MAT. 10. Irisan Kerucut

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "MAT. 10. Irisan Kerucut"

Transkripsi

1 MAT. 0. Irisan Kerucut i

2 Kode MAT.0 Irisan Kerucut BAGIAN PROYEK PENGEMBANGAN KURIKULUM DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DEPARTEMEN PENDIDIKAN NASIONAL 004 MAT. 0. Irisan Kerucut ii

3 Kode MAT.0 Irisan Kerucut Penyusun: Drs. Mega Teguh B., M.Pd. Editor: Dr. Manuharawati, MSi. Dra. Kusrini, M.Pd. BAGIAN PROYEK PENGEMBANGAN KURIKULUM DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DEPARTEMEN PENDIDIKAN NASIONAL 004 MAT. 0. Irisan Kerucut iii

4 Kata Pengantar Puji syukur kami panjatkan ke hadirat Tuhan Yang Maha Esa atas karunia dan hidayah-nya, kami dapat menyusun bahan ajar modul manual untuk SMK Bidang Adaptif, yakni mata-pelajaran Fisika, Kimia dan Matematika. Modul yang disusun ini menggunakan pendekatan pembelajaran berdasarkan kompetensi, sebagai konsekuensi logis dari Kurikulum SMK Edisi 004 yang menggunakan pendekatan kompetensi (CBT: Competency Based Training). Sumber dan bahan ajar pokok Kurikulum SMK Edisi 004 adalah modul, baik modul manual maupun interaktif dengan mengacu pada St andar Kompetensi Nasional (SKN) atau st andarisasi pada dunia kerja dan industri. Dengan modul ini, diharapkan digunakan sebagai sumber belajar pokok oleh peserta diklat untuk mencapai kompetensi kerja st andar yang diharapkan dunia kerja dan industri. Modul ini disusun melalui beberapa tahapan proses, yakni mulai dari penyiapan materi modul, penyusunan naskah secara tertulis, kemudian disetting dengan bantuan alat-alat komputer, serta divalidasi dan diujicobakan empirik secara terbatas. Validasi dilakukan dengan teknik telaah ahli (expert-judgment), sementara ujicoba empirik dilakukan pada beberapa peserta diklat SMK. Harapannya, modul yang telah disusun ini merupakan bahan dan sumber belajar yang berbobot untuk membekali peserta diklat kompetensi kerja yang diharapkan. Namun demikian, karena dinamika perubahan sain dan teknologi di industri begitu cepat terjadi, maka modul ini masih akan selalu dimintakan masukan untuk bahan perbaikan atau direvisi agar supaya selalu relevan dengan kondisi lapangan. Pekerjaan berat ini dapat terselesaikan, tentu dengan banyaknya dukungan dan bantuan dari berbagai pihak yang perlu diberikan penghargaan dan ucapan terima kasih. Oleh karena itu, dalam kesempatan ini tidak MAT. 0. Irisan Kerucut iv

5 berlebihan bilamana disampaikan rasa terima kasih dan penghargaan yang sebesar-besarnya kepada berbagai pihak, terutama tim penyusun modul (penulis, editor, tenaga komputerisasi modul, tenaga ahli desain grafis) atas dedikasi, pengorbanan waktu, tenaga, dan pikiran untuk menyelesaikan penyusunan modul ini. Kami mengharapkan saran dan kritik dari para pakar di bidang psikologi, praktisi dunia usaha dan industri, dan pakar akademik sebagai bahan untuk melakukan peningkatan kualitas modul. Diharapkan para pemakai berpegang pada azas keterlaksanaan, kesesuaian dan fleksibilitas, dengan mengacu pada perkembangan IPTEK pada dunia usaha dan industri dan potensi SMK dan dukungan dunia usaha industri dalam rangka membekali kompetensi yang terst andar pada peserta diklat. Demikian, semoga modul ini dapat bermanfaat bagi kita semua, khususnya peserta diklat SMK Bidang Adaptif untuk mata-pelajaran Matematika, Fisika, Kimia, atau praktisi yang sedang mengembangkan modul pembelajaran untuk SMK. Jakarta, Desember 004 a. n. Direktur Jenderal Pendidikan Dasar dan Menengah Direktur Pendidikan Menengah Kejuruan, Dr. Ir. Gatot Hari Priowirjanto, M. Sc. NIP MAT. 0. Irisan Kerucut v

6 DAFTAR ISI Halaman Sampul... i Halaman Francis... ii Kata Pengantar... iii Daftar Isi... v Peta Kedudukan Modul... vii Daftar Judul Modul... viii Glosary... ix I. PENDAHULUAN A. Deskripsi... B. Prasyarat... C. Petunjuk Penggunaan Modul... D. Tujuan Akhir... E. Kompetensi... 3 F. Cek Kemampuan... 5 II. PEMBELAJARAN A. Rencana Belajar Peserta Diklat... 6 B. Kegiatan Belajar Kegiatan Belajar... 7 a. Tujuan Kegiatan Pembelajaran... 7 b. Uraian Materi... 7 c. Rangkuman... 0 d. Tugas... e. Kunci Jawaban Tugas... f. Tes Formatif... 3 g. Kunci Jawaban Formatif Kegiatan Belajar... 5 a. Tujuan Kegiatan Pembelajaran... 5 b. Uraian Materi... 5 c. Rangkuman d. Tugas e. Kunci Jawaban Tugas f. Tes Formatif g. Kunci Jawaban Formatif MAT. 0. Irisan Kerucut vi

7 3. Kegiatan Belajar a. Tujuan Kegiatan Pembelajaran... 4 b. Uraian Materi... 4 c. Rangkuman... 5 d. Tugas... 5 e. Kunci Jawaban Tugas... 5 f. Tes Formatif g. Kunci Jawaban Formatif Kegiatan Belajar a. Tujuan Kegiatan Pembelajaran b. Uraian Materi c. Rangkuman... 6 d. Tugas... 6 e. Kunci Jawaban Tugas... 6 f. Tes Formatif g. Kunci Jawaban Formatif III. EVALUASI KUNCI EVALUASI IV. PENUTUP DAFTAR PUSTAKA MAT. 0. Irisan Kerucut vii

8 PETA KEDUDUKAN MODUL MAT.0 MAT.0 MAT.03 MAT.04 MAT.05 MAT.06 MAT.07 MAT.08 MAT.09 MAT.0 MAT. MAT. MAT.4 MAT.5 MAT.3 MAT.6 MAT. 0. Irisan Kerucut viii

9 Daftar Judul Modul No. Kode Modul Judul Modul MAT.0 Matrik MAT.0 Logika Matematika 3 MAT.03 Persamaan dan Pertidaksamaan 4 MAT.04 Geometri Dimensi Dua 5 MAT.05 Relasi Dan Fungsi 6 MAT.06 Geometri Dimensi Tiga 7 MAT.07 Peluang 8 MAT.08 Bilangan Real 9 MAT.09 Trigonometri 0 MAT.0 Irisan Kerucut MAT. Statistika MAT. Barisan 3 MAT.3 Aproksimasi Kesalahan 4 MAT.4 ProgramLinier 5 MAT.5 Vektor 6 MAT.6 Matematika Keuangan MAT. 0. Irisan Kerucut ix

10 Glossary ISTILAH Lingkaran Jari-jari lingkaran Ellips Parabola Hiperbola KETERANGAN Himpunan titik-titik (pada bidang datar) yang memiliki jarak tetap terhadap suatu titik tertentu. Selanjutnya titik itu disebut pusat lingkaran. Ruas garis yang menghubungkan tiap-tiap titik pada lingkaran dan titik pusat lingkaran. Himpunan titik-titik (pada bidang datar) yang jumlah jaraknya terhadap dua titik tertentu tetap besarnya. Hmpunan titik-titik (pada bidang datar) yang memiliki jarak tetap terhadap suatu titik tertentu dan suatu garis tertentu pula. Titik itu disebut fokus parabola, sedangkan garis itu disebut garis arah atau direktriks. Parabola dapat dilukis jika diketahui garis arah dan titik fokus yang terletak pada suatu garis. Himpunan titik-titik (pada bidang datar) yang selisih jaraknya terhadap dua titik tertentu tetap besarnya. Selanjutnya dua titik itu disebut Titik Fokus Hiperbola. MAT. 0. Irisan Kerucut x

11 BAB I. PENDAHULUAN A. Deskripsi Dalam modul ini anda akan mempelajari 4 Kegiatan Belajar. Kegiatan Belajar adalah Lingkaran, Kegiatan Belajar adalah Ellips, Kegiatan Belajar 3 Parabola, dan Kegiatan Belajar 4 adalah Hiperbola. Dalam Kegiatan Belajar, yaitu Lingkaran, akan diuraikan mengenai unsur-unsur lingkaran beserta deskripsinya, persamaan lingkaran baik pusat di (0,0) maupun di (a,b). Juga dibahas persamaan garis singgung lingkaran, garis singgung persekutuan luar maupun dalam. Dalam Kegiatan Belajar, yaitu ellips akan diuraikan mengenai ellips beserta unsur-unsurnya serta deskripsinya, persamaan ellips, persamaan garis singgung serta aplikasinya. Dalam kegiatan belajar 3 yaitu parabola akan dibicarakan unsur-unsurnya serta deskripsinya, persamaan parabola, persamaan garis singgung pada parabola serta aplikasinya. Dalam kegiatan belajar 4 yaitu hiperbola akan dibicarakan unsur-unsurnya serta deskripsinya, persamaan hiperbola. B. Prasyarat Prasyarat untuk mempelajari modul ini adalah kesebangunan, jarak, kesejajaran, ketegaklurusan dan fungsi. Semua materi prasyarat tersebut terdapat dalam modul relasi dan fungsi dan geometri datar dan ruang. C. Petunjuk Penggunaan Modul Untuk mempelajari modul ini, hal-hal yang perlu anda lakukan adalah sebagai berikut.. Pelajari daftar isi serta skema modul dengan cermat, karena daftar isi dan skema akan menuntun anda dalam mempelajari modul ini dan kaitannya dengan modul-modul yang lain. MAT. 0. Irisan Kerucut

12 . Untuk mempelajari modul ini haruslah berurutan, karena materi yang mendahului merupakan prasyarat untuk mempelajari materi berikutnya. 3. Pahamilah contoh-contoh soal yang ada, dan kerjakanlah semua soal latihan yang ada. Jika dalam mengerjakan soal anda menemui kesulitan, kembalilah mempelajari materi yang terkait. 4. Kerjakanlah soal evaluasi dengan cermat. Jika anda menemui kesulitan dalam mengerjakan soal evaluasi, kembalilah mempelajari materi yang terkait. 5. Jika anda mempunyai kesulitan yang tidak dapat anda pecahkan, catatlah, kemudian tanyakan kepada guru pada saat kegiatan tatap muka atau bacalah referensi lain yang berhubungan dengan materi modul ini. Dengan membaca referensi lain, anda juga akan mendapatkan pengetahuan tambahan. D. Tujuan Akhir Setelah mempelajari modul ini diharapkan anda dapat:. Menemukan persamaan lingkaran beserta unsur-unsurnya,. Menggunakan rumus garis singgung untuk memecahkan masalah, 3. Menggunakan panjang garis singgung persekutuan luar untuk memecahkan masalah, 4. Menemukan persamaan ellips beserta unsur-unsurnya, 5. Menggunakan persamaan ellips untuk memecahkan masalah, 6. Menemukan persamaan parabola beserta unsur-unsurnya, 7. Menggunakan persamaan parabola untuk memecahkan masalah menentukan frekuensi harapan suatu kejadian, 8. Menemukan persamaan hiperbola beserta unsur-unsurnya, 9. Menggunakan persamaan hiperbola untuk memecahkan masalah. MAT. 0. Irisan Kerucut

13 E. Kompetensi Kompetensi Program Keahlian Mata Diklat-Kode Durasi Pembelajaran : IRISAN KERUCUT : Program Adaptif : MATEMATIKA/MAT0 : menit SUB KOMPETENSI KRITERIA KINERJA LINGKUP BELAJAR. Menerapkan konsep Lingkaran. Menerapkan konsep parabola Unsur-unsur lingkaran dideskripsikan sesuai ciricirinya Persamaan lingkaran ditentukan berdasarkan unsur-unsur yang diketahui Garis singgung sekutu luar dan dalam dilukis dari dua lingkaran yang diketahui Panjang garis singgung sekutu luar dan dalam dihitung sesuai jari-jari dan jarak pusat kedua lingkaran Konsep lingkaran diterapkan dalam penyelesaian masalah kejuruan. Unsur-unsur parabola dides-kripsikan sesuai ciricirinya Persamaan parabola ditentukan berdasarkan unsur-unsur yang diketahui Konsep parabola diterapkan dalam penyelesaian masalah kejuruan Unsur-unsur lingkaran Persamaan lingkaran Garis singgung sekutu luar Unsur-unsur parabola Persamaan parabola dan grafiknya MATERI POKOK PEMBELAJARAN SIKAP PENGETAHUAN KETERAMPILAN Teliti dan cermat dalam menyelesaikan masalah irisan kerucut Teliti dan cermat dalam menyelesaikan masalah irisan kerucut Pengertian unsur-unsur lingkaran Penentuan persamaan lingkaran Pengertian garis singgung sekutu Penentuan panjang garis singgung sekutu Penerapan konsep lingkaran dalam menyelesai-kan masalah kejuruan Unsur-unsur parabola - Direktriks - Koordinat titik puncak - Koordinat titik fokus - Persamaan sumbu Grafik persamaan parabola Penerapan konsep para-bola dalam menyelesai-kan masalah kejuruan Menggambar irisan kerucut. Menggunakan persamaan lingkaran, parabola, elips, hiperbola dalam menyelesaikan masalah irisan kerucut. MAT. 0. Irisan Kerucut 3

14 SUB KOMPETENSI KRITERIA KINERJA LINGKUP BELAJAR 3. Menerapkan konsep elips 4. Menerapkan konsep hiperbola Unsur-unsur elips dideskripsikan sesuai ciri-cirinya Persamaan elips ditentukan berdasarkan unsur-unsur yang diketahui Konsep elips diterapkan dalam penyelesaian masalah kejuruan. Unsur-unsur hiperbola dideskripsikan sesuai ciricirinya Persamaan hiperbola ditentukan berdasarkan unsur-unsur yang diketahui Konsep hiperbola diterapkan dalam penyelesaian masalah kejuruan Unsur-unsur Elips Persamaan Elips dan grafiknya Unsur-unsur hiperbola Persamaan hiperbola dan sketsanya. MATERI POKOK PEMBELAJARAN SIKAP PENGETAHUAN KETERAMPILAN Teliti dan cermat dalam menyelesaikan masalah irisan kerucut Teliti dan cermat dalam menyelesaikan masalah irisan kerucut Pengertian Elips Persamaan Elips Unsur-unsur elips - Koordinat titik puncak - Koordinat titik pusat - Koordinat fokus - Sumbu mayor dan sumbu minor Sketsa elips Penerapan konsep elips dalam menyelesaikan masalah kejuruan. Pengertian hiperbola dan unsur-unsurnya: - Titik Pusat - Titik puncak - Titik fokus - Asimtot - Sumbu mayor - Sumbu minor Sketsa parabola Penerapan konsep hiperbola dalam menyelesaikan masalah kejuruan. MAT. 0. Irisan Kerucut 4

15 F. Cek kemampuan Kerjakanlah soal-soal berikut ini, jika anda dapat mengerjakan sebagian atau semua soal berikut ini, maka anda dapat meminta langsung kepada instruktur atau guru untuk mengerjakan soal-soal evaluasi untuk materi yang telah anda kuasai pada BAB III.. Tentukan persamaan lingkaran yang pusatnya O(0,0) dengan jari-jari 4.. Tentukan persamaan lingkaran yang pusatnya A(a,b) dengan jari-jari Tentukan persamaan ellips yang pusatnya O(0,0) dengan panjang sumbu panjang 8 dan sumbu pendek Tentukan persamaan ellips yang pusatnya P(-,5) dengan panjang sumbu panjang 8 dan sumbu pendek 4. x 5. Tentukan koordinat titik-titik api dari ellips y Tentukan persamaan ellips yang eksentrisitas numeriknya e = 3 salah satu titik apinya F(6,0). 7. Tentukan tititk api dan persamaan garis arah parabola y =4x. 8. Carilah persamaan garis yang menghubungkan titik M dan titik api parabola y =0x, jika absis titik M adalah Tentukan nilai k sehingga persamaan y=kx+ menyinggung parabola y =4x. 0. Tentukan persamaan hiperbola yang pusatnya di (0,0) dan panjang sumbu hiperbola masing-masing 6 dan. Tentukan pula jarak antara dua fokus, persamaan direktrik, dan asimtot.. Tentukan persamaan hiperbola yang pusatnya di (0,0) jika eksentrisitas 3 nya sedangkan jarak antara kedua fokus 0. MAT. 0. Irisan Kerucut 5

16 BAB II. PEMBELAJARAN A. Rencana Belajar SiSWA Kompetensi Sub Kompetensi : Menerapkan konsep irisan kerucut : - Menerapkan konsep lingkaran - Menerapkan konsep ellips - Menerapkan konsep parabola - Menerapkan konsep hiperbola Tulislah semua jenis kegiatan yang Siswa lakukan di dalam tabel kegiatan di bawah ini. Jika ada perubahan dari rencana semula, berilah alasannya kemudian mintalah tsiswa tangan kepada guru atau instruktur Siswa. Jenis Kegiatan Tanggal Waktu Tempat Belajar Alasan perubahan Tanda Tangan Guru MAT. 0. Irisan Kerucut 6

17 B. Kegiatan Belajar. Kegiatan Belajar : Lingkaran a. Tujuan Kegiatan Pembelajaran Setelah mempelajari kegiatan belajar ini, diharapkan anda dapat mendeskripsikan irisan kerucut yaitu lingkaran beserta pusat dan jari-jarinya. Memahami unsur-unsur lingkaran. Menentukan persamaan lingkaran jika pusat dan jari-jarinya diketahaui. Menghitung panjang garis sekutu luar dan dalam dari dua lingkaran. Dapat melukis garis singgung sekutu luar dan dalam dari dua lingkaran. Dapat menyelesaikan masalah yang berkaitan dengan lingkaran. b. Uraian Materi Kurva lengkung sederhana dan teratur yang banyak dijumpai dalam kehidupan sehari-hari adalah lingkaran. Buatlah kerucut dari kertas manila, kemudian potong sejajar bidang alas. Berbentuk apakah permukaan kerucut yang dipotong tadi Permukaan kerucut yang dipotong tadi berbentuk lingkaran. Dalam matematika, lingkaran didefinisikan sebagai himpunan titik-titik (pada bidang datar) yang memiliki jarak tetap terhadap suatu titik tertentu. Selanjutnya titik itu disebut pusat lingkaran. Sedangkan ruas garis yang menghubungkan tiap-tiap titik pada lingkaran dan titik pusat lingkaran disebut jari-jari lingkaran. Jadi lingkaran dapat dilukis jika titik pusat dan jari-jari lingkaran diketahui. MAT. 0. Irisan Kerucut 7

18 MENENTUKAN PERSAMAAN LINGKARAN Ambil sebarang titik pada lingkaran misal T(x,y ) dan titik O sebagai pusat lingkaran. Tarik garis melalui T tegak lurus T(x,y ) sumbu x misal di T. r Pandang O T T O T T merupakan segitiga siku-siku, dimana membentuk sudut siku-siku di titik T. Sehingga berlaku teorema pytagoras: O T + T T = OT x + y = r O T Karena berlaku untuk semua titik pada lingkaran maka x + y = r x + y = r merupakan persamaan lingkaran yang pusatnya O(0,0) dan jari-jari r Contoh a. Persamaan lingkaran pusatnya O(0,0) dan jari-jari 3 adalah x + y = 9 b. Persamaan lingkaran pusatnya O(0,0) dan jari-jari 5 adalah x + y = 5 c. Persamaan lingkaran pusatnya O(0,0) dan jari-jari adalah x + y = Contoh a. x + y = 6 adalah lingkaran dengan pusat O(0,0) dan jari-jari 4 b. x + y = 4 adalah lingkaran dengan pusat O(0,0) dan jari-jari MAT. 0. Irisan Kerucut 8

19 PERSAMAAN LINGKARAN PUSAT TIDAK PADA (0,0) Ambil sebarang titik pada lingkaran misal T(x,y ) dan titik P(a,b) sebagai pusat lingkaran. O r P Q T(x,y ) Tarik garis melalui T tegak lurus sumbu x misal di T. Buat garis yang melalui titik P sejajar sumbu x, sehingga memotong TT di T titik Q. Pandang PQT. PQT merupakan segitiga siku-siku di titik Q, TQ = (y b) dan PQ = (x a). Sehingga berlaku teorema pytagoras: PQ + QT = OT (x a) + (y b) = r Karena berlaku untuk setiap titik T(x,y ) pada lingkaran, maka berlaku (x a) + (y b) = r (x a) + (y b) = r merupakan persamaan lingkaran pusat (a,b) dengan jari-jari r Contoh 3 Tentukan persamaan lingkaran dengan a. pusat (, 3) dan jari-jari 5 b. pusat (-3,) dan jari-jari c. pusat (, -) dan jari-jari Penyelesaian a. Persamaan lingkaran dengan pusat (, 3) dan jari-jari 5 adalah (x ) + (y - 3) = 5 b. Persamaan lingkaran dengan pusat (-3, ) dan jari-jari adalah (x + 3) + (y - ) = 4. MAT. 0. Irisan Kerucut 9

20 c. Persamaan lingkaran dengan pusat (, -) dan jari-jari adalah (x ) + (y + ) = Contoh 4 Tentukan koordinat pusat dan jari jari lingkaran dengan persamaan 4x + 4y -4x + 6y -9 = 0 Penyelesaian 4x + 4y -4x + 6y -9 = 0, kedua ruas dibagi 4 didapat x + y 9 -x + 4y - = 0 4 x -x + y 9 + 4y - = 0, dijadikan kuadrat sempurna didapat 4 x -x + + y 9 + 4y +4 = (x ) + (y + ) = 9 Jadi Koordinat pusat lingkaran adalah (, -) dan jari-jarinya 3 Contoh 5 Tentukan persamaan lingkaran yang berpusat di titik P(, 3) dan melalui titik Q(-,5) Penyelesaian Jari-jari lingkaran adalah panjang r = PQ = r = PQ = ( x P xq ) ( yp yq ( ) (3 5) ) r = PQ = 3 Jadi persamaan lingkarannya adalah (x ) + (y - 3) = 3 BENTUK UMUM PERSAMAAN LINGKARAN Bentuk umum persamaan lingkaran didapat dengan menurunkan persamaan lingkaran yang berpusat tidak pada (0,0) berikut ini: MAT. 0. Irisan Kerucut 0

21 (x a) + (y b) = r x ax+ a + y by + b = r x + x ax by + a + b = r x + y ax by + a + b - r = 0 x + y + Ax + By + C = 0, dengan A = -a, B = -b dan C = a + b - r atau a = - A, b = - B dan r = ( A ) ( B) C Bentuk umum persamaan ingkaran adalah x + y + Ax + By + C = 0 dengan pusat di ( A, B) dan jari-jari r = ( A ) ( B) C Contoh 6 Tentukan koordinat pusat dan jari jari lingkaran dengan persamaan 4x + 4y -4x + 6y -9 = 0 Penyelesaian 4x + 4y -4x + 6y -9 = 0, kedua ruas dibagi 4 didapat x + y 9 -x + 4y - = A = -, B = 4 dan C = -, maka pusat lingkaran ( A, B ) = (, -) dan 4 jari-jarinya r = ( A ) ( B) C = ( ) 9 ( ) + 4 r = 9 =3 Jadi koordinat pusat lingkaran adalah (, -) dan jari-jarinya 3 Bandingkan jawaban ini dengan contoh 4. Lebih mudah mana Contoh 7 Tentukan persamaan lingkaran yang melalui tiga titik P(,0), Q(0,) dan R(,). Penyelesaian Misal persamaan lingkaranya adalah x + y + Ax + By + C = 0 MAT. 0. Irisan Kerucut

22 Titik P (,0) pada lingkaran berarti A. + B.0 + C = 0 A + C = - atau A = - C...() Titik Q (0,) pada lingkaran berarti A.0 + B. + C = 0 B + C = - atau B = - - C...() Titik R (,) pada lingkaran berarti + + A. + B. + C = 0 A + B + C = -8...(3) Substitusi () dan () pada (3) didapat (- C ) + (--C) + C = C C + C = 0-3C =- 4 4 C = 3 7 Dari () didapat A = Dari () didapat B = - 3 Jadi persamaan lingkarannya adalah x + y x y = 0 PERSAMAAN GARIS SINGGUNG LINGKARAN Garis singgung lingkaran adalah suatu garis yang memotong lingkaran tepat pada satu titik. a. Gradien garis singgung diketahui dan lingkaran berpusat di (0,0) Misal persamaan garis singgung: y = mx + k Sehingga ada satu titik pada lingkaran: x + y = r yang memenuhi persamaan garis singgung di atas. Akibatnya: x + (mx + k ) = r x + m x + mkx+ k = r (+m )x + mkx+ k - r = 0; merupakan persamaan kuadrat dalam variabel x. Agar persamaan kuadrat itu mempunyai satu r O Y = mx + k r X +Y = r MAT. 0. Irisan Kerucut

23 harga x, maka harus terpenuhi syarat diskriminan dari persamaan itu sama dengan nol, yaitu: D = 0. (mk) 4. (+m ). (k - r ) = 0 4 m k - 4 (k + m k - r - m r ) = 0-4 (k - r - m r ) = 0 k - r (+m ) = 0 k = r m Jadi persamaan garis singgungnya adalah y = mx r m Persamaan garis singgung pada lingkaran x + y = r dengan gradien m adalah y = mx r m Contoh 8 Tentukan garis singgung pada lingkaran x + y = 6 dengan gradien 3 Penyelesaian Persamaan garis singgung pada lingkaran x + y = r dengan gradien m adalah y = mx r y = 3 x 4 m 3 y = 3 x 4 0 b. Gradien garis singgung diketahui dan lingkaran berpusat di (a, b) Anda dapat menurunkan rumusnya dengan cara yang serupa dengan di atas. Anda dapat menemukan persamaan garis singgung lingkaran yang berpusat di (a,b) yaitu y-b = m(x-a) r m Persamaan garis singgung pada lingkaran (x a) + (y b) = r dengan gradien m adalah y - b = m(x a) r m MAT. 0. Irisan Kerucut 3

24 Contoh 9 Tentukan garis singgung pada lingkaran (x + 3) + (y - ) = 4 dengan gradien - Penyelesaian Persamaan garis singgung pada lingkaran x + y = r dengan gradien m adalah y - b = m(x - a) r y - = 3 (x + 3) m ( ) y = 3 x c. Persamaan garis singgung jika titik singgungnya diketahui pada lingkaran berpusat di (0,0) Misal titik singgungnya di T (x,y ) Persamaan garis: y y = m ( x x ) r Dengan m = tg = y x - y - x P(x,y ) O Sehingga persamaan garis yang X +Y = r melalui PQ adalah Y - y = m (X-x ) Q(x,y ) r y y = y x - y - x ( x x )...() P pada lingkaran sehingga berlaku : x + y = r Q pada lingkaran sehingga berlaku : x + y = r x + y = x + y atau x - x = y - y (x - x ) (x + x ) = (y - y ) (y + y ) y y x x y x x y y y x x y y x x MAT. 0. Irisan Kerucut 4

25 Sehingga y- y = x ( x x ) y x y Jika Q mendekati P sehingga hampir x = x dan y = y, dimana PQ = 0. y- y = x ( x x ) y y y y = - x x + x x x + y y = x + y x x + y y = r Persamaan garis singgung dengan titik singgung (x,y ) pada lingkaran x + y = r adalah x x + y y = r Contoh 0 Tentukan persamaan garis singgung pada lingkaran x + y = 5 di titik (3,-4) Penyelesaian Persamaan garis singgung dengan titik singgung (3,-4) pada lingkaran x + y = 5 adalah 3x - 4y = 5 d. Titik singgungnya diketahui pada lingkaran berpusat di (a, b) Persamaan lingkaran yang berpusat di (a,b) adalah (x a) + (y b) = r, dapat diubah menjadi (x - a)(x - a) + (y - b)(y - b) = r. Analogi dengan yang anda pelajari di atas, maka persamaan garis singgungnya adalah (x - a)(x - a) + (y - b)(y - b) = r. Persamaan garis singgung dengan titik singgung (x,y ) pada lingkaran (x a) + (y b) = r adalah (x - a)(x - a) + (y - b)(y - b) = r atau x x + y y - a( x + x ) b(y + y ) + a + b = r x x + y y - a( x + x ) b(y + y ) + a + b - r = 0 MAT. 0. Irisan Kerucut 5

26 x x + y y - (- A)( x + x ) (- B )(y + y ) + a + b - r = 0 karena a = - A, b = - B dan r = x x + y y + A( x + x ) + B (y + y ) + C = 0 ( A ) ( B) C, maka Persamaan garis singgung dengan titik singgung (x,y ) pada lingkaran x + y + Ax + By + C = 0, adalah x x + y y + A( x + x ) + B (y + y ) + C = 0 Contoh Tentukan persamaan garis singgung pada lingkaran x + y + 6x 4 y -4 =0 di titik (,) Penyelesaian Dari persamaan lingkaran x + y + 6x 4 y -4 =0 diperoleh A = 6, B = -4 dan C = -3. Jadi persamaan garis singgung di titik (,) adalah: x x + y y + A( x + x ) + B (y + y ) + C = 0 x + y +3(x + ) + -(y + ) 4 = 0 x + y + 3x + 3 y 4 = 0 4x - y 3 = 0 Contoh Tentukan persamaan garis singgung pada lingkaran (x 6) + (y + ) = 6 di titik (,). Penyelesaian Persamaan garis singgung di titik (,) adalah: (x - a)(x - a) + (y - b)(y - b) = r. ( - 6)(x - 6) + ( + )(y + )) = 6-4(x - 6) + 4(y + )) = 6 atau -4x y + 8 = 6 MAT. 0. Irisan Kerucut 6

27 -4x + 4y = -6, jika kedua ruas dikalikan 4 didapat: x - y = 4 merupakan persamaan garis singgung yang diminta. PERSAMAAN GARIS SINGGUNG SEKUTU LUAR DAN DALAM Perhatikan gambar di samping. Diketahui dua buah lingkaran masing-masing r P T Q d Penyelesaian: Perhatikan T T Q siku-siku di T T Q = P P = d dan T Q = r r r P T Keterangan: d = jarak kedua pusat P = pusat lingkaran P = pusat lingkaran K L dan L dengan jari-jari berurutan adalah r dan r dengan r > r, sedangkan jarak antara titik pusat lingkaran itu adalah d. T T disebut ruas garis singgung sekutu luar. Berapakah panjang ruas garis singgung sekutu luar yang menghubungkan kedua lingkaran tersebut Dengan teorema Pythagoras didapat T T = T T = ( T Q Q) ( T ) ( d ) ( r r ) Panjang garis singgung sekutu luar antara dua lingkaran yang jarijarinya r dan r dengan r > r, serta jarak antara kedua pusat = d adalah ( d ) ( r r ) Contoh 3 Tentukan panjang garis singgung sekutu luar antara lingkaran dengan persamaan x + y + 4x + 6y -4= 0 dan x + y + 0x + 4y 0 =0. MAT. 0. Irisan Kerucut 7

28 Penyelesaian Lingkaran x + y + x -0y += 0 pusatnya di (,-5) dan jari-jarinya 5 Lingkaran x + y + x + 4y -5= 0 pusatnya di (6,7) dan jari-jarinya 0 Jarak kedua pusat lengkaran = d = d = ( 6) ( 5 ( 5) ( ) 7) d = 3 Panjang garis singgung sekutu luar adalah ( d ) ( r r ) = ( 3) (0 5) = 5 69 = 44 = Perhatikan gambar di samping. Diketahui dua buah lingkaran masing-masing L dan L dengan jari-jari berurutan adalah r dan r, sedangkan jarak antara titik pusat lingkaran itu adalah d. T T disebut garis singgung sekutu dalam. Berapakah panjang ruas garis singgung sekutu dalam yang menghubungkan kedua lingkaran tersebut r P T d K Keterangan: d = jarak kedua pusat P = pusat lingkaran P = pusat lingkaran r T P Penyelesaian: Buat garis melalui titik P sejajar T T yaitu P R Buat garis melalui titik P sejajar T T yaitu P Q Pandang segi-4 P QP R; T T P Q dan T T P R maka P Q // P R..() T T // P R dan T T // P Q maka P R // P Q...() besar P QP = besar P QP = 90 0 (sehadap) (3) Dari (),(), dan (3) dapat disimpulkan bahwa segi-4 P QP R adalah persegi panjang. MAT. 0. Irisan Kerucut 8

29 Pandang P Q P siku-siku di Q. maka berlaku teorema phytagoras (P P ) = (P Q) + (QP ) (P P ) = (T T ) + (r + r ) (d) = (T T ) + (r + r ) T T = ( d ) ( r r ) R T r P r T P Q Panjang garis singgung sekutu dalam antara dua lingkaran yang jarijarinya r dan r, serta jarak antara kedua pusat d adalah ( d ) ( r r ) Contoh 4 Tentukan panjang garis singgung sekutu luar antara lingkaran dengan persamaan x + y + x + 4y + 4= 0 dan x + y - x - 0y + 3 =0. Penyelesaian Lingkaran pusatnya x + y + x + 4y + 4= 0 di (,-) dan jari-jarinya Lingkaran x + y + x + 4y -5= 0 pusatnya di (6,0) dan jari-jarinya Jarak kedua pusat lengkaran = d = d = ( 6) ( ( 0) 5) ( ) = 3 Panjang garis singgung sekutu dalam adalah ( d ) ( r r ) = ( 3) ( ) = 69 9 = 60 MAT. 0. Irisan Kerucut 9

30 c. Rangkuman Kegiatan a. x + y = r merupakan persamaan lingkaran yang pusatnya O(0,0) dan jari-jari r b. (x a) + (y b) = r merupakan persamaan lingkaran pusat (a,b) dengan jari-jari r c. Bentuk umum persamaan ingkaran adalah x + y + Ax + By + C = 0 dengan pusat di ( A, B) dan jari-jari r = ( A ) ( B) C d. Persamaan garis singgung pada lingkaran x + y = r dengan gradien m adalah y = mx r m e. Persamaan garis singgung pada lingkaran (x a) + (y b) = r dengan gradien m adalah y - b = m(x a) r m f. Persamaan garis singgung dengan titik singgung (x,y ) pada lingkaran x + y = r adalah x x + y y = r g. Persamaan garis singgung dengan titik singgung (x,y ) pada lingkaran (x a) + (y b) = r adalah (x - a)(x - a)+ (y - b)(y - b) = r h. Persamaan garis singgung dengan titik singgung (x,y ) pada lingkaran x + y + Ax + By + C = 0, adalah x x + y y + A( x + x ) + B (y + y ) + C =0 i. Panjang garis singgung sekutu luar antara dua lingkaran yang jari-jarinya r dan r dengan r > r, serta jarak antara kedua pusat = d adalah ( d ) ( r r ) j. Panjang garis singgung sekutu dalam antara dua lingkaran yang jari-jarinya r dan r, serta jarak antara kedua pusat d adalah ( d ) ( r r ) MAT. 0. Irisan Kerucut 0

31 d. Tugas Agar anda memahami materi-materi dalam kegiatan belajar ini, kerjakan soal-soal latihan berikut ini.. Tentukan persamaan lingkaran dengan syarat: a) bertitik pusat di P(3,-4) dan melalui O(0,0) b) melalui titik titk K(3,) dan L(-,3) dan titik pusatnya terletak pada garis 3x-y-=0.. Tentukan titik pusat dan jari-jari dari lingkaran dengan persamaan x + y + 8x + 4y + 4= Tentukan persamaan lingkaran melalui titik K(,), L(,-) dan M(,0) 4. Tentukan harga k, agar garis y = kx dan lingkaran x + y -0x + 6= 0 a) berpotongan di dua titik b) bersinggungan c) tidak berpotongan 5. Tentukan persamaan garis singgung yang melalui titik O(0,0) pada lingkaran x + y 6x - y + 8= 0 6. Diketahui dua buah roda yang jarak kedua As adalah 78 cm, roda pertama jari-jarinya 50 cm dan roda kedua 0 cm. Pada kedua roda dipasang rantai. Tentukan panjang rantai yang tidak menempel di roda. d. Kunci Jawaban Tugas Apabila anda menemui kesulitan dalam menyelesaikan soal latihan, anda dapat mengikuti petunjuk berikut ini. Jika anda bisa menjawabnya, cocokanlah jawaban anda dengan kunci berikut ini.. a) Persamaan lingkaran dengan pusat P(3,-4) dan melalui O(0,0) adalah (x 3) + (y + 4) = 5. Jarak OP sebagai jari-jari b) Misalkan persamaan lingkarannya adalah x + y + Ax By +C = 0, dimana pusat lingkaran P ( A, B). Koordinat-koordinat titik K dan L disubstitusikan pada persamaan lingkaran dan koordinat P MAT. 0. Irisan Kerucut

32 disubstitusikan pada garis 3x y =0. Sehingga diperoleh sistem persamaan linier yang terdiri atas 3 persamaan dan 3 variabel yaitu A, B, dan C. Selesaikan sistem persamaan itu dengan substitusi dan/atau eliminasi didapat A = -4, B = -8 dan C = 0. Jadi persamaan lingkarannya adalah x + y - 4x - 8y +0 = 0.. Persamaan lingkaran tersebut dapat diubah menjadi (x + 5 ) + (y + 4) =, jadi pusatnya (-,-) dan jari-jarinya 4 3. Misalkan persamaan lingkarannya adalah x + y + Ax By +C = 0. Substitusikan koordinat titik P, Q, dan R pada persamaan lingkaran, sehingga diperoleh sistem persamaan linier yang terdiri atas 3 persamaan dan 3 variabel yaitu A, B, dan C. Selesaikan sistem persamaan itu dengan substitusi dan/atau eliminasi didapat A = -, B = 0 dan C = 0. Jadi persamaan lingkarannya adalah x + y - x = 0 4. Misalkan garis dan lingkaran berpotonganmaka didapat persamaan kuadrat dalam x, yaitu x + k x - 0x +6= 0 ( + k ) x 0x + 6 = 0, diskriminan dari persamaan ini adalah D = (6-8k) (6 + 8k). Garis dan lingkaran akan: a) berpotongan, jika D>0, didapat < k < 4 3 b) bersinggungan, jika D = 0, didapat k = atau k = 4 3 c) tidak berpotongan, jika D<0, didapat k <- 4 3 atau k > Perhatikan titik O(0,0) terletak diluar lingkaran. Mengapa Misalkan garis singgung yang dicari menyinggung lingkaran di titik S(a,b), maka persamaan garis singgungnya adalah ax + by - 3(x + a) - (y + b) +8 = 0 (a - 3)x + (b - )y 3a b +8=0 MAT. 0. Irisan Kerucut

33 Garis singgung ini melalui (0,0), maka 3a b +8=0 b= 8 3a... () S (a,b) pada lingkaran, maka a + b 6a b + 8= 0... () Substitusi () pada () didapat a + (8 3a ) 6a (8 3a ) + 8= 0 a a + 9a 6a 6+ 6a + 8= 0 0a -48a + 56 = 0 (a - 4 )(5a - 4) = 0 4 a = atau a =, akibatnya b = atau b = Jadi persamaan garis singgungnya adalah y = x atau x + 7 y = 0 6. Panjang rantai yang tidak menempel di roda merupakan panjang garis singgung luar. Panjang rantai = = ( d ) ( r r ( 78) (30) ) = 60 cm e. Tes Formatif. Tentukan persamaan lingkaran yang melalui titik (3,4), (5,0) dan (0,5).. Tentukan persamaan garis singgung pada lingkaran x + y = 00 yang melalui titik (6,8) 3. Tentukan pusat dan jari-jari lingkaran x + y +8x 6y = 0 dan apa keistimewaan dari lingkaran ini 4. Tentukan panjang garis singgung persekutuan luar antara lingkaran x + y = 4 dan x + y - 0x + 36 = 0 MAT. 0. Irisan Kerucut 3

34 f. Kunci Jawaban Tes Formatif. Misal persamaan lingkaran yang melalui titik (3,4), (5,0) dan (-5,0), adalah x + y +Ax + By + C= 0 Titik (3,4) pada lingkaran: A + 4B + C= 0 atau 3A + 4B + C=-5 Titik (5,0) pada lingkaran: A C= 0 atau 5A + C= -5 Titik (0,5) pada lingkaran: 5+0 5A C= 0 atau 5A + C= -5. Dari tiga persamaan di atas didapat A = 0, B= 0 dan C = -5 Jadi persamaan lingkarannya adalah x + y - 5 = 0. Titik (6,8) pada lingkaran x + y = 0 Persamaan garis singgung pada lingkaran x + y = 00 yang melalui titik (6,8) adalah 6x + 8y = 00 atau 3x + 4y = Persamaan x + y +8x 6y = 0 dapat diubah menjadi x + 8x + y 6y = 0 x + 8x y 6y + 9= (x + 4) + (y - 4) = 5 Jadi pusat (-4, 3 ) dan jari-jari = 5 Anda dapat juga menggunakan cara lain. 4. Lingkaran x + y = 4 pusatnya (0,0) dan jari-jarinya x + y - 0x + 36 = 0 pusatnya (0, 0) dan jari-jarinya 8 Jarak kedua pusat = 0 Panjang garis singgung luar = = ( d ) ( r r ( 0) (8 ) ) = 8 MAT. 0. Irisan Kerucut 4

35 . Kegiatan Belajar : Ellips a. Tujuan Kegiatan Belajar Setelah mempelajari kegiatan belajar ini, diharapkan anda dapat: Memahami unsur-unsur ellips Menentukan persamaan ellips jika pusat dan jari-jarinya diketahaui. Dapat menyelesaikan masalah yang berkaitan dengan ellips. b. Uraian Materi Kegiatan Belajar Kurva lengkung sederhana dan teratur yang mempunyai dua sumbu simetri adalah Ellips. Buatlah model kerucut dari kertas manila, kemudian potong menurut bidang tidak sejajar bidang alas tetapi tidak memotong bidang alas kerucut. Berbentuk apakah permukaan kerucut yang terpotong Permukaan kerucut yang terpotong berbentuk ellips. Dalam matematika ellips didefinisikan sebagai himpunan titik-titik (pada bidang datar) yang jumlah jaraknya terhadap dua titik tertentu tetap besarnya. Selanjutnya dua titik itu disebut Titik Fokus Ellips. UNSUR-UNSUR ELLIPS Perhatikan gambar ellips berikut ini: Keterangan: Titik O disebut koordinat titik pusat ellips F C T O F A Titik A, B, C dan D disebut koordinat titiktitik puncak ellips Titik F dan F disebut koordinat titik-titik fokus ellips AB dan CD berturut-turut disebut D sumbu mayor (sumbu panjang) dan sumbu minor (sumbu pendek) AB = TF +TF MAT. 0. Irisan Kerucut 5

36 PERSAMAAN ELLIPS DENGAN PUSAT DI O(0,0) Misalkan F F = c, merupakan jarak antara dua titik fokus. Maka F (c,0) dan F (-c,0). Misalkan jumlah jarak yang tetap itu adalah a. Ambil sebarang titik pada ellips misal T(x,y ) dan titik O sebagai pusat ellips. Berdasarkan definisi ellips, yaitu: TF + TF = a F T(x,y ) O F ( x y + c) ( x y = a c) ( x y = a - c) ( x y, jika kedua ruas dikuadratkan didapat c) (x -c) + y = 4a + (x + c) + y 4a ( x y c) (x x c + c ) + y = 4a + (x + x c + c) + c 4a ( x y c) -4x c - 4a = 4a ( x y, jika kedua ruas dibagi -4 didapat c) (x c + a ) = a {(x + c) + y }, jika kedua ruas dikuadratkan didapat x c + a 4 + x ca = a (x + x c + c ) + a y a (a c ) = (a c )x + a y Karena a > c maka a c > 0 sehingga kita dapat memisalkan a c = b sehingga persamaan di atas menjadi b x + a y = a b x y b a Karena T(x,y ) adalah titik yang diambil, maka setiap titik itu memenuhi: x a b y c dan disebut eksentrisitas numerik dan ditulis e. Karena a a>c maka 0 < e <. MAT. 0. Irisan Kerucut 6

37 x y Persamaan ellips dengan pusat di O(0,0) adalah a b Contoh Tentukan persamaan ellips yang berpusat di O(0,0) dengan sumbu panjang dan sumbu pendek berturut-turut: a. 8 dan 6 b. 4 dan Penyelesaian a. Sumbu panjang = 8, berarti a = 4. Sumbu pendek = 6, berarti b = 3 Jadi persamaan ellipsnya adalah x y 4 3 atau x y 6 9 b. Sumbu panjang = 4, berarti a =. Sumbu pendek =, berarti b = Jadi persamaan ellipsnya adalah x y atau x y 4 Contoh Tentukan persamaan ellips yang titik apinya terletak pada sumbu x, simetri 3 terhadap titik O, sumbu panjangnya 0 dan eksentrisitas numerik e =. 5 Penyelesaian Sumbu panjang a = 0, berarti a = 0 3 c 3 e =, berarti =. Karena a = 0, dengan demikian c =6 5 a 5 a c = b b = atau b = 64 b = 8, mengapa 8 tidak digunakan Jadi persamaan ellips adalah y MAT. 0. Irisan Kerucut 7

38 PERSAMAAN ELLIPS DENGAN PUSAT TIDAK PADA (0,0) Y T(x,y ) Dengan cara yang sama, ambil sebarang titik pada lingkaran misal T(x,y ) dan titik P(, ) sebagai pusat ellips, maka akan didapat persamaan ellips yaitu: O X ( x ) ( y a b ) Coba anda turunkan asal rumus ini. Contoh 3 Tentukan persamaan ellips yang berpusat di (3, -) dengan sumbu panjang dan sumbu pendek berturut-turut 6 dan 4. Penyelesaian Sumbu panjang = 6, berarti a = 3 Sumbu pendek = 4, berarti b = Jadi persamaan ellipsnya adalah ( x ) ( y ) a b ( x 3) ( y ) 3 ( x 3) ( y ) 9 4 MAT. 0. Irisan Kerucut 8

39 SKETSA ELLIPS Dapatkah anda membuat gambar a ellips Buatlah dengan langkah-langkah sebagai berikut: C T i. Gambarlah di bukumu titik F, F dan panjang a > F F. Tentukan titik A dan B B F F A pada perpanjangan garis F F sedemikian hingga F B = F A dan AB = a D. F B= F A = (a - F F ) 3. Titik T i diperoleh sebagai berikut: a) Buat lingkaran dengan pusat F dan jari-jari r i > F A b) Dari B busurkan lingkaran dengan jari-jari a - r i c) Perpotongan lingkaran pada langkah (a) dan (b) adalah titik T i. d) Lakukan langkah yang sama dengan mengganti peran F dengan F dan sebaliknya. Akan didapat titik-titik C dan D yang memenuhi definisi ellips. Hubungkan titik-titik itu dengan kurva mulus akan didapat sketsa ellips Bermain Sediakan paku pines, kapur tulis atau spidol papan dan tali secukupnya. Tancapkan paku pines pada papan. Gunting tali dengan panjang lebih dari jarak kedua pines. Ikat ujung tali pada masing-masing pines (tali pada posisi kendor). Ambil kapur tulis atau spidol papan dan letakkan menempel tali pada posisi bagian dalam tali dan pines. Gerakan kapur atau spidol menelusuri tali maka akan tergambar ellips. Silahkan mencoba! MAT. 0. Irisan Kerucut 9

40 PERSAMAAN GARIS SINGGUNG ELLIPS Garis singgung ellips adalah suatu garis yang memotong ellips tepat pada satu titik. a. Gradien diketahui Misal persamaan garis singgung: y = mx + k x y Sehingga ada satu titik pada ellips: a b persamaan garis singgung di atas. Akibatnya: yang memenuhi x a ( mx k) b b x + a (mx + k) = a b ; jika kedua ruas dikalikan a b didapat b x + a (m x + k + mkx) = a b (b + a m )x + a k + a mkx - a b = 0 (b + a m )x + a mkx + a (k - b ) = 0 Garis akan menyinggung ellips, jika titik-titik potong berimpit atau memotong di satu titik. Hal ini terjadi apabila persamaan kuadrat di atas mempunyai dua akar yang sama atau apabila diskriminannya sama dengan nol. D = 0 (a mk) 4. (b + a m ). a (k - b ) = 0 (4a 4 m k ) 4a.( b k b 4 + a m k - a m b ) = 0 b k - (b + a m )b = 0 Y = mx + k C(0,b) k - (b + a m ) = 0 k = b a m B(-a,0) O A(a,0) Jadi persamaan garis singgungnya D(0,-b) X a b Y adalah y = mx b a m MAT. 0. Irisan Kerucut 30

41 Contoh 4 Tentukan persamaan garis singgung pada ellips y 6 9, jika garis singgung itu membentuk sudut 45 o dengan sumbu x positip. Penyelesaian Garis singgung itu membentuk sudut 45 o dengan sumbu x positip berarti gradien m = tg 45 o =. Persamaan garis singgungnya y = mx y =. x y = x 5 b 3 a 4 m. Jadi persamaan garis singgungnya adalah y = x + 5 atau y = x 5 Contoh 5 Carilah persamaan garis singgung pada ellips x + 4y = 0 yang tegak lurus ke garis x y 3 = 0. Penyelesaian x y 3 = 0 y = (x 3)/ 3 y = x - Jadi gradien garis x y 3 = 0 adalah m =. Karena garis singgung tegak lurus garis x y 3 = 0, maka gradien garis singgung: m = - m = -. Persamaan ellips x + 4y = 0 dapat diubah menjadi x y 0 5 dengan membagi kedua ruas dengan 0. Persamaan garis singgungnya adalah y = mx b a m y = -. x 5 0 y = - x 5 MAT. 0. Irisan Kerucut 3

42 Jadi persamaan garis singgungnya adalah y + x - 5= 0 atau y + x + 5= 0 GARIS SINGGUNG UNTUK LINGKARAN YANG TIDAK BERPUSAT DI (0,0) Dengan cara yang serupa dengan di atas dapat ditemukan persamaan garis singgung lingkaran yang tidak berpusat di (0,0) misal di (, ) yaitu y- = m(x- ) b a m Contoh 6 Tentukan persmaan garis singgung pada ellips ( x 3) ( y ) 6 9, jika garis singgung itu membentuk sudut 35 o dengan sumbu x positip. Penyelesaian Garis singgung itu membentuk sudut 35 o dengan sumbu x positip berarti gradien m = tg 35 o = -. Persamaan garis singgungnya y- = m(x- ) b a m y + = -(x 3) 3 4 ( ) y + = -x Jadi persamaan garis singgungnya adalah y + x = 6 atau y + x + 4 = 0 b. Titik singgungnya diketahui Misal titik singgungnya di T (x,y ) dan P (x,y ) suatu titik pada ellips, sedangkan persamaan ellips: x a b y y b x a maka berlaku:...() dan T(x,y ) C(0,b) B(-a,0) O D(0,-b) X a P(x,y ) A(a,0) b Y x y b a.() MAT. 0. Irisan Kerucut 3

43 Dari persamaan () dan () didapat: b x + a y = b x + a y b (x - x ) = -a (y - y ) b (x + x ) (x - x ) = -a (y + y ) (y - y ) b ( x x) a ( y y ) y x y x... (3) Karena persamaan garis yang melalui titik Tdan P adalah: y- y = y x x y ( x x ), substitusi (3) pada persamaan ini didapat y- y = b ( x x ) a ( y y ) ( x x ) ; Jika P mendekati T sedemikian P sangat dekat dengan T, maka hampir x = x dan y = y, dimana TP = 0. y- y = b (x ) a (y ) ( x x ) a y y a y + b x x b x = 0 ; kedua ruas dikalikan a a y y + b x x (a y + b x ) = 0 a y y + b x x a b = 0 a y y + b x x = a b x X y Y b a ; kedua ruas dibagi a b Jadi persamaan garis singgung di titik singgung (x,y ) adalah: x x a y y b Contoh 7 x Carilah persamaan garis singgung pada ellips y 30 4 di titik yang absisnya 5. Penyelesaian Titik-titik pada ellips yang absisnya 5, ordinatnya diperoleh dari MAT. 0. Irisan Kerucut 33

44 5 30 y = 4 y 4 y = Jadi titik singgungnya P(5,) dan Q(5, -) Persamaan garis singgung di P adalah 5x y 30 4 Persamaan garis singgung di Q adalah 5x y 30 4 Garis singgung ellips yang tidak berpusat di (, ) Dengan cara yang sama seperti di atas, untuk ellips ( x ) ( y ) a b singgung (x,y ) adalah:, maka persamaan garis singgung di titik ( x )( x ) ( y )( y a b ) Contoh 8 Carilah persamaan garis singgung pada ellips ( x ) ( y 3) 0 5 di titik yang ordinatnya. Penyelesaian Titik-titik pada ellips yang ordinatnya, diperoleh absis ( x ) 0 ( 3) 5 ( x ) 0 5 (x ) + 4 = 0 x 4x = 0 x 4x = 0, kedua ruas dikalikan 0 didapat MAT. 0. Irisan Kerucut 34

45 (x 6)(x + ) = 0 x = 6 atau x = - Jadi titik singgungnya A(6, -) dan B (-,-) (6 )( x ) ( 3)( y 3) Persamaan garis singgung di A = 0 5 4( x ) ( y 3) 0 5, jika kedua ruas dikalikan 0 didapat 4(x ) + 4(y + 3) = 0 4x + 4y = 6 x + y = 4 Persamaan garis singgung di A= (6 )( x ) ( 3)( y 3) 0 5 4( x ) ( y 3) 0 5, jika kedua ruas dikalikan 0 didapat 4(x ) + 4(y + 3) = 0 4x + 4y = 6 x + y = 4 Persamaan garis singgung di B adalah ( )( x ) ( 3)( y 3) 0 5 4( x ) ( y 3), jika kedua ruas dikalikan 0 didapat 0 5-4(x ) + 4(y + 3) = 0-4x + 4y = 0 x + y = 0 MAT. 0. Irisan Kerucut 35

46 C. Rankuman Kegiatan x y Persamaan ellips dengan pusat di O(0,0) adalah a b Parsamaan ellips melalui titik T(x,y ) dan pusatnya di titik P(, ) adalah ( x ) ( y a b ) x y c. Persamaan garis singgungnya m pada ellips adalah a b adalah y = mx b a m d. persamaan garis singgung lingkaran yang tidak berpusat di (0,0) misal di (, ) yaitu y- = m(x- ) b a m e. persamaan garis singgung di titik singgung x x yy (x,y ) pada ellips adalah a b f. Persamaan garis singgung di titik (x,y ) pada ellips ( x ) ( y ) a b, adalah ( x )( x ) ( y )( y ) a b MAT. 0. Irisan Kerucut 36

47 d. Tugas Agar anda memahami materi ellips ini, kerjakan soal-soal berikut secara mandiri.. Tentukan persamaan ellips yang titik apinya terletak pada sumbu x dan simetris terhadap O yang memenuhi syarat jarak kedua titik apinya adalah 4 dan jarak kedua garis arah arahnya adalah 5. x. Tentukan koordinat titik-titik api dari ellips y Tentukan persamaan ellips yang eksentrisitas numeriknya e = salah 3 satu titik apinya F(6,0). 4. Tentukan nilai m sehingga garis y = -x +m menyinggung ellips x y 0 5. d. Kunci Jawaban Tugas Apabila anda menemui kesulitan untuk menyelesaikan soal-soal di atas, petunjuk dapat mengikuti petunjuk penyelesaian.. Jarak kedua titik api adalah c = 4, berarti c=. karena jarak kedua garis arahnya adalah 5 = 5 a =5 maka a = c Pada ellips berlaku b = a c, maka b = 5 4= 5 c dan karena c= maka a Karena titik-titik api ellips terletak pada sumbu x dan simetris terhadap O x y maka persamaan ellips berbentuk a b ditanyakan adalah x y 5 jadi persamaan ellips yang. Persamaan ellips x y berarti a = 0 dan b=6 Pada ellips berlaku b = a c, dengan demikian c = 8, ini berarti koordinat titik api F (8,0) dan F (-8,0) MAT. 0. Irisan Kerucut 37

48 c 3. Eksentrisitas numeriknya e = =. Karena c = 6, maka a = 9 3 a a c = b b = 8 36 atau b = 45 b = 45, mengapa 45 tidak digunakan Jadi persamaan ellips adalah x y Gradien garis y = -x + p adalah - Persamaan garis singgung dengan gradien adalah y = -x 5. Jadi p = 5 MAT. 0. Irisan Kerucut 38

49 e. Tes Formatif. Tentukan garis arah dari ellips x y Tentukan persamaan ellips dengan pusat (,) dan eksentrisitasnya, 5 sedangkan direktriknya 4x = 5 3. Tentukan panjang garis mayor, minor dan persamaan garis singgung x pada ellips y 50 3 melalui titik (5, 4) 4. Buatlah sketsa ellips 9x + 5y - 36x + 50y 64 =0. Tentukan koordinatkordinat titik fokus dan keempat puncaknya. f. Kunci Tes Formatif. Dari ellips x y didapat a= 0, b = 6 dan c = 8 Persamaan garis arah x = = dan x = - = Eksentrisitasnya 5 4 = a c atau c = 5 4 a Direktriknya 4x = 5 atau x = 5 a, sedangkan x =, dengan 4 c a 5 demikian didapat = atau a 5 = c c 4 4 a 5 4 =. a atau a = 5 dan c = 4, akibatnya b = ( x ) ( y ) Jadi persamaan ellipsnya adalah Panjang garis mayor = 50 = 0 Panjang minor = 3 = 8 MAT. 0. Irisan Kerucut 39

50 Persamaan garis singgung pada ellips 5x 4 y adalah 50 3 x y 50 3 melalui titik (5, 4) 4. Ellips 9x + 5y - 36x + 50y 64 =0 dapat diubah menjadi: 9x - 36x + 5y + 50y 64 = 0 9(x 4x )+ 5(y + y) 64 = 0 9(x 4x + 4 )+ 5(y + y +) 64 = (x ) + 5(y + ) = 5, kedua ruas dibagi dengan 5 didapat ( x ) 5 + ( y ) 9 =. Dari persamaan ini a = 5, b = 3 dan c = 4 Koordinat-kordinat titik fokus adalah (6, -) dan (-, -) dan koordinat keempat puncaknya adalah (7, -), (-3,-),, ) dan (, -4). Anda dapat membuat sketsa dari hasil jawaban ini. MAT. 0. Irisan Kerucut 40

51 3. Kegiatan Belajar 3 : Parabola a. Tujuan Kegiatan Belajar 3 Setelah mempelajari kegiatan belajar 3 ini, diharapkan anda dapat: Memahami unsur-unsur parabola Menentukan persamaan parabola dan dapat menggambar grafiknya Dapat menyelesaikan masalah yang berkaitan dengan hiperbola. b. Uraian Materi Kegiatan Belajar 3 Kurva lengkung sederhana dan teratur yang mempunyai satu sumbu simetri adalah Parabola. Buatlah model kerucut dari kertas manila. Atau plastisin (sering disebut malam). Iris dengan bidang yang tegak lurus alas kerucut. Berbentuk apakah permukaan kerucut yang teriris Permukaan kerucut yang teriris benbentuk parabola. Parabola diperoleh dengan mengiris bangun kerucut sejajar garis pelukisnya. Dalam matematika parabola didefinisikan sebagai himpunan titik-titik (pada bidang datar) yang memiliki jarak tetap terhadap suatu titik tertentu dan suatu garis tertentu pula. Selanjutnya titik itu disebut fokus parabola, sedangkan garis itu disebut garis arah atau direktriks. Parabola dapat dilukis jika diketahui garis arah dan titik fokus yang terletak pada suatu garis, di mana garis itu tegak lurus garis arah. MENENTUKAN PERSAMAAN PARABOLA Ambil sebarang titik pada parabola misal T(x,y ) dan titik O sebagai puncak parabola. Tarik garis melalui T tegak lurus garis arah yang diketahui misal di P. Hubungkan garis melalui titik T dan F. Berdasarkan definisi parabola: TF = TP. Pandang TQF. TQF merupakan segitiga siku-siku, MAT. 0. Irisan Kerucut 4

52 dimana membentuk sudut siku-siku di titik Q. Sehingga berlaku teorema phytagoras: QT + QF = TF Garis arah P T(x,y ) QT QF = TF = TP x P QT QF = A O Q F ( QT QF ) = x P QT + QF = (x + P ) y + (x - p y + x px + y = px ) = (x + P ) p = x + px + 4 p 4 Keterangan: Titik F disebut titik api, koordinatnya F( p, 0 ) Titik O disebut puncak parabola Garis x = - p disebut garis arah atau Direktriks Sumbu x; sumbu simetri dari parabola. Persamaan parabola yang puncaknya O(0,0) dan sumbu simetrinya sumbu x adalah y = px Contoh Tentukan persamaan parabola yang puncaknya di O, sumbu simetrinya berimpit dengan sumbu x dan parabola terletak di kanan sumbu y dan melalui titik (,) Penyelesaian Misal persamaan parabolanya y = px (karena terletak di setengah bidang bagian kiri). Titik ((,) pada parabola berarti 4 = p atau p = Jadi persamaan parabolanya adalah y = 4x MAT. 0. Irisan Kerucut 4

53 Contoh Tentukan persamaan parabola puncaknya di (0,0) dan koordinat titik apinya F(4,0). Penyelesaian Misal persamaan parabolanya y = px Koordinat titik apinya F(4,0), berarti p = 4 atau p = 8 Jadi persamaan parabolanya adalah y = 6x Contoh 3 Tentukan persamaan parabola yang puncaknya di (0,0), sumbu simetrinya sumbu x dan persamaan garis arahnya x + 5 = 0 Penyelesaian Misal persamaan parabolanya y = px Persamaan garis arahnya x + 5 = 0 berarti p = 5 atau p = 0 Jadi persamaan parabolanya adalah y = 0x MAT. 0. Irisan Kerucut 43

54 PERSAMAAN PARABOLA PUSATNYA PADA (a,b) Garis arah K A O K(a,b) Q T(x,y ) Keterangan: Titik F disebut titik api, kordinatnya F( p, b) Titik P (a,b) disebut puncak parabola Garis x = - p + a disebut garis arah atau Direktriks F Ambil sebarang titik pada parabola misal T(x,y ) dan titik P(a,b) sebagai puncak parabola. Tarik garis melalui T tegak lurus garis arah yang diketahui misal di K. Hubungkan garis melalui titik T dan F. Berdasarkan definisi parabola: TF = TK. Dengan menggunakan cara yang sama seperti di atas, anda dapat menjabarkan bahwa persamaan parabola yang puncaknya P(a,b) dan sumbu simetrinya sejajar sumbu x adalah: (y-b) = p(x-a) Persamaan parabola yang puncaknya P(a,b) dan sumbu simetrinya sejajar sumbu x adalah: (y-b) = p(x-a) Contoh 4 Tentukan persamaan parabola yang puncaknya di ( 3, 4) dan dan garis arahnya x = MAT. 0. Irisan Kerucut 44

55 Penyelesaian Garis arahnya x = berarti - p + 3 = atau p = atau p = 4 Jadi persamaan parabolanya adalah (y-4) = 8(x-3) PERSAMAAN GARIS SINGGUNG PARABOLA Garis singgung parabola adalah suatu garis yang memotong parabola tepat pada satu titik. a. Gradien diketahui Misal persamaan garis singgung: y = mx + k Sehingga ada satu titik pada parabola: y = px yang memenuhi persamaan garis singgung di atas. Akibatnya: (mx + k ) = px m x + mkx+ k = px m x + (mk-p)x+ k = 0 ; merupakan persamaan kuadrat dalam variabel x. Agar persamaan kuadrat itu mempunyai satu harga x, maka harus terpenuhi syarat diskriminan dari persamaan itu sama dengan nol, yaitu: D = 0 (mk-p) - 4.m k = 0 y = mx + k 4.(mk-p) 4. m k = 0 (m k mkp + p ) 4m k = 0 O - 8 mkp + 4 p = 0 y = px - mkp + p = 0 p ( p mk) = 0 p = 0 atau p = mk, didapat k = p m Jadi persamaan garis singgungnya adalah y = mx + p m MAT. 0. Irisan Kerucut 45

MAT. 13. Aproksimasi Kesalahan

MAT. 13. Aproksimasi Kesalahan MAT. 13. Aproksimasi Kesalahan i Kode MAT.13 Aproksimasi Kesalahan BAGIAN PROYEK PENGEMBANGAN KURIKULUM DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DEPARTEMEN

Lebih terperinci

Bab 1. Irisan Kerucut

Bab 1. Irisan Kerucut Tahun Ajaran 01 01-013/Genap Bab 1. Irisan Kerucut e=0 e 1 A. Lingkaran Persamaan Lingkaran yang berpusat di titik (0,0) Pada segitiga siku-siku, siku, menurut dalil phytagoras berlaku : c =

Lebih terperinci

MAT. 05. Relasi dan Fungsi

MAT. 05. Relasi dan Fungsi MAT. 05. Relasi dan Fungsi i Kode MAT. 05 Relasi dan fungsi BAGIAN PROYEK PENGEMBANGAN KURIKULUM DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DEPARTEMEN PENDIDIKAN

Lebih terperinci

RINGKASAN IRISAN KERUCUT (PARABOLA, ELIPS, DAN HIPERBOLA)

RINGKASAN IRISAN KERUCUT (PARABOLA, ELIPS, DAN HIPERBOLA) NAMA: KELAS: PENGERTIAN IRISAN KERUCUT Bangun Ruang Kerucut yang dipotong oleh sebuah bidang datar. RINGKASAN IRISAN KERUCUT (PARABOLA, ELIPS, DAN HIPERBOLA) Macam-macam Irisan Kerucut: 1. Parabola 2.

Lebih terperinci

MAT. 16. Matematika Keuangan

MAT. 16. Matematika Keuangan MAT. 16. Matematika Keuangan i Kode MAT.16 Matematika Keuangan BAGIAN PROYEK PENGEMBANGAN KURIKULUM DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DEPARTEMEN

Lebih terperinci

MAT. 04. Geometri Dimensi Dua

MAT. 04. Geometri Dimensi Dua MAT. 04. Geometri Dimensi Dua i Kode MAT.14 Program Linear BAGIAN PROYEK PENGEMBANGAN KURIKULUM DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DEPARTEMEN PENDIDIKAN

Lebih terperinci

Fungsi Linear dan Fungsi Kuadrat

Fungsi Linear dan Fungsi Kuadrat Modul 1 Fungsi Linear dan Fungsi Kuadrat Drs. Susiswo, M.Si. K PENDAHULUAN ompetensi umum yang diharapkan, setelah mempelajari modul ini, adalah Anda dapat memahami konsep tentang persamaan linear dan

Lebih terperinci

LINGKARAN. Lingkaran. pusat lingkaran diskriminan posisi titik posisi garis garis kutub gradien. sejajar tegak lurus persamaan lingkaran

LINGKARAN. Lingkaran. pusat lingkaran diskriminan posisi titik posisi garis garis kutub gradien. sejajar tegak lurus persamaan lingkaran LINGKARAN Persamaan Persamaan garis singgung lingkaran Persamaan lingkaran berpusat di (0, 0) dan (a, b) Kedudukan titik dan garis terhadap lingkaran Merumuskan persamaan garis singgung yang melalui suatu

Lebih terperinci

Lingkaran. A. Persamaan Lingkaran B. Persamaan Garis Singgung Lingkaran

Lingkaran. A. Persamaan Lingkaran B. Persamaan Garis Singgung Lingkaran Bab Sumber: www.panebiancod.com Setelah mempelajari bab ini, Anda harus mampu merumuskan persamaan lingkaran dan menggunakannya dalam pemecahan masalah; menentukan persamaan garis singgung pada lingkaran

Lebih terperinci

Modul ini berisi teori tentang Hiperbola dan praktek menggambarnya dengan bantuan lingkaran maupun dengan bantuan persegi panjang.

Modul ini berisi teori tentang Hiperbola dan praktek menggambarnya dengan bantuan lingkaran maupun dengan bantuan persegi panjang. BAB. I PENDAHULUAN A. Deskripsi Modul ini berisi teori tentang Hiperbola dan praktek menggambarnya dengan bantuan lingkaran maupun dengan bantuan persegi panjang. B. Prasyarat Dalam melaksanakan modul

Lebih terperinci

Modul Matematika 2012

Modul Matematika 2012 Modul Matematika MINGGU V Pokok Bahasan : Fungsi Non Linier Sub Pokok Bahasan :. Pendahuluan. Fungsi kuadrat 3. Fungsi pangkat tiga. Fungsi Rasional 5. Lingkaran 6. Ellips Tujuan Instruksional Umum : Agar

Lebih terperinci

Matematika Ekonomi KUADRAT DAN FUNGSI RASIONAL (FUNGSI PECAH) GRAFIK FUNGSI KUADRAT BERUPA PARABOLA GRAFIK FUNGSI RASIONAL BERUPA HIPERBOLA

Matematika Ekonomi KUADRAT DAN FUNGSI RASIONAL (FUNGSI PECAH) GRAFIK FUNGSI KUADRAT BERUPA PARABOLA GRAFIK FUNGSI RASIONAL BERUPA HIPERBOLA Fungsi Non Linier Diskripsi materi: -Harga ekstrim pada fungsi kuadrat 1 Fungsi non linier FUNGSI LINIER DAPT BERUPA FUNGSI KUADRAT DAN FUNGSI RASIONAL (FUNGSI PECAH) GRAFIK FUNGSI KUADRAT BERUPA PARABOLA

Lebih terperinci

MAT. 03 Persamaan dan Ketidaksamaan

MAT. 03 Persamaan dan Ketidaksamaan MAT. 0 Persamaan dan Ketidaksamaan i Kode MAT. 0 Persamaan dan Ketidaksamaan + = - 5 6 - - + = BAGIAN PROYEK PENGEMBANGAN KURIKULUM DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN DIREKTORAT JENDERAL PENDIDIKAN

Lebih terperinci

DESKRIPSI PEMELAJARAN - MATEMATIKA

DESKRIPSI PEMELAJARAN - MATEMATIKA DESKRIPSI PEMELAJARAN MATA DIKLAT : MATEMATIKA TUJUAN : Melatih berfikir dan bernalar secara logis dan kritis serta mengembangkan aktifitas kreatif dalam memecahkan masalah dan mengkomunikasikan ide/gagasan

Lebih terperinci

IRISAN KERUCUT (CONICS SECTIONS)

IRISAN KERUCUT (CONICS SECTIONS) IRISAN KERUCUT (CONICS SECTIONS) Irisan kerucut merupakan kurva yang terbentuk ketika sebuah bidang memotong permukaan kerucut tegak. Kurva dari irisan kerucut berupa lingkaran, parabola, ellips dan hiperbola.

Lebih terperinci

MAT. 09. Trigonometri 1

MAT. 09. Trigonometri 1 MAT. 09. Trigonometri Kode MAT.09 Trigonometri SUDUT SIN COS TAN 0 0 0 0 0 0 45 0 60 0 90 0 0 BAGIAN PROYEK PENGEMBANGAN KURIKULUM DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN DIREKTORAT JENDERAL PENDIDIKAN

Lebih terperinci

http://meetabied.wordpress.com SMAN 1 Bone-Bone, Luwu Utara, Sul-Sel Kebahagiaan tertinggi dalam kehidupan adalah kepastian bahwa Anda dicintai apa adanya, atau lebih tepatnya dicintai walaupun Anda seperti

Lebih terperinci

Bilangan Real. Modul 1 PENDAHULUAN

Bilangan Real. Modul 1 PENDAHULUAN Modul 1 Bilangan Real S PENDAHULUAN Drs. Soemoenar emesta pembicaraan Kalkulus adalah himpunan bilangan real. Jadi jika akan belajar kalkulus harus paham terlebih dahulu tentang bilangan real. Bagaimanakah

Lebih terperinci

Lingkaran adalah tempat kedudukan titik-titik pada bidang yang berjarak

Lingkaran adalah tempat kedudukan titik-titik pada bidang yang berjarak 4 Lingkaran 4.1. Persamaan Lingkaran Bentuk Baku. Lingkaran adalah tempat kedudukan titik-titik pada bidang yang berjarak tetap dari suatu titik tetap. Titik tetap dari lingkaran disebut pusat lingkaran,

Lebih terperinci

Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis Lurus

Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis Lurus Modul 1 Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis Lurus Drs. Sukirman, M.Pd. D alam Modul Pertama ini, kita akan membahas tentang Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis

Lebih terperinci

Persamaan Garis singgung Melalui titik (x 1, y 1 ) diluar lingkaran. Pusat Lingkaran (a, b) Persamaan Garis singgung. Jari Jari r.

Persamaan Garis singgung Melalui titik (x 1, y 1 ) diluar lingkaran. Pusat Lingkaran (a, b) Persamaan Garis singgung. Jari Jari r. PERSAMAAN LINGKARAN Pusat Lingkaran (0, 0) Melalui titik (x, y ) pada lingkaran Jika diketahui gradient m xx y mx r yy r m x y r Persamaan Garis singgung Melalui titik (x, y ) diluar lingkaran Jari Jari

Lebih terperinci

MATEMATIKA EKONOMI DAN BISNIS. Nuryanto.ST.,MT

MATEMATIKA EKONOMI DAN BISNIS. Nuryanto.ST.,MT MATEMATIKA EKONOMI DAN BISNIS Fungsi Non Linear Fungsi non-linier merupakan bagian yang penting dalam matematika untuk ekonomi, karena pada umumnya fungsi-fungsi yang menghubungkan variabel-variabel ekonomi

Lebih terperinci

MODUL 8 FUNGSI LINGKARAN & ELLIPS

MODUL 8 FUNGSI LINGKARAN & ELLIPS MODUL 8 FUNGSI LINGKARAN & ELLIPS 8.1. LINGKARAN A. PERSAMAAN LINGKARAN DENGAN PUSAT PADA TITIK ASAL DAN JARI-JARI R Persamaan lingkaran dengan pusat (0,0) dan jari jari R adalah : x 2 + y 2 = R 2 B. PERSAMAAN

Lebih terperinci

fungsi Dan Grafik fungsi

fungsi Dan Grafik fungsi fungsi Dan Grafik fungsi Suatu fungsi adalah pemadanan dua himpunan tidak kosong dengan pasangan terurut (x, y) dimana tidak terdapat elemen kedua yang berbeda. Fungsi (pemetaan) himpunan A ke himpunan

Lebih terperinci

BAB. I PENDAHULUAN. A. Deskripsi. B. Prasyarat. C. Petunjuk Penggunaan Modul

BAB. I PENDAHULUAN. A. Deskripsi. B. Prasyarat. C. Petunjuk Penggunaan Modul BAB. I PENDAHULUAN A. Deskripsi Modul ini berisi teori tentang Parabola dan praktek menggambarnya dengan bantuan persegi panjang. B. Prasyarat Dalam melaksanakan modul ini diperlukan prasarat telah menguasai

Lebih terperinci

Relasi, Fungsi, dan Transformasi

Relasi, Fungsi, dan Transformasi Modul 1 Relasi, Fungsi, dan Transformasi Drs. Ame Rasmedi S. Dr. Darhim, M.Si. M PENDAHULUAN odul ini merupakan modul pertama pada mata kuliah Geometri Transformasi. Modul ini akan membahas pengertian

Lebih terperinci

Parabola didefinisikan sebagai tempat kedudukan titik-titik P(x, y) pada

Parabola didefinisikan sebagai tempat kedudukan titik-titik P(x, y) pada Parabola 6.1. Persamaan Parabola Bentuk Baku Parabola didefinisikan sebagai tempat kedudukan titik-titik P(x, y) pada bidang sedemikian hingga titik itu berjarak sama dari suatu titik tertentu yang disebut

Lebih terperinci

MODUL 4 LINGKARAN DAN BOLA

MODUL 4 LINGKARAN DAN BOLA 1 MODUL 4 LINGKARAN DAN BOLA Sumber: www.google.co.id Gambar 6. 6 Benda berbentuk lingkaran dan bola Dalam kehidupan sehari-hari kita banyak menjumpai benda-benda yang berbentuk bola maupun lingkaran.

Lebih terperinci

Modul ini berisi teori tentang ELIPS dan praktek menggambarnya dengan bantuan lingkaran maupun dengan bantuan persegi panjang.

Modul ini berisi teori tentang ELIPS dan praktek menggambarnya dengan bantuan lingkaran maupun dengan bantuan persegi panjang. BAB. I PENDAHULUAN A. Deskripsi Modul ini berisi teori tentang ELIPS dan praktek menggambarnya dengan bantuan lingkaran maupun dengan bantuan persegi panjang. B. Prasyarat Dalam melaksanakan modul ini

Lebih terperinci

FUNGSI. A. Relasi dan Fungsi Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii)

FUNGSI. A. Relasi dan Fungsi Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) FUNGSI A. Relasi dan Fungsi Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) Relasi himpunan A ke himpunan B adalah relasi yang memasangkan/mengkawankan/mengkorepodensikan

Lebih terperinci

PERSAMAAN GARIS BAHAN BELAJAR MANDIRI 4

PERSAMAAN GARIS BAHAN BELAJAR MANDIRI 4 BAHAN BELAJAR MANDIRI 4 PERSAMAAN GARIS PENDAHULUAN Secara umum bahan belajar mandiri ini menjelaskan tentang konsep garis, dan persamaan garis lurus yang dinyatakan ke dalam bentuk implisit maupun bentuk

Lebih terperinci

Matematika Proyek Perintis I Tahun 1979

Matematika Proyek Perintis I Tahun 1979 Matematika Proyek Perintis I Tahun 979 MA-79-0 Irisan himpunan : A = { x x < } dan himpunan B = { x < x < 8 } ialah himpunan A. { x x < 8 } { x x < } { x < x < 8 } { x < x < } { x < x } MA-79-0 Apabila

Lebih terperinci

KEGIATAN BELAJAR SISWA

KEGIATAN BELAJAR SISWA KEGIATAN BELAJAR SISWA Bidang studi : Matematika Satuan Pendidikan: SLTP Kelas: 3 (tiga) Caturwulan: 1 (satu) Pokok Bahasan: Transformasi Subpokok Bahasan: Refleksi Waktu: 150 Menit Endang Mulyana 2003

Lebih terperinci

6 FUNGSI LINEAR DAN FUNGSI

6 FUNGSI LINEAR DAN FUNGSI 6 FUNGSI LINEAR DAN FUNGSI KUADRAT 5.1. Fungsi Linear Pada Bab 5 telah dijelaskan bahwa fungsi linear merupakan fungsi yang variabel bebasnya paling tinggi berpangkat satu. Bentuk umum fungsi linear adalah

Lebih terperinci

Matematika Semester IV

Matematika Semester IV F U N G S I KOMPETENSI DASAR Mendeskripsikan perbedaan konsep relasi dan fungsi Menerapkan konsep fungsi linear Menggambar fungsi kuadrat Menerapkan konsep fungsi kuadrat Menerapkan konsep fungsi trigonometri

Lebih terperinci

DURASI PEMELAJARAN KURIKULUM SMK EDISI 2004

DURASI PEMELAJARAN KURIKULUM SMK EDISI 2004 DESKRIPSI PEMELAJARAN MATA DIKLAT TUJUAN : MATEMATIKA : Melatih berfikir dan bernalar secara logis dan kritis serta mengembangkan aktifitas kreatif dalam memecahkan masalah dan mengkomunikasikan ide/gagasan

Lebih terperinci

PERSAMAAN BAKU PARABOLA DAN PERSAMAAN GARIS SINGGUNG PARABOLA MAKALAH

PERSAMAAN BAKU PARABOLA DAN PERSAMAAN GARIS SINGGUNG PARABOLA MAKALAH PERSAMAAN BAKU PARABOLA DAN PERSAMAAN GARIS SINGGUNG PARABOLA MAKALAH Dibuat untuk Memenuhi Tugas Mata Kuliah Geometri Analitik Ruang yang diampu oleh M. Khoridatul Huda, S. Pd., M. Si. Oleh: TMT 5E Kelompok

Lebih terperinci

Pembelajaran Lingkaran SMA dengan Geometri Analitik

Pembelajaran Lingkaran SMA dengan Geometri Analitik PAKET FASILITASI PEMBERDAYAAN KKG/MGMP MATEMATIKA Pembelajaran Lingkaran SMA dengan Geometri Analitik Penulis Drs. M. Danuri, M.Pd. Penilai Drs. Sukardjono, M.Pd. Editor Titik Sutanti, S.Pd.Si. Ilustrator

Lebih terperinci

Tabel 1. Rata-rata Nilai Ujian Nasional Secara Nasional

Tabel 1. Rata-rata Nilai Ujian Nasional Secara Nasional Rekap Nilai Ujian Nasional tahun 2011 Pada tahun 2011 rata-rata nilai matematika 7.31, nilai terendah 0.25, nilai tertinggi 10, dengan standar deviasi sebesar 1.57. Secara rinci perolehan nilai Ujian Nasional

Lebih terperinci

PEMBELAJARAN IRISAN KERUCUT: LINGKARAN DI SMA

PEMBELAJARAN IRISAN KERUCUT: LINGKARAN DI SMA PAKET PEMBINAAN PENATARAN Drs. M. Danuri, M.Pd. PEMBELAJARAN IRISAN KERUCUT: LINGKARAN DI SMA 45 O 1 3 4 DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH PUSAT PENGEMBANGAN

Lebih terperinci

Dari gambar jaring-jaring kubus di atas bujur sangkar nomor 6 sebagai alas, yang menjadi tutup kubus adalah bujur sangkar... A. 1

Dari gambar jaring-jaring kubus di atas bujur sangkar nomor 6 sebagai alas, yang menjadi tutup kubus adalah bujur sangkar... A. 1 1. Diketahui : A = { m, a, d, i, u, n } dan B = { m, e, n, a, d, o } Diagram Venn dari kedua himpunan di atas adalah... D. A B = {m, n, a, d} 2. Jika P = bilangan prima yang kurang dari Q = bilangan ganjil

Lebih terperinci

PERSAMAAN DAN FUNGSI KUADRAT

PERSAMAAN DAN FUNGSI KUADRAT Materi W2e PERSAMAAN DAN FUNGSI KUADRAT Kelas X, Semester 1 E. Grafik Fungsi Kuadrat www.yudarwi.com E. Grafik Fungsi Kuadrat Grafik fungsi kuadrat f(x) = ax 2 + bx + c dapat dilukis dengan langkah-langkah

Lebih terperinci

IKIP BUDI UTOMO MALANG. Analytic Geometry TEXT BOOK. Alfiani Athma Putri Rosyadi, M.Pd

IKIP BUDI UTOMO MALANG. Analytic Geometry TEXT BOOK. Alfiani Athma Putri Rosyadi, M.Pd IKIP BUDI UTOMO MALANG Analytic Geometry TEXT BOOK Alfiani Athma Putri Rosyadi, M.Pd 2012 DAFTAR ISI 1 VEKTOR 1.1 Vektor Pada Bidang... 4 1.2 Vektor Pada Ruang... 6 1.3 Operasi Vektor.. 8 1.4 Perkalian

Lebih terperinci

Fungsi Non-Linear. Modul 5 PENDAHULUAN

Fungsi Non-Linear. Modul 5 PENDAHULUAN Modul 5 Fungsi Non-Linear F PENDAHULUAN Drs. Wahyu Widayat, M.Ec ungsi non-linier merupakan bagian yang penting dalam matematika untuk ekonomi, karena pada umumnya fungsi-fungsi yang menghubungkan variabel-variabel

Lebih terperinci

5.1 KONSTRUKSI-KONSTRUKSI DASAR

5.1 KONSTRUