Lebih terperinci

Persamaan Diferensial

Persamaan Diferensial TKS 4003 Matematika II Persamaan Diferensial Linier Homogen & Non Homogen Tk. n (Differential: Linier Homogen & Non Homogen Orde n) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah

BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Pemodelan matematika merupakan bidang matematika yang berusaha untuk merepresentasikan dan menjelaskan masalah dunia nyata dalam pernyataan matematik. Representasi

Lebih terperinci

BAB II KAJIAN TEORI. dinamik, sistem linear, sistem nonlinear, titik ekuilibrium, analisis kestabilan

BAB II KAJIAN TEORI. dinamik, sistem linear, sistem nonlinear, titik ekuilibrium, analisis kestabilan BAB II KAJIAN TEORI Pada bab ini akan dibahas mengenai nilai eigen dan vektor eigen, sistem dinamik, sistem linear, sistem nonlinear, titik ekuilibrium, analisis kestabilan sistem dinamik, kriteria Routh-Hurwitz,

Lebih terperinci

PERSAMAAN SCHRÖDINGER TAK BERGANTUNG WAKTU DAN APLIKASINYA PADA SISTEM POTENSIAL 1 D

PERSAMAAN SCHRÖDINGER TAK BERGANTUNG WAKTU DAN APLIKASINYA PADA SISTEM POTENSIAL 1 D PERSAMAAN SCHRÖDINGER TAK BERGANTUNG WAKTU DAN APLIKASINYA PADA SISTEM POTENSIAL 1 D Keadaan Stasioner Pada pembahasan sebelumnya mengenai fungsi gelombang, telah dijelaskan bahwa potensial dalam persamaan

Lebih terperinci

II. TINJAUAN PUSTAKA. Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada ( ) ( ) ( )

II. TINJAUAN PUSTAKA. Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada ( ) ( ) ( ) II. TINJAUAN PUSTAKA 2.1 Definisi Turunan Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada sebarang bilangan c adalah asalkan limit ini ada. Jika limit ini memang ada, maka dikatakan

Lebih terperinci

MODUL MATEMATIKA II. Oleh: Dr. Eng. LILYA SUSANTI

MODUL MATEMATIKA II. Oleh: Dr. Eng. LILYA SUSANTI MODUL MATEMATIKA II Oleh: Dr. Eng. LILYA SUSANTI DEPARTEMEN RISET TEKNOLOGI DAN PENDIDIKAN TINGGI UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL KATA PENGANTAR Puji sukur kehadirat Allah SWT

Lebih terperinci

Bab 3 MODEL DAN ANALISIS MATEMATIKA

Bab 3 MODEL DAN ANALISIS MATEMATIKA Bab 3 MODEL DAN ANALISIS MATEMATIKA Pada bab ini akan dimodelkan permasalahan penyebaran virus flu burung yang bergantung pada ruang dan waktu. Pada bab ini akan dibahas pula analisis dari model hingga

Lebih terperinci

BAB 3 PERAMBATAN GELOMBANG MONOKROMATIK

BAB 3 PERAMBATAN GELOMBANG MONOKROMATIK BAB 3 PERAMBATAN GELOMBANG MONOKROMATIK Dalam bab ini, kita akan mengamati perambatan gelombang pada fluida ideal dengan dasar rata. Perhatikan gambar di bawah ini. Gambar 3.1 Aliran Fluida pada Dasar

Lebih terperinci

METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR. Rino Martino 1 ABSTRACT

METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR. Rino Martino 1 ABSTRACT METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR Rino Martino 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Pada metode numerik, dikenal suatu metode untuk menaksir atau mencari solusi pendekatan nilai eksak dari suatu ordinat y n+1 dengan diketahui nilai dari y n,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Aljabar Linear Definisi 2.1.1 Matriks Matriks A adalah susunan persegi panjang yang terdiri dari skalar-skalar yang biasanya dinyatakan dalam bentuk berikut: [ ] Definisi 2.1.2

Lebih terperinci

ISBN. PT SINAR BARU ALGENSINDO

ISBN. PT SINAR BARU ALGENSINDO Drs. HERI SUTARNO, M. T. DEWI RACHMATIN, S. Si., M. Si. METODE NUMERIK DENGAN PENDEKATAN ALGORITMIK ISBN. PT SINAR BARU ALGENSINDO PRAKATA Segala puji dan syukur penulis panjatkan kepada Alloh SWT yang

Lebih terperinci

BAB III PERSAMAAN DIFERENSIAL LINIER

BAB III PERSAMAAN DIFERENSIAL LINIER BAB III PERSAMAAN DIFERENSIAL LINIER Bentuk umum PD orde-n adalah PD yang tidak dapat dinyatakan dalam bentuk di atas dikatakan tidak linier. Contoh: Jika F(x) pada persamaan (3.1) sama dengan nol maka

Lebih terperinci

PENENTUAN FAKTOR KUADRAT DENGAN METODE BAIRSTOW

PENENTUAN FAKTOR KUADRAT DENGAN METODE BAIRSTOW PENENTUAN FAKTOR KUADRAT DENGAN METODE BAIRSTOW Susilo Nugroho (M0105068) 1. Latar Belakang Masalah Polinomial real berderajat n 0 adalah fungsi yang mempunyai bentuk p n (x) = n a i x i = a 0 x 0 + a

Lebih terperinci

BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK

BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK BAB 4 SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK 4. Sebaran Asimtotik,, Teorema 4. (Sebaran Normal Asimtotik,, ) Misalkan fungsi intensitas seperti (3.2) dan terintegralkan lokal. Jika kernel K adalah

Lebih terperinci

Perbandingan Skema Numerik Metode Finite Difference dan Spectral

Perbandingan Skema Numerik Metode Finite Difference dan Spectral Jurnal Ilmiah Teknologi dan Informasia ASIA (JITIKA) Vol.10, No.2, Agustus 2016 ISSN: 0852-730X Perbandingan Skema Numerik Metode Finite Difference dan Spectral Lukman Hakim 1, Azwar Riza Habibi 2 STMIK

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Persamaan Diferensial Banyak sekali masalah terapan dalam ilmu teknik, ilmu fisika, biologi, dan lain-lain yang telah dirumuskan dengan model matematika dalam bentuk pesamaan

Lebih terperinci

BAB II LANDASAN TEORI. dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta

BAB II LANDASAN TEORI. dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta BAB II LANDASAN TEORI Pada bab ini akan diuraikan beberapa teori-teori yang digunakan sebagai acuan dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta teorema-teorema

Lebih terperinci

matematika PEMINATAN Kelas X PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN K13 A. PERSAMAAN EKSPONEN BERBASIS KONSTANTA

matematika PEMINATAN Kelas X PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN K13 A. PERSAMAAN EKSPONEN BERBASIS KONSTANTA K1 Kelas X matematika PEMINATAN PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami bentuk-bentuk persamaan

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA 6 II. TINJAUAN PUSTAKA Dalam bab ini diberikan beberapa definisi dan istilah yang digunakan dalam penelitian ini. Definisi 2.1 (Turunan) Turunan merupakan pengukuran terhadap bagaimana fungsi berubah.

Lebih terperinci

Persamaan dan Pertidaksamaan Linear

Persamaan dan Pertidaksamaan Linear MATERI POKOK Persamaan dan Pertidaksamaan Linear MATERI BAHASAN : A. Persamaan Linear B. Pertidaksamaan Linear Modul.MTK X 0 Kalimat terbuka adalah kalimat matematika yang belum dapat ditentukan nilai

Lebih terperinci

PENYELESAIAN MASALAH NILAI EIGEN UNTUK PERSAMAAN DIFERENSIAL STURM-LIOUVILLE DENGAN METODE NUMEROV

PENYELESAIAN MASALAH NILAI EIGEN UNTUK PERSAMAAN DIFERENSIAL STURM-LIOUVILLE DENGAN METODE NUMEROV Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 04, No. 3 (2015), hal 415-422 PENYELESAIAN MASALAH NILAI EIGEN UNTUK PERSAMAAN DIFERENSIAL STURM-LIOUVILLE DENGAN METODE NUMEROV Iyut Riani, Nilamsari

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER (RPS)

RENCANA PEMBELAJARAN SEMESTER (RPS) RENCANA PEMBELAJARAN SEMESTER (RPS) MA KALKULUS II Disusun oleh: PROGRAM STUDI S1 ILMU KOMPUTASI FAKULTAS INFORMATIKA TELKOM UNIVERSITY LEMBAR PENGESAHAN Rencana Pembelajaran Semester (RPS)

Lebih terperinci

BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU

BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU Sistem persamaan linear orde/ tingkat satu memiliki bentuk standard : = = = = = = = = = + + + + + + + + + + Diasumsikan koefisien = dan fungsi adalah menerus

Lebih terperinci

BAB 4 ANALISIS DAN BAHASAN

BAB 4 ANALISIS DAN BAHASAN BAB 4 ANALISIS DAN BAHASAN 4.1 Model LWR Pada skripsi ini, model yang akan digunakan untuk memodelkan kepadatan lalu lintas secara makroskopik adalah model LWR yang dikembangkan oleh Lighthill dan William

Lebih terperinci

Hampiran turunan menggunakan metoda numerik

Hampiran turunan menggunakan metoda numerik Hampiran turunan menggunakan metoda numerik Kie Van Ivanky Saputra March 31, 2009 K V I Saputra (Analisis Numerik) Turunan Numerik March 31, 2009 1 / 9 Tujuan 1 mengerti apa itu dari turunan numerik, 2

Lebih terperinci