BILANGAN BAB V BARISAN BILANGAN DAN DERET

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "BILANGAN BAB V BARISAN BILANGAN DAN DERET"

Transkripsi

1 Maemaika Kelas IX emese Baisa Bilaga da Dee BILANGAN BAB V BARIAN BILANGAN DAN DERET A. Baisa Bilaga. Pegeia Baisa Bilaga Jika bilaga-bilaga diuuka dega aua eeu maka aka dipeoleh suau baisa bilaga. Cooh : Teuka aua pembeuk da dua suku beikuya dai baisa bilaga beiku!.,, 0,,...,,, 0,...,, 8,,... 9, 8,,,...,,,,,.. Peyelesaia :.,, 0,, Aua pembeukya adalah di ambah Dua suku beikuya adalah 8 da.., +,, 0, Aua pembeukya adalah di ambah bilaga gajil beaua Dua suku beikuya adalah 7 da.., x, 8,,... x x Aua pembeukya adalah di kalika Dua suku beikuya adalah da 8.. 9, 8,,,... : : : Aua pembeukya adalah di bagi Dua suku beikuya adalah da..,,,,, + + Aua pembeukya adalah suku beikuya dipeoleh dega mejumlahka dua suku di depaya. Dua suku beikuya adalah 8 da. Baisa bilaga,,,,,.. disebu sebagai baisa bilaga Fiboacci. NRFARIYAH,.Pd NIP

2 Maemaika Kelas IX emese Baisa Bilaga da Dee. uku ke- uau Baisa Bilaga Cooh : Teuka umus suku ke- baisa bilaga beiku!., 8,,,.. Peyelesaia :, 8,,,... + Rumus suku ke- ya adalah : +., 8,, 0,.. Peyelesaia :, 8,, 0, Rumus suku ke- ya adalah :. Megguaka Rumus uku ke- Cooh : Teuka empa suku peama suau baisa bilaga, jika suku ke- adalah ( + ). Peyelesaia : ( + ) (+) (+) 8 (+) 8 (+) Jadi empa suku peama baisa esebu adalah, 8, 8, da. B. DERET ARITMETIKA. Pegeia Dee Aimeika, uku, da Beda Dee Aimeika (Dee Hiug) adalah dee yag mempuyai beda yag selalu eap. Beda b Beuk umum dai dee Aimeika adalah : Cooh : elidiki bahwa meupaka dee Aimeika. Peyelesaia :,, 8,, Cai beda ya : Beda b NRFARIYAH,.Pd NIP

3 Maemaika Kelas IX emese Baisa Bilaga da Dee 8 8 Kaea bedaya eap, maka dee meupaka dee aiemaika.. Dee Aimeika Naik da Tuu uau dee aiméika yag suku-sukuya selalu beambah da mempuyai beda lebih dai ol aau posiif disebu dee aiméika aik, sedagka dee aiméika yag suku-sukuya selalu bekuag da mempuyai beda kuag dai ol aau posiif disebu dee aiméika uu. Cooh : Teuka jeis dee aimeika beiku, apakah dee aimeika aik aau uu! Peyelesaia : Kaea beda (posiif), maka Adalah dee aimeika aik Peyelesaia : Kaea beda (egaif), maka Adalah dee aimeika uu.. Rumus uku ke- pada Dee Aimeika Dalam dee Aimeika , dega beda b, maka belaku umus seku ke- : + ( )b Keeaga : uku Peama b Beda Bayak uku uku ke- NRFARIYAH,.Pd NIP

4 Maemaika Kelas IX emese Baisa Bilaga da Dee Cooh :. Teuka suku ke-0 dai dee Peyelesaia : Beda b + ( )b 0 + (0 )() Jadi, suku ke-0 adalah 9.. Dalam dee Aimeika dikeahui da 7 9. Teuka beda dai dee esebu. Peyelesaia :, ( )b 7 + ( 7 )b 9 + b b 9 b Jadi bedaya adalah.. Pada dee Aimeika dikeahui da + 8. Hiuglah. Peyelesaia :, ( )b 8 ( ) b + b ( 8) b + 7b Jadi. NRFARIYAH,.Pd NIP ( b) + ( + 7b) + b b + ( )b + 0()

5 Maemaika Kelas IX emese Baisa Bilaga da Dee. isipa pada Dee Aimeika Besa beda yag bau ( b ) dai dee aimeika yag elah medapa disipa adalah: y x b aau b k + Keeaga : NRFARIYAH,.Pd NIP b k + b beda dai dua bilaga mula-mula yaiu x da y k bayak bilaga yag disisipka Cooh :. Di aaa bilaga da 0 disisipka 8 buah bilaga sehigga mebeuk dee aimeika. Teuka besa beda dai dee aimeika esebu, da kemudia euka besa suku ke-! Peyelesaia : x, y 0, k 8 b y x k ( )b + ( ) 8 Jadi, besa beda adalah da suku ke- adalah 8.. Di aaa dua suku yag beuua pada dee disisipka buah bilaga sehigga membeuk dee aimeika yag bau. Teuka : a. Besa beda dee yag bau b. Bayak suku dee yag bau Peyelesaia : a b 8, k b b., b k+ +, b + b ( ) + ( ) + Jadi, besa beda dee yag bau adalah da bayak suku dee yag bau adalah.

6 Maemaika Kelas IX emese Baisa Bilaga da Dee. uku Tegah pada Dee Aimeika Cooh : + uku eakhi dai dee Aimeika 7, suku egahya, da suku keempaya. Teuka :. uku peama. Bedaya. Bayak suku dalam dee esebu Peyelesaia : 7,., + +7 ( ) 7. + ( )b + ( )b + b b b. + ( )b 7 + ( ) () Rumus Jumlah uku Peama Dee Aimeika + ( ) Cooh :. Teuka jumlah suku peama dai dee Aimeika Peyelesaia : NRFARIYAH,.Pd NIP

7 Maemaika Kelas IX emese Baisa Bilaga da Dee b 0 07 ( )b NRFARIYAH,.Pd NIP ( )( ) ( + ) ( )( 07+ 0) 07 + ( 0) ( )( ) 0.0. Jumlah sau dee Aimeika adalah.79. Jika bayak sukuya da bedaya. Teuka : a. uku peama ( ) b. uku eakhi ( ) c. uku egahya Peyelesaia :.79,, b a. ( + ) ( )( ) +.79 ( ) ( [ + ( ) ]) b.79 ( ) ( + [ + ( ] ) ) b. + ( )b + ( )() ( ) ( + [ ( 0)( ) ]).79 ( )( 00) + c ( )( + 00) ( + 00).79 ( + 00) Hiug jumlah bilaga-bilaga kelipaa aaa da 00. Peyelesaia : Bilaga kelipaa aaa da

8 Maemaika Kelas IX emese Baisa Bilaga da Dee, ( )b 97, b + ( + ) 97 + ( )() ( 99)( + 97) C. DERET GEOMETRI. Pegeia Dee Geomei da Rasio uau dee yag memiliki Rasio (pebadiga) yag selalu eap disebu Dee Geomei (Dee ku). Rasio Rasio ( ) Cooh :,,,., elidiki bahwa meupaka dee Geomei. Peyelesaia : ,, 8 Kaea asioya selalu eap, maka meupaka dee geomei.. Dee Geomei Naik da Tuu uau dee geomei yag ilai suku beikuya lebih dai ilai suku sebelumya aau + > disebu dee geomei aik. edagka jika ilai suku beikuya kuag dai ilai suku sebelumya aau + < disebu dee geomei uu. Cooh : Di aaa dee-dee beiku, maakah yag emasuk dee geomei aik aau uu? a b. + ( ) + ( 8) + ( ) + Peyelesaia : NRFARIYAH,.Pd NIP

9 Maemaika Kelas IX emese Baisa Bilaga da Dee a , 9, 7, da 8 >, >, > Kaea + >, maka dee disebu dee geomei aik. b. + ( ) + ( 8) + ( ) +,, 8, da <, <, < Kaea + <, maka dee disebu dee geomei uu.. Rumus uku ke- pada Dee Geomei Aau a, dega a sebagai suku peama. Cooh :. Teuka suku ke- dai dee geomei ! Peyelesaia : , 7 9,. 9 8 Jadi, suku ke- adalah.. Dalam dee geomei dikeahui suku ke- 7 da suku ke-. Teuka suku ke- jika asioya posiif. Peyelesaia :, NRFARIYAH,.Pd NIP

10 Maemaika Kelas IX emese Baisa Bilaga da Dee 7 7..asio posiif Jadi, suku ke- pada dee esebu adalah... uku peama dai dee geomei adalah, sedagka suku ke-.00. Hiuglah suku ke-, jika asioya posiif! Peyelesaia :, asio posiif Jadi, suku ke- ya adalah 00.. isipa pada Dee Geomei Rasio dee geomei seelah disisipka k buah bilaga adalah : y. x da y adalah dua suku mula-mula. + k x y Jika k meupaka bilaga gajil, maka + ± k x Cooh : Teuka asio dai dee geomei yag ebeuk jika di aaa dua suku beuua yaiu da 8 disisipka suku! Peyelesaia : Bilaga mula-mula da 8. x, y 8, k NRFARIYAH,.Pd NIP

11 Maemaika Kelas IX emese Baisa Bilaga da Dee y ± k + x 8 ± + ± ± Jadi, asio dai dee geomei iu adalah aau uk, maka dee geomeiya adalah : aau uk, maka dee geomeiya adalah : + ( ) + ( ) + ( ) uku Tegah pada Dee Geomei Cooh : Dikeahui dee geomei Teuka suku egahya. uku ke beapakah suku egahya Peyelesaia : aau + ( ) + + ( ) + 8 aau,. 8,. 8. ( ) ( ) ( ) ( ) Jadi suku egahya adalah. NRFARIYAH,.Pd NIP

12 Maemaika Kelas IX emese Baisa Bilaga da Dee. Rumus Jumlah uku Peama Dee Geomei ( ) Cooh :. Teuka jumlah 8 suku peama dai dee geomei jika suku peama da asio! Peyelesaia :,. ( ) 8 8 ( ) ( ).0 ( ) Jadi, jumlah 8 suku peama dee esebu adalah.0.. Teuka jumlah dee geomei + ( 0) ( 0) +.0! Peyelesaia : 0,, ( ) ( ( ) ) ( ) ( (.) ) +..0 Jadi, jumlah dee esebu adalah Rumus Geomei Tuu Tak Higga Cooh : uuk 0 < <. Dikeahui dee geomei ak higga Peyelesaia : NRFARIYAH,.Pd NIP

13 Maemaika Kelas IX emese Baisa Bilaga da Dee Jadi, jumlah dee esebu adalah.. Jumlah dee geomei uu ak higga 0,79 da asioya. Teuka suku peama dai dee geomei esebu! Peyelesaia : 0,79 0,79 0,79 0, 79 0, Jadi, suku peama dee esebu adalah 0,. NRFARIYAH,.Pd NIP

a = suku pertama (U 1 ) n = banyaknya suku b = beda/selisih = U 2 U 1 = U 3 U 2

a = suku pertama (U 1 ) n = banyaknya suku b = beda/selisih = U 2 U 1 = U 3 U 2 BARIAN DAN DERET A. Baisa Baisa adalah uuta bilaga yag memiliki atua tetetu. etiap bilaga pada baisa disebut suku baisa yag dipisahka dega lambag, (koma). Betuk umum baisa:,,,, dega: suku petama suku kedua

Lebih terperinci

BARISAN DAN DERET. a = suku pertama (U 1 ) n = banyaknya suku b = beda/selisih = U 2 U 1 = U 3 U 2

BARISAN DAN DERET. a = suku pertama (U 1 ) n = banyaknya suku b = beda/selisih = U 2 U 1 = U 3 U 2 www.plusido.wodpess.com BARIAN DAN DERET A. Baisa Baisa adalah uuta bilaga yag memiliki atua tetetu. etiap bilaga pada baisa disebut suku baisa yag dipisahka dega lambag, (koma). Betuk umum baisa:,,,,

Lebih terperinci

BAB III PENAKSIR DERET FOURIER. Dalam statistika, penaksir adalah sebuah statistik (fungsi dari data sampel

BAB III PENAKSIR DERET FOURIER. Dalam statistika, penaksir adalah sebuah statistik (fungsi dari data sampel BAB III PENAKSIR DERET FOURIER 3. Peaksi Dalam saisika, peaksi adalah sebuah saisik (fugsi dai daa sampel obsevasi) yag diguaka uuk meaksi paamee populasi yag idak dikeahui (esimad) aau fugsi yag memeaka

Lebih terperinci

UNIVERSITAS GUNADARMA POLA, BARISAN DAN DERET BILANGAN BAHAN AJAR. Oleh : Muhammad Imron H. Modul Barisan dan Deret Hal. 1

UNIVERSITAS GUNADARMA POLA, BARISAN DAN DERET BILANGAN BAHAN AJAR. Oleh : Muhammad Imron H. Modul Barisan dan Deret Hal. 1 BAHAN AJAR POLA, BARISAN DAN DERET BILANGAN Oleh : Muhammad Imo H 0 Modul Baisa da Deet Hal. BARISAN DAN DERET A. POLA BILANGAN. Pegetia Baisa Bilaga Baisa bilaga adalah uuta bilaga-bilaga dega atua tetetu.

Lebih terperinci

BARISAN DAN DERET. Bentuk umum suku ke-n barisan aritmatika U n = a + (n 1)b dengan

BARISAN DAN DERET. Bentuk umum suku ke-n barisan aritmatika U n = a + (n 1)b dengan iap N Matematika BARIAN DAN DERET A. Baisa Baisa adalah uuta bilaga yag memiliki atua tetetu. etiap bilaga pada baisa disebut suku baisa yag dipisahka dega lambag, (koma). Betuk umum baisa:,,,, dega: suku

Lebih terperinci

theresiaveni.wordpress.com NAMA : KELAS :

theresiaveni.wordpress.com NAMA : KELAS : theresiaveiwordpresscom NAMA : KELAS : 1 theresiaveiwordpresscom BARISAN DAN DERET Barisa da deret dapat diguaka utuk memudahka peyelesaia perhituga, misalya buga bak, keaika produksi, da laba/rugi suatu

Lebih terperinci

Barisan Dan Deret Arimatika

Barisan Dan Deret Arimatika Barisa Da Deret Arimatika A. Barisa Aritmatika Niko etera memiliki sebuah peggaris ukura 0 cm. Ia megamati bilaga-bilaga pada peggarisya ii. Bilaga-bilaga tersebut beruruta 0, 1,, 3,, 0. etiap bilaga beruruta

Lebih terperinci

Barisan Aritmetika dan deret aritmetika

Barisan Aritmetika dan deret aritmetika BARISAN DAN DERET BILANGAN Peyusu: Atmii Dhoruri, MS Kode: Jejag: SMP T/P: / A. Kompetesi yag diharapka. Meetuka suku ke- barisa aritmatika da barisa geometri. Meetuka jumlah suku pertama deret aritmatika

