BAB 12 BARISAN DAN DERET

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 12 BARISAN DAN DERET"

Transkripsi

1 BAB 1 BARISAN DAN DERET TIPE 1: Jika dari barisa aritmetika diketahui suku ke-m adalah um u b. m Cotoh: Diketahui barisa aritmetika, suku ke-5 adalah 4 da suku ke-8 adalah 6. Tetuka beda barisa aritmetika tersebut. A. 6 B. 5 C. 4 D. E. Solusi 1: [C] u a 1b u 8 u5 6 4 a 7b a 4b 6 4 b 1 b 4 Solusi : Care u 8 u5 6 4 b TIPE : Jika dalam barisa aritmetika diketahui suku ke-p adalah uq u ke-r dapat ditetuka dega rumus q p Cotoh: Diketahui barisa aritmetika dega suku ke-5 adalah 15 da suku ke-0 adalah 660. Suku ke-9 adalah. A. 157 B. 177 C. 187 D. 87 E. 97 Solusi 1: [C] u a 1b ur u p. r p u 5 15 a 4b 15. (1) u a 19b 660, () Hasil peguraga persamaa () oleh persamaa (1) adalah 15b 645 b 4 b 4 a 4b 15 a a 157 p u m da suku ke- adalah u, maka u p da suku ke-q adalah u q, maka suku 68 Husei Tampomas, Cara Efisie (Care) Meyelesaika Soal Matematika

2 u 9 a 8b Solusi : Care u0 u5 u9 u u u TIPE : Cotoh: Diberika barisa geometri, suku ke- adalah 18 da suku ke-7 adalah Rasio barisa geometri tersebut adalah. A. 9 B. 9 C. 9 D. E. Solusi 1: [A] u u 18 ar ar 6 81 r r 81 9 Solusi : Care 7 u r 81 u 18 r 4 81 r TIPE 4: Meetuka b Jika u Diketahui Cotoh: Dari suatu deret aritmetika diketahui siku ke- adalah u 4 5. Nilai beda (b) adalah. A. 5 B. 4 C. D. 4 E. 5 Solusi 1: [D] b u u 1 b Solusi : Care 4 5 u Jika dari barisa geometri diketahui suku ke-m adalah m um r. u u m da suku ke- adalah Beda (b) adalah koefisie dari atau turua pertama dari u, sehigga b 4. u, maka TIPE 5: Meetuka S Jika u Cotoh: Diketahui 69 Husei Tampomas, Cara Efisie (Care) Meyelesaika Soal Matematika

3 Dari suatu deret aritmetika diketahui siku ke- adalah u 4 5. Rumus jumlah suku pertama ( S ) adalah. A. B. C. 4 5 D. E. Solusi 1: [A] 4 5 u a u S a u Solusi : Care 4 5 S u Itegral dari 4 adalah S, sehigga Utuk 1, maka u , sedagka S 1. Supaya ilais1sama dega ilai u 1, maka haruslah S, sehigga S. 1 TIPE 6: Meetuka u Jika S Diketahui Cotoh: Dari suatu deret aritmetika diketahui jumlah suku pertama adalah S 4. Tetuka jumlah suku pertama ( S ) da beda (b). A. u 6 1 da b 6 C. u 1 da b C. u 6 da b 1 B. u 6 1 da b 6 D. u 4 1 da b 4 Solusi 1: [A] Meetuka suku ke- ( u ): u S S u Solusi : Care S 4 Turua (difresial) dari u 6 adalah 6, sehigga Utuk 1, maka S , sedagka u 1 6. Supaya ilai u1 sama dega ilai S 1, maka haruslah u 6 1, sehigga 6 1 TIPE 7: 1 Jika jumlah suku pertama deret geometri adalah beruruta adalah q r p. u kp Cotoh: Diketahui deret geometri dega jumlah suku pertama S. Rasio deret tersebut adalah. A. B. 4 C. 8 D. 16 E Husei Tampomas, Cara Efisie (Care) Meyelesaika Soal Matematika S q k, maka rasio atara dua suku yag

4 Solusi 1: [C] S u u S S u 168 r 8 u1 1 Solusi : Care q q S kp k r p S r 8 TIPE 8: Jika sisi-sisi segitiga siku-siku pajagya merupaka barisa aritmetika, maka 1. Sisi mirig (hipoteusa) = 5k, pajag sisi siku-siku terpajag = 4 k, da pajag sisi siku-siku terpedek = k.. Kelilig = 1k. Luas = 6k k 4k 5k Cotoh 1: Diketahui segitiga siku-siku dega sisi-sisiya merupaka barisa aritmetika. Jika pajag sisi sikusiku terpedek adalah 4 cm, maka keliligya adalah. A. 6 cm B. 48 cm C. 7 cm D. 96 cm E. 19 cm Solusi 1: [D] Misalya sisi-sisi segitiga siku-siku membetuk barisa aritmetika adalah 4, y, z. Sifat beda barisa aritmetika: y 4 z y z y 4 Meurut Pythagoras: 4 y z z 576 y (y 4) y 4y 96y 576 y 96y 0 y ( y ) 0 y 0 (ditolak) atau y (diterima) y z y 4 z 4 40 Kelilig segitiga itu cm Solusi : Care Pajag sisi siku-siku terpedek = 4 k 4 k 8 Kelilig segitiga itu: K 1k cm Cotoh : Diketahui segitiga siku-siku dega sisi-sisiya merupaka barisa aritmetika. Jika luasya adalah 4 cm, maka pajag sisi mirigya adalah. 71 Husei Tampomas, Cara Efisie (Care) Meyelesaika Soal Matematika y

5 A. 0 cm B. 18 cm C. 15 cm D. 1 cm E. 10 cm Solusi 1: [E] Misalya sisi-sisi segitiga siku-siku membetuk barisa aritmetika adalah x, y, z. Beda barisa aritmetika : y x z y z y x Meurut Pythagoras: x y z x y ( y x) 4 z x y y 4xy 0 y ( y 4x) 0 4y 4xy x 4 y 0 (ditolak) atau y x (diterima) 1 L xy x x 6 x x x 6 y x 6 8 x 6 z y x y 8 Jadi, pajag sisi mirigya adalah 10 cm. Solusi : Care Luas: L 6k 4 6k k 4 k 4 Pajag sisi mirigya = 5k 5 10 cm. TIPE 9: Sebuah bola dijatuhka dari ketiggiah h. Setiap bola meyetuh latai, maka bola dipatulka sehigga mecapai ketiggia y x dari tiggi sebelumya demikia seterusya. Pajag seluruh y litasa yag dilalui bola itu sampai berheti adalah y x S h. y x Cotoh: Sebuah bola dijatuhka dari ketiggia 10 cm. Setiap bola meyetuh latai, maka bola dipatulka sehigga mecapai ketiggia dari tiggi sebelumya demikia seterusya. Pajag seluruh litasa yag dilalui bola itu sampai berheti adalah. 7 Husei Tampomas, Cara Efisie (Care) Meyelesaika Soal Matematika

6 A. 800 cm B. 70 cm C. 640 cm D. 600 cm E. 500 cm Solusi 1: [D] Bola Latai Deret geometri tak berhigga: Jumlah deret geometri tak berhigga: a S 1 r, dega a (suku pertama) da r (rasio) 80 S cm 1 Jadi, pajag seluruh litasa yag dilalui bola itu sampai berheti adalah 600 cm. Solusi : Care y x S h cm y x Jadi, pajag seluruh litasa yag dilalui bola itu sampai berheti adalah 600 cm. LATIHAN SOAL-SOAL 1. UN 01 Sebuah bola teis dijatuhka dari ketiggia m da mematul kembali mejadi 5 4 tiggi sebelumya. Pajag litasa bola teis tersebut sampai berheti adalah. A. 8 m B. 16 m C. 18 m D. 4 m E. m. UN 01 Sebuah bola dijatuhka ke latai dari ketiggia 4 m da mematul kembali 4 dari ketiggia semula. Pajag litasa bola tersebut sampai berheti adalah. A. 1 m B. 16 m C. 4 m D. 8 m E. m. UN A5 01 Jumlah suku pertama deret aritmetika diyataka dega S 5. Suku ke-0 dari deret aritmetika tersebut adalah. A. 44 B. 4 C. 40 D. 8 E UN B Husei Tampomas, Cara Efisie (Care) Meyelesaika Soal Matematika

7 Jumlah suku pertama deret aritmetika diyataka dega S 4. Suku ke-9 dari deret aritmetika tersebut adalah. A. 0 B. 4 C. 8 D. 4 E UN C61 da E81 01 Jumlah suku pertama deret aritmetika diyataka dega S. Suku ke-0 dari deret aritmetika tersebut adalah. A. 8 B. 4 C. 46 D. 50 E UN D74 01 Jumlah suku pertama deret aritmetika diyataka dega S 5. Suku ke-10 dari deret aritmetika tersebut adalah. 1 1 A. 49 B. 47 C. 5 D. E UN 011 Suku ke4 da ke9 suatu barisa aritmetika berturut-turut adalah 110 da 150. Suku ke0 barisa aritmetika tersebut adalah. A. 08 B. 18 C. 6 D. 44 E UN AP 1 da BP Diketahui barisa aritmetika dega u adalah suku ke-. Jika u u u 165, maka 74 Husei Tampomas, Cara Efisie (Care) Meyelesaika Soal Matematika u A. 10 B. 19 C. 8,5 D. 55 E. 8,5 9. EBTANAS 001 Rumus jumlah suku pertama deret aritmatika adalah S 4. Beda deret tersebut adalah... A. B. C. 1 D. 1 E. 10. EBTANAS 000 Jumlah suku pertama deret aritmetika adalah utuk 75maka suku tegah deret itu adalah. A. 80 B. 150 C. 155 D. 160 E EBTANAS 1999 Jumlah suku pertama deret aritmetika diyataka dega S. Beda dari deret itu adalah... A. B. C. 1 D. E. 1. EBTANAS 1997 Jumlah suku pertama suatu deret geometri adalah S 1. Rasio deret itu adalah. 1 A. 8 B. 7 C. 4 D. E EBTANAS 1996 Rumus jumlah suku pertama deret aritmetika adalah S 19. Beda deret itu adalah. A. 16 B. C. 1 D. E EBTANAS 199 Jumlah suku pertama dari sebuah deret aritmetika adalah S 1. Beda dari deret arimatika itu adalah... A. B. C. D. E EBTANAS 199 Jumlah suku pertama suatu deret aritmetika adalah. Suku ke-10 deret ii adalah... S

8 A. 8 B. 11 C. 18 D. 7 E EBTANAS 1991 Suku ke- barisa Aritmatika diyataka dega rumus u 5. Jumlah 1 suku pertama dari deret yag bersesuaia adalah. A. 7 B. 57 C. 4 D. 54 E Husei Tampomas, Cara Efisie (Care) Meyelesaika Soal Matematika

SOAL-SOAL. 1. UN A Jumlah n suku pertama deret aritmetika dinyatakan dengan S n n

SOAL-SOAL. 1. UN A Jumlah n suku pertama deret aritmetika dinyatakan dengan S n n Husei Tampomas, Barisa da Deret, 06 SOAL-SOAL. UN A 0 Jumlah suku pertama deret aritmetika diyataka dega S. Suku ke-0 A. B. C. 0 D. 8 E. 6. UN A, D7, da E8 0 Sebuah pabrik memproduksi barag jeis A pada

Lebih terperinci

SOAL-SOAL LATIHAN BARISAN DAN DERET ARITMETIKA DAN GEOMETRI UJIAN NASIONAL

SOAL-SOAL LATIHAN BARISAN DAN DERET ARITMETIKA DAN GEOMETRI UJIAN NASIONAL SOAL-SOAL LATIHAN BARISAN DAN DERET ARITMETIKA DAN GEOMETRI UJIAN NASIONAL Peserta didik memiliki kemampua memahami kosep pada topik barisa da deret aritmetika da geometri. Peserta didik memilki kemampua

Lebih terperinci

theresiaveni.wordpress.com NAMA : KELAS :

theresiaveni.wordpress.com NAMA : KELAS : theresiaveiwordpresscom NAMA : KELAS : 1 theresiaveiwordpresscom BARISAN DAN DERET Barisa da deret dapat diguaka utuk memudahka peyelesaia perhituga, misalya buga bak, keaika produksi, da laba/rugi suatu

Lebih terperinci

BARISAN DAN DERET. Bentuk deret Aritmatika: a, ( a + b ), ( a + 2b ) ( a + ( n 1 ) b a = suku pertama b = beda n = banyaknya suku.

BARISAN DAN DERET. Bentuk deret Aritmatika: a, ( a + b ), ( a + 2b ) ( a + ( n 1 ) b a = suku pertama b = beda n = banyaknya suku. BARISAN DAN DERET Bab 9 Deret Aritmatika (Deret Hitug) o o o Betuk deret Aritmatika: a, ( a + b ), ( a + b ) +...+ ( a + ( ) b a = suku pertama b = beda = bayakya suku Suku ke- : U = a + (-)b Jumlah suku

Lebih terperinci

Projek. Contoh Menemukan Konsep Barisan dan Deret Geometri a. Barisan Geometri. Perhatikan barisan bilangan 2, 4, 8, 16,

Projek. Contoh Menemukan Konsep Barisan dan Deret Geometri a. Barisan Geometri. Perhatikan barisan bilangan 2, 4, 8, 16, Projek Himpulah miimal tiga masalah peerapa barisa da deret aritmatika dalam bidag fisika, tekologi iformasi, da masalah yata di sekitarmu. Ujilah berbagai kosep da atura barisa da deret aritmatika di

Lebih terperinci

PREDIKSI SOAL ULANGAN AKHIR SEMESTER GENAP KELAS IX SMP NEGERI 196 JAKARTA. Jawab : Nilai dari. Jawab :.3.3 = 27

PREDIKSI SOAL ULANGAN AKHIR SEMESTER GENAP KELAS IX SMP NEGERI 196 JAKARTA. Jawab : Nilai dari. Jawab :.3.3 = 27 PREDIKSI SOAL ULANGAN AKHIR SEMESTER GENAP KELAS IX SMP NEGERI 9 JAKARTA No. Idikator Soal Prediksi Soal Peserta didik dapat meyataka betuk pecaha aljabar yag pembilag da peyebutya berpagkat egatif mejadi

Lebih terperinci

[RUMUS CEPAT MATEMATIKA] http://meetabied.wordpress.com

[RUMUS CEPAT MATEMATIKA] http://meetabied.wordpress.com http://meetabied.wordpress.com SMAN Boe-Boe, Luwu Utara, Sul-Sel Setiap pria da waita sukses adalah pemimpipemimpi besar. Mereka berimajiasi tetag masa depa mereka, berbuat sebaik mugki dalam setiap hal,

Lebih terperinci

SOAL-SOAL SPMB 2006 MATEMATIKA DASAR (MAT DAS) 63 n, maka jumlah n suku. D n n 2. f n log3 log 4 log5... log n, maka f 2...

SOAL-SOAL SPMB 2006 MATEMATIKA DASAR (MAT DAS) 63 n, maka jumlah n suku. D n n 2. f n log3 log 4 log5... log n, maka f 2... SOAL-SOAL SPMB 006 MATEMATIKA DASAR (MAT DAS). SPMB, MAT DAS, Regioal I, 006 Tiga bilaga membetuk suatu deret geometri aik. Jika jumlahya 6 da hasikaliya 6, maka rasio deretya adalah A. B. C. D. 4 E. 5.

Lebih terperinci

SOAL DAN SOLUSI MATEMATIKA IPA UJIAN NASIONAL BARISAN DAN DERET

SOAL DAN SOLUSI MATEMATIKA IPA UJIAN NASIONAL BARISAN DAN DERET SOAL DAN SOLUSI MATEMATIKA IPA UJIAN NASIONAL 01 01 BARISAN DAN DERET 1 UN 01 Setas tali dipotog mejadi bagia sehigga pajag potoga-potoga tali tersebt membetk barisa geometri Jika pajag tali terpedek 6

Lebih terperinci

Barisan Dan Deret Arimatika

Barisan Dan Deret Arimatika Barisa Da Deret Arimatika A. Barisa Aritmatika Niko etera memiliki sebuah peggaris ukura 0 cm. Ia megamati bilaga-bilaga pada peggarisya ii. Bilaga-bilaga tersebut beruruta 0, 1,, 3,, 0. etiap bilaga beruruta

Lebih terperinci

DERET TAK HINGGA (INFITITE SERIES)

DERET TAK HINGGA (INFITITE SERIES) MATEMATIKA II DERET TAK HINGGA (INFITITE SERIES) sugegpb.lecture.ub.ac.id aada.lecture.ub.ac.id BARISAN Barisa merupaka kumpula suatu bilaga (atau betuk aljabar) yag disusu sehigga membetuk suku-suku yag

Lebih terperinci

ARTIKEL. Menentukan rumus Jumlah Suatu Deret dengan Operator Beda. Markaban Maret 2015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN

ARTIKEL. Menentukan rumus Jumlah Suatu Deret dengan Operator Beda. Markaban Maret 2015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN ARTIKEL Meetuka rumus Jumlah Suatu Deret dega Operator Beda Markaba 191115198801005 Maret 015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN PUSAT PENGEMBANGAN DAN PEMBERDAYAAN PENDIDIK DAN TENAGA KEPENDIDIKAN

Lebih terperinci

Barisan Aritmetika dan deret aritmetika

Barisan Aritmetika dan deret aritmetika BARISAN DAN DERET BILANGAN Peyusu: Atmii Dhoruri, MS Kode: Jejag: SMP T/P: / A. Kompetesi yag diharapka. Meetuka suku ke- barisa aritmatika da barisa geometri. Meetuka jumlah suku pertama deret aritmatika

Lebih terperinci

E-learning matematika, GRATIS 1

E-learning matematika, GRATIS 1 E-learig matematika, GRATIS Peyusu Editor : Teag Idriyai, S.P ; Taufiq Rahma, S.P : Drs. Keto Susato, M.Si. M.T. ; Istijab, S.H. M.Hum. Imam Idra Guawa, S.Si.. Pegertia Barisa da Deret Barisa bilaga adalah

Lebih terperinci

PEMBEKALAN OSN-2011 SMP STELA DUCE I YOGYAKARTA MATA PELAJARAN: MATEMATIKA Pemateri: Murdanu

PEMBEKALAN OSN-2011 SMP STELA DUCE I YOGYAKARTA MATA PELAJARAN: MATEMATIKA Pemateri: Murdanu Pemateri: Murdau 1 BAGIAN A 1. Carilah dua bilaga yag hasilkali da jumlahya berilai sama!. Carilah dua bilaga yag perbadiga da selisihya berilai sama! 3. Diketahui: ab = 84, bc = 76, ac = 161. Berapakah

Lebih terperinci

Solusi Pengayaan Matematika Edisi 9 Maret Pekan Ke-1, 2015 Nomor Soal: 81-90

Solusi Pengayaan Matematika Edisi 9 Maret Pekan Ke-1, 2015 Nomor Soal: 81-90 Slusi Pegayaa Matematika disi Maret Peka Ke-, 0 Nmr Sal: -0. ari titik da pada ligkara, garis siggug P da Q digambarka sama, seperti diperlihatka pada gambar. uktika bahwa membagi PQ sama pajag. Q P Perpajag

Lebih terperinci

1. Ingkaran dari kalimat Jika koruptor tidak dapat ditangkap, maka rakyat tidak percaya kepada aparat hukum adalah...

1. Ingkaran dari kalimat Jika koruptor tidak dapat ditangkap, maka rakyat tidak percaya kepada aparat hukum adalah... . Igkara dari kalimat Jika koruptor tidak dapat ditagkap, maka rakyat tidak percaya kepada aparat hukum adalah... A. Jika koruptor dapat ditagkap, maka rakyat percaya kepada aparat hukum B. Jika koruptor

Lebih terperinci

SOAL-SOAL HOTS. Fungsi, komposisi fungsi, fungsi invers, dan grafik fungsi.

SOAL-SOAL HOTS. Fungsi, komposisi fungsi, fungsi invers, dan grafik fungsi. SOL-SOL HOTS. LJBR Pagkat Bulat Positif, Betuk kar, da Logaritma 1. Jumlah bakteri pada saat mula-mula adalah M 0. Karea suatu hal, setiap selag satu hari jumlah bakteri aka leyap r%. Jika M0 1.0 da r

Lebih terperinci

BAB 6 NOTASI SIGMA, BARISAN DAN DERET

BAB 6 NOTASI SIGMA, BARISAN DAN DERET BAB 6 NOTASI SIGMA, BARISAN DAN DERET A RINGKASAN MATERI. Notasi Sigma Diberia suatu barisa bilaga, a, a,..., a. Lambag deret tersebut, yaitu: a = a + a +... + a a meyataa jumlah suu pertama barisa Sifat-sifat

Lebih terperinci

1. Ubahlah bentuk kuadrat di bawah ini menjadi bentuk

1. Ubahlah bentuk kuadrat di bawah ini menjadi bentuk OPERASI ALJABAR. Ubahlah betuk kuadrat di bawah ii mejadi betuk ( a b) c 4 8 4 4 0 4. Uraika betuk di bawah ii ( 5)( ) [ ]( )( )( ) [ ]( ) ( ) ( ). Tetuka ilai a, b, da c, jika ( )( 4 )( ) = a b c 6 (

Lebih terperinci

I. DERET TAKHINGGA, DERET PANGKAT

I. DERET TAKHINGGA, DERET PANGKAT I. DERET TAKHINGGA, DERET PANGKAT. Pedahulua Pembahasa tetag deret takhigga sebagai betuk pejumlaha suku-suku takhigga memegag peraa petig dalam fisika. Pada bab ii aka dibahas megeai pegertia deret da

Lebih terperinci

-1- U n : suku ke-n barisan aritmetika a : suku pertama n : banyak suku b : beda/selisih

-1- U n : suku ke-n barisan aritmetika a : suku pertama n : banyak suku b : beda/selisih -- BARISAN DAN DERET PENGERTIAN BARISAN DAN DERET Bisa yaitu susua bilaga yag didapatka di pemetaa bilaga asli yag dihubugka dega tada,. Jika pada bisa tada, digati dega tada, maka disebut deret. Bisa

Lebih terperinci

Sumber: Art & Gallery. 6. Menerapkan konsep barisan dan deret dalam pemecahan masalah

Sumber: Art & Gallery. 6. Menerapkan konsep barisan dan deret dalam pemecahan masalah Sumber: Art & Gallery Stadar Kompetesi 6. Meerapka kosep barisa da deret dalam pemecaha masalah Kompetesi Dasar 6. Megidetifikasi pola, barisa, da deret bilaga 6. Meerapka kosep barisa da deret aritmatika

Lebih terperinci

Barisan, Deret, dan Notasi Sigma

Barisan, Deret, dan Notasi Sigma Barisa, Deret, da Notasi Sigma B A B 5 A. Barisa da Deret Aritmetika B. Barisa da Deret Geometri C. Notasi Sigma da Iduksi Matematika D. Aplikasi Barisa da Deret Sumber: http://jsa007.tripod.com Saat megedarai

Lebih terperinci

III PEMBAHASAN. λ = 0. Ly = 0, maka solusi umum dari persamaan diferensial (3.3) adalah

III PEMBAHASAN. λ = 0. Ly = 0, maka solusi umum dari persamaan diferensial (3.3) adalah III PEMBAHASAN Pada bagia ii aka diformulasika masalah yag aka dibahas. Solusi masalah aka diselesaika dega Metode Dekomposisi Adomia. Selajutya metode ii aka diguaka utuk meyelesaika model yag diyataka

Lebih terperinci

BARISAN DAN DERET. Materi ke 1

BARISAN DAN DERET. Materi ke 1 BARISAN DAN DERET Materi ke 1 Pola Bilaga adalah? Susua bilaga yag disusu meurut atura tertetu. Cotoh : 1. Pola Bilaga Gajil 1, 3, 5,... 2. Pola Bilaga Geap 2, 4, 6,... PERHATIKAN SSNAN BILANGAN DI BAWAH

Lebih terperinci

MATEMATIKA BISNIS. OLEH: SRI NURMI LUBIS, S.Si GICI BUSSINESS SCHOOL BATAM

MATEMATIKA BISNIS. OLEH: SRI NURMI LUBIS, S.Si GICI BUSSINESS SCHOOL BATAM MATEMATIKA BISNIS OLEH: SRI NURMI LUBIS, S.Si GICI BUSSINESS SCHOOL BATAM BAB BARISAN DAN DERET A. BARISAN Barisa bilaga adalah susua bilaga yag diurutka meurut atura tertetu.betuk umum barisa bilaga a,

Lebih terperinci

Hendra Gunawan. 12 Februari 2014

Hendra Gunawan. 12 Februari 2014 MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2013/2014 12 Februari 2014 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 82 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg

Lebih terperinci

SILABUS PEMBELAJARAN

SILABUS PEMBELAJARAN SILABUS PEMBELAJARAN Sekolah :... Kelas : IX (Sembila) Mata Pelajara : Matematika Semester : II (dua) BILANGAN Stadar : 5. Memahami sifat-sifat da betuk akar serta pegguaaya dalam pemecaha masalah sederhaa

Lebih terperinci

Bab. Barisan dan Deret. Di unduh dari: (www.bukupaket.com) Sumber buku : (bse.kemdikbud.go.id)

Bab. Barisan dan Deret. Di unduh dari: (www.bukupaket.com) Sumber buku : (bse.kemdikbud.go.id) Bab IV Barisa da Deret 53 Tujua Pembelajara Setelah mempelajari bab ii, diharapka kalia dapat. mejelaska ciri barisa aritmetika da barisa geometri;. merumuska suku ke da jumlah suku deret aritmetika da

Lebih terperinci

METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc.

METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc. METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/0 SUGENG00 Copyright 996-98 Dale Caregie & Associates, Ic. Kesalaha ERROR: Selisih atara ilai perkiraa dega ilai eksakilai

Lebih terperinci

1 4 A. 1 D. 4 B. 2 E. -5 C. 3 A.

1 4 A. 1 D. 4 B. 2 E. -5 C. 3 A. . Seorag pedagag membeli barag utuk dijual seharga Rp. 0.000,00. Bila pedagag tersebut meghedaki utug 0 %, maka barag tersebut harus dijual dega harga A. Rp. 00.000,00 D. Rp. 600.000,00 B. Rp. 00.000,00

Lebih terperinci

Solusi Pengayaan Matematika

Solusi Pengayaan Matematika Solusi Pegayaa Matematika Edisi 11 Maret Peka Ke-, 2007 Nomor Soal: 101-110 101. Bilaga desimal 0,7777 diyataka dalam hasil bagi bilaga rasioal sebagai a b, dega a da b relatif prima. Nilai dari ab A.

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2016/2017 3 Februari 2017 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg Batas

Lebih terperinci

BAB VI DERET TAYLOR DAN DERET LAURENT

BAB VI DERET TAYLOR DAN DERET LAURENT BAB VI DERET TAYLOR DAN DERET LAURENT. Deret Taylor Misal fugsi f() aalitik pada - < R ( ligkara dega pusat di da jari-jari R ). Maka utuk setiap titik pada ligkara itu, f() dapat diyataka sebagai : f

Lebih terperinci

SOAL-SOAL SPMB 2007 MATEMATIKA DASAR (MAT DAS) 1. SPMB, MAT DAS, Regional I, 2007 Suku ke-n suatu barisan aritmatika adalah

SOAL-SOAL SPMB 2007 MATEMATIKA DASAR (MAT DAS) 1. SPMB, MAT DAS, Regional I, 2007 Suku ke-n suatu barisan aritmatika adalah SOAL-SOAL SPMB 00 MATEMATIKA DASAR (MAT DAS). SPMB, MAT DAS, Regioal I, 00 Sk ke- sat barisa aritmatika adalah 0 p,da 6, maka.... Jika A. B. 3 C. D. 3 E.. SPMB, MAT DAS, Regioal I, 00 Jika p 0, q 0 q...

Lebih terperinci

BARISAN TAK HINGGA DAN DERET TAK HINGGA

BARISAN TAK HINGGA DAN DERET TAK HINGGA BARIAN TAK HINGGA DAN DERET TAK HINGGA Bajar/Barisa Tak Higga Barisa tak higga { } adalah suatu fugsi dari dimaa daerah domaiya adalah himpua bilaga bulat positif (bilaga asli). Cotoh: Bila.. maka fugsi

Lebih terperinci

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang 5. DERET

BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang 5. DERET Pertemua 7. BAHAN AJAR ANALISIS REAL Matematika STKIP Tuaku Tambusai Bagkiag 5. da kekovergeaya 5. DERET Diberika sebuah barisa a, dapat didefeisika barisa bilaga real S N dega S N := N a = a + a 2 +...

Lebih terperinci

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa istilah, definisi serta konsep-konsep yang

II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa istilah, definisi serta konsep-konsep yang II. LANDASAN TEORI Pada bab ii aka diberika beberapa istilah, defiisi serta kosep-kosep yag medukug dalam peelitia ii. 2.1 Kosep Dasar Teori Graf Berikut ii aka diberika kosep dasar teori graf yag bersumber

Lebih terperinci

KARTU SOAL URAIAN. KOMPETENSI DASAR (KD): 4.1 Menentukan suku ke-n barisan dan jumlah n suku deret aritmatika dan geometri

KARTU SOAL URAIAN. KOMPETENSI DASAR (KD): 4.1 Menentukan suku ke-n barisan dan jumlah n suku deret aritmatika dan geometri . Siswa dapat menentukan suku pertama, beda/rasio, rumus suku ke-n dan suku ke-n, jika diberikan barisan bilangannya NO. SOAL: 31 Tentukan suku pertama, beda atau rasio, rumus suku ke-n, dan suku ke-10

Lebih terperinci

Hendra Gunawan. 14 Februari 2014

Hendra Gunawan. 14 Februari 2014 MA20 MATEMATIKA 2A Hedra Guawa Semester II, 203/204 4 Februari 204 Sasara Kuliah Hari Ii 9. Barisa Tak Terhigga Memeriksa kekovergea suatu barisa da, bila mugki, meghitug limitya 9.2 Deret Tak Terhigga

Lebih terperinci

PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT

PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT Prosidig Semiar Nasioal Matematika da Terapaya 06 p-issn : 0-0384; e-issn : 0-039 PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT Liatus

Lebih terperinci

BAB VI BARISAN TAK HINGGA DAN DERET TAK HINGGA

BAB VI BARISAN TAK HINGGA DAN DERET TAK HINGGA BAB VI BARIAN TAK HINGGA DAN DERET TAK HINGGA Bajar/Barisa Tak Higga Barisa tak higga { },,,,, adalah suatu fugsi dari dimaa daerah domaiya adalah himpua bilaga bulat positif (bilaga asli). Cotoh: Bila,,,..,

Lebih terperinci

Himpunan/Selang Kekonvergenan

Himpunan/Selang Kekonvergenan oki eswa (fmipa-itb) Deret Pagkat Kita aka mempelajari beberapa tehik utuk meyajika suatu fugsi f (x) dalam betuk deret pagkat (power series), yaitu meetuka derat pagkat c (x a) sehigga f (x) = c (x a)

Lebih terperinci

DERET Matematika Industri 1

DERET Matematika Industri 1 DERET TIP FP UB Pokok Bahasa Barisa Deret Deret aritmetik Deret geometrik Deret pagkat dari bilaga-bilaga asli Deret tak berhigga Nilai-ilai limit Deret koverge da deret diverge Uji kovergesi Deret secara

Lebih terperinci

Kompetisi Statistika Tingkat SMA

Kompetisi Statistika Tingkat SMA . Arya da Bombom melakuka tos koikoi yag seimbag yag mempuyai sisi, agka da gambar Arya melakuka tos terhadap 6 koi, sedagka Bombom melakuka tos terhadap koi, maka peluag Arya medapatka hasil tos muka

Lebih terperinci

Barisan ini adalah contoh dari barisan aritmatika U 1. ialah barisan aritmatika,jika: -U 2. =.= U n

Barisan ini adalah contoh dari barisan aritmatika U 1. ialah barisan aritmatika,jika: -U 2. =.= U n BARIAN DAN DERET A. BARIAN DAN DERET ARITMATIKA I. TJAN etelah mempelaji topik siswa dapat:. Meetuka suku ke suatu bisa itmatika. Meetuka rumus suku ke di bisa itmatika. Meetuka suku pertama da beda suatu

Lebih terperinci

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3 SUKU BANYAK A Pegertia: f(x) x + a 1 x 1 + a 2 x 2 + + a 2 +a 1 adalah suku bayak (poliom) dega : - a, a 1, a 2,.,a 2, a 1, a 0 adalah koefisiekoefisie suku bayak yag merupaka kostata real dega a 0 - a

Lebih terperinci

UJIAN MASUK BERSAMA PERGURUAN TINGGI (UMB - PT) Mata Pelajara : Matematika Dasa Taggal : 06 Jui 009 Kode Soal : 0 0 www.olieschools.ame. Produksi beras propisi P tahu 990 adalah 00 ribu to da sampai tahu

Lebih terperinci

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3

An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3 BAB XII. SUKU BANYAK A = a Pegertia: f(x) = a x + a x + a x + + a x +a adalah suku bayak (poliom) dega : - a, a, a,.,a, a, a 0 adalah koefisiekoefisie suku bayak yag merupaka kostata real dega a 0 - a

Lebih terperinci

SMA NEGERI 5 BEKASI UJIAN SEKOLAH

SMA NEGERI 5 BEKASI UJIAN SEKOLAH PEMERINTAH KOTA BEKASI DINAS PENDIDIKAN SMA NEGERI BEKASI Jl. Gamprit Jatiwarigi Asri Podok Gede -88 UJIAN SEKOLAH TAHUN PELAJARAN / L E M B A R S O A L Mata Pelajara : Matematika Kelas/Program : IPA Hari/Taggal

Lebih terperinci

SOAL MATEMATIKA IPA UJIAN NASIONAL BARISAN DAN DERET

SOAL MATEMATIKA IPA UJIAN NASIONAL BARISAN DAN DERET SOAL MATEMATIKA IPA UJIAN NASIONAL 2014 2013 BARISAN DAN DERET 1. UN 2014 Seutas tali dipotong menjadi 5 bagian sehingga panjang potongan-potongan tali tersebut membentuk barisan geometri. Jika panjang

Lebih terperinci

1 Persamaan rekursif linier non homogen koefisien konstan tingkat satu

1 Persamaan rekursif linier non homogen koefisien konstan tingkat satu Secara umum persamaa rekursif liier tigkat-k bisa dituliska dalam betuk: dega C 0 0. C 0 x + C 1 x 1 + C 2 x 2 + + C k x k = b, Jika b = 0 maka persamaa rekursif tersebut diamaka persamaa rekursif liier

Lebih terperinci

SILABUS PEMBELAJARAN. Pencapaian Kompetensi

SILABUS PEMBELAJARAN. Pencapaian Kompetensi SILABUS PEMBELAJARAN Sekolah Kelas Mata Pelajara Semester : SMP NEGERI 3 MAGELANG : VIII (Delapa) : Matematika : I (satu) ALJABAR Stadar :1. Memahami betuk aljabar, relasi, fugsi, da persamaa garis lurus

Lebih terperinci

KALKULUS 4. Dra. D. L. Crispina Pardede, DEA. SARMAG TEKNIK MESIN

KALKULUS 4. Dra. D. L. Crispina Pardede, DEA. SARMAG TEKNIK MESIN KALKULUS Dra. D. L. Crispia Pardede DEA. SARMAG TEKNIK MESIN KALKULUS - SILABUS. Deret Fourier.. Fugsi Periodik.2. Fugsi Geap da Gajil.3. Deret Trigoometri.. Betuk umum Deret Fourier.. Kodisi Dirichlet.6.

Lebih terperinci

x = 16 Jadi, banyak pekerja yang harus ditambahkan = = 4 orang.

x = 16 Jadi, banyak pekerja yang harus ditambahkan = = 4 orang. SOAL N MATEMATIKA SMK KELOMPOK PARIWISATA, SENI DAN KERAJINAN, TEKNOLOGI KERMAHTANGGAAN, PEKERJAAN SOSIAL, DAN ADMINISTRASI PERKANTORAN PAKET KC-F TAHN PELAJARAN /. Ekstrakurikuler pramuka suatu SMK aka

Lebih terperinci

Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1

Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1 Barisa Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 9/0/06 Matematika Barisa Tak Higga Secara sederhaa, barisa merupaka susua dari bilaga bilaga yag urutaya berdasarka bilaga

Lebih terperinci

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi

6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi 6. Pecacaha Lajut Relasi Rekuresi Relasi rekuresi utuk dereta {a } adalah persamaa yag meyataka a kedalam satu atau lebih suku sebelumya, yaitu a 0, a,, a -, utuk seluruh bilaga bulat, dega 0, dimaa 0

Lebih terperinci

Metode Beda Hingga dan Teorema Newton untuk Menentukan Jumlah Deret. Finite Difference Method and Newton's Theorem to Determine the Sum of Series

Metode Beda Hingga dan Teorema Newton untuk Menentukan Jumlah Deret. Finite Difference Method and Newton's Theorem to Determine the Sum of Series Jural ILM DASAR, Vol, No, Juli : 9-98 9 Metode Beda Higga da Teorema Newto utuk Meetuka Jumlah Deret Fiite Differece Method ad Newto's Theorem to Determie the Sum of Series Tri Mulyai,*), Moh Hasa ), Slami

Lebih terperinci

BARISAN DAN DERET TAK BERHINGGA

BARISAN DAN DERET TAK BERHINGGA MATERI KULIAH a 1 Kalkulus Lajut BARISAN DAN DERET TAK BERHINGGA Sahid, MSc. FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA 010 BARISAN DAN DERET DI SMA: BARISAN & DERET ARITMETIKA

Lebih terperinci

MODUL MATEMATIKA SMA IPA Kelas 10

MODUL MATEMATIKA SMA IPA Kelas 10 SMA IPA Kelas 0 A. BARISAN DAN DERET ARITMATIKA. Betuk umum: a, ( a b), ( a b) ( a b). Rumus suku ke- (U ) U a ( ) b a : suku pertama b : beda. Jumlah suku pertama (S ) S ( a U ) atau S (a ( ) b) Dega

Lebih terperinci

III BAB BARISAN DAN DERET. Tujuan Pembelajaran. Pengantar

III BAB BARISAN DAN DERET. Tujuan Pembelajaran. Pengantar BAB III BARISAN DAN DERET Tujua Pembelajara Setelah mempelajari materi bab ii, Ada diharapka dapat:. meetuka suku ke- barisa da jumlah suku deret aritmetika da geometri,. meracag model matematika dari

Lebih terperinci

Pada barisan bilangan 2, 7, 12, 17,., b = 7 2 = 12 7 = = 5. Pada barisan bilangan 3, 7, 11, 15,., b = 7 3 = 11 7 = = 4

Pada barisan bilangan 2, 7, 12, 17,., b = 7 2 = 12 7 = = 5. Pada barisan bilangan 3, 7, 11, 15,., b = 7 3 = 11 7 = = 4 Materi : Barisan Bilangan Perhatikan urutan bilangan-bilangan berikut ini a. 1, 5, 9, 13,. b. 15, 1, 9, 6,. c., 6, 18, 54,. d. 3, 16, 8, 4,. Tiap-tiap urutan di atas mempunyai aturan/pola tertentu, misalnya

Lebih terperinci

log b = b logb Soal-Soal dan Pembahasan Matematika Dasar SBMPTN - SNMPTN 2012 Tanggal Ujian: 12 Juni 2012 Jawab: BAB II Logaritma

log b = b logb Soal-Soal dan Pembahasan Matematika Dasar SBMPTN - SNMPTN 2012 Tanggal Ujian: 12 Juni 2012 Jawab: BAB II Logaritma Soal-Soal da Pembahasa Matematika Dasar SBMPTN - SNMPTN 01 Taggal Ujia: 1 Jui 01 1. Jika a da b adalah bilaga bulat positip yag memeuhi a b = 0-19, maka ilai a + b adalah... A. 3 C. 19 E. 3 B. 7 D. 1 BAB

Lebih terperinci

terurut dari bilangan bulat, misalnya (7,2) (notasi lain 2

terurut dari bilangan bulat, misalnya (7,2) (notasi lain 2 Bab Bilaga kompleks BAB BILANGAN KOMPLEKS Defiisi Bilaga Kompleks Sebelum medefiisika bilaga kompleks, pembaca diigatka kembali pada permasalah dalam sistem bilaga yag telah dikeal sebelumya Yag pertama

Lebih terperinci

Soal dan Pembahasan. Ujian Nasional Matematika Teknik SMK matematikamenyenangkan.com

Soal dan Pembahasan. Ujian Nasional Matematika Teknik SMK matematikamenyenangkan.com Soal da Pembahasa jia Nasioal 06 Matematika Tekik SMK matematikameyeagka.com . pqr Betuk sederhaa dari p q r A. p 8 q r adalah... B. p q 0 r 0 D. p q 0 r 0 C. p 8 q r 0 E. p 6 q r Igat rumus berikut m

Lebih terperinci

ISIAN SINGKAT! 1. Diberikan hasil kali digit digit dari n harus sama dengan 25

ISIAN SINGKAT! 1. Diberikan hasil kali digit digit dari n harus sama dengan 25 head office : Kompleks Sawaga Permai Blok A5 No.1A, Sawaga, Depok 16511 Telp.01-951 1160. cotact perso : 0-878787-1-8585 / 081-8691-10 Bidag Studi Kode Berkas Waktu : Matematika : MA-L01 (solusi) : 90

Lebih terperinci

log b = b logb Soal-Soal dan Pembahasan Matematika Dasar SNMPTN 2012 Tanggal Ujian: 12 Juni 2012 Jawab: BAB II Logaritma

log b = b logb Soal-Soal dan Pembahasan Matematika Dasar SNMPTN 2012 Tanggal Ujian: 12 Juni 2012 Jawab: BAB II Logaritma Soal-Soal da Pembahasa Matematika Dasar SNMPTN 01 Taggal Ujia: 1 Jui 01 1. Jika a da b adalah bilaga bulat positip yag memeuhi a b 0-19, maka ilai a + b adalah... A. 3 C. 19 E. 3 B. 7 D. 1 BAB I Perpagkata

Lebih terperinci

PEMBAHASAN SALAH SATU PAKET SOAL UN MATEMATIKA SMA PROGRAM IPS TAHUN PELAJARAN 2012/2013

PEMBAHASAN SALAH SATU PAKET SOAL UN MATEMATIKA SMA PROGRAM IPS TAHUN PELAJARAN 2012/2013 http://asyikyabelajar.wordpress.com PEMBAHAAN ALAH ATU PAKET OAL UN MATEMATIKA MA PROGRAM IP TAHUN PELAJARAN 0/0. Igkara dari peryataa emua makhluk hidup memerluka air da oksige adalah... A. emua makhluk

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret Program Perkuliaha Dasar Umum Sekolah Tiggi Tekologi Telkom Barisa da Deret Barisa Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) a Fugsi tersebut

Lebih terperinci

Definisi Integral Tentu

Definisi Integral Tentu Defiisi Itegral Tetu Bila kita megedarai kedaraa bermotor (sepeda motor atau mobil) selama 4 jam dega kecepata 50 km / jam, berapa jarak yag ditempuh? Tetu saja jawabya sagat mudah yaitu 50 x 4 = 200 km.

Lebih terperinci

BARISAN DAN DERET. 05/12/2016 Matematika Teknik 1 1

BARISAN DAN DERET. 05/12/2016 Matematika Teknik 1 1 BARISAN DAN DERET 05//06 Matematika Tekik BARISAN Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 05//06 Matematika Tekik Barisa Tak Higga Secara sederhaa, barisa merupaka

Lebih terperinci

RENCANA PROGRAM PEMBELAJARAN KE - 1. : 6 jam pelajaran

RENCANA PROGRAM PEMBELAJARAN KE - 1. : 6 jam pelajaran RENCANA PROGRAM PEMBELAJARAN KE - 1 Satua Pedidika Mata Pelajara Kelas/Semester Materi Pokok Waktu : SMA N 6 YOGYAKARTA : Matematika : XII IPS/ : Barisa da Deret : 6 jam pelajara 1. Stadar Kompetesi 4.

Lebih terperinci

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL

BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL BAB I KONSEP DASAR PERSAMAAN DIFERENSIAL Defiisi Persamaa diferesial adalah persamaa yag melibatka variabelvariabel tak bebas da derivatif-derivatifya terhadap variabel-variabel bebas. Berikut ii adalah

Lebih terperinci

BARISAN FIBONACCI DAN BILANGAN PHI

BARISAN FIBONACCI DAN BILANGAN PHI BARISAN FIBONACCI DAN BILANGAN PHI Fiboacci Matematikawa terbesar pada abad pertegaha adalah Leoardo dari Pisa, Italia (80 0). Ia lebih dikeal dega ama Fibo-acci. Artiya, aak Boaccio. Meara Pisa yag terkeal

Lebih terperinci

CONTOH SOAL UAN BARIS DAN DERET

CONTOH SOAL UAN BARIS DAN DERET CONTOH SOAL UAN BARIS DAN DERET 1. Dari suatu barisan aritmetika, suku ketiga adalah 36, jumlah suku kelima dan ketujuh adalah 144. Jumlah sepuluh suku pertama deret tersebut adalah. a. 840 b. 660 c. 640

Lebih terperinci

Matematika Dasar : BARISAN DAN DERET

Matematika Dasar : BARISAN DAN DERET Matematika Dasar : BARISAN DAN DERET. Suku ke-n pada barisan, 6, 0, 4, bisa dinyatakan dengan (A) Un = n (B) Un = 6n 4 (C) Un = 4n + (D) Un = 4n (E) Un = n + 4. Suku ke-5 pada barisan, 0, 7, 4,.. (A) 65

Lebih terperinci

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan

REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan REGRESI LINIER DAN KORELASI Variabel dibedaka dalam dua jeis dalam aalisis regresi: Variabel bebas atau variabel prediktor -> variabel yag mudah didapat atau tersedia. Dapat diyataka dega X 1, X,, X k

Lebih terperinci

BAB I PENDAHULUAN. Integral adalah salah satu konsep penting dalam Matematika yang

BAB I PENDAHULUAN. Integral adalah salah satu konsep penting dalam Matematika yang BAB I PENDAHULUAN 1.1 Latar Belakag Masalah Itegral adalah salah satu kosep petig dalam Matematika yag dikemukaka pertama kali oleh Isac Newto da Gottfried Wilhelm Leibiz pada akhir abad ke-17. Selajutya

Lebih terperinci

EKSPANSI MULTINOMIAL, KOMBINASI, DAN PERMUTASI

EKSPANSI MULTINOMIAL, KOMBINASI, DAN PERMUTASI EKSPANSI MULTINOMIAL, KOMBINASI, DAN PERMUTASI Oleh: Sutopo Jurusa Fisika FMIPA UM sutopo@fisika.um.ac.id Ditulis pada sekitar bula Maret 2011. Diuggah pada 3 Desember 2011 PROBLEM Gambar di bawah ii meyataka

Lebih terperinci

BARISAN DAN DERET. Nurdinintya Athari (NDT)

BARISAN DAN DERET. Nurdinintya Athari (NDT) BARISAN DAN DERET Nurdiitya Athari (NDT) BARISAN Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) = a Fugsi tersebut dikeal sebagai barisa bilaga

Lebih terperinci

SOAL DAN PEMBAHASAN TRY OUT MATEMATIKA SMP/MTS KABUPATEN LEMBATA TAHUN PELAJARAN 2014/2015

SOAL DAN PEMBAHASAN TRY OUT MATEMATIKA SMP/MTS KABUPATEN LEMBATA TAHUN PELAJARAN 2014/2015 SOAL DAN PEMBAHASAN TRY OUT MATEMATIKA SMP/MTS KABUPATEN LEMBATA TAHUN PELAJARAN 4/5 3. Hasil dari 3 : adalah... 4 4 A. B. C. 7 D. 5 3 3 3 5 3 : = : 4 4 4 4 3 4 5 = 4 3 5 = 6 55 = 8 = 5 = 3. Dalam try

Lebih terperinci

MODUL BARISAN DAN DERET

MODUL BARISAN DAN DERET MODUL BARISAN DAN DERET SEMESTER 2 Muhammad Zaial Abidi Persoal Blog http://meetabied.wordpress.com BAB I. PENDAHULUAN A. Desripsi Dalam modul ii, ada aa mempelajari pola bilaga, barisa, da deret diidetifiasi

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN

JURNAL MATEMATIKA DAN KOMPUTER Vol. 6. No. 2, 77-85, Agustus 2003, ISSN : DISTRIBUSI WAKTU BERHENTI PADA PROSES PEMBAHARUAN JURAL MATEMATKA DA KOMPUTER Vol. 6. o., 77-85, Agustus 003, SS : 40-858 DSTRBUS WAKTU BERHET PADA PROSES PEMBAHARUA Sudaro Jurusa Matematika FMPA UDP Abstrak Dalam proses stokhastik yag maa kejadia dapat

Lebih terperinci

UKURAN PEMUSATAN DATA

UKURAN PEMUSATAN DATA Malim Muhammad, M.Sc. UKURAN PEMUSATAN DATA J U R U S A N A G R O T E K N O L O G I F A K U L T A S P E R T A N I A N U N I V E R S I T A S M U H A M M A D I Y A H P U R W O K E R T O DEFINISI UKURAN PEMUSATAN

Lebih terperinci

Kalkulus Rekayasa Hayati DERET

Kalkulus Rekayasa Hayati DERET Kalkulus Rekayasa Hayati DERET 1 Isi Bab Pedahulua Barisa tak-higga Deret tak-higga Deret Positif : Uji kekovergea Deret Gati Tada Deret Pagkat Deret Taylor da Maclauri 2 Kompetesi Dasar Setelah megikuti

Lebih terperinci

Model Pertumbuhan BenefitAsuransi Jiwa Berjangka Menggunakan Deret Matematika

Model Pertumbuhan BenefitAsuransi Jiwa Berjangka Menggunakan Deret Matematika Prosidig Semirata FMIPA Uiversitas Lampug, 0 Model Pertumbuha BeefitAsurasi Jiwa Berjagka Megguaka Deret Matematika Edag Sri Kresawati Jurusa Matematika FMIPA Uiversitas Sriwijaya edagsrikresawati@yahoocoid

Lebih terperinci

BARISAN DAN DERET Jenis-jenis barisan dan deret yang sering diujikan adalah soal-soal tentang :

BARISAN DAN DERET Jenis-jenis barisan dan deret yang sering diujikan adalah soal-soal tentang : BARISAN DAN DERET Jenis-jenis barisan dan deret yang sering diujikan adalah soal-soal tentang : 1. Barisan dan deret aritmatika 2. Barisan dan deret geometri 3. Sisipan SOAL DAN PEMBAHASAN 14.1 Soal dan

Lebih terperinci

METODE BEDA HINGGA DAN TEOREMA NEWTON UNTUK MENENTUKAN JUMLAH DERET (Finite Difference Method and Newton's Theorem to Determine the Sum of Series)

METODE BEDA HINGGA DAN TEOREMA NEWTON UNTUK MENENTUKAN JUMLAH DERET (Finite Difference Method and Newton's Theorem to Determine the Sum of Series) Prosidig emiar Nasioal Matematika, Uiversitas Jember, 9 November 8 METODE BEDA HINGGA DAN TEOREMA NEWTON UNTUK MENENTUKAN JUMLAH DERET (Fiite Differece Method ad Newto's Theorem to Determie the um of eries)

Lebih terperinci

BAB V. INTEGRAL. Lambang anti-turunan (integral tak-tentu) oleh Leibniz adalah... dx, sehingga

BAB V. INTEGRAL. Lambang anti-turunan (integral tak-tentu) oleh Leibniz adalah... dx, sehingga BAB V. INTEGRAL 5.. Ati Turua (Itegral Tak-tetu) Defiisi: F suatu ati-turua f pada selag I jika da haya jika D F() = f() pada I, yaki F () = f() utuk semua dalam I. (Jika suatu titik ujug I, F () haya

Lebih terperinci

Notasi Sigma, Barisan, dan Deret

Notasi Sigma, Barisan, dan Deret I TU URI HANDAY AN TW DIKLAT GURU PENGEMBANG MATEMATIKA SMK JENJANG DASAR TAHUN 009 Notasi Sigma, Barisa, da Deret Matriks GY A Y O M AT E M A T AK A R Puji Iryati, M.Sc.Ed. DEPARTEMEN PENDIDIKAN NASIONAL

Lebih terperinci

Gambar 1. Partisi P dari empat persegi panjang R = [a, b] x [c, d] adalah dua himpunan i i

Gambar 1. Partisi P dari empat persegi panjang R = [a, b] x [c, d] adalah dua himpunan i i INTEGAL LIPAT. Itegral Lipat Dua dalam Koordiat Kartesius Pada bagia ii, dipelajari itegral lipat dua dalam. Misalka diketahui dua iterval tertutup [a, b] da [c, d]. Hasil kali kartesius dari kedua iterval

Lebih terperinci

Statistika Deskriptif Ukuran Pemusatan dan Ukuran Penyebaran

Statistika Deskriptif Ukuran Pemusatan dan Ukuran Penyebaran Statistika Deskriptif Ukura Pemusata da Ukura Peyebara Ukura Pemusata Data Rata-rata Hitug Rata-rata hitug data tuggal: = x 1 + x 2 + x 3 + + x atau =. (1 : rata-rata hitug data tuggal (baca x-bar : bayakya

Lebih terperinci

18. SOAL-SOAL NOTASI SIGMA, BARISAN, DERET DAN INDUKSI MATEMATIKA

18. SOAL-SOAL NOTASI SIGMA, BARISAN, DERET DAN INDUKSI MATEMATIKA 8. SOAL-SOAL NOTASI SIGMA, BARISAN, DERET DAN INDUKSI MATEMATIKA UN00.Nilai (n 6). n A. 88 B. 00 C. 00 D. 97 E. 060 n (n 6) (. 6) + (. 6) + (. 6)+ + (. 6) + 9 + +...+ 99 a b 9 9 n n(akhir) (n(awal)-) (-)

Lebih terperinci

tanya-tanya.com Barisan dan Deret Aritmetika Barisan dan Deret Geometri

tanya-tanya.com Barisan dan Deret Aritmetika Barisan dan Deret Geometri Barisan dan Deret Aritmetika 1. Barisan Aritmetika Barisan aritmetika adalah suatu barisan dengan selisih (beda) antara dua suku yang berurutan selalu tetap. Berlaku: Un - Un - 1 = b atau Un = Un - 1 +

Lebih terperinci

II. TINJAUAN PUSTAKA. Secara umum apabila a bilangan bulat dan b bilangan bulat positif, maka ada tepat = +, 0 <

II. TINJAUAN PUSTAKA. Secara umum apabila a bilangan bulat dan b bilangan bulat positif, maka ada tepat = +, 0 < II. TINJAUAN PUSTAKA 2.1 Keterbagia Secara umum apabila a bilaga bulat da b bilaga bulat positif, maka ada tepat satu bilaga bulat q da r sedemikia sehigga : = +, 0 < dalam hal ii b disebut hasil bagi

Lebih terperinci

PERTEMUAN 13. VEKTOR dalam R 3

PERTEMUAN 13. VEKTOR dalam R 3 PERTEMUAN VEKTOR dalam R Pegertia Ruag Vektor Defiisi R Jika adalah sebuah bilaga bulat positif, maka tupel - - terorde (ordered--tuple) adalah sebuah uruta bilaga riil ( a ),a,..., a. Semua tupel - -terorde

Lebih terperinci

Bab. Pola Bilangan, Barisan, dan Deret. A. Pola Bilangan B. Barisan Bilangan C. Deret Bilangan

Bab. Pola Bilangan, Barisan, dan Deret. A. Pola Bilangan B. Barisan Bilangan C. Deret Bilangan Bab Sumber: www.medeciepharmacie.uiv-fcomte.fr Pola Bilaga, Barisa, da Deret Pola bilaga, barisa, da deret merupaka materi baru yag aka kamu pelajari pada bab ii. Terdapat beberapa masalah yag peyelesaiaya

Lebih terperinci

MATEMATIKA EKONOMI (Deret)

MATEMATIKA EKONOMI (Deret) LOGO MATEMATIKA EKONOMI (Deret) DOSEN FEBRIYANTO, SE., MM. www.febriyato79.wordpress.com MATEMATIKA EKONOMI Matematika Ekoomi memberika pemahama ilmu megeai kosep matematika dalam bidag bisis da ekoomi.

Lebih terperinci

Evaluasi Belajar Tahap Akir Nasional Tahun 1987 Matematika

Evaluasi Belajar Tahap Akir Nasional Tahun 1987 Matematika Evaluasi Belajar Tahap Akir Nasioal Tahu 987 Matematika EBTANAS SMP 87 0 Diagram di awah yag merupaka jarig-jarig kuus adalah I II III IV I, II da IV I, II da III II, III da IV I, III da IV EBTANAS SMP

Lebih terperinci