BAB 4 PERSAMAAN LINGKARAN

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 4 PERSAMAAN LINGKARAN"

Transkripsi

1 STANDAR KOMPETENSI: BAB 4 PERSAMAAN LINGKARAN Menusun persamaan lingkaran dan garis singgungna. KOMPETENSI DASAR Menusun persamaan lingkaran ang memenuhi persaratan ang ditentukan Menentukan persamaan garis singgung pada lingkaran dalam berbagai situasi A. Persamaan Lingkaran Sejak di sekolah dasar kita sudah mengenal bentuk lingkaran. Dalam matematika lingkaran didefinisikan sebagai himpunan atau tempat kedudukan titiktitik ang berjarak sama terhadap sebuah titik tertentu. Titik tertentu itu selanjutna disebut pusat lingkaran, dan jarakna disebut ukuran jari-jari. Perlu di bedakan antara lingkaran dan daerah dalam lingkaran, seperti pada Gambar 4.., ang berwarna biru adalah lingkaran dan daerah ang diarsir adalah daerah dalam lingkaran. Titik A pada Gambar 4.., terletak pada lingkaran, sedangakan titik B tidak terletak pada lingkaran tapi pada daerah dalam. B A Gambar 4. Gambar 4.. Dalam bidang kartesius, tiap titik dapat dinatakan sebagai pasangan terurut (,), sehingga himpunan titik-titik ang terletak pada lingkaran tertentu memenuhi persamaan tertentu ang disebut persamaan lingkaran.. Persamaan Lingkaran ang Pusatna (0,0) dan Jari-jari r Misalkan A(,) terletak pada lingkaran dengan pusat O(0,0) dan jari-jari r seperti terlihat pada Gambar 3., maka OA = = r. ( 0) ( 0) = = r +

2 r A(,) O(0,0) Gambar 4.3 Jadi persamaan lingkaran ang berpusat di (0,0) dan jari-jari r memiliki persamaan + = r. Contoh 4. Tentukan persamaan lingkaran ang berpusat di (0,0) dan melalui titik A(-3,4) Persamaan lingkaran ang pusatna O(0,0) dan jari-jari r adalah + = r. r = OA = ( 3 0) (4 0) = 9 6 = 5 Jadi persamaan lingkaran ang berpusat di (0,0) dan melalui titik A(-3,4) adalah + = 5 + = 5. Contoh 4. Diketahui titik A(0,) dan B(0,9). Tentutkan persamaan tempat kedudukan P(,) sehingga PB = 3PA. PB = 3PA Latihan. ( 0) ( 9) = 3 ( 9) = 3 ( 0) ( ( + (-9) = 9( +(-) ) = 9( ) = 9( ) = = -7 + = 9. Tuliskan persamaan lingkaran ang berpusat di O(0,0) dengan jari-jari a. 5 b. 8 c. 9 d., e. a. Carilah persamaan lingkaran dengan pusat O(0,0) dan melalui titik a. (,3) b. (-,) c. (4,0) d. (-6,-8) 3. Tentukan pusat dan jari-jari dari masing-masing lingkaran berikut. a. + = 36 b. + = c = 9 4. Carilah persamaan lingkaran dengan pusat sama dengan pusat lingkaran + = 5, tetapi jari-jarina dua kali jari-jari lingkaran tersebut. 5. Periksa titik titik manakah ang terletak pada lingkaran + = 5 ) )

3 a. (3,4) b. (,5) c. (-5,0) d. (-,-3) 6. a. Jika A(0,) dan B(0,4) tentukan persamaan tempat kedudukan. titik P ang memenuhi PB = PA b. Jika A(0,-) dan B(0,-5) tentukan persamaan tempat kedudukan. titik P ang memenuhi PB = 5PA. Persamaan Lingkaran dengan Pusat A(a,b) dan Jari-jari r Misalkan titik P(,) terletak pada lingkaran dengan pusat A(a,b) dengan jari-jari r, maka AP = r = ( a) ( b) (-a) + (-b) = r. Persamaan (-a) + (-b) = r ini merupakan persamaan lingkaran ang titik pusatna (a, b) dan jari-jarina r P(,) A(a,b) 0-4 Gambar 4.4. Contoh 4.3 Tentukan persamaan lingkaran dengan pusat (3,4) dengan jari-jari 5 Persamaan lingkaran itu adalah ( -3) + ( 4) = 5 ( -3) + ( 4) = 5 Latihan. Tuliskan persamaan lingkaran dengan pusat dan jari-jari berikut. a. (,), 3 b. (0,3), 4 c. (5,0), d. (-5,), 7. Carilah persamaan lingkaran a. pusat (6,8) melalui O(0,0) b. pusat (-,0) melalui (3,4) 3. Carilah pusat dan jari-jari dari setiap lingkaran berikut. a. ( -) + ( 3) = 5 b. ( -) + ( + 4) = Tentukan persamaan lingkaran ang konsentrik (sepusat) dengan lingkaran ( -) + ( 4) = 5, tetapi memiliki jari-jari dua kali jari-jari lingkaran tersebut. 5. Tentukan persamaan lingkaran ang berpusat di (,5) dan meninggung sumbu. 6. Tentukan persamaan lingkaran ang berpusat di (,-) dan meninggung sumbu.

4 7. Tentukan empat persamaan lingkaran berjari-jari 3 ang meninggung sumbu dan sumbu. 8. Tentukan persamaan lingkaran ang melalui O(0,0) dan A(4,6) dengan OA adalah diameter.. 9. Tentukan persamaan lingkaran ang melalui B(-3,5) dan C(, -) dan BC adalah diameter. 0. Diketahui A(,), B(4,6), dan C(,6). Buktikan ACB siku-siku, dan tentukan persamaan lingkaran ang melalui titik-titik A, B, dan C. 3. Persamaan Umum Lingkaran Persamaan lingkaran dengan titik pusat (a,b) dan jari-jari r adalah (-a) + (-b) = r -a + a + b + b = r + -a b + + a + b - r = 0. Bila -a = A, -b = B dan C = a + b - r, maka persamaan + -a b + a + b - r = 0 dapat ditulis sebagai + + A + B + C = 0. Dengan demikian bila diketahui persamaan lingkaran + + A + B + C = 0, maka dari koordinat titik pusatna (a,b) = (-½ A, -½B) dan jari-jari r = A B ( ) ( ) C. Contoh 4.4 Tentukan persamaan umum lingkaran ang pusatna (3, -4) dan jari-jari 5. Misalkan persamaan umum lingkaran itu + + A + B + C = 0. Absis titik pusatna a =3, maka A = -a = -6. Ordinat titik pusatna b = -4, B = -b = 8. C = a + b r = 3 + (-4) 5 = 0. Jadi persamaan lingkaran dengan pusat (3,-4) dan jari-jari 5 adalah = = 0. Contoh 4.5 Tentukan koordinat titik pusat lingkaran dan jari-jari dari persamaan: = 0. A =, B = -0, dan C = -30 Titik pusatna ( - ½ A, - ½ B) dan jari-jarina r = Titik pusatna ( - ½., - ½ (-0)) = ( - 6, 5) Jari-jarina r = A B ( ) ( ) A B 0 ( ) ( ) C = ( ) ( ) ( 30) Latihan 3. Tentukan pusat dan jari-jari setiap lingkaran berikut. a = 0 b = 0 c = 0 d = 0. Tentukan pusat dan jari-jari setiap lingkaran berikut. a = 0 b = 0 C = = 9.

5 3. Manakah ang merupakan persamaan lingkaran? a = 0 b = 0 c. + 5 = 0 d = 0 e. ( -) + ( ) = 6 f = 0 4. Tentukan h jika titik (h,3) terletak pada lingkaran = 0 5. Tentukan k jika titik (-5,k) terletak pada lingkaran = 0 6. Jika (,) terletak pada lingkaran + + f = 0, tentukan f. 7. Jika (-,) terletak pada lingkaran g - 6 = 0, tentukan g. 8. Jika lingkaran + + A + B + C = 0 melalui O(0,0), (,3) dan (5,-5), tentukan A, B, dan C. 9. Tentukan persamaan lingkaran ang melalui (0,-), (,3), dan,6). 0. Tentukan persamaan lingkaran luar segitiga OAB bila A(-,4), B(-,7), dan O (0,0) B. Garis Singgung Lingkaran Misalkan kita memiliki sebuah lingkaran dan sebuah garis, maka kedudukan lingkaran dengan garis itu ada 3 kemungkinan: (i) saling berpotongan di dua titik, (ii) berpotongan di satu titik, dan (iii) tidak beririsan seperti terlihat pada Gambar k m n 8 A 6 4 B C 4 - Gambar 4.5 Garis k memotong lingkaran di dua titik B dan C, garis m ang memotong lingkaran tepat di satu titik A, sedangkan garis n tidak memotong lingkaran. Garis ang tepat memotong lingkaran tepat di satu titik seperti garis m pada Gambar 4.5., disebut garis singgung lingkaran.. Persamaan garis singgung melalui A(, ) pada Lingkaran + = r

6 Perhatikan Gambar 6., garis k meninggung lingkaran + = r di titik A(, ). Garis singgung lingkaran k itu memiliki sifat tegaklurus terhadap garis OA. Titik O(0,0) dan A(, ), maka garis OA memiliki gradien m =. Karena garis k tegaklurus garis OA maka gradien garis singgung k adalah m = saling tegaklurus bila hasil kali gradienna m.m = -) (kedua garis O A(, ) Gambar 4.6 k Titik A(, ) pada lingkaran + = r, maka + = r. Selanjutna persamaan garis k ang melalui A(, ) dengan gradien m adalah = m (- ) = (- ) = r. Dengan demikian diperoleh kesimpulan: Jika ttik A(, ) pada lingkaran + = r, maka garis singgung lingkaran ang melalui titik A adalah + = r. Contoh 4.6: Tentukan persamaan garis singgung lingkaran + = 5 melalui titik (4,-3). Periksa apakah titik (4,-3) pada lingkaran atau tidak, dengan mensubsitusi ke dalam persamaan lingkaran 4 + (-3) = = 5. Artina titik(4,-3) pada lingkaran. Karena titik (4,-3) pada lingkaran maka rumus ang digunakan untuk menentukan persamaan garis singgungna adalah + = r dengan = 4 dan = -3, sehingga persamaan garis singgung itu 4 3 = 5.. Persamaan garis singgung melalui A(, ) pada Lingkaran (-a) +( -b) = r

7 Perhatikan Gambar 4.7, titik A(, ) pada lingkaran (-a) +( -b) = r dan k adalah garis singgung lingkaran ang melalui titik A. Pusat lingkaran (-a) +( -b) = r b adalah P(a,b), gradien garis PA adalah m =. Karena garis k tegak lurus PA, a maka gradienna adalah m = a b k A(, ) P(a,b) 0 Gambar 4.7. Persamaan garis k ang melalui A(, ) dengan gradien m = = a (- ) )( )( -b) = -( -a)(- ) b a adalah b ) b - + b = - + +a a ( a) + ( b) = ( a ) + ( -b ) ( -a -a + a )+ ( b b + b ) = ( + a a +a )+ ( -b -b +b ( -a)(-a) + ( b)( - b)= ( -a) +( -b) ( -a)(-a) + ( b)( - b)= r Dengan demikian diperoleh kesimpulan: Jika titik A(, ) pada lingkaran (-a) +( -b) = r maka garis singgung lingkaran ang melalui titik A adalah ( -a)(-a) + ( b)( - b)= r Contoh 4.7: Tentukan persamaan garis singgung lingkaran (- 4) + ( +3)= 5 melalui titik (7,). Periksa apakah titik (7,) pada lingkaran atau tidak, dengan mensubsitusi ke dalam persamaan lingkaran (7-4) + ( +3) = = 5. Artina titik(7,) pada lingkaran. Karena titik (7,) pada lingkaran maka rumus ang digunakan untuk menentukan persamaan garis singgungna adalah ( -a)(-a) + ( b)( - b)= r Dengan dengan = 7 dan =, a = 4 dan b = -3, sehingga persamaan garis singgung itu (7-4)( -4) + ( +3)( +3) = 5 3(-4) + 4(+3) = 5

8 = = 5 3. Persamaan garis singgung melalui A(, ) pada Lingkaran + + A + B + C = 0 dan Di atas telah dikemukakan bahwa dengan mensubsitusi a = - ½ A, b = - ½ B, A B r = ( ) ( ) C ke dalam persamaan (-a) + (-b) = r diperoleh persamaan umum lingkaran + + A + B + C = 0. Selanjutna jika titik A(, ) pada lingkaran (-a) +( -b) = r maka garis singgung lingkaran ang melalui titik A adalah ( -a)(-a) + ( b)( - b)= r ( -a -a + a )+ ( b b + b ) = r. Kemudian dengan mensubsitusi a = - ½ A, b = - ½ B, dan r = A B ( ) ( ) C ke dalam persamaan ( -a -a + a )+ ( b b + b ) = r, diperoleh ( + ½ A + ½ A + ( ½ A) + ( + ½ B + ½ B + (½ B) ) = (½ A) +( ½ B) C + + ½ A( - ) + ½ B( ) + C = 0. Uraian di atas menimpulkan jika A(, ) terletak pada persamaan lingkaran + + A + B + C = 0, maka persamaan garis singgung lingkaran tersebut melalui titik A adalah + + ½ A( - ) + ½ B( ) + C = 0. Contoh 4.8: Tentukan persamaan garis singgung lingkaran = 0 melalui (, -5). Periksa apakah titik (, -5) pada lingkaran atau tidak, dengan mensubsitusi ke dalam persamaan lingkaran + (-5) - () + 4(-5) 4 = 0. Artina titik(,-5) pada lingkaran. Karena titik (,-5) pada lingkaran maka rumus ang digunakan untuk menentukan persamaan garis singgungna adalah + + ½ A( - ) + ½ B( ) + C = 0 Dengan = dan = -5, A = - dan B = 4 dan C = -4 diperoleh persamaan garis singgung itu. + (-5) - ( ) + ( + 5) - 4 = = 0-3 = = 0 Latihan 4. Tunjukkan bahwa (,-3) terletak pada lingkaran + = 0 dan tentukanlah persamaan garis singgung lingkaran itu di titik itu.. Tentukan persamaan garis singgung lingkaran + = 3 di titik (-,3) 3. Tentukan persamaan garis singgung lingkaran (-) + (-5) = 9 di titik (, ) 4. Tentukan persamaan garis singgung lingkaran = 0 di titik (4,- ) 5. Tentukan persamaan garis singgung lingkaran = 0 di titik (-,)

9 4. Sarat Garis Meninggung Lingkaran Misalkan garis k memiliki persamaan = p + q dan lingkaran + = r. Kedua persamaan ini membentuk sistem persamaan ang penelesaianna merupakan koordinat titik potong garis dengan lingkaran. Bila = np + q disubsitusikan ke dalam persamaan + = r diperoleh + (p + q) = r + p + p + p = r (+p ) + p + (p - r ) = 0 Ini merupakan persamaan kuadrat dengan a = + p, b = p dan c = p r. Telah kita ketahui bahwa suatu persamaan kuadrat akan memiliki dua akar real, satu akar real atau tidak memiliki akar real. Persamaan kuadrat a + b + c = 0 akan memiliki : (i) dua akar real ang berbeda bila b -4ac >0 (ii) satu akar real bila b -4ac = 0 (iii) tidak memiliki akar real bila b -4ac < 0 Ini menimpulkan bila persamaan garis disubsitusikan ke dalam persamaan lingkaran menghasilkan suatu persamaan kuadrat a + b + c = 0, maka garis itu (i) memotong lingkaran di dua titik bila b -4ac >0 (ii) meninggung lingkaran bila b -4ac = 0 (iii) tidak beririsan dengan lingkaran bila b -4ac < 0 Contoh 4.9: Tentukan persamaan persamaan garis singgung lingkaran + = 9 ang melalui titik (0,-5). Titik (0,-5) terletak di luar lingkaran, sebab jika disubsitusikan ke dalam persamaan lingkaran aitu 0 + (-5) = 5 > Gambar 4. 8 Misalkan gradien persamaan garis singgung itu m sehingga persamaan garis singgung lingkaran itu (-5) = m ( 0) atau = m -5 Sekarang subsitusi = m -5 ke dalam + = 9 diperoleh + (m -5) = 9 + m -0m + 5 = 9 ( +m ) 9m +6 = 0. Garis = m 5 akan meninggung lingkaran + = 9 bila diskriminan dari persamaan kuadrat ( +m ) 9m +6 = 0 adalah D = 0 D = b -4ac = 0 (-0m) 4( +m ).6 = 0

10 00m 64 64m = 0 36 m 64 = 0 36 m = 64 m 6 = 9 m = 4 3 Jadi persamaan garis singgung lingkaran + = 9 ang melalui titik (0,-5) ada dua aitu = dan = Latihan 5. Buktikan bahwa garis = 0 meninggung lingkaran = 0, tentukan pula titik singgungna.. Buktikan bahwa garis = meninggung lingkaran = 0, tentukan pula titik singgungna. 3. Tentukan nilai r jika garis = 5 meninggung lingkaran + = r. 4. Diketahui lingkaran = 0 dan garis singgung lingkaran itu ang memiliki persamaan = - + c. Tentukan nilai-nilai c ang mungkin. 5. Buktikan bahwa garis singgung di titik (-,-3) pada lingkaran + = 0 juga meninggung lingkaran = 0. Tentukan panjang garis singgung persekutuan tersebut.

11 Prakata Bab 4 Banak sekali benda-benda di sekeliling kita memuat bangun lingkaran seperti, roda kendaraan, bagain-bagian pada baik mesin mobil atau mesin-mesin produksi lainna. Dengan demikian bangun lingkaran tidak dapat diabaikan dalam kehidupan, sehingga cukup menarik untuk dikaji secara matematis, khususna secara geometri dan aljabar. Soal Apersepsi. Bila diketahui sebuah lingkaran dan sebuah garis. Tentukan kemungkinankemungkinan kedudukan antara lingkaran dan garis tersebut.. Perhatikan Gambar. berikut, P pada lingkaran dan O pusat lingkaran. Apa ang kalian ketahui antara garis OP dan garis m? m P O Perdalam Konsepmu!. Jika (, ) di luar lingkaran + = r, apakah benar persamaan garis singgungna + = r?. Titik (, ) ang terletak di daerah dalam lingkaran + = r. Mungkinkah kita dapat membuat garis singgung lingkaran tersebut ang melalui titik (, )? RANGKUMAN Bab 4. Persamaan lingkaran dengan pusat O(0,0) dan jari-jari r adalah + = r. Persamaan lingkaran dengan pusat (a,b) dan jari-jari r adalah (-a) + ( b) = r 3. Suatu lingkaran ang memiliki persamaan umum + + A + B + C = 0 A B berpusat di (- ½ A, - ½ B) dan jari- jari r = ( ) ( ) C 4. Persamaan garis singgung lingkaran + = r ang melalui titik (, ) pada lingkaran tersebut adalah + = r 5. Persamaan garis singgung lingkaran (-a) + ( b) = r ang melalui titik (, ) pada lingkaran tersebut adalah ( a)(-a) + ( -b)(-b) = r 6. Persamaan garis singgung lingkaran + + A + B + C = 0 ang melalui titik (, ) pada lingkaran tersebut adalah + + ½ A( ) + ½ B( ) + C = 0 7. Jika garis m dengan persamaan = a + b dan lingkaran ang memiliki persamaan + + A + B + C = 0. Garis m meninggung lingkaran tersebut bila diskriminan persamaan kuadrat + (a +b) + A +B(a+b) +C = 0 adalah 0

12

PP' OP = OP' PERSAMAAN UMUM LINGKARAN

PP' OP = OP' PERSAMAAN UMUM LINGKARAN Bab III : Lingkaran 30 Lingkaran adalah tempat kedudukan titik-titik ang berjarak sama terhadap suatu titik tetap. Jarak ang sama itu disebut jari-jari sedangkan titik tetap dinamakan pusat lingkaran 3..

Lebih terperinci

LINGKARAN. Lingkaran. pusat lingkaran diskriminan posisi titik posisi garis garis kutub gradien. sejajar tegak lurus persamaan lingkaran

LINGKARAN. Lingkaran. pusat lingkaran diskriminan posisi titik posisi garis garis kutub gradien. sejajar tegak lurus persamaan lingkaran LINGKARAN Persamaan Persamaan garis singgung lingkaran Persamaan lingkaran berpusat di (0, 0) dan (a, b) Kedudukan titik dan garis terhadap lingkaran Merumuskan persamaan garis singgung yang melalui suatu

Lebih terperinci

Solusi Pengayaan Matematika

Solusi Pengayaan Matematika Solusi Pengaaan Matematika Edisi Januari Pekan Ke-, 006 Nomor Soal: 1-0 1. Melalui (0, 0) buatlah garis-garis ang memotong lingkaran 0 pada dua titik. Carilah tempat kedudukan pertengahan ke dua titik.

Lebih terperinci

AB = AB = ( ) 2 + ( ) 2

AB = AB = ( ) 2 + ( ) 2 Nama Siswa Kelas LEMBAR AKTIVITAS SISWA HUBUNGAN ANTAR GARIS Titik Tengah Sebuah Segmen Garis : : Kompetensi Dasar (KURIKULUM 2013): 3.10 Menganalisis sifat dua garis sejajar dan saling tegak lurus dan

Lebih terperinci

Persamaan Garis singgung Melalui titik (x 1, y 1 ) diluar lingkaran. Pusat Lingkaran (a, b) Persamaan Garis singgung. Jari Jari r.

Persamaan Garis singgung Melalui titik (x 1, y 1 ) diluar lingkaran. Pusat Lingkaran (a, b) Persamaan Garis singgung. Jari Jari r. PERSAMAAN LINGKARAN Pusat Lingkaran (0, 0) Melalui titik (x, y ) pada lingkaran Jika diketahui gradient m xx y mx r yy r m x y r Persamaan Garis singgung Melalui titik (x, y ) diluar lingkaran Jari Jari

Lebih terperinci

(D) 2 x < 2 atau x > 2 (E) x > Kurva y = naik pada

(D) 2 x < 2 atau x > 2 (E) x > Kurva y = naik pada f =, maka fungsi f naik + 1 pada selang (A), 0 (D), 1. Jika ( ) (B) 0, (E) (C),,. Persamaan garis singgung kurva lurus + = 0 adalah (A) + = 0 (B) + = 0 (C) + + = 0 (D) + = 0 (E) + + = 0 = ang sejajar dengasn

Lebih terperinci

King s Learning Be Smart Without Limits

King s Learning Be Smart Without Limits Nama Siswa : LEMBAR AKTIVITAS SISWA PERSAMAAN LINGKARAN Jadi dapat disimpulkan bahwa persamaan lingkaran dengan pusat O(0,0) dan jari-jari = r adalah Kelas : Persamaan lingkaran: Kompetensi Dasar (KURIKULUM

Lebih terperinci

PERSAMAAN GARIS SINGGUNG PARABOLA

PERSAMAAN GARIS SINGGUNG PARABOLA 1 KEGIATAN BELAJAR 11 PERSAMAAN GARIS SINGGUNG PARABOLA Setelah mempelajari kegiatan belajar 11 ini, mahasiswa diharapkan mampu Menentukan Persamaan Garis Singgung Parabola, Titik dan Garis Polar Pada

Lebih terperinci

A. Pengertian Parabola. Menentukan panjang Latus Rectum DT = FS = DF = 2p Maka DE = 2.DF = 4p. B. Persamaan Parabola

A. Pengertian Parabola. Menentukan panjang Latus Rectum DT = FS = DF = 2p Maka DE = 2.DF = 4p. B. Persamaan Parabola htt://www.smkekalongan.sch.id Parabola A. Pengertian Parabola Parabola adalah temat kedudukan titik-titik ada geometri dimensi ang memiliki jarak ang sama terhada satu titik tertentu dan garis tertentu.

Lebih terperinci

Lingkaran. A. Persamaan Lingkaran B. Persamaan Garis Singgung Lingkaran

Lingkaran. A. Persamaan Lingkaran B. Persamaan Garis Singgung Lingkaran Bab Sumber: www.panebiancod.com Setelah mempelajari bab ini, Anda harus mampu merumuskan persamaan lingkaran dan menggunakannya dalam pemecahan masalah; menentukan persamaan garis singgung pada lingkaran

Lebih terperinci

Bab 1. Irisan Kerucut

Bab 1. Irisan Kerucut Tahun Ajaran 01 01-013/Genap Bab 1. Irisan Kerucut e=0 e 1 A. Lingkaran Persamaan Lingkaran yang berpusat di titik (0,0) Pada segitiga siku-siku, siku, menurut dalil phytagoras berlaku : c =

Lebih terperinci

IRISAN DUA LINGKARAN

IRISAN DUA LINGKARAN LINGKARAN IRISAN DUA LINGKARAN Oleh : Saptana Surahmat Konsep hubungan dua lingkaran sangat penting dalam kehidupan kita. Sepasang roda pada sepeda, sepeda motor, kendaraan bermotor, roda gigi pada pengatur

Lebih terperinci

Bab. Persamaan Garis Lurus. Pengertian Persamaan Garis Lurus Gradien Menentukan Persamaan Garis lurus

Bab. Persamaan Garis Lurus. Pengertian Persamaan Garis Lurus Gradien Menentukan Persamaan Garis lurus Bab Sumb er: Scien ce Enclopedia, 997 Persamaan Garis Lurus Dalam suatu perlombaan balap sepeda, seorang pembalap mengauh sepedana dengan kecepatan tetap. Setiap 5 detik, pembalap tersebut menempuh jarak

Lebih terperinci

MODUL 8 FUNGSI LINGKARAN & ELLIPS

MODUL 8 FUNGSI LINGKARAN & ELLIPS MODUL 8 FUNGSI LINGKARAN & ELLIPS 8.1. LINGKARAN A. PERSAMAAN LINGKARAN DENGAN PUSAT PADA TITIK ASAL DAN JARI-JARI R Persamaan lingkaran dengan pusat (0,0) dan jari jari R adalah : x 2 + y 2 = R 2 B. PERSAMAAN

Lebih terperinci

PENDAHULUAN KALKULUS

PENDAHULUAN KALKULUS . BILANGAN REAL PENDAHULUAN KALKULUS Ada beberapa jenis bilangan ang telah kita kenal ketika di bangku sekolah. Bilangan-bilangan tersebut adalah bilangan asli, bulat, cacah, rasional, irrasional. Tahu

Lebih terperinci

Modul Matematika XI IPA Semester 1 Lingkaran

Modul Matematika XI IPA Semester 1 Lingkaran Modul Matematika XI IPA Semester 1 Lingkaran Oleh : Markus Yuniarto, S.Si Tahun Pelajaran 015 016 SMA Santa Angela Jl. Merdeka No. 4 Bandung Lingkaran XI IPA Sem 1/014-015 4 Peta Konsep Persamaan Lingkaran

Lebih terperinci

6 FUNGSI LINEAR DAN FUNGSI

6 FUNGSI LINEAR DAN FUNGSI 6 FUNGSI LINEAR DAN FUNGSI KUADRAT 5.1. Fungsi Linear Pada Bab 5 telah dijelaskan bahwa fungsi linear merupakan fungsi yang variabel bebasnya paling tinggi berpangkat satu. Bentuk umum fungsi linear adalah

Lebih terperinci

Modul Matematika XI MIA Semester 1 Lingkaran

Modul Matematika XI MIA Semester 1 Lingkaran Lingkaran XI MIA 017/018 Modul Matematika XI MIA Semester 1 Lingkaran Oleh : Markus Yuniarto, S.Si 1 Tahun Pelajaran 017/018 SMA Santa Angela Jl. Merdeka No. Bandung Lingkaran XI MIA 017/018 Peta Konsep

Lebih terperinci

MATEMATIKA DASAR TAHUN 1987

MATEMATIKA DASAR TAHUN 1987 MATEMATIKA DASAR TAHUN 987 MD-87-0 Garis singgung pada kurva y di titik potong nya dengan sumbu yang absisnya positif mempunyai gradien 0 MD-87-0 Titik potong garis y + dengan parabola y + ialah P (5,

Lebih terperinci

Garis Singgung Lingkaran

Garis Singgung Lingkaran 1 KEGIATAN BELAJAR 8 Garis Singgung Lingkaran Setelah mempelajari kegiatan belajar 8 ini, mahasiswa diharapkan mampu menentukan persamaan garis singgung lingkaran dan kuasa lingkaran. Pernahkah Anda memperhatikan

Lebih terperinci

matematika KTSP & K-13 GARIS SINGGUNG LINGKARAN K e a s A. Definisi Garis Singgung Lingkaran Tujuan Pembelajaran

matematika KTSP & K-13 GARIS SINGGUNG LINGKARAN K e a s A. Definisi Garis Singgung Lingkaran Tujuan Pembelajaran KTSP & K-3 matematika K e l a s XI GARIS SINGGUNG LINGKARAN Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Memahami definisi garis singgung lingkaran..

Lebih terperinci

Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f.

Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f. Pertemuan ke 8 GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(,y): y = f(), D f } disebut grafik fungsi f. Grafik metode yang paling umum untuk menyatakan hubungan antara dua himpunan yaitu dengan menggunakan

Lebih terperinci

KEGIATAN BELAJAR SISWA

KEGIATAN BELAJAR SISWA KEGIATAN BELAJAR SISWA Bidang studi : Matematika Satuan Pendidikan: SLTP Kelas: 3 (tiga) Caturwulan: 1 (satu) Pokok Bahasan: Transformasi Subpokok Bahasan: Refleksi Waktu: 150 Menit Endang Mulyana 2003

Lebih terperinci

Solusi Pengayaan Matematika Edisi 3 Januari Pekan Ke-3, 2005 Nomor Soal: 21-30

Solusi Pengayaan Matematika Edisi 3 Januari Pekan Ke-3, 2005 Nomor Soal: 21-30 Solusi Pengayaan Matematika Edisi 3 Januari Pekan Ke-3, 005 Nomor Soal: -30. Garis 5y 60 memotong sumbu X dan sumbu Y masing-masing di titik A dan B, sehingga OAB membentuk segitiga siku-siku. Sebuah lingkaran

Lebih terperinci

Matematika Proyek Perintis I Tahun 1979

Matematika Proyek Perintis I Tahun 1979 Matematika Proyek Perintis I Tahun 979 MA-79-0 Irisan himpunan : A = { x x < } dan himpunan B = { x < x < 8 } ialah himpunan A. { x x < 8 } { x x < } { x < x < 8 } { x < x < } { x < x } MA-79-0 Apabila

Lebih terperinci

MODUL 4 LINGKARAN DAN BOLA

MODUL 4 LINGKARAN DAN BOLA 1 MODUL 4 LINGKARAN DAN BOLA Sumber: www.google.co.id Gambar 6. 6 Benda berbentuk lingkaran dan bola Dalam kehidupan sehari-hari kita banyak menjumpai benda-benda yang berbentuk bola maupun lingkaran.

Lebih terperinci

DALIL PYTHAGORAS DAN PEMECAHAN MASALAH GEOMETRI

DALIL PYTHAGORAS DAN PEMECAHAN MASALAH GEOMETRI DALIL PYTHAGORAS DAN PEMECAHAN MASALAH GEOMETRI Segitiga 1. Beberapa sifat yang berlaku pada segitiga adalah : Jumlah sudut-sudut sembarang segitiga adalah 180 0 Pada segitiga ABC berlaku AC = BC B = A

Lebih terperinci

PENERAPAN FAKTOR PRIMA DALAM MENYELESAIKAN BENTUK ALJABAR (Andi Syamsuddin*)

PENERAPAN FAKTOR PRIMA DALAM MENYELESAIKAN BENTUK ALJABAR (Andi Syamsuddin*) PENERAPAN FAKTOR PRIMA DALAM MENYELESAIKAN BENTUK ALJABAR (Andi Syamsuddin*) A. Faktor Prima Dalam tulisan ini yang dimaksud dengan faktor prima sebuah bilangan adalah pembagi habis dari sebuah bilangan

Lebih terperinci

LINGKARAN. Bab. Di unduh dari : Bukupaket.com

LINGKARAN. Bab. Di unduh dari : Bukupaket.com Bab 9 LINGKARAN A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR Kompetensi Dasar Setelah mengikuti pembelajaran lingkaran siswa mampu: 1. Mendeskripsikan konsep persamaan lingkaran dan menganalisis sifat garis

Lebih terperinci

BAB I PRA KALKULUS. Nol. Gambar 1.1

BAB I PRA KALKULUS. Nol. Gambar 1.1 BAB I PRA KALKULUS. Sistem bilangan ril.. Bilangan ril Sistem bilangan ril adalah himpunan bilangan ril dan operasi aljabar aitu operasi penjumlahan, pengurangan, perkalian dan pembagian. Biasana bilangan

Lebih terperinci

Buku Pendalaman Konsep. Trigonometri. Tingkat SMA Doddy Feryanto

Buku Pendalaman Konsep. Trigonometri. Tingkat SMA Doddy Feryanto Buku Pendalaman Konsep Trigonometri Tingkat SMA Doddy Feryanto Kata Pengantar Trigonometri merupakan salah satu jenis fungsi yang sangat banyak berguna di berbagai bidang. Di bidang matematika sendiri,

Lebih terperinci

PERSAMAAN GARIS SINGGUNG ELLIPS

PERSAMAAN GARIS SINGGUNG ELLIPS 1 KEGIATAN BELAJAR 13 PERSAMAAN GARIS SINGGUNG ELLIPS Setelah mempelajari kegiatan belajar 13 ini, mahasiswa diharapkan mampu Menentukan Persamaan Garis Singgung Elips, Titik Singung dan Garis Pada kegiatan

Lebih terperinci

MATEMATIKA BISNIS BAB 2 FUNGSI LINIER

MATEMATIKA BISNIS BAB 2 FUNGSI LINIER MATEMATIKA BISNIS BAB FUNGSI LINIER Hikmah Agustin, S.P.,MM DEFINISI FUNGSI Fungsi adalah hubungan matematis antara suatu variabel dengan variabel lainna. Unsur-unsur pembentukan fungsi : 1. Variabel Variabel

Lebih terperinci

A. Persamaan-Persamaan Lingkaran

A. Persamaan-Persamaan Lingkaran Peta Konsep Jurnal Materi Umum Peta Konsep Lingkaran Daftar Hadir Materi A LINGKARAN 1 Kelas XI, Semester 3 Berpusat di O(0, 0) Berpusat di P(a, b) A. Persamaan-Persamaan Lingkaran Kedudukan Titik dan

Lebih terperinci

Bab 2. Persamaan Parametrik dan Sistim Koordinat Kutub

Bab 2. Persamaan Parametrik dan Sistim Koordinat Kutub Bab. Persamaan Parametrik dan Sistim Koordinat Kutub Persamaan Parametrik Kurva-kurva ang berada dalam bidang datar dapat representasikan dalam bentuk persamaan parametrik. Dalam persamaan ini, setiap

Lebih terperinci

Fungsi Linear dan Fungsi Kuadrat

Fungsi Linear dan Fungsi Kuadrat Modul 1 Fungsi Linear dan Fungsi Kuadrat Drs. Susiswo, M.Si. K PENDAHULUAN ompetensi umum yang diharapkan, setelah mempelajari modul ini, adalah Anda dapat memahami konsep tentang persamaan linear dan

Lebih terperinci

C. 30 Januari 2001 B. 29 Januari 2001

C. 30 Januari 2001 B. 29 Januari 2001 1. Notasi pembentuk himpunan dari B = {1, 4, 9} adalah... A. B = {x x kuadrat tiga bilangan asli yang pertama} B. B = {x x bilangan tersusun yang kurang dari 10} C. B = {x x kelipatan bilangan 2 dan 3

Lebih terperinci

KUMPULAN SOAL MATEMATIKA SMP KELAS 8

KUMPULAN SOAL MATEMATIKA SMP KELAS 8 KUMPULAN SOAL MATEMATIKA SMP KELAS 8 Dirangkum oleh Moch. Fatkoer Rohman Website: http://fatkoer.co.cc http://zonamatematika.co,cc Email: fatkoer@gmail.com 009 Evaluasi Bab 1 Untuk nomor 1 sampai 5 pilihlah

Lebih terperinci

BAB IV KONSTRUKSI GEOMETRIS

BAB IV KONSTRUKSI GEOMETRIS BAB IV KONSTRUKSI GEOMETRIS Panduan Menggambar Teknik Mesin 1 A. Membuat Segilima Beraturan Gambar 4.1 menunjukkan cara membuat suatu segi lima yang panjang salah satu sisinya sudah diketahui. Garis AB

Lebih terperinci

Feni Melinda Safitri. Sudah diperiksa. Pengertian Teorema Phytagoras. Rumus Phytagoras

Feni Melinda Safitri. Sudah diperiksa. Pengertian Teorema Phytagoras. Rumus Phytagoras BY : Feni Malinda Safitri Sudah diperiksa Pengertian Teorema Phytagoras Phytagoras adalah seorang ahli matematika dan filsafat berkebangsaan Yunani pada tahun 569-475 sebelum masehi, ia mengungkapkan bahwa

Lebih terperinci

E. Grafik Fungsi Kuadrat

E. Grafik Fungsi Kuadrat /9/05 Jurnal Materi Umum Persamaan Kuadrat Peta Konsep Fungsi Kuadrat Peta Konsep Daftar Hadir MateriE SoalLatihan5 PERSAMAAN DAN FUNGSI KUADRAT Kelas X, Semester E. Grafik Fungsi Kuadrat Menelesaikan

Lebih terperinci

BAB XVII. PROGRAM LINEAR

BAB XVII. PROGRAM LINEAR BAB XVII. PROGRAM LINEAR Bukti : + a + b a.b b a Pengertian Program Linear : Program Linear adalah bagian ilmu matematika terapan ang digunakan untuk memecahkan masalah optimasi (pemaksimalan atau peminimalan

Lebih terperinci

Lingkaran adalah tempat kedudukan titik-titik pada bidang yang berjarak

Lingkaran adalah tempat kedudukan titik-titik pada bidang yang berjarak 4 Lingkaran 4.1. Persamaan Lingkaran Bentuk Baku. Lingkaran adalah tempat kedudukan titik-titik pada bidang yang berjarak tetap dari suatu titik tetap. Titik tetap dari lingkaran disebut pusat lingkaran,

Lebih terperinci

ISTIYANTO.COM. memenuhi persamaan itu adalah B. 4 4 C. 4 1 PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPA

ISTIYANTO.COM. memenuhi persamaan itu adalah B. 4 4 C. 4 1 PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPA PERBANDINGAN KISI-KISI UN 009 DAN 00 SMA IPA Materi Logika Matematika Kemampuan yang diuji UN 009 UN 00 Menentukan negasi pernyataan yang diperoleh dari penarikan kesimpulan Menentukan negasi pernyataan

Lebih terperinci

Pertemuan 13 GARIS SINGGUNG DAN GARIS NORMAL

Pertemuan 13 GARIS SINGGUNG DAN GARIS NORMAL Pertemuan GAIS SINGGUNG DAN GAIS NOMAL Persamaan Garis Singgung melalui titik (, ) - m ( - ) Persamaan Garis Normal melalui titik (, ) - ( - ) m Panjang Subtangens Y m Panjang subnormal m Y Pemakaian Diferensial

Lebih terperinci

Soal UN 2009 Materi KISI UN 2010 Prediksi UN 2010

Soal UN 2009 Materi KISI UN 2010 Prediksi UN 2010 PREDIKSI UN 00 SMA IPA BAG. (Berdasar buku terbitan Istiyanto: Bank Soal Matematika-Gagas Media) Logika Matematika Soal UN 009 Materi KISI UN 00 Prediksi UN 00 Menentukan negasi pernyataan yang diperoleh

Lebih terperinci

GARIS SINGGUNG LINGKARAN

GARIS SINGGUNG LINGKARAN RENCANA PELAKSANAAN PEMBELAJARAN POKOK BAHASAN GARIS SINGGUNG LINGKARAN Oleh: ZAINUL GUFRON SYAHRONI NIM. 070210191048 PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS

Lebih terperinci

FUNGSI. A. Relasi dan Fungsi Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii)

FUNGSI. A. Relasi dan Fungsi Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) FUNGSI A. Relasi dan Fungsi Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) Relasi himpunan A ke himpunan B adalah relasi yang memasangkan/mengkawankan/mengkorepodensikan

Lebih terperinci

Melukis Grafik Irisan Kerucut Tanpa Transformasi Sumbu-sumbu Koordinat

Melukis Grafik Irisan Kerucut Tanpa Transformasi Sumbu-sumbu Koordinat JURNAL PENDIDIKAN MATEMATIKA VOLUME NOMOR JANUARI 0 Melukis Grafik Irisan Kerucut Tanpa Transformasi Sumbu-sumbu Koordinat La Arapu (Lektor pada Program Pendidikan Matematika FKIP Universitas Haluoleo)

Lebih terperinci

1. Fungsi Objektif z = ax + by

1. Fungsi Objektif z = ax + by Nilai Optimum Suatu Fungsi Objektif, Program Linear, Fungsi Objektif, Cara Menentukan, Contoh Soal, Rumus, Pembahasan, Metode Uji Titik Sudut, Metode Garis Selidik, Matematika Nilai Optimum Suatu Fungsi

Lebih terperinci

PEMBELAJARAN IRISAN KERUCUT: LINGKARAN DI SMA

PEMBELAJARAN IRISAN KERUCUT: LINGKARAN DI SMA PAKET PEMBINAAN PENATARAN Drs. M. Danuri, M.Pd. PEMBELAJARAN IRISAN KERUCUT: LINGKARAN DI SMA 45 O 1 3 4 DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH PUSAT PENGEMBANGAN

Lebih terperinci

PENGAYAAN MATERI OLIMPIADE MATEMATIKA SD GEOMETRI. Oleh : Himmawati P.L

PENGAYAAN MATERI OLIMPIADE MATEMATIKA SD GEOMETRI. Oleh : Himmawati P.L PENGAYAAN MATERI OLIMPIADE MATEMATIKA SD GEOMETRI Oleh : Himmawati P.L Soal matematika yang diujikan di sekolah-sekolah maupun di Ujian Nasional pada umumnya dapat diselesaikan dengan cara-cara biasa.

Lebih terperinci

yang tak terdefinisikan dalam arti keberadaannya tidak perlu didefinisikan.

yang tak terdefinisikan dalam arti keberadaannya tidak perlu didefinisikan. 3 Gariis Lurus Dalam geometri aksiomatik/euclide konsep garis merupakan salah satu unsur ang tak terdefinisikan dalam arti keberadaanna tidak perlu didefinisikan. Karakteristik suatu garis diberikan pada

Lebih terperinci

Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis Lurus

Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis Lurus Modul 1 Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis Lurus Drs. Sukirman, M.Pd. D alam Modul Pertama ini, kita akan membahas tentang Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis

Lebih terperinci

Untuk lebih jelasnya, perhatikan uraian berikut.

Untuk lebih jelasnya, perhatikan uraian berikut. KISI-KISI PENULISAN SOAL DAN URAIAN ULANGAN TENGAH SEMESTER GENAP Jenis Sekolah Penulis Mata Pelajaran Jumlah Soal Kelas Bentuk Soal AlokasiWaktu Acuan : SMP/MTs : Gresiana P : Matematika : 40 nomor :

Lebih terperinci

f(-1) = = -7 f (4) = = 3 Dari ketiga fungsi yang didapat ternyata yang terkecil -7 dan terbesar 11. Rf = {y -7 y 11, y R}

f(-1) = = -7 f (4) = = 3 Dari ketiga fungsi yang didapat ternyata yang terkecil -7 dan terbesar 11. Rf = {y -7 y 11, y R} 1. Persamaan (m - 1)x 2-8x - 8m = 0 mempunyai akar-akar real, maka nilai m adalah... -2 m -1-2 m 1-1 m 2 Kunci : C D 0 b 2-4ac 0 (-8)² - 4(m - 1) 8m 0 64-32m² + 32m 0 m² - m - 2 0 (m - 2)(m + 1) 0 m -1

Lebih terperinci

Ringkasan Materi Matematika Untuk SMP Persiapan UN Web : erajenius.blogspot.com --- FB. : Era Jenius --- CP

Ringkasan Materi Matematika Untuk SMP Persiapan UN Web : erajenius.blogspot.com --- FB. : Era Jenius --- CP Lingkaran & Garis Singgung A. Unsur-Unsur Lingkaran Lingkaran adalah tempat kedudukan titik-titik yang berjarak sama terhadap satu titik tetap yang disebut titik pusat lingkaran. Lambang lingkaran dengan

Lebih terperinci

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDI IPA

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDI IPA PEMBAHASAN UN SMA TAHUN PELAJARAN 009/00 MATEMATIKA PROGRAM STUDI IPA PEMBAHAS :. Sigit Tri Guntoro, M.Si.. Jakim Wiyoto, S.Si. 3. Marfuah, M.T. 4. Rohmitawati, S.Si. PPPPTK MATEMATIKA 00 . Perhatikan

Lebih terperinci

BAB I. SISTEM KOORDINAT, NOTASI & FUNGSI

BAB I. SISTEM KOORDINAT, NOTASI & FUNGSI BAB I. SISTEM KRDINAT, NTASI & FUNGSI (Pertemuan ke 1 & 2) PENDAHULUAN Diskripsi singkat Pada bab ini akan dijelaskan tentang bilangan riil, sistem koordinat Cartesius, notasi-notasi ang sering digunakan

Lebih terperinci

fungsi Dan Grafik fungsi

fungsi Dan Grafik fungsi fungsi Dan Grafik fungsi Suatu fungsi adalah pemadanan dua himpunan tidak kosong dengan pasangan terurut (x, y) dimana tidak terdapat elemen kedua yang berbeda. Fungsi (pemetaan) himpunan A ke himpunan

Lebih terperinci

Jika persegi panjang ABCD di atas diketahui OA = 26 cm, maka panjang BO adalah... A. 78 cm. C. 26 cm B. 52 cm. D. 13 cm Kunci : C Penyelesaian :

Jika persegi panjang ABCD di atas diketahui OA = 26 cm, maka panjang BO adalah... A. 78 cm. C. 26 cm B. 52 cm. D. 13 cm Kunci : C Penyelesaian : 1. Jika persegi panjang ABCD di atas diketahui OA = 26 cm, maka panjang BO adalah... A. 78 cm C. 26 cm B. 52 cm D. 13 cm 2. Gambar disamping adalah persegi panjang. Salah satu sifat persegi panjang adalah

Lebih terperinci

Penerapan Turunan MAT 4 D. PERSAMAAN GARIS SINGGUNG KURVA A. PENDAHULUAN B. DALIL L HÔPITAL C. PERSAMAAN PADA KINEMATIKA GERAK TURUNAN. materi78.co.

Penerapan Turunan MAT 4 D. PERSAMAAN GARIS SINGGUNG KURVA A. PENDAHULUAN B. DALIL L HÔPITAL C. PERSAMAAN PADA KINEMATIKA GERAK TURUNAN. materi78.co. Penerapan Turunan A. PENDAHULUAN Turunan dapat digunakan untuk: 1) Perhitungan nilai limit dengan dalil l Hôpital 2) Menentukan persamaan fungsi kecepatan dan percepatan dari persamaan fungsi posisi )

Lebih terperinci

Persamaan Lingkaran. Pusat Jari-jari Pusat. Jari-jari Menentukan persamaan lingkaran atau garis singgung lingkaran. Persamaan Lingkaran

Persamaan Lingkaran. Pusat Jari-jari Pusat. Jari-jari Menentukan persamaan lingkaran atau garis singgung lingkaran. Persamaan Lingkaran 2. 5. Menentukan persamaan lingkaran atau garis singgung lingkaran. Persamaan Lingkaran Persamaan Lingkaran () () Bentuk Umum 0 dibagi (2) Pusat Jari-jari Pusat (,), Jumlah kuadrat pusat dikurangi Jari-jari

Lebih terperinci

4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN

4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN 4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN 4.1 Persamaan Garis a. Bentuk umum persamaan garis Garis lurus yang biasa disebut garis merupakan kurva yang paling sederhana dari semua kurva. Misalnya titik A(2,1)

Lebih terperinci

PERSAMAAN LINGKARAN. Tujuan Pembelajaran

PERSAMAAN LINGKARAN. Tujuan Pembelajaran KTSP & K-3 matematika K e l a s XI PERSAMAAN LINGKARAN Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan mempunyai kemampuan sebagai berikut.. Memahami definisi lingkaran.. Memahami persamaan

Lebih terperinci

SOAL&PEMBAHASAN MATEMATIKATKDSAINTEK SBMPTN. yos3prens.wordpres.com

SOAL&PEMBAHASAN MATEMATIKATKDSAINTEK SBMPTN. yos3prens.wordpres.com SOAL&PEMBAHASAN MATEMATIKATKDSAINTEK SBMPTN 05 yosprens.wordpres.com SOAL DAN PEMBAHASAN MATA UJI MATEMATIKA TKD SAINTEK SBMPTN 05 Berikut ini 5 soal mata uji matematika beserta pembahasannya yang diujikan

Lebih terperinci

PROGRAM LINEAR. Bukti : ax + by = a.b. Pengertian Program Linear : Gunakan persamaan 2 di atas :

PROGRAM LINEAR. Bukti : ax + by = a.b. Pengertian Program Linear : Gunakan persamaan 2 di atas : PROGRAM LINEAR Bukti : + = a + b = a.b b a Pengertian Program Linear : Program Linear adalah bagian ilmu matematika terapan ang digunakan untuk memecahkan masalah optimasi (pemaksimalan atau peminimalan

Lebih terperinci

K13 Antiremed Kelas 11 Matematika Peminatan

K13 Antiremed Kelas 11 Matematika Peminatan K13 Antiremed Kelas 11 Matematika Peminatan Persiapan UAS 1 Doc. Name: K13AR11MATPMT01UAS Version : 015-11 halaman 1 01. Sukubanyak f() = 3 + + 3- dapat ditulis sebagai. f() = [( + ) - 3] + f() = [( -

Lebih terperinci

BAB 1 FAKTORISASI SUKU ALJABAR SOAL LATIHAN 1.1

BAB 1 FAKTORISASI SUKU ALJABAR SOAL LATIHAN 1.1 BAB FAKTORISASI SUKU ALJABAR SOAL LATIHAN. A. Pilihan Ganda. Bentuk + 48 jika difaktorkan A. ( 6)( 8) B. ( + 8)( 6) C. ( 4)( ) D. ( + 4)( ) + 48 ( + 8)( 6). Faktor dari y 4y A. (y 6) (y + ) B. (y + 6)

Lebih terperinci

Pembelajaran Lingkaran SMA dengan Geometri Analitik

Pembelajaran Lingkaran SMA dengan Geometri Analitik PAKET FASILITASI PEMBERDAYAAN KKG/MGMP MATEMATIKA Pembelajaran Lingkaran SMA dengan Geometri Analitik Penulis Drs. M. Danuri, M.Pd. Penilai Drs. Sukardjono, M.Pd. Editor Titik Sutanti, S.Pd.Si. Ilustrator

Lebih terperinci

MODUL 1 SISTEM KOORDINAT KARTESIUS

MODUL 1 SISTEM KOORDINAT KARTESIUS 1 MODUL 1 SISTEM KOORDINAT KARTESIUS Dalam matematika, sistem koordinat kartesius digunakan untuk menentukan tiap titik dalam bidang dengan menggunakan dua bilangan yang biasa disebut koordinat x (absis)

Lebih terperinci

KUMPULAN SOAL SOAL. SOAL PILIHAN GANDA A. Berilah tanda silang (X) paad huruf a, b, c, d, e sesuai dengan pilihan jawaban yang paling tepat!

KUMPULAN SOAL SOAL. SOAL PILIHAN GANDA A. Berilah tanda silang (X) paad huruf a, b, c, d, e sesuai dengan pilihan jawaban yang paling tepat! KUMPULAN SOAL SOAL APROKSIMASI KESALAHAN SOAL PILIHAN GANDA A. Berilah tanda silang (X) paad huruf a, b, c, d, e sesuai dengan pilihan jawaban ang paling tepat!. Banakna angka sinifikan dari bilangan,

Lebih terperinci

(A) 3 (B) 5 (B) 1 (C) 8

(A) 3 (B) 5 (B) 1 (C) 8 . Turunan dari f ( ) = + + (E) 7 + +. Turunan dari y = ( ) ( + ) ( ) ( + ) ( ) ( + ) ( + ) ( + ) ( ) ( + ) (E) ( ) ( + ) 7 5 (E) 9 5 9 7 0. Jika f ( ) = maka f () = 8 (E) 8. Jika f () = 5 maka f (0) +

Lebih terperinci

PERSAMAAN GARIS SINGGUNG HIPERBOLA

PERSAMAAN GARIS SINGGUNG HIPERBOLA 1 KEGIATAN BELAJAR 15 PERSAMAAN GARIS SINGGUNG HIPERBOLA Setelah mempelajari kegiatan belajar 15 ini, mahasiswa diharapkan mampu: 1. Menemukan Persamaan Garis Singgung Hiperbola, Titik Singung dan Garis

Lebih terperinci

SOAL UN DAN PENYELESAIANNYA 2009

SOAL UN DAN PENYELESAIANNYA 2009 1. 1. Jika saya giat belajar maka saya bisa meraih juara. 2. Jika saya bisa meraih juara maka saya boleh ikut bertanding. Ingkaran dari kesimpulan kedua premis diatas adalah... A. Saya giat belajar dan

Lebih terperinci

MAT. 10. Irisan Kerucut

MAT. 10. Irisan Kerucut MAT. 0. Irisan Kerucut i Kode MAT.0 Irisan Kerucut BAGIAN PROYEK PENGEMBANGAN KURIKULUM DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DEPARTEMEN PENDIDIKAN NASIONAL

Lebih terperinci

1.1. GARIS BILANGAN = 2 2 = 4 = 3 P 1 B P 2-2

1.1. GARIS BILANGAN = 2 2 = 4 = 3 P 1 B P 2-2 ab I : Titik dan Garis.. GARIS ILANGAN Jika pada suatu garis g terdapat titik tetap O, lengkap dengan tanda-tanda serta satuanna maka tiap titik lain pada garis itu ditentukan oleh sebuah bilangan saja.

Lebih terperinci

01. Perhatikan persegi panjang ABCD di bawah ini. Jika OA = 26 cm, maka panjang BO adalah... (A) 78 cm (B) 52 cm (C) 26 cm (D) 13 cm

01. Perhatikan persegi panjang ABCD di bawah ini. Jika OA = 26 cm, maka panjang BO adalah... (A) 78 cm (B) 52 cm (C) 26 cm (D) 13 cm 0. Perhatikan persegi panjang ABCD di bawah ini. Jika OA = 26 cm, maka panjang BO adalah.... (A) 78 cm (B) 52 cm (C) 26 cm (D) 3 cm 02. Bangun di bawah ini merupakan bangun yang memiliki simetri putar

Lebih terperinci

Bab I. Fungsi Dua Peubah atau Lebih. Pengantar

Bab I. Fungsi Dua Peubah atau Lebih. Pengantar Bab I Fungsi Dua Peubah atau Lebih Pengantar Seperti halna dengan fungsi satu peubah kita dapat mendefinisikan fungsi dua peubah atau lebih sebagai pemetaan dan sebagai pasangan berurut.fungsi dengan peubah

Lebih terperinci

Fungsi Peubah Banyak. Modul 1 PENDAHULUAN

Fungsi Peubah Banyak. Modul 1 PENDAHULUAN Modul 1 Fungsi Peubah Banak Prof. Dr. Bambang Soedijono PENDAHULUAN D alam modul ini dibahas masalah Fungsi Peubah Banak. Dengan sendirina para pengguna modul ini dituntut telah menguasai pengertian mengenai

Lebih terperinci

SOAL LATIHAN UKK MATEMATIKA KELAS VIII

SOAL LATIHAN UKK MATEMATIKA KELAS VIII SOAL LATIHAN UKK MATEMATIKA KELAS VIII SOAL PILIHAN GANDA 1. Perhatikan gambar berikut. Daerah yang diarsir disebut... a. juring b. busur c. tembereng d. tali busur 2. Perhatikan kembali lingkaran pada

Lebih terperinci

PERSAMAAN GARIS LURUS

PERSAMAAN GARIS LURUS PERSAMAAN GARIS LURUS A. Menggambar grafik garis lurus Langkah langkah mengambar grafik persamaan garis lurus sama dengan langkahlangkah membuat grafik pada sistim koordinat. Gambarlah grafik persamaan

Lebih terperinci

PREDIKSI SOAL UAN MATEMATIKA 2009 KELOMPOK TEKNIK

PREDIKSI SOAL UAN MATEMATIKA 2009 KELOMPOK TEKNIK PREDIKSI SOAL UAN MATEMATIKA 2009 KELOMPOK TEKNIK 1. Jarak kota P dan kota R pada sebuah peta adalah 20 cm. Jika skala pada peta tersebut 1:2.500.000, maka jarak sebenarnya dua kota tersebut adalah. A.

Lebih terperinci

matematika K-13 PERSAMAAN GARIS LURUS K e l a s

matematika K-13 PERSAMAAN GARIS LURUS K e l a s K- matematika K e l a s XI PERSAMAAN GARIS LURUS Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Memahami pengertian garis, garis pada koordinat Cartesius,

Lebih terperinci

2. Memahami dan mampu menyelesaikan Permasalahan yang berkaitan dengan vektor di Ruang Tiga, yaitu Persamaan Bidang

2. Memahami dan mampu menyelesaikan Permasalahan yang berkaitan dengan vektor di Ruang Tiga, yaitu Persamaan Bidang TUJUAN EMBELAJARAN Agar pembaca memahami tentang Sistem Koordinat Kartesian beserta fungsinya yaitu titik, jarak dua titik, persamaan bola serta Vektor dalam ruang dimensi tiga beserta aplikasinya yaitu

Lebih terperinci

2. Di antara bilangan-bilangan berikut, hanya ada satu yang habis membagi , yaitu. c. 1 d.

2. Di antara bilangan-bilangan berikut, hanya ada satu yang habis membagi , yaitu. c. 1 d. Halaman: 1 1. Akar pangkat empat dari 4 adalah a. 4 b. 4 c. 4 d. 4 2. Di antara bilangan-bilangan berikut, hanya ada satu yang habis membagi 100 000 064, yaitu a. 10404 b. 10408 c. 10804 d. 10808 3. Banyaknya

Lebih terperinci

Rchmd: rls&fngs-smk2004 1

Rchmd: rls&fngs-smk2004 1 BAB I PENDAHULUAN A. Latar Belakang Apabila kita cermati, hampir semua fenomena ang terjadi di jagad raa ini mengikuti hukum sebab akibat. Adana pergantian siang dan malam adalah sebagai akibat dari perputaran

Lebih terperinci

Kumpulan Soal dan Pembahasan Himpunan. Oleh: Angga Yudhistira

Kumpulan Soal dan Pembahasan Himpunan. Oleh: Angga Yudhistira Kumpulan Soal dan Himpunan Oleh: Angga Yudhistira http://matematika100.blogspot.com/ Kumpulan Soal dan Matematika SMP dan SMA, Media Pembelajaran,RPP, dan masih banyak lagi Bagian I : Pilihan Ganda 1.

Lebih terperinci

SUSUNAN KOORDINAT BAGIAN-1. Oleh: Fitria Khasanah, M. Pd

SUSUNAN KOORDINAT BAGIAN-1. Oleh: Fitria Khasanah, M. Pd SUSUNAN KOORDINAT BAGIAN-1 Oleh: Fitria Khasanah, M. Pd Program Studi Pendidikan Matematika Fakultas Keguruan dan Ilmu Pendidikan Universitas PGRI Yogyakarta 2010 Letak Suatu Titik pada Garis Lurus O g

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2009/2010

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2009/2010 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 9/. Diberikan premis sebagai berikut : Premis : Jika harga BBM naik, maka harga bahan pokok naik. Premis : Jika harga bahan pokok naik maka

Lebih terperinci

1. Jika f ( x ) = sin² ( 2x + ), maka nilai f ( 0 ) =. a. 2 b. 2 c. 2. Diketahui f(x) = sin³ (3 2x). Turunan pertama fungsi f adalah f (x) =.

1. Jika f ( x ) = sin² ( 2x + ), maka nilai f ( 0 ) =. a. 2 b. 2 c. 2. Diketahui f(x) = sin³ (3 2x). Turunan pertama fungsi f adalah f (x) =. 1. Jika f ( x ) sin² ( 2x + ), maka nilai f ( 0 ). a. 2 b. 2 c. d. e. 2. Diketahui f(x) sin³ (3 2x). Turunan pertama fungsi f adalah f (x). a. 6 sin² (3 2x) cos (3 2x) b. 3 sin² (3 2x) cos (3 2x) c. 2

Lebih terperinci

2009 ACADEMY QU IDMATHCIREBON

2009 ACADEMY QU IDMATHCIREBON NASKAH UJIAN NASIONAL TAHUN PELAJARAN 2008/2009 Jenjang Sekolah : SMA/MA Hari/Tanggal : Rabu/22 April 2009 Program Studi : IPA Waktu : 08.00 10.00 Petunjuk: Pilihlah satu jawababan yang tepat! 1. Perhatikan

Lebih terperinci

Peta Konsep. Standar Kompetensi. Kompetensi Dasar. Memahami bentuk aljabar, relasi, fungsi. persamaan garis lurus

Peta Konsep. Standar Kompetensi. Kompetensi Dasar. Memahami bentuk aljabar, relasi, fungsi. persamaan garis lurus PErSamaan GarIS lurus Untuk SMP Kelas VIII Peta Konsep Standar Kompetensi Memahami bentuk aljabar, relasi, fungsi dan persamaan garis lurus Kompetensi Dasar Menentukan gradien, persamaan dan grafik garis

Lebih terperinci

http://meetabied.wordpress.com SMAN 1 Bone-Bone, Luwu Utara, Sul-Sel Kebahagiaan tertinggi dalam kehidupan adalah kepastian bahwa Anda dicintai apa adanya, atau lebih tepatnya dicintai walaupun Anda seperti

Lebih terperinci

y

y Menyelesaikan Persamaan Kuadrat dengan Grafik Menyesaikan persamaan ax 2 +bx+c=0. Berarti menentukan nilai-nilai x bila f(x) = 0, dimana f(x) = ax 2 +bx+c. apabila grafik fungsi f(x) telah dilukis, maka

Lebih terperinci

Pembahasan Matematika IPA SIMAK UI 2009

Pembahasan Matematika IPA SIMAK UI 2009 Pembahasan Matematika IPA SIMAK UI 2009 Kode 924 Oleh Kak Mufidah 1. Diketahui fungsi. Agar fungsi tersebut senantiasa berada di bawah sumbu x, maka nilai m yang mungkin adalah Agar fungsi tersebut senantiasa

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL TAHUN PELAJARAN

SOAL DAN PEMBAHASAN UJIAN NASIONAL TAHUN PELAJARAN SOAL DAN PEMBAHASAN JIAN NASIONAL TAHN PELAJARAN / SMA/MA PROGRAM STDI IPA MATEMATIKA PAKET A Disusun KHAIRL BASARI khairulfaiq.wordpress.com e-mail :muh_abas@ahoo.com SOAL DAN PEMBAHASAN SOAL N PAKET

Lebih terperinci

Relasi, Fungsi, dan Transformasi

Relasi, Fungsi, dan Transformasi Modul 1 Relasi, Fungsi, dan Transformasi Drs. Ame Rasmedi S. Dr. Darhim, M.Si. M PENDAHULUAN odul ini merupakan modul pertama pada mata kuliah Geometri Transformasi. Modul ini akan membahas pengertian

Lebih terperinci

SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPA 2015

SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPA 2015 SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA IPA 0 Paket Pilihlah jawaban yang paling tepat!. Diberikan premis-premis berikut!. Jika pengguna kendaraan bermotor bertambah banyak maka kemacetan di ruas jalan

Lebih terperinci

Bilangan Real. Modul 1 PENDAHULUAN

Bilangan Real. Modul 1 PENDAHULUAN Modul 1 Bilangan Real S PENDAHULUAN Drs. Soemoenar emesta pembicaraan Kalkulus adalah himpunan bilangan real. Jadi jika akan belajar kalkulus harus paham terlebih dahulu tentang bilangan real. Bagaimanakah

Lebih terperinci