Lebih terperinci

DERET TAK HINGGA (INFITITE SERIES)

DERET TAK HINGGA (INFITITE SERIES) MATEMATIKA II DERET TAK HINGGA (INFITITE SERIES) sugegpb.lecture.ub.ac.id aada.lecture.ub.ac.id BARISAN Barisa merupaka kumpula suatu bilaga (atau betuk aljabar) yag disusu sehigga membetuk suku-suku yag

Lebih terperinci

INTEGRAL TAK TENTU (pecahan rasional) Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ

INTEGRAL TAK TENTU (pecahan rasional) Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ INTEGRL TK TENTU pecaha rasioal gusia Pradjaigsih, M.Si. Jurusa Maemaika FMIP UNEJ agusia.fmipa@uej.ac.id DEFINISI Fugsi suku bayak derajad dega bula o egaif 0 dimaa, 0 a a a a a P Fugsi kosa dipadag sbg

Lebih terperinci

p q r sesuai sifat operasi hitung bentuk pangkat

p q r sesuai sifat operasi hitung bentuk pangkat Adi Nuhidayat, S.Pd PEMBAHASAN SALAH SATU PAKET SOAL UN MATEMATIKA SMK KELOMPOK PARIWISATA, SENI DAN KERAJINAN, TEKNOLOGI KERUMAHTANGGAAN, PEKERJAAN SOSIAL, DAN ADMINISTRASI PERKANTORAN TAHUN PELAJARAN

Lebih terperinci

BARISAN TAK HINGGA DAN DERET TAK HINGGA

BARISAN TAK HINGGA DAN DERET TAK HINGGA BARIAN TAK HINGGA DAN DERET TAK HINGGA Bajar/Barisa Tak Higga Barisa tak higga { } adalah suatu fugsi dari dimaa daerah domaiya adalah himpua bilaga bulat positif (bilaga asli). Cotoh: Bila.. maka fugsi

Lebih terperinci

BARISAN DAN DERET. Materi ke 1

BARISAN DAN DERET. Materi ke 1 BARISAN DAN DERET Materi ke 1 Pola Bilaga adalah? Susua bilaga yag disusu meurut atura tertetu. Cotoh : 1. Pola Bilaga Gajil 1, 3, 5,... 2. Pola Bilaga Geap 2, 4, 6,... PERHATIKAN SSNAN BILANGAN DI BAWAH

Lebih terperinci

PENGUJIAN HIPOTESIS. Hipotesis Statistik : pernyataan atau dugaan mengenai satu atau lebih populasi.

PENGUJIAN HIPOTESIS. Hipotesis Statistik : pernyataan atau dugaan mengenai satu atau lebih populasi. . Pedahulua PENGUJIAN HIPOTESIS Hipoesis Saisik : peryaaa aau dugaa megeai sau aau lebih populasi. Pegujia hipoesis berhubuga dega peerimaa aau peolaka suau hipoesis. Kebeara (bear aau salahya) suau hipoesis

Lebih terperinci

Rumus-rumus yang Digunakan

Rumus-rumus yang Digunakan Saisika Uipa Surabaya 4. Sampel Tuggal = Rumus-rumus yag Diguaka s..... Sampel berkorelasi D D N N N...... 3. Sampel Bebas a. Uuk varias sama... 3 aau x x s g... 4 b. Sampel Heeroge Guaka Uji Corha - Cox

Lebih terperinci

PENGUJIAN HIPOTESIS DUA RATA-RATA

PENGUJIAN HIPOTESIS DUA RATA-RATA PENGUJIN HIPOTEI DU RT-RT Pegujia hipoesis dua raa-raa diguaka uuk membadigka dua keadaa aau epaya dua populasi. Misalya kia mempuyai dua populasi ormal masig-masig dega raa-raa µ da µ sedagka simpaga

Lebih terperinci

GEOMETRI BAB II BANGUN RUANG SISI LENGKUNG

GEOMETRI BAB II BANGUN RUANG SISI LENGKUNG Maemaika Kelas IX Semese Maei Bangun Ruang Sisi Lengkung GEOMETRI BB II BNGUN RUNG SISI LENGKUNG. Pengeian dan Unsu-unsu Tabung, Keucu, dan Bola. Tabung Tabung adalah bangun uang yang dibaasi oleh dua

Lebih terperinci

SOAL-SOAL SPMB 2006 MATEMATIKA DASAR (MAT DAS) 63 n, maka jumlah n suku. D n n 2. f n log3 log 4 log5... log n, maka f 2...

SOAL-SOAL SPMB 2006 MATEMATIKA DASAR (MAT DAS) 63 n, maka jumlah n suku. D n n 2. f n log3 log 4 log5... log n, maka f 2... SOAL-SOAL SPMB 006 MATEMATIKA DASAR (MAT DAS). SPMB, MAT DAS, Regioal I, 006 Tiga bilaga membetuk suatu deret geometri aik. Jika jumlahya 6 da hasikaliya 6, maka rasio deretya adalah A. B. C. D. 4 E. 5.

Lebih terperinci

PERBANDINGAN METODE BUNGA MAJEMUK DAN ATURAN 78 DALAM MENENTUKAN SISA PINJAMAN SETIAP PERIODE PADA ANUITAS DUE TUGAS AKHIR

PERBANDINGAN METODE BUNGA MAJEMUK DAN ATURAN 78 DALAM MENENTUKAN SISA PINJAMAN SETIAP PERIODE PADA ANUITAS DUE TUGAS AKHIR PERBNDINGN METODE BUNG MJEMUK DN TURN 78 DLM MENENTUKN SIS PINJMN SETIP PERIODE PD NUITS DUE ( Sudi Kasus: Kopeasi Uiesias Islam Negei Sula Syaif Kasim Riau ) TUGS KHIR Diajuka Sebagai Salah Sau Syaa Uuk

Lebih terperinci

BAB VI BARISAN TAK HINGGA DAN DERET TAK HINGGA

BAB VI BARISAN TAK HINGGA DAN DERET TAK HINGGA BAB VI BARIAN TAK HINGGA DAN DERET TAK HINGGA Bajar/Barisa Tak Higga Barisa tak higga { },,,,, adalah suatu fugsi dari dimaa daerah domaiya adalah himpua bilaga bulat positif (bilaga asli). Cotoh: Bila,,,..,

Lebih terperinci

kimia LAJU REAKSI II Tujuan Pembelajaran

kimia LAJU REAKSI II Tujuan Pembelajaran KTSP & K-13 kimia K e l a s XI LAJU REAKSI II Tujuan Pembelajaan Seelah mempelajai maei ini, kamu dihaapkan memiliki kemampuan beiku. 1. Mengeahui pesamaan laju eaksi.. Memahami ode eaksi dan konsana laju

Lebih terperinci

DERET Matematika Industri 1

DERET Matematika Industri 1 DERET TIP FP UB Pokok Bahasa Barisa Deret Deret aritmetik Deret geometrik Deret pagkat dari bilaga-bilaga asli Deret tak berhigga Nilai-ilai limit Deret koverge da deret diverge Uji kovergesi Deret secara

Lebih terperinci

MODIFIKASI METODE DEKOMPOSISI ELZAKI (MMDE) UNTUK PENYELESAIAN PERSAMAAN DIFERENSIAL PARSIAL TAK LINEAR

MODIFIKASI METODE DEKOMPOSISI ELZAKI (MMDE) UNTUK PENYELESAIAN PERSAMAAN DIFERENSIAL PARSIAL TAK LINEAR Bulei Ilmiah Ma.Sa. da Terapaya (Bimaser) Volume 06, No. (07), hal -0. MODIFIKASI METODE DEKOMPOSISI ELZAKI (MMDE) UNTUK PENYELESAIAN PERSAMAAN DIFERENSIAL PARSIAL TAK LINEAR Ermawai, Helmi, Frasiskus

Lebih terperinci

MATEMATIKA BISNIS. OLEH: SRI NURMI LUBIS, S.Si GICI BUSSINESS SCHOOL BATAM

MATEMATIKA BISNIS. OLEH: SRI NURMI LUBIS, S.Si GICI BUSSINESS SCHOOL BATAM MATEMATIKA BISNIS OLEH: SRI NURMI LUBIS, S.Si GICI BUSSINESS SCHOOL BATAM BAB BARISAN DAN DERET A. BARISAN Barisa bilaga adalah susua bilaga yag diurutka meurut atura tertetu.betuk umum barisa bilaga a,

Lebih terperinci

NILAI AKUMULASI ANUITAS AKHIR DENGAN ASUMSI DISTRIBUSI UNIFORM UNTUK m KALI PEMBAYARAN

NILAI AKUMULASI ANUITAS AKHIR DENGAN ASUMSI DISTRIBUSI UNIFORM UNTUK m KALI PEMBAYARAN NILAI AKUMULASI ANUITAS AKHIR DENGAN ASUMSI DISTRIBUSI UNIFORM UNTUK m KALI PEMBAYARAN Nomi Kelari *, Hasriai 2, Musraii 2 Mahasiswa Program S Maemaika 2 Dose Jurusa Maemaika Fakulas Maemaika da Ilmu Pegeahua

Lebih terperinci

V. PENGUJIAN HIPOTESIS

V. PENGUJIAN HIPOTESIS V. PENGUJIAN IPOTEI A. IPOTEI TATITIK Defiisi uau hipoesa saisik adalah suau peryaaa aau dugaa megeai sau aau lebih variabel populasi. ipoesis digologka mejadi. ipoesis ol adalah hipoesis yag dirumuska

Lebih terperinci

-1- U n : suku ke-n barisan aritmetika a : suku pertama n : banyak suku b : beda/selisih

-1- U n : suku ke-n barisan aritmetika a : suku pertama n : banyak suku b : beda/selisih -- BARISAN DAN DERET PENGERTIAN BARISAN DAN DERET Bisa yaitu susua bilaga yag didapatka di pemetaa bilaga asli yag dihubugka dega tada,. Jika pada bisa tada, digati dega tada, maka disebut deret. Bisa

Lebih terperinci

III. METODE KAJIAN 1. Lokasi dan Waktu 2. Metode Pengumpulan Data

III. METODE KAJIAN 1. Lokasi dan Waktu 2. Metode Pengumpulan Data III. METODE KAJIAN 1. Lokasi da Waku Lokasi kajia berempa uuk kelompok dilaksaaka di kelompok peeraka sapi di Bagka Tegah, Provisi Bagka Beliug, da Kelompok Peeraka Sapi di Cisarua, Bogor, Provisi Jawa

Lebih terperinci

BARISAN DAN DERET. Bentuk deret Aritmatika: a, ( a + b ), ( a + 2b ) ( a + ( n 1 ) b a = suku pertama b = beda n = banyaknya suku.

BARISAN DAN DERET. Bentuk deret Aritmatika: a, ( a + b ), ( a + 2b ) ( a + ( n 1 ) b a = suku pertama b = beda n = banyaknya suku. BARISAN DAN DERET Bab 9 Deret Aritmatika (Deret Hitug) o o o Betuk deret Aritmatika: a, ( a + b ), ( a + b ) +...+ ( a + ( ) b a = suku pertama b = beda = bayakya suku Suku ke- : U = a + (-)b Jumlah suku

Lebih terperinci

BAB 3 METODE PENELITIAN

BAB 3 METODE PENELITIAN BAB 3 METODE PENELITIAN 3 Meode Pegumpula Daa 3 Jeis Daa Pada peeliia ii aka megguaka jeis daa yag bersifa kuaiaif Daa kuaiaif adalah daa yag berbeuk agka / omial Dalam peeliia ii aka megguaka daa pejuala

Lebih terperinci

PENDAHULUAN INTERVAL KEPERCAYAAN PENAKSIRAN TITIK PENAKSIRAN INTERVAL 5/14/2012 KANIA EVITA DEWI

PENDAHULUAN INTERVAL KEPERCAYAAN PENAKSIRAN TITIK PENAKSIRAN INTERVAL 5/14/2012 KANIA EVITA DEWI 5/4/0 INTERVAL KEPERCAYAAN Poulai θ= μ,, π PENDAHULUAN amlig amel θˆ=,, KANIA EVITA DEWI Peakira arameer ada cara:. Peakira iik. Peakira ierval aau ierval keercayaa PENAKSIRAN TITIK Peakira iik -> Jika

Lebih terperinci

JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS JEMBER

JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS JEMBER STATISTIK CUKUP Oleh: Ramayai Rizka M (11810101003), Dey Ardiao (1181010101), Ikfi Ulyawai (1181010103), Falviaa Yulia Dewi (1181010106), Ricki Dio Rosada (11810101034), Nurma Yuia D (11810101035), Wula

Lebih terperinci

= 0 diturunkan terhadap x. Karena y fungsi dari x, maka setiap kali menurunkan y harus dikalikan dengan didapat diselesaikan ke y '.

= 0 diturunkan terhadap x. Karena y fungsi dari x, maka setiap kali menurunkan y harus dikalikan dengan didapat diselesaikan ke y '. 6..MENURUNKAN FUNGSI IMPLISIT Padag y fugsi dari yag disajika dalam beuk implisi f (, y) 0. Turuaya y' didapa sebagai beriku: a. Jika mugki y diyaaka sebagai beuk eksplisi dari, lalu diuruka erhadap b.

Lebih terperinci

BAB III STATISTIK INFERENSI PADA RANTAI MARKOV

BAB III STATISTIK INFERENSI PADA RANTAI MARKOV BAB III STATISTIK INFERENSI PADA RANTAI MARKOV 3. Pedahulua Pada Bab II elah dibahas megeai aai Makov beode- aau Ō() da maiks peluag asisiya. Pada bagia ii, aka dibahas bagaimaa meeuka ode aai Makov dai

Lebih terperinci

Beberapa Definisi Ruang Contoh Kejadian dan Peluang Definisi L.1 (Ruang contoh dan kejadian) . Definisi L.2 (Kejadian lepas )

Beberapa Definisi Ruang Contoh Kejadian dan Peluang Definisi L.1 (Ruang contoh dan kejadian) .   Definisi L.2 (Kejadian lepas ) 33 LAMPIRAN 34 35 Beberapa Defiisi Ruag Cooh Kejadia da Peluag Suau percobaa yag dapa diulag dalam kodisi yag sama, yag hasilya idak dapa diprediksi dega epa eapi kia bisa megeahui semua kemugkia hasil

Lebih terperinci

METODE TRANSFORMASI ELZAKI DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL BIASA LINEAR ORDE-N DENGAN KOEFISIEN KONSTANTA. Mahasiswa Program S1 Matematika 2

METODE TRANSFORMASI ELZAKI DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL BIASA LINEAR ORDE-N DENGAN KOEFISIEN KONSTANTA. Mahasiswa Program S1 Matematika 2 METODE TRANSFORMASI ELZAKI DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL BIASA LINEAR ORDE-N DENGAN KOEFISIEN KONSTANTA Roki Nuari *, Aziskha, Edag Lily Mahasiswa Program S Maemaika Dose Jurusa Maemaika Fakulas

Lebih terperinci

V. PENGEMBANGAN MODEL KELAYAKAN FINANSIAL FUZZY

V. PENGEMBANGAN MODEL KELAYAKAN FINANSIAL FUZZY 39 V. PENGEMBANGAN MODEL KELAYAKAN FINANSIAL FUZZY 5.. Pegembaga Mode Pemodea fuzzy eah ebuki sebagai ekik yag saga begua keika peaaa daam kodisi keidakpasia aau dega ifomasi yag idak pasi seig dijumpai

Lebih terperinci

III BAB BARISAN DAN DERET. Tujuan Pembelajaran. Pengantar

III BAB BARISAN DAN DERET. Tujuan Pembelajaran. Pengantar BAB III BARISAN DAN DERET Tujua Pembelajara Setelah mempelajari materi bab ii, Ada diharapka dapat:. meetuka suku ke- barisa da jumlah suku deret aritmetika da geometri,. meracag model matematika dari

Lebih terperinci

Barisan ini adalah contoh dari barisan aritmatika U 1. ialah barisan aritmatika,jika: -U 2. =.= U n

Barisan ini adalah contoh dari barisan aritmatika U 1. ialah barisan aritmatika,jika: -U 2. =.= U n BARIAN DAN DERET A. BARIAN DAN DERET ARITMATIKA I. TJAN etelah mempelaji topik siswa dapat:. Meetuka suku ke suatu bisa itmatika. Meetuka rumus suku ke di bisa itmatika. Meetuka suku pertama da beda suatu

Lebih terperinci

PELUANG. Misalkan n = A,B,C,D Terjadinya 2 kemungkinan kejadian yaitu : AB, AC,AD, BA,BC,BD, CA,CB,CD, DA,DB,DC = 12 kemungkinan

PELUANG. Misalkan n = A,B,C,D Terjadinya 2 kemungkinan kejadian yaitu : AB, AC,AD, BA,BC,BD, CA,CB,CD, DA,DB,DC = 12 kemungkinan SMA - ELUANG A. Kaidah emutasi da kombiasi. emutasi : Bayakya kemugkia dega mempehatika uuta ada Misalka A,B,,D Tejadiya 2 kemugkia kejadia yaitu : AB, A,AD, BA,B,BD, A,B,D, DA,DB,D 2 kemugkia 4 ; 2 Rumusya

Lebih terperinci

Deret Bolak-balik (Alternating Series) Deret bolak-balik adalah deret yang suku-sukunya berganti tanda. Sebagai contoh,

Deret Bolak-balik (Alternating Series) Deret bolak-balik adalah deret yang suku-sukunya berganti tanda. Sebagai contoh, Deet Bolak-balik Alteatig Seies Deet bolak-balik adalah deet yag suku-sukuya begati tada. Sebagai cotoh, + 4 + + + Deet bolak-balik beikut: = + a, dega a positif, kovege jika memeuhi dua syaat i. Setiap

Lebih terperinci

KRITERIA INVESTASI DEPARTEMEN AGRIBISNIS FEM - IPB

KRITERIA INVESTASI DEPARTEMEN AGRIBISNIS FEM - IPB KRITERIA INVESTASI DEPARTEMEN AGRIBISNIS FEM - IPB Sudi kelayaka bisis pada dasarya berujua uuk meeuka kelayaka bisis berdasarka krieria ivesasi Krieria ersebu diaaraya adalah ; 1. Nilai bersih kii (Ne

Lebih terperinci

BARISAN FIBONACCI DAN BILANGAN PHI

BARISAN FIBONACCI DAN BILANGAN PHI BARISAN FIBONACCI DAN BILANGAN PHI Fiboacci Matematikawa terbesar pada abad pertegaha adalah Leoardo dari Pisa, Italia (80 0). Ia lebih dikeal dega ama Fibo-acci. Artiya, aak Boaccio. Meara Pisa yag terkeal

Lebih terperinci

Ukuran Dispersi Multivariat

Ukuran Dispersi Multivariat Bab IV Ukua Disesi Mulivaia Pada bab ii, eama-ama aka dikemukaka defiisi eag veko vaiasi vaiabel-vaiabel sada (VVVS sebagai ukua disesi mulivaia akala seluuh vaiabel yag eliba adalah vaiabel sada. Selajuya

Lebih terperinci

SOAL-SOAL. 1. UN A Jumlah n suku pertama deret aritmetika dinyatakan dengan S n n

SOAL-SOAL. 1. UN A Jumlah n suku pertama deret aritmetika dinyatakan dengan S n n Husei Tampomas, Barisa da Deret, 06 SOAL-SOAL. UN A 0 Jumlah suku pertama deret aritmetika diyataka dega S. Suku ke-0 A. B. C. 0 D. 8 E. 6. UN A, D7, da E8 0 Sebuah pabrik memproduksi barag jeis A pada

Lebih terperinci

B A B III METODE PENELITIAN. Objek penelitian dalam penelitian ini adalah menganalisis perbandingan

B A B III METODE PENELITIAN. Objek penelitian dalam penelitian ini adalah menganalisis perbandingan 30 B A B III METODE PENELITIAN 3. Peeapa Lokai da Waku Peeliia Objek peeliia dalam peeliia ii adalah megaalii perbadiga harga jual produk melalui pedekaa arge pricig dega co-plu pricig pada oko kue yag

Lebih terperinci

Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1

Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1 Barisa Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 9/0/06 Matematika Barisa Tak Higga Secara sederhaa, barisa merupaka susua dari bilaga bilaga yag urutaya berdasarka bilaga

Lebih terperinci

BAB 2 TINJAUAN TEORI. Ramalan pada dasarnya merupakan dugaan atau perkiraan mengenai terjadinya suatu

BAB 2 TINJAUAN TEORI. Ramalan pada dasarnya merupakan dugaan atau perkiraan mengenai terjadinya suatu BAB 2 TINJAUAN TEORI 2.1 Pegeria Peramala Ramala pada dasarya merupaka dugaa aau perkiraa megeai erjadiya suau kejadia aau perisiwa di waku yag aka daag. Peramala merupaka sebuah ala bau yag peig dalam

Lebih terperinci

BAGIAN 2 TOPIK 5. andhysetiawan

BAGIAN 2 TOPIK 5. andhysetiawan BAGIAN OIK 5 adhyseiawa Isi Maeri Modulasi Aliudo AM Modulasi Frekuesi FM adhyseiawa MODULASI AMLIUDO DAN MODULASI ANGULAR SUDU Modulasi roses erubaha karakerisik aau besara gelobag ebawa, euru ola gelobag

Lebih terperinci

Barisan, Deret, dan Notasi Sigma

Barisan, Deret, dan Notasi Sigma Barisa, Deret, da Notasi Sigma B A B 5 A. Barisa da Deret Aritmetika B. Barisa da Deret Geometri C. Notasi Sigma da Iduksi Matematika D. Aplikasi Barisa da Deret Sumber: http://jsa007.tripod.com Saat megedarai

Lebih terperinci

JURUSAN PENDIDIKAN FISIKA FPMIPA UNIVERSITAS PENDIDIKAN INDONESIA

JURUSAN PENDIDIKAN FISIKA FPMIPA UNIVERSITAS PENDIDIKAN INDONESIA Achmad Samudi, M.Pd. JURUSAN PENDIDIKAN FISIKA FPMIPA UNIVERSITAS PENDIDIKAN INDONESIA 6. MENGUJI PROPORSI π : UJI DUA PIAK Mialka kia mempuyai populai biom dega propori periiwa A π Berdaarka ebuah ampel

Lebih terperinci

Kalkulus Rekayasa Hayati DERET

Kalkulus Rekayasa Hayati DERET Kalkulus Rekayasa Hayati DERET 1 Isi Bab Pedahulua Barisa tak-higga Deret tak-higga Deret Positif : Uji kekovergea Deret Gati Tada Deret Pagkat Deret Taylor da Maclauri 2 Kompetesi Dasar Setelah megikuti

Lebih terperinci

Projek. Contoh Menemukan Konsep Barisan dan Deret Geometri a. Barisan Geometri. Perhatikan barisan bilangan 2, 4, 8, 16,

Projek. Contoh Menemukan Konsep Barisan dan Deret Geometri a. Barisan Geometri. Perhatikan barisan bilangan 2, 4, 8, 16, Projek Himpulah miimal tiga masalah peerapa barisa da deret aritmatika dalam bidag fisika, tekologi iformasi, da masalah yata di sekitarmu. Ujilah berbagai kosep da atura barisa da deret aritmatika di

Lebih terperinci

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4

Mata Kuliah : Matematika Diskrit Program Studi : Teknik Informatika Minggu ke : 4 Program Studi : Tekik Iformatika Miggu ke : 4 INDUKSI MATEMATIKA Hampir semua rumus da hukum yag berlaku tidak tercipta dega begitu saja sehigga diraguka kebearaya. Biasaya, rumus-rumus dapat dibuktika

Lebih terperinci

Analisis Rangkaian Listrik Di Kawasan Waktu

Analisis Rangkaian Listrik Di Kawasan Waktu Sudaryao Sudirham Aalisis Ragkaia Lisrik Di Kawasa Waku 3- Sudaryao Sudirham, Aalisis Ragkaia Lisrik () BAB 3 Peryaaa Siyal da Spekrum Siyal Dega mempelajari lajua eag model siyal ii, kia aka memahami

Lebih terperinci

BARISAN DAN DERET. Nurdinintya Athari (NDT)

BARISAN DAN DERET. Nurdinintya Athari (NDT) BARISAN DAN DERET Nurdiitya Athari (NDT) BARISAN Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) = a Fugsi tersebut dikeal sebagai barisa bilaga

Lebih terperinci

ANALISIS INVESTASI PENAMBANGAN PASIR DAN BATU DITINJAU DARI SEGI TEKNIS DAN BIAYA

ANALISIS INVESTASI PENAMBANGAN PASIR DAN BATU DITINJAU DARI SEGI TEKNIS DAN BIAYA ANALISIS INVESTASI PENAMBANGAN PASIR DAN BATU DITINJAU DARI SEGI TEKNIS DAN BIAYA Laar Belakag Masalah Semaki berambah pesaya pembagua dibidag kosruksi maka meyebabka meigka pula kebuuha aka meerial-maerial

Lebih terperinci

I. DERET TAKHINGGA, DERET PANGKAT

I. DERET TAKHINGGA, DERET PANGKAT I. DERET TAKHINGGA, DERET PANGKAT. Pedahulua Pembahasa tetag deret takhigga sebagai betuk pejumlaha suku-suku takhigga memegag peraa petig dalam fisika. Pada bab ii aka dibahas megeai pegertia deret da

Lebih terperinci

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi 6. Pecacaha Lajut Relasi Rekuresi Relasi rekuresi utuk dereta {a } adalah persamaa yag meyataka a kedalam satu atau lebih suku sebelumya, yaitu a 0, a,, a -, utuk seluruh bilaga bulat, dega 0, dimaa 0

Lebih terperinci

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3 BAB XII. SUKU BANYAK A = a Pegertia: f(x) = a x + a x + a x + + a x +a adalah suku bayak (poliom) dega : - a, a, a,.,a, a, a 0 adalah koefisiekoefisie suku bayak yag merupaka kostata real dega a 0 - a

Lebih terperinci

BAB V ANALISA HASIL. Untuk mendapatkan jenis peramalan yang dinginkan terdapat banyak

BAB V ANALISA HASIL. Untuk mendapatkan jenis peramalan yang dinginkan terdapat banyak BB V NLIS HSIL 5.1 Ukura kurasi Hasil Peramala Uuk medapaka jeis peramala yag digika erdapa bayak parameer-parameer yag dapa diguaka. Seperi yag elah diuraika pada ladasa eori, parameer-parameer ersebu

Lebih terperinci

PEMBAHASAN SALAH SATU PAKET SOAL UN MATEMATIKA SMA PROGRAM IPS TAHUN PELAJARAN 2012/2013

PEMBAHASAN SALAH SATU PAKET SOAL UN MATEMATIKA SMA PROGRAM IPS TAHUN PELAJARAN 2012/2013 http://asyikyabelajar.wordpress.com PEMBAHAAN ALAH ATU PAKET OAL UN MATEMATIKA MA PROGRAM IP TAHUN PELAJARAN 0/0. Igkara dari peryataa emua makhluk hidup memerluka air da oksige adalah... A. emua makhluk

Lebih terperinci

2 BARISAN BILANGAN REAL

2 BARISAN BILANGAN REAL 2 BARISAN BILANGAN REAL Di sekolah meegah barisa diperkealka sebagai kumpula bilaga yag disusu meurut "pola" tertetu, misalya barisa aritmatika da barisa geometri. Biasaya barisa da deret merupaka satu

Lebih terperinci

BAB 6 NOTASI SIGMA, BARISAN DAN DERET

BAB 6 NOTASI SIGMA, BARISAN DAN DERET BAB 6 NOTASI SIGMA, BARISAN DAN DERET A RINGKASAN MATERI. Notasi Sigma Diberia suatu barisa bilaga, a, a,..., a. Lambag deret tersebut, yaitu: a = a + a +... + a a meyataa jumlah suu pertama barisa Sifat-sifat

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret Program Perkuliaha Dasar Umum Sekolah Tiggi Tekologi Telkom Barisa da Deret Barisa Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) a Fugsi tersebut

Lebih terperinci

PREDIKSI SOAL ULANGAN AKHIR SEMESTER GENAP KELAS IX SMP NEGERI 196 JAKARTA. Jawab : Nilai dari. Jawab :.3.3 = 27

PREDIKSI SOAL ULANGAN AKHIR SEMESTER GENAP KELAS IX SMP NEGERI 196 JAKARTA. Jawab : Nilai dari. Jawab :.3.3 = 27 PREDIKSI SOAL ULANGAN AKHIR SEMESTER GENAP KELAS IX SMP NEGERI 9 JAKARTA No. Idikator Soal Prediksi Soal Peserta didik dapat meyataka betuk pecaha aljabar yag pembilag da peyebutya berpagkat egatif mejadi

Lebih terperinci

MATEMATIKA EKONOMI 1 Deret. DOSEN Fitri Yulianti, SP, MSi.

MATEMATIKA EKONOMI 1 Deret. DOSEN Fitri Yulianti, SP, MSi. MATEMATIKA EKONOMI 1 Deret DOSEN Fitri Yuliati, SP, MSi. Deret Deret ialah ragkaia bilaga yag tersusu secara teratur da memeuhi kaidah-kaidah tertetu. Bilaga-bilaga yag merupaka usur da pembetuk sebuah

Lebih terperinci

BARISAN DAN DERET. 05/12/2016 Matematika Teknik 1 1

BARISAN DAN DERET. 05/12/2016 Matematika Teknik 1 1 BARISAN DAN DERET 05//06 Matematika Tekik BARISAN Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 05//06 Matematika Tekik Barisa Tak Higga Secara sederhaa, barisa merupaka

Lebih terperinci

BAB III METODE PEMULUSAN EKSPONENSIAL TRIPEL DARI WINTER. Metode pemulusan eksponensial telah digunakan selama beberapa tahun

BAB III METODE PEMULUSAN EKSPONENSIAL TRIPEL DARI WINTER. Metode pemulusan eksponensial telah digunakan selama beberapa tahun 43 BAB METODE PEMUUAN EKPONENA TRPE DAR WNTER Meode pemulusan eksponensial elah digunakan selama beberapa ahun sebagai suau meode yang sanga berguna pada begiu banyak siuasi peramalan Pada ahun 957 C C

Lebih terperinci

Fisika Dasar I (FI-321)

Fisika Dasar I (FI-321) Fisika Dasa I (FI-321) Topik hai ini (minggu 3) Geak dalam Dua dan Tiga Dimensi Posisi dan Pepindahan Kecepaan Pecepaan Geak Paabola Geak Melingka Geak dalam Dua dan Tiga Dimensi Menggunakan anda + aau

Lebih terperinci

E-learning matematika, GRATIS 1

E-learning matematika, GRATIS 1 E-learig matematika, GRATIS Peyusu Editor : Teag Idriyai, S.P ; Taufiq Rahma, S.P : Drs. Keto Susato, M.Si. M.T. ; Istijab, S.H. M.Hum. Imam Idra Guawa, S.Si.. Pegertia Barisa da Deret Barisa bilaga adalah

Lebih terperinci

PEMBEKALAN OSN-2011 SMP STELA DUCE I YOGYAKARTA MATA PELAJARAN: MATEMATIKA Pemateri: Murdanu

PEMBEKALAN OSN-2011 SMP STELA DUCE I YOGYAKARTA MATA PELAJARAN: MATEMATIKA Pemateri: Murdanu Pemateri: Murdau 1 BAGIAN A 1. Carilah dua bilaga yag hasilkali da jumlahya berilai sama!. Carilah dua bilaga yag perbadiga da selisihya berilai sama! 3. Diketahui: ab = 84, bc = 76, ac = 161. Berapakah

Lebih terperinci

SOAL-SOAL LATIHAN BARISAN DAN DERET ARITMETIKA DAN GEOMETRI UJIAN NASIONAL

SOAL-SOAL LATIHAN BARISAN DAN DERET ARITMETIKA DAN GEOMETRI UJIAN NASIONAL SOAL-SOAL LATIHAN BARISAN DAN DERET ARITMETIKA DAN GEOMETRI UJIAN NASIONAL Peserta didik memiliki kemampua memahami kosep pada topik barisa da deret aritmetika da geometri. Peserta didik memilki kemampua

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2016/2017 3 Februari 2017 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg Batas

Lebih terperinci

Hendra Gunawan. 12 Februari 2014

Hendra Gunawan. 12 Februari 2014 MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2013/2014 12 Februari 2014 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 82 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2. Ruag sampel da Kejadia Defiisi Himpua semua hasil yag mugki dari suau percobaa disebu ruag sampel da diyaaka dega S Mogomery, 2004: 7. Tiap hasil dari ruag sampel disebu usur aau

Lebih terperinci

PELUANG. Terjadinya 2 kemungkinan kejadian yaitu : AB, AC, AD, BA, BC, BD, CA, CB, CD, DA, DB, DC = 12 kemungkinan. Prinsip/kaidah perkalian:

PELUANG. Terjadinya 2 kemungkinan kejadian yaitu : AB, AC, AD, BA, BC, BD, CA, CB, CD, DA, DB, DC = 12 kemungkinan. Prinsip/kaidah perkalian: isip/kaidah pekalia: ELUANG Jika posisi /tempat petama dapat diisi dega caa yag bebeda, tempat kedua dega caa, da seteusya, sehigga lagkah ke ada caa maka bayakya caa utuk megisi tempat yag tesedia adalah

Lebih terperinci

PENDEKATAN TEORITIK. c dt (3.1) r dr dr. atau 2 (3.2)

PENDEKATAN TEORITIK. c dt (3.1) r dr dr. atau 2 (3.2) 5 PENDEKTN TEORITIK Model Pepidaha Massa Kafei Pepidaha massa kafei yag ejadi selama poses pelaua belagsug seaa difusi. Model pepidaha massa kafei dai dalam biji kopi diuuka bedasaka asumsi-asumsi sebagai

Lebih terperinci

BAB 12 BARISAN DAN DERET

BAB 12 BARISAN DAN DERET BAB 1 BARISAN DAN DERET TIPE 1: Jika dari barisa aritmetika diketahui suku ke-m adalah um u b. m Cotoh: Diketahui barisa aritmetika, suku ke-5 adalah 4 da suku ke-8 adalah 6. Tetuka beda barisa aritmetika

Lebih terperinci

Hidraulika Komputasi

Hidraulika Komputasi Hdraulka Kompuas Meoda Beda Hgga Ir. Djoko Lukao, M.Sc., Ph.D. Jurusa Tekk Spl Fakulas Tekk Uversas Gadjah Mada Peyelesaa Pedekaa Karea dak dperoleh peyelesaa aals, maka dguaka peyelesaa pedekaa umers.

Lebih terperinci

BAB X. PELUANG. Terjadinya 2 kemungkinan kejadian yaitu : AB, AC, AD, BA, BC, BD, CA, CB, CD, DA, DB, DC = 12 kemungkinan. Prinsip/kaidah perkalian:

BAB X. PELUANG. Terjadinya 2 kemungkinan kejadian yaitu : AB, AC, AD, BA, BC, BD, CA, CB, CD, DA, DB, DC = 12 kemungkinan. Prinsip/kaidah perkalian: isip/kaidah pekalia: BAB X. ELUANG Jika posisi /tempat petama dapat diisi dega caa yag bebeda, tempat kedua dea caa, da seteusya, sehigga lagkah ke ada caa maka bayakya caa utuk megisi tempat yag tesedia

Lebih terperinci

BANGUN RUANG. ABFE dan sisi DCGH, dan sisi ADHE dan sisi

BANGUN RUANG. ABFE dan sisi DCGH, dan sisi ADHE dan sisi NGUN RUNG. Pengeian 1. Kubu Kubu adalah bangun uang yang dibaai oleh enam buah bidang peegi yang konguen (benuk dan E beanya ama). (Pehaikan Gamba 1) Kubu mempunyai 6 ii, 8 iik udu, dan 12 uuk. Semua uuk

Lebih terperinci

STATISTIKA SMA (Bag.1)

STATISTIKA SMA (Bag.1) SMA - STATISTIKA SMA (Bag. A. DATA TUNGGAL. Ukura Pemusata : Terdapat ilai statistika yag dapat dimiliki oleh sekumpula data yag diperoleh yaitu : a. Rata-rata Rata-rata jumlah seluruh data bayakya data

Lebih terperinci

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang 5. DERET

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang 5. DERET Pertemua 7. BAHAN AJAR ANALISIS REAL Matematika STKIP Tuaku Tambusai Bagkiag 5. da kekovergeaya 5. DERET Diberika sebuah barisa a, dapat didefeisika barisa bilaga real S N dega S N := N a = a + a 2 +...

Lebih terperinci

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa istilah, definisi serta konsep-konsep yang

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa istilah, definisi serta konsep-konsep yang II. LANDASAN TEORI Pada bab ii aka diberika beberapa istilah, defiisi serta kosep-kosep yag medukug dalam peelitia ii. 2.1 Kosep Dasar Teori Graf Berikut ii aka diberika kosep dasar teori graf yag bersumber

Lebih terperinci

SOAL-SOAL SPMB 2007 MATEMATIKA DASAR (MAT DAS) 1. SPMB, MAT DAS, Regional I, 2007 Suku ke-n suatu barisan aritmatika adalah

SOAL-SOAL SPMB 2007 MATEMATIKA DASAR (MAT DAS) 1. SPMB, MAT DAS, Regional I, 2007 Suku ke-n suatu barisan aritmatika adalah SOAL-SOAL SPMB 00 MATEMATIKA DASAR (MAT DAS). SPMB, MAT DAS, Regioal I, 00 Sk ke- sat barisa aritmatika adalah 0 p,da 6, maka.... Jika A. B. 3 C. D. 3 E.. SPMB, MAT DAS, Regioal I, 00 Jika p 0, q 0 q...

Lebih terperinci

Menentukan Pembagi Bersama Terbesar dengan Algoritma

Menentukan Pembagi Bersama Terbesar dengan Algoritma Meetuka Pembagi Besama Tebesa dega Algoitma Macelius Hey M. (135108) Pogam Studi Tekik Ifomatika Sekolah Tekik Elekto da Ifomatika Istitut Tekologi Badug, Jl. Gaesha 10 Badug 4013, Idoesia 135108@std.stei.itb.ac.id

Lebih terperinci

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3 SUKU BANYAK A Pegertia: f(x) x + a 1 x 1 + a 2 x 2 + + a 2 +a 1 adalah suku bayak (poliom) dega : - a, a 1, a 2,.,a 2, a 1, a 0 adalah koefisiekoefisie suku bayak yag merupaka kostata real dega a 0 - a

Lebih terperinci

Himpunan/Selang Kekonvergenan

Himpunan/Selang Kekonvergenan oki eswa (fmipa-itb) Deret Pagkat Kita aka mempelajari beberapa tehik utuk meyajika suatu fugsi f (x) dalam betuk deret pagkat (power series), yaitu meetuka derat pagkat c (x a) sehigga f (x) = c (x a)

Lebih terperinci

INTEGRAL FUNGSI TRIGONOMETRI

INTEGRAL FUNGSI TRIGONOMETRI NTEGRAL FUNGS TRGONOMETR A. Rumus-rumus Dasar Turua Fugsi Trigoomeri Tipe : Tipe :. y si y'. y si y' si. y y' si. y y' si. y a y' sec. y a y' a sec. y co y' csc. y co y' co csc. y sec y' sec a. y sec y'

Lebih terperinci

BARISAN DAN DERET. U n = suku ke-n Contoh: Barisan bilangan asli, bilangan genap, bilangan ganjil, dan lain-lain.

BARISAN DAN DERET. U n = suku ke-n Contoh: Barisan bilangan asli, bilangan genap, bilangan ganjil, dan lain-lain. BARIAN DAN DERET A. Barisa Barisa adalah uruta bilaga yag memilii atura tertetu. etiap bilaga pada barisa disebut suu barisa yag dipisaha dega lambag, (oma). Betu umum barisa:,, 3, 4,, dega: = suu pertama

Lebih terperinci

PENYELESAIAN PERSAMAAN DIFERENSIAL PARSIAL FOKKER-PLANCK DENGAN METODE GARIS

PENYELESAIAN PERSAMAAN DIFERENSIAL PARSIAL FOKKER-PLANCK DENGAN METODE GARIS PENYELESAIAN PERSAMAAN DIFERENSIAL PARSIAL FOKKER-PLANCK DENGAN METODE GARIS Sii Muyassaroh Mahasiswa Jurusa Maemaika Fakulas Sais da Tekologi UIN Maulaa Malik Ibrahim Malag e-mail: muy.sms@gmail.com ABSTRAK

Lebih terperinci

BAB III ANALISIS INTERVENSI. Analisis intervensi dimaksudkan untuk penentuan jenis respons variabel

BAB III ANALISIS INTERVENSI. Analisis intervensi dimaksudkan untuk penentuan jenis respons variabel BAB III ANALISIS INTERVENSI 3.1. Pendahuluan Analisis inervensi dimaksudkan unuk penenuan jenis respons variabel ak bebas yang akan muncul akiba perubahan pada variabel bebas. Box dan Tiao (1975) elah

Lebih terperinci

LOGO MATEMATIKA BISNIS (Deret)

LOGO MATEMATIKA BISNIS (Deret) LOGO MATEMATIKA BISNIS (Deret) DOSEN FEBRIYANTO, SE., MM. www.febriyato79.wordpress.com 1 MATEMATIKA BISNIS Matematika Bisis memberika pemahama ilmu megeai kosep matematika dalam bidag bisis. Sehigga suatu

Lebih terperinci

PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT

PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT Prosidig Semiar Nasioal Matematika da Terapaya 06 p-issn : 0-0384; e-issn : 0-039 PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT Liatus

Lebih terperinci

METODE PENELITIAN. Lokasi dan Waktu Penelitian. sampai dengan April 2008, di DAS Waeruhu, yang secara administratif terletak di

METODE PENELITIAN. Lokasi dan Waktu Penelitian. sampai dengan April 2008, di DAS Waeruhu, yang secara administratif terletak di 8 METODE PENELITIAN Lokasi da Waku Peeliia Peeliia ii dilaksaaka selama 3 bula, erhiug sejak bula Februari sampai dega April 2008, di DAS Waeruhu, yag secara admiisraif erleak di wilayah Kecamaa Sirimau,

Lebih terperinci

BAB V METODE PENELITIAN

BAB V METODE PENELITIAN 31 BAB V METODE PENELITIAN 5.1 Lokasi da Waku Peeliia Peeliia ii dilaksaaka di Kecamaa Sukaagara, Kabupae Ciajur. Pemiliha lokasi peeliia dilakuka secara segaja (purposive samplig) dega memperimbagka aspek

Lebih terperinci

: XII (Dua Belas) Semua Program Studi. : Gisoesilo Abudi, S.Pd

: XII (Dua Belas) Semua Program Studi. : Gisoesilo Abudi, S.Pd R e f r e s h Program Diklat K e l a s M a t e r i Pegajar : M A T E M A T I K A : XII (Dua Belas) Semua Program Studi : S t a t i s t i k a : Gisoesilo Abudi, S.Pd Kajia Materi Peyampaia Data Diagram

Lebih terperinci

BAB X. PELUANG. Terjadinya 2 kemungkinan kejadian yaitu : AB, AC, AD, BA, BC, BD, CA, CB, CD, DA, DB, DC = 12 kemungkinan. Prinsip/kaidah perkalian:

BAB X. PELUANG. Terjadinya 2 kemungkinan kejadian yaitu : AB, AC, AD, BA, BC, BD, CA, CB, CD, DA, DB, DC = 12 kemungkinan. Prinsip/kaidah perkalian: isip/kaidah pekalia: BAB X. ELUANG Jika posisi /tempat petama dapat diisi dega caa yag bebeda, tempat kedua dea caa, da seteusya, sehigga lagkah ke ada caa maka bayakya caa utuk megisi tempat yag tesedia

Lebih terperinci

Sistim Komunikasi 1. Pertemuan 5 Konversi Analog ke Digital

Sistim Komunikasi 1. Pertemuan 5 Konversi Analog ke Digital isim Komuikasi 1 Peremua 5 Koversi Aalog ke Digial Murik Alayrus Tekik Elekro Fakulas Tekik, UMB murikalayrus@yahoo.com 1 Base Ba Moulaio Paa bagia sebelum kia meapaka siyal koiyu erhaap waku, misalyasiyalm(),

Lebih terperinci