SILABUS PEMBELAJARAN
|
|
|
- Ida Setiawan
- 8 tahun lalu
- Tontonan:
Transkripsi
1 SILABUS PEMBELAJARAN Sekolah :... Kelas : IX (Sembila) Mata Pelajara : Matematika Semester : II (dua) BILANGAN Stadar : 5. Memahami sifat-sifat da betuk akar serta pegguaaya dalam pemecaha masalah sederhaa Kegiata Idikator 5.1 Megidetifikasi sifat-sifat berpagk at da betuk akar Bilaga da Betuk Akar Mediskusika pegertia bulat positif, egatif da ol. pegertia bulat positif, egatif da ol. Hituglah: = = = 4. (-3) 4 =. 5. (-6) -2 = 6. ( 3 2 ) 2 = Buku teks Mediskusika utuk meetuka positif dari egatif. Megubah bulat egatif mejadi pagkat positif. Ubahlah mejadi positif = 2. (-3) -5 = 3. ( 4 3 ) -2 =.
2 Kegiata Idikator Mediskusika arti pecaha da betuk akar arti pecaha da betuk akar. 1. Ubahlah dalam betuk akar 6 1/2 = 2. Ubahlah mejadi pagkat pecaha 3 27 =. 5.2 Melakuka operasi aljabar yag melibatka berpagka t bulat da betuk akar. Bilaga da Betuk Akar Meetuka hasil operasi tambah, kurag, kali, bagi da pagkat pada suatu bulat da betuk akar. Meyelesaika operasi tambah, kurag, kali, bagi da pagkat pada suatu bulat da betuk akar. Hituglah a. 3 5 x 3 2 b c d. 4 3 x 8 5 6x40 Buku teks 5.3 Memecahka masalah sederhaa yag berkaita dega berpagk at da betuk akar Bilaga da Betuk Akar Memecahka masalah dega megguaka sifat-sifat da operasi hitug pada da betuk akar Megguaka sifatsifat da operasi hitug pada da betuk akar utuk memecahka masalah Misal sejeis amuba membelah diri setiap 2 sekali. Berapa bayak amuba dalam waktu 30? Karakter siswa yag diharapka : Disipli ( Disciplie ) Rasa hormat da perhatia ( respect ) Teku ( diligece ) Taggug jawab ( resposibility )
3
4 SILABUS PEMBELAJARAN Sekolah :... Kelas : IX (Sembila) Mata Pelajara : Matematika Semester : II (dua) Stadar : 6. Memahami barisa da deret serta pegguaaya dalam pemecaha masalah Kegiata Idikator 6.1 Meetuka pola barisa sederhaa. 1. Barisa 2. Barisa Mediskusika masalah sehari-hari yag berkaita dega barisa Mediskusika usurusur pada berisa da deret dega megguaka soal atau (peraga) masalah seharihari yag berkaita dega barisa. usur-usur barisa da deret, misalya; suku pertama, suku berikutya, suku ke, beda, rasio. Dalam permaia baris berbaris, baris berikutya berdiri 2 aak lebih bayak dari pada baris sebelumya. Jika baris pertama ada 2 aak, berapakah bayak aak pada baris ke-6? Diketahui barisa: 5, 8, 11, 14, 17, 20,. a. Suku pertama adalah b. Bedaya adalah. c. Suku ke-10 adalah Mediskusika cara memperoleh pola barisa Meetuka pola barisa. Diketahui barisa 3, 6, 9,. a. Tetuka suku ke-4, ke-5, da ke-6 b. Tetuka suku ke-
5 Kegiata Idikator 6.2 Meetu ka suku ke- barisa aritmatika da barisa 1.Barisa 2.Barisa Mediskusika pegertia barisa aritmetika da barisa Meemuka rumus suku ke- baris-a aritmetika da barisa dega megguaka alat peraga atau, misal omor urut rumah di salah satu sisi jala pegertia barisa aritmatika da barisa. Meetuka rumus suku ke- barisa aritmatika da barisa. piliha gada Maakah yag merupaka barisa aritmetika? a. 1, 3, 5, 7, 9,. b. 1, 2, 4, 5, 7,. c. 1, 4, 6, 8,. Suku ke-10 dari deret 2, 5, 8, 11, 14,. adalah. 6.3 Meetuka jumlah suku pertama deret aritmatika da deret 1. Barisa 2. Barisa Mecermati deret aritmetika da deret aik atau turu. Meemuka rumus jumlah suku pertama deret aritmetika da deret pegertia deret aritmatika da deret aik atau turu. Meetuka rumus jumlah suku pertama deret aritmetika da deret. Maakah yag merupaka deret aritmetika? a b c Hituglah jumlah 10 suku pertama dari deret:
6 Kegiata Idikator 6.4 Memecah -ka masa-lah yag berkaita dega barisa da deret 1.Barisa 2.Barisa Memecahka masalah yag berkaita dega barisa da deret dega megguaka rumus pada deret aritmetika, deret Megguaka sifat-sifat da rumus pada deret aritmetika da deret utuk memecahka masalah yag berkaita dega deret. Di sebuah ruaga disusu kursi-kursi dega susua pada baris-a pertama terdapat 5 kursi, baris-a kedua 8 kursi, barisa ketiga 11 kursi, da seterusya. Berapa bayak kursi yag dibutuhka supaya bisa terdapat 10 baris? Karakter siswa yag diharapka : Disipli ( Disciplie ) Rasa hormat da perhatia ( respect ) Teku ( diligece ) Taggug jawab ( resposibility ) Keteraga: Sesuai Stadar Proses,pelaksaaa kegiata pembelajara terdiri atas kegiata pedahulua, iti, da peutup. Dalam silabus ii pada kolom kegiata pembelajara haya berisi kegiata iti. Megetahui, Kepala SMP/MTs....,..., Guru Mapel Matematika. ( ) NIP/NIK :... ( )
7 NIP/NIK :..
PREDIKSI SOAL ULANGAN AKHIR SEMESTER GENAP KELAS IX SMP NEGERI 196 JAKARTA. Jawab : Nilai dari. Jawab :.3.3 = 27
PREDIKSI SOAL ULANGAN AKHIR SEMESTER GENAP KELAS IX SMP NEGERI 9 JAKARTA No. Idikator Soal Prediksi Soal Peserta didik dapat meyataka betuk pecaha aljabar yag pembilag da peyebutya berpagkat egatif mejadi
SILABUS PEMBELAJARAN
SILABUS PEMBELAJARAN Sekolah :... Kelas : IX (Sembilan) Mata Pelajaran : Matematika Semester : II (dua) BILANGAN Standar :. Memahami sifat-sifat dan bentuk serta penggunaannya dalam pemecahan masalah sederhana
Barisan Aritmetika dan deret aritmetika
BARISAN DAN DERET BILANGAN Peyusu: Atmii Dhoruri, MS Kode: Jejag: SMP T/P: / A. Kompetesi yag diharapka. Meetuka suku ke- barisa aritmatika da barisa geometri. Meetuka jumlah suku pertama deret aritmatika
SILABUS PEMBELAJARAN. Pencapaian Kompetensi
SILABUS PEMBELAJARAN Sekolah Kelas Mata Pelajara Semester : SMP NEGERI 3 MAGELANG : VIII (Delapa) : Matematika : I (satu) ALJABAR Stadar :1. Memahami betuk aljabar, relasi, fugsi, da persamaa garis lurus
RENCANA PROGRAM PEMBELAJARAN KE - 1. : 6 jam pelajaran
RENCANA PROGRAM PEMBELAJARAN KE - 1 Satua Pedidika Mata Pelajara Kelas/Semester Materi Pokok Waktu : SMA N 6 YOGYAKARTA : Matematika : XII IPS/ : Barisa da Deret : 6 jam pelajara 1. Stadar Kompetesi 4.
SILABUS. 5. Memahami sifat-sifat bilangan berpangkat dan bentuk akar serta penggunaannya dalam pemecahan masalah sederhana
Sekolah : SILABUS Kelas Mata Pelajaran Semester : IX : Matematika : II(dua) Standar Kompetensi : BILANGAN 5. Memahami sifat-sifat berpangkat dan bentuk serta penggunaannya dalam pemecahan masalah sederhana
I. DERET TAKHINGGA, DERET PANGKAT
I. DERET TAKHINGGA, DERET PANGKAT. Pedahulua Pembahasa tetag deret takhigga sebagai betuk pejumlaha suku-suku takhigga memegag peraa petig dalam fisika. Pada bab ii aka dibahas megeai pegertia deret da
ARTIKEL. Menentukan rumus Jumlah Suatu Deret dengan Operator Beda. Markaban Maret 2015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN
ARTIKEL Meetuka rumus Jumlah Suatu Deret dega Operator Beda Markaba 191115198801005 Maret 015 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN PUSAT PENGEMBANGAN DAN PEMBERDAYAAN PENDIDIK DAN TENAGA KEPENDIDIKAN
DERET TAK HINGGA (INFITITE SERIES)
MATEMATIKA II DERET TAK HINGGA (INFITITE SERIES) sugegpb.lecture.ub.ac.id aada.lecture.ub.ac.id BARISAN Barisa merupaka kumpula suatu bilaga (atau betuk aljabar) yag disusu sehigga membetuk suku-suku yag
DERET Matematika Industri 1
DERET TIP FP UB Pokok Bahasa Barisa Deret Deret aritmetik Deret geometrik Deret pagkat dari bilaga-bilaga asli Deret tak berhigga Nilai-ilai limit Deret koverge da deret diverge Uji kovergesi Deret secara
SOAL-SOAL. 1. UN A Jumlah n suku pertama deret aritmetika dinyatakan dengan S n n
Husei Tampomas, Barisa da Deret, 06 SOAL-SOAL. UN A 0 Jumlah suku pertama deret aritmetika diyataka dega S. Suku ke-0 A. B. C. 0 D. 8 E. 6. UN A, D7, da E8 0 Sebuah pabrik memproduksi barag jeis A pada
theresiaveni.wordpress.com NAMA : KELAS :
theresiaveiwordpresscom NAMA : KELAS : 1 theresiaveiwordpresscom BARISAN DAN DERET Barisa da deret dapat diguaka utuk memudahka peyelesaia perhituga, misalya buga bak, keaika produksi, da laba/rugi suatu
BAB 12 BARISAN DAN DERET
BAB 1 BARISAN DAN DERET TIPE 1: Jika dari barisa aritmetika diketahui suku ke-m adalah um u b. m Cotoh: Diketahui barisa aritmetika, suku ke-5 adalah 4 da suku ke-8 adalah 6. Tetuka beda barisa aritmetika
Projek. Contoh Menemukan Konsep Barisan dan Deret Geometri a. Barisan Geometri. Perhatikan barisan bilangan 2, 4, 8, 16,
Projek Himpulah miimal tiga masalah peerapa barisa da deret aritmatika dalam bidag fisika, tekologi iformasi, da masalah yata di sekitarmu. Ujilah berbagai kosep da atura barisa da deret aritmatika di
BARISAN DAN DERET. Materi ke 1
BARISAN DAN DERET Materi ke 1 Pola Bilaga adalah? Susua bilaga yag disusu meurut atura tertetu. Cotoh : 1. Pola Bilaga Gajil 1, 3, 5,... 2. Pola Bilaga Geap 2, 4, 6,... PERHATIKAN SSNAN BILANGAN DI BAWAH
SILABUS PEMBELAJARAN
SILABUS PEMBELAJARAN Nama :... Mata Pelajara : PENDIDIKAN KEWARGANEGARAAN ( PKN ) Kelas : IV Semester : 2 STANDAR KOMPETENSI : 3.1 Megeal sistem pemeritaha tigkat pusat. 3.1 Megeal lembagalembaga egara
Barisan Dan Deret Arimatika
Barisa Da Deret Arimatika A. Barisa Aritmatika Niko etera memiliki sebuah peggaris ukura 0 cm. Ia megamati bilaga-bilaga pada peggarisya ii. Bilaga-bilaga tersebut beruruta 0, 1,, 3,, 0. etiap bilaga beruruta
MATEMATIKA BISNIS. OLEH: SRI NURMI LUBIS, S.Si GICI BUSSINESS SCHOOL BATAM
MATEMATIKA BISNIS OLEH: SRI NURMI LUBIS, S.Si GICI BUSSINESS SCHOOL BATAM BAB BARISAN DAN DERET A. BARISAN Barisa bilaga adalah susua bilaga yag diurutka meurut atura tertetu.betuk umum barisa bilaga a,
BAB II LANDASAN TEORI. matematika secara numerik dan menggunakan alat bantu komputer, yaitu:
4 BAB II LANDASAN TEORI 2.1 Model matematis da tahapa matematis Secara umum tahapa yag harus ditempuh dalam meyelesaika masalah matematika secara umerik da megguaka alat batu komputer, yaitu: 2.1.1 Tahap
SOAL-SOAL LATIHAN BARISAN DAN DERET ARITMETIKA DAN GEOMETRI UJIAN NASIONAL
SOAL-SOAL LATIHAN BARISAN DAN DERET ARITMETIKA DAN GEOMETRI UJIAN NASIONAL Peserta didik memiliki kemampua memahami kosep pada topik barisa da deret aritmetika da geometri. Peserta didik memilki kemampua
Pendekatan Nilai Logaritma dan Inversnya Secara Manual
Pedekata Nilai Logaritma da Iversya Secara Maual Moh. Affaf Program Studi Pedidika Matematika, STKIP PGRI BANGKALAN [email protected] Abstrak Pada pegaplikasiaya, bayak peggua yag meggatugka masalah
BAHAN AJAR ANALISIS REAL 1 Matematika STKIP Tuanku Tambusai Bangkinang 5. DERET
Pertemua 7. BAHAN AJAR ANALISIS REAL Matematika STKIP Tuaku Tambusai Bagkiag 5. da kekovergeaya 5. DERET Diberika sebuah barisa a, dapat didefeisika barisa bilaga real S N dega S N := N a = a + a 2 +...
- - BARISAN DAN DERET
- - BARISAN DAN DERET - - Modul ii sigkro Aplikasi Adroid, Dowload melalui Play Store di HP Kamu, ketik di pecaria sbl5deret Jika Kamu kesulita, Tayaka ke tetor bagaimaa cara dowloadya. Aplikasi ii berjala
Barisan. Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat sifat barisan Barisan Monoton. 19/02/2016 Matematika 2 1
Barisa Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 9/0/06 Matematika Barisa Tak Higga Secara sederhaa, barisa merupaka susua dari bilaga bilaga yag urutaya berdasarka bilaga
Induksi matematik untuk memecahkan problema deret dan bilangan bulat bentuk kuadrat sempurna
Iduksi matematik utuk memecahka problema deret da bilaga bulat betuk kuadrat sempura Oleh: Sutopo Jurusa Fisika FMIPA UM [email protected] Ditulis pada sekitar bula Februari 2011. Diuggah pada 3 Desember
METODE PENELITIAN. dalam tujuh kelas dimana tingkat kemampuan belajar matematika siswa
19 III. METODE PENELITIAN A. Populasi da Sampel Populasi dalam peelitia ii adalah seluruh siswa kelas VIII SMP Negeri 8 Badar Lampug tahu pelajara 2009/2010 sebayak 279 orag yag terdistribusi dalam tujuh
BAB 4 LIMIT FUNGSI Standar Kompetensi Menggunakan konsep limit fungsi dan turunan fungsi dalam pemecahan masalah
BAB LIMIT FUNGSI Stadar Kompetesi Megguaka kosep it ugsi da turua ugsi dalam pemecaha masalah Kompetesi Dasar. Meghitug it ugsi aljabar sederhaa di suatu titik. Megguaka siat it ugsi utuk meghitug betuk
III BAB BARISAN DAN DERET. Tujuan Pembelajaran. Pengantar
BAB III BARISAN DAN DERET Tujua Pembelajara Setelah mempelajari materi bab ii, Ada diharapka dapat:. meetuka suku ke- barisa da jumlah suku deret aritmetika da geometri,. meracag model matematika dari
Kalkulus Rekayasa Hayati DERET
Kalkulus Rekayasa Hayati DERET 1 Isi Bab Pedahulua Barisa tak-higga Deret tak-higga Deret Positif : Uji kekovergea Deret Gati Tada Deret Pagkat Deret Taylor da Maclauri 2 Kompetesi Dasar Setelah megikuti
Model Pertumbuhan BenefitAsuransi Jiwa Berjangka Menggunakan Deret Matematika
Prosidig Semirata FMIPA Uiversitas Lampug, 0 Model Pertumbuha BeefitAsurasi Jiwa Berjagka Megguaka Deret Matematika Edag Sri Kresawati Jurusa Matematika FMIPA Uiversitas Sriwijaya edagsrikresawati@yahoocoid
III. METODE PENELITIAN. kelas VIII semester ganjil SMP Sejahtera I Bandar Lampung tahun pelajaran 2010/2011
III. METODE PENELITIAN A. Latar Peelitia Peelitia ii merupaka peelitia yag megguaka total sampel yaitu seluruh siswa kelas VIII semester gajil SMP Sejahtera I Badar Lampug tahu pelajara 2010/2011 dega
An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3
SUKU BANYAK A Pegertia: f(x) x + a 1 x 1 + a 2 x 2 + + a 2 +a 1 adalah suku bayak (poliom) dega : - a, a 1, a 2,.,a 2, a 1, a 0 adalah koefisiekoefisie suku bayak yag merupaka kostata real dega a 0 - a
PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT
Prosidig Semiar Nasioal Matematika da Terapaya 06 p-issn : 0-0384; e-issn : 0-039 PENENTUAN SOLUSI RELASI REKUREN DARI BILANGAN FIBONACCI DAN BILANGAN LUCAS DENGAN MENGGUNAKAN FUNGSI PEMBANGKIT Liatus
MODUL MATEMATIKA SMA IPA Kelas 11
SMA IPA Kelas BARISAN DAN DERET ARITMATIKA. Betuk umum: a, ( a b), ( a b) ( a b). Rumus suku ke- ( ) a ( ) b a : suku pertama b : beda. Jumlah suku pertama (S ) S ( a ) atau S (a ( ) b) Dega S dapat juga
-1- U n : suku ke-n barisan aritmetika a : suku pertama n : banyak suku b : beda/selisih
-- BARISAN DAN DERET PENGERTIAN BARISAN DAN DERET Bisa yaitu susua bilaga yag didapatka di pemetaa bilaga asli yag dihubugka dega tada,. Jika pada bisa tada, digati dega tada, maka disebut deret. Bisa
E-learning matematika, GRATIS 1
E-learig matematika, GRATIS Peyusu Editor : Teag Idriyai, S.P ; Taufiq Rahma, S.P : Drs. Keto Susato, M.Si. M.T. ; Istijab, S.H. M.Hum. Imam Idra Guawa, S.Si.. Pegertia Barisa da Deret Barisa bilaga adalah
BARISAN FIBONACCI DAN BILANGAN PHI
BARISAN FIBONACCI DAN BILANGAN PHI Fiboacci Matematikawa terbesar pada abad pertegaha adalah Leoardo dari Pisa, Italia (80 0). Ia lebih dikeal dega ama Fibo-acci. Artiya, aak Boaccio. Meara Pisa yag terkeal
REGRESI LINIER DAN KORELASI. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia. Dapat dinyatakan
REGRESI LINIER DAN KORELASI Variabel dibedaka dalam dua jeis dalam aalisis regresi: Variabel bebas atau variabel prediktor -> variabel yag mudah didapat atau tersedia. Dapat diyataka dega X 1, X,, X k
Secara umum, suatu barisan dapat dinyatakan sebagai susunan terurut dari bilangan-bilangan real:
BARISAN TAK HINGGA Secara umum, suatu barisa dapat diyataka sebagai susua terurut dari bilaga-bilaga real: u 1, u 2, u 3, Barisa tak higga merupaka suatu fugsi dega domai berupa himpua bilaga bulat positif
METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/2012 SUGENG2010. Copyright Dale Carnegie & Associates, Inc.
METODE NUMERIK JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA 7/4/0 SUGENG00 Copyright 996-98 Dale Caregie & Associates, Ic. Kesalaha ERROR: Selisih atara ilai perkiraa dega ilai eksakilai
METODE PENELITIAN. Subyek dalam penelitian ini adalah siswa kelas XI IPA 1 SMA Wijaya Bandar
III. METODE PENELITIAN A. Settig Peelitia Subyek dalam peelitia ii adalah siswa kelas XI IPA 1 SMA Wijaya Badar Lampug, semester gajil Tahu Pelajara 2009-2010, yag berjumlah 19 orag terdiri dari 10 siswa
Himpunan/Selang Kekonvergenan
oki eswa (fmipa-itb) Deret Pagkat Kita aka mempelajari beberapa tehik utuk meyajika suatu fugsi f (x) dalam betuk deret pagkat (power series), yaitu meetuka derat pagkat c (x a) sehigga f (x) = c (x a)
BAB III METODE PENELITIAN. penelitian ini adalah penelitian diskriptif kuantitatif. Dalam hal ini peneliti akan
BAB III METODE PENELITIAN A. Jeis Peelitia Berdasarka pertayaa peelitia yag peeliti ajuka maka jeis peelitia ii adalah peelitia diskriptif kuatitatif. Dalam hal ii peeliti aka mediskripsika kemampua relatig,
Aturan Pencacahan. Contoh: Berapa banyak kemungkinan jalur yang dapat dilalui dari Kota A ke Kota D?
Atura Pecacaha A. Atura Perkalia Jika terdapat k usur yag tersedia, dega: = bayak cara utuk meyusu usur pertama 2 = bayak cara utuk meyusu usur kedua setelah usur pertama tersusu 3 = bayak cara utuk meyusu
BARISAN DAN DERET. 05/12/2016 Matematika Teknik 1 1
BARISAN DAN DERET 05//06 Matematika Tekik BARISAN Barisa Tak Higga Kekovergea barisa tak higga Sifat sifat barisa Barisa Mooto 05//06 Matematika Tekik Barisa Tak Higga Secara sederhaa, barisa merupaka
MODUL MATEMATIKA. Barisan dan Deret UNIVERSITAS NEGERI MANADO
MODUL MATEMATIKA Barisa da Deret UNIVERSITAS NEGERI MANADO FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA 2007 KATA PENGANTAR Halo...!!! selamat jumpa dalam Modul Matematika SMA. Dalam
Bab IV. Penderetan Fungsi Kompleks
Bab IV Pedereta Fugsi Kompleks Sebagaimaa pada fugsi real, fugsi kompleks juga dapat dideretka pada daerah kovergesiya. Semua watak kajia kovergesi pada fugsi real berlaku pula pada fugsi kompleks. Secara
1. Ubahlah bentuk kuadrat di bawah ini menjadi bentuk
OPERASI ALJABAR. Ubahlah betuk kuadrat di bawah ii mejadi betuk ( a b) c 4 8 4 4 0 4. Uraika betuk di bawah ii ( 5)( ) [ ]( )( )( ) [ ]( ) ( ) ( ). Tetuka ilai a, b, da c, jika ( )( 4 )( ) = a b c 6 (
SILABUS PEMBELAJARAN
SILABUS PEMBELAJARAN Nama Sekolah :... Bidag studi : Pedidika Jasmai Olahraga da Kesehata Kesehata Kelas : II Semester/ tahu : I / 20..-20.. Stadart : 1. Mempraktikka variasi gerak dasar melalui permaia
An = an. An 1 = An. h + an 1 An 2 = An 1. h + an 2... A2 = A3. h + a2 A1 = A2. h + a1 A0 = A1. h + a0. x + a 0. x = h a n. f(x) = 4x 3 + 2x 2 + x - 3
BAB XII. SUKU BANYAK A = a Pegertia: f(x) = a x + a x + a x + + a x +a adalah suku bayak (poliom) dega : - a, a, a,.,a, a, a 0 adalah koefisiekoefisie suku bayak yag merupaka kostata real dega a 0 - a
2 BARISAN BILANGAN REAL
2 BARISAN BILANGAN REAL Di sekolah meegah barisa diperkealka sebagai kumpula bilaga yag disusu meurut "pola" tertetu, misalya barisa aritmatika da barisa geometri. Biasaya barisa da deret merupaka satu
BAB III METODOLOGI PENELITIAN. kuantitatif karena bertujuan untuk mengetahui kompetensi pedagogik mahasiswa
54 BAB III METODOLOGI PENELITIAN A. Jeis Peelitia Peelitia ii merupaka peelitia deskriptif dega pedekata kuatitatif karea bertujua utuk megetahui kompetesi pedagogik mahasiswa setelah megikuti mata kuliah
RENCANA PEMBELAJARAN SEMESTER (RPS) PROGRAM STUDI S1 TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS RIAU
RENCANA PEMBELAJARAN SEMESTER (RPS) PROGRAM STUDI S1 TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS RIAU 1 Nama Mata Kuliah : Matematika I 2 Kode Mata Kuliah : TSS - 1105 3 Semester : I 4 (sks) : 2 5 Dose Pegampu
Distribusi Pendekatan (Limiting Distributions)
Distribusi Pedekata (Limitig Distributios) Ada 3 tekik utuk meetuka distribusi pedekata: 1. Tekik Fugsi Distribusi Cotoh 2. Tekik Fugsi Pembagkit Mome Cotoh 3. Tekik Teorema Limit Pusat Cotoh Fitriai Agustia,
BARISAN DAN DERET. Bentuk deret Aritmatika: a, ( a + b ), ( a + 2b ) ( a + ( n 1 ) b a = suku pertama b = beda n = banyaknya suku.
BARISAN DAN DERET Bab 9 Deret Aritmatika (Deret Hitug) o o o Betuk deret Aritmatika: a, ( a + b ), ( a + b ) +...+ ( a + ( ) b a = suku pertama b = beda = bayakya suku Suku ke- : U = a + (-)b Jumlah suku
Inflasi dan Indeks Harga I
PERTEMUAN 1 Iflasi da Ideks Harga I 1 1 TEORI RINGKAS A Pegertia Agka Ideks Agka ideks merupaka suatu kosep yag dapat memberika gambara tetag perubaha-perubaha variabel dari suatu priode ke periode berikutya
Induksi Matematika. Pertemuan VII Matematika Diskret Semester Gasal 2014/2015 Jurusan Teknik Informatika UPN Veteran Yogyakarta
Iduksi Matematika Pertemua VII Matematika Diskret Semester Gasal 2014/2015 Jurusa Tekik Iformatika UPN Vetera Yogyakarta Metode pembuktia utuk peryataa perihal bilaga bulat adalah iduksi matematik. Cotoh
SOAL-SOAL SPMB 2006 MATEMATIKA DASAR (MAT DAS) 63 n, maka jumlah n suku. D n n 2. f n log3 log 4 log5... log n, maka f 2...
SOAL-SOAL SPMB 006 MATEMATIKA DASAR (MAT DAS). SPMB, MAT DAS, Regioal I, 006 Tiga bilaga membetuk suatu deret geometri aik. Jika jumlahya 6 da hasikaliya 6, maka rasio deretya adalah A. B. C. D. 4 E. 5.
6. Pencacahan Lanjut. Relasi Rekurensi. Pemodelan dengan Relasi Rekurensi
6. Pecacaha Lajut Relasi Rekuresi Relasi rekuresi utuk dereta {a } adalah persamaa yag meyataka a kedalam satu atau lebih suku sebelumya, yaitu a 0, a,, a -, utuk seluruh bilaga bulat, dega 0, dimaa 0
BARISAN TAK HINGGA DAN DERET TAK HINGGA
BARIAN TAK HINGGA DAN DERET TAK HINGGA Bajar/Barisa Tak Higga Barisa tak higga { } adalah suatu fugsi dari dimaa daerah domaiya adalah himpua bilaga bulat positif (bilaga asli). Cotoh: Bila.. maka fugsi
BAB III METODE PENELITIAN Penelitian ini dilakukan di kelas X SMA Muhammadiyah 1 Pekanbaru. semester ganjil tahun ajaran 2013/2014.
BAB III METODE PENELITIAN A. Waktu da Tempat Peelitia Peelitia dilaksaaka dari bula Agustus-September 03.Peelitia ii dilakuka di kelas X SMA Muhammadiyah Pekabaru semester gajil tahu ajara 03/04. B. Subjek
BARISAN DAN DERET. Nurdinintya Athari (NDT)
BARISAN DAN DERET Nurdiitya Athari (NDT) BARISAN Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) = a Fugsi tersebut dikeal sebagai barisa bilaga
III. METODE PENELITIAN. Bandar Lampung Tahun Pelajaran dengan jumlah siswa 32 orang. terdiri dari 12 siswa laki-laki dan 20 siswa perempuan.
III. METODE PENELITIAN A. Subjek Peelitia Subjek peelitia ii adalah siswa kelas VIIB semester gajil SMP Negeri 22 Badar Lampug Tahu Pelajara 2009-2010 dega jumlah siswa 32 orag terdiri dari 12 siswa laki-laki
TURUNAN FUNGSI. Definisi. 3.1 Pengertian Turunan Fungsi. Turunan fungsi f adalah fungsi f yang nilainya di c adalah. asalkan limit ini ada.
3 TURUNAN FUNGSI 3. Pegertia Turua Fugsi Defiisi Turua fugsi f adala fugsi f yag ilaiya di c adala f c f c f c 0 asalka it ii ada. Coto Jika f 3 + +4, maka turua f di adala f f f 0 3 4 3.. 4 0 34 4 4 4
BAB VI BARISAN TAK HINGGA DAN DERET TAK HINGGA
BAB VI BARIAN TAK HINGGA DAN DERET TAK HINGGA Bajar/Barisa Tak Higga Barisa tak higga { },,,,, adalah suatu fugsi dari dimaa daerah domaiya adalah himpua bilaga bulat positif (bilaga asli). Cotoh: Bila,,,..,
Matematika SMA (Program Studi IPA)
Smart Solutio UJIAN NASIONAL TAHUN PELAJARAN 202/203 Disusu Sesuai Idikator Kisi-Kisi UN 203 Matematika SMA (Program Studi IPA) Disusu oleh : Pak Aag SKL 5. Memahami kosep it, turua da itegral dari fugsi
RENCANA PELAKSANAAN PEMBELAJARAN
47 49 RENCANA PELAKSANAAN PEMBELAJARAN Nama Sekolah Program keahlia Mata Pelajara : SMK PGRI Salatiga : Akutasi : Matematika Kelas/ Semester : XI/ 3 Materi Pokok Alokasi Waktu : Barisa da Deret : 4 x 4
MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR. Dosen Pengampu : Darmadi, S.Si, M.Pd
MAKALAH ALJABAR LINEAR SUB RUANG VEKTOR Dose Pegampu : Darmadi, S.Si, M.Pd Disusu : Kelas 5A / Kelompok 5 : Dia Dwi Rahayu (084. 06) Hefetamala (084. 4) Khoiril Haafi (084. 70) Liaatul Nihayah (084. 74)
BAB III 1 METODE PENELITAN. Penelitian dilakukan di SMP Negeri 2 Batudaa Kab. Gorontalo dengan
BAB III METODE PENELITAN. Tempat Da Waktu Peelitia Peelitia dilakuka di SMP Negeri Batudaa Kab. Gorotalo dega subject Peelitia adalah siswa kelas VIII. Pemiliha SMP Negeri Batudaa Kab. Gorotalo. Adapu
LEVELLING 1. Cara pengukuran PENGUKURAN BEDA TINGGI DENGAN ALAT SIPAT DATAR (PPD) Poliban Teknik Sipil 2010LEVELLING 1
LEVELLING 1 PENGUKURAN SIPAT DATAR Salmai,, ST, MS, MT 21 PENGUKURAN BEDA TINGGI DENGAN ALAT SIPAT DATAR (PPD) Jika dua titik mempuyai ketiggia yag berbeda, dikataka mempuyai beda tiggi. Beda tiggi dapat
Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom. Barisan dan Deret
Program Perkuliaha Dasar Umum Sekolah Tiggi Tekologi Telkom Barisa da Deret Barisa Defiisi Barisa bilaga didefiisika sebagai fugsi dega daerah asal merupaka bilaga asli. Notasi: f: N R f( ) a Fugsi tersebut
BAB III METODE PENELITIAN. Jenis penelitian ini adalah penelitian pengembangan (research and
BAB III METODE PENELITIAN A. Jeis Peelitia Jeis peelitia ii adalah peelitia pegembaga (research ad developmet), yaitu suatu proses peelitia utuk megembagka suatu produk. Produk yag dikembagka dalam peelitia
MA1201 MATEMATIKA 2A Hendra Gunawan
MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2016/2017 3 Februari 2017 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg Batas
model bangun lingkungan, kawat atau datar dari karton 2x40 menit Buku teks, sebangun? Mengapa? Teknik Bentuk
Sekolah : SMP Kelas : IX Mata Pelajaran : Matematika Semester : I(satu) SILABUS Standar : GEOMETRI DAN PENGUKURAN 1. Memahami kesebangunan bangun datar dan penggunaannya dalam pemecahan masalah 1.1 Mengiden
Mata Kuliah: Statistik Inferensial
PENGUJIAN HIPOTESIS SAMPEL KECIL Prof. Dr. H. Almasdi Syahza, SE., MP Email: [email protected] DEFINISI Pegertia Sampel Kecil Sampel kecil yag jumlah sampel kurag dari 30, maka ilai stadar deviasi (s)
III. METODE PENELITIAN. Penelitian ini merupakan penelitian tindakan kelas yang dilaksanakan pada siswa
III. METODE PENELITIAN A. Settig Peelitia Peelitia ii merupaka peelitia tidaka kelas yag dilaksaaka pada siswa kelas VIIIB SMP Muhammadiyah 1 Sidomulyo Kabupate Lampug Selata semester geap tahu pelajara
SOAL PENYISIHAN =. a. 11 b. 12 c. 13 d. 14 e. 15
SOAL PENYISIHAN Petujuk pegerjaa soal : Jumlah soal 0 soal Piliha Gada da Uraia Utuk piliha gada diberi peilaia bear +, salah -, tidak diisi 0 Lama pegerjaa soal adalah 0 meit Kalau berai, silaka pilih
Bab. Pola Bilangan, Barisan, dan Deret. A. Pola Bilangan B. Barisan Bilangan C. Deret Bilangan
Bab Sumber: www.medeciepharmacie.uiv-fcomte.fr Pola Bilaga, Barisa, da Deret Pola bilaga, barisa, da deret merupaka materi baru yag aka kamu pelajari pada bab ii. Terdapat beberapa masalah yag peyelesaiaya
log b = b logb Soal-Soal dan Pembahasan Matematika Dasar SBMPTN - SNMPTN 2012 Tanggal Ujian: 12 Juni 2012 Jawab: BAB II Logaritma
Soal-Soal da Pembahasa Matematika Dasar SBMPTN - SNMPTN 01 Taggal Ujia: 1 Jui 01 1. Jika a da b adalah bilaga bulat positip yag memeuhi a b = 0-19, maka ilai a + b adalah... A. 3 C. 19 E. 3 B. 7 D. 1 BAB
HALAMAN Dengan definisi limit barisan buktikan limit berikut ini : = 0. a. lim PENYELESAIAN : jadi terbukti bahwa lim = 0 = 5. b.
Didowload dari ririez.blog.us.ac.id HALAMAN 36 37 5. Dega defiisi limit barisa buktika limit berikut ii : a. lim = 0 lim 1 2 + 3 = 0 > 0 h 1 = 2 + 3 0 = 1 2 + 3 1 2 1 2 1 2 < jadi terbukti bahwa lim =
Range atau jangkauan suatu kelompok data didefinisikan sebagai selisih antara nilai terbesar dan nilai terkecil, yaitu
BAB 4 UKURAN PENYEBARAN DATA Pada Bab sebelumya kita telah mempelajari beberapa ukura pemusata data, yaitu ukura yag memberika iformasi tetag bagaimaa data-data ii megumpul atau memusat Pada bagia Bab
PEMBAHASAN SALAH SATU PAKET SOAL UN MATEMATIKA SMA PROGRAM IPS TAHUN PELAJARAN 2012/2013
http://asyikyabelajar.wordpress.com PEMBAHAAN ALAH ATU PAKET OAL UN MATEMATIKA MA PROGRAM IP TAHUN PELAJARAN 0/0. Igkara dari peryataa emua makhluk hidup memerluka air da oksige adalah... A. emua makhluk
SILABUS. Standar Kompetensi : GEOMETRI DAN PENGUKURAN. 1. Memahami kesebangunan bangun datar dan penggunaannya dalam pemecahan masalah
SILABUS Sekolah Kelas Mata Pelajaran Semester : SMP : IX : Matematika : I (satu) Standar Kompetensi : GEOMETRI DAN PENGUKURAN 1. Memahami kesebangunan bangun datar dan penggunaannya dalam pemecahan masalah
METODE PENELITIAN. Ajaran dengan jumlah siswa 40 orang yang terdiri dari 19 siswa lakilaki
18 III. METODE PENELITIAN A. Subyek da Tempat Peelitia Subjek peelitia adalah siswa kelas X2 SMA Budaya Badar Lampug Tahu Ajara 2010-2011 dega jumlah siswa 40 orag yag terdiri dari 19 siswa lakilaki da
UKURAN PEMUSATAN DATA
Malim Muhammad, M.Sc. UKURAN PEMUSATAN DATA J U R U S A N A G R O T E K N O L O G I F A K U L T A S P E R T A N I A N U N I V E R S I T A S M U H A M M A D I Y A H P U R W O K E R T O DEFINISI UKURAN PEMUSATAN
BAB III METODE PENELITIAN. dengan kemampuan berpikir kreatif dengan menggunakan dua model
3 BAB III METODE PENELITIAN A. Jei Peelitia Tujua peelitia ii yaki membadigka kemampua berpikir kriti dega kemampua berpikir kreatif dega megguaka dua model pembelajara yaitu model pembelajara berbai maalah
BAB III METODE PENELITIAN
6 BAB III METODE PENELITIAN 3.1 Desai Peelitia Meurut Kucoro (003:3): Peelitia ilmiah merupaka usaha utuk megugkapka feomea alami fisik secara sistematik, empirik da rasioal. Sistematik artiya proses yag
log b = b logb Soal-Soal dan Pembahasan Matematika Dasar SNMPTN 2012 Tanggal Ujian: 12 Juni 2012 Jawab: BAB II Logaritma
Soal-Soal da Pembahasa Matematika Dasar SNMPTN 01 Taggal Ujia: 1 Jui 01 1. Jika a da b adalah bilaga bulat positip yag memeuhi a b 0-19, maka ilai a + b adalah... A. 3 C. 19 E. 3 B. 7 D. 1 BAB I Perpagkata
BUKTI ALTERNATIF KONVERGENSI DERET PELL DAN PELL-LUCAS (ALTERNATIVE PROOF THE CONVERGENCE OF PELL AND PELL-LUCAS SERIES)
rosidig Semirata2015 bidag MIA BKS-TN Barat Uiversitas Tajugpura otiaak BUKTI ALTERNATIF KONVERGENSI DERET ELL DAN ELL-LUCAS (ALTERNATIVE ROOF THE CONVERGENCE OF ELL AND ELL-LUCAS SERIES) Baki Swita 1
BAB I PENDAHULUAN. Integral adalah salah satu konsep penting dalam Matematika yang
BAB I PENDAHULUAN 1.1 Latar Belakag Masalah Itegral adalah salah satu kosep petig dalam Matematika yag dikemukaka pertama kali oleh Isac Newto da Gottfried Wilhelm Leibiz pada akhir abad ke-17. Selajutya
III. METODOLOGI PENELITIAN. Penelitian ini dilakukan di SMA Negeri 1 Way Jepara Kabupaten Lampung Timur
III. METODOLOGI PENELITIAN A. Lokasi da Waktu Peelitia Peelitia ii dilakuka di SMA Negeri Way Jepara Kabupate Lampug Timur pada bula Desember 0 sampai dega Mei 03. B. Populasi da Sampel Populasi dalam
SILABUS PEMBELAJARAN. Sekolah :... : VII (Tujuh) Mata Pelajaran : Matematika
SILABUS PEMBELAJARAN Sekolah :... Kelas : VII (Tujuh) Mata Pelajaran : Matematika Semester : I (satu) BILANGAN Standar : 1. Memahami sifat-sifat operasi hitung bilangan dan penggunaannya dalam pemecahan
Notasi Sigma, Barisan, dan Deret
I TU URI HANDAY AN TW DIKLAT GURU PENGEMBANG MATEMATIKA SMK JENJANG DASAR TAHUN 009 Notasi Sigma, Barisa, da Deret Matriks GY A Y O M AT E M A T AK A R Puji Iryati, M.Sc.Ed. DEPARTEMEN PENDIDIKAN NASIONAL
REGRESI LINIER GANDA
REGRESI LINIER GANDA Secara umum, data hasil pegamata Y bisa terjadi karea akibat variabelvariabel bebas,,, k. Aka ditetuka hubuga atara Y da,,, k sehigga didapat regresi Y atas,,, k amu masih meujukka
Bab 3 Metode Interpolasi
Baha Kuliah 03 Bab 3 Metode Iterpolasi Pedahulua Iterpolasi serig diartika sebagai mecari ilai variabel tergatug tertetu, misalya y, pada ilai variabel bebas, misalya, diatara dua atau lebih ilai yag diketahui
III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah semua siswa kelas XI IPA SMA Negeri I
7 III. METODOLOGI PENELITIAN A. Populasi da Sampel Peelitia Populasi dalam peelitia ii adalah semua siswa kelas XI IPA SMA Negeri I Kotaagug Tahu Ajara 0-03 yag berjumlah 98 siswa yag tersebar dalam 3
Hendra Gunawan. 12 Februari 2014
MA1201 MATEMATIKA 2A Hedra Guawa Semester II, 2013/2014 12 Februari 2014 Bab Sebelumya 8. Betuk Tak Tetu da Itegral Tak Wajar 8.1 Betuk Tak Tetu 0/0 82 8.2 Betuk Tak Tetu Laiya 8.3 Itegral Tak Wajar dg
II. LANDASAN TEORI. Pada bab ini akan diberikan beberapa istilah, definisi serta konsep-konsep yang
II. LANDASAN TEORI Pada bab ii aka diberika beberapa istilah, defiisi serta kosep-kosep yag medukug dalam peelitia ii. 2.1 Kosep Dasar Teori Graf Berikut ii aka diberika kosep dasar teori graf yag bersumber
RENCANA PELAKSANAAN PEMBELAJARAN ( RPP )
RENCANA PELAKSANAAN PEMBELAJARAN ( RPP ) Nama Sekolah :... Mata Pelajaran : Matematika Kelas / Semester : IX / 2 (Genap) Standar Kompetensi : 5. Memahami sifat-sifat bilangan berpangkat dan bentuk akar
SILABUS. Indikator Pencapain kompetanasi. Mengidentifikasi peralatan. komunikasi di berbagai bidang dengan cermat dan berhati-hati
SILABUS Sekolah Kelas/semester Mata Pelajara Stadar Kompetesi : : II (tujuh)/ 1 (satu) : Tekologi Iformasi da Komuikasi : 1. Memahami, da prospekya di masa medatag Kompetesi 1. 1. Megidetifi kasi berbagai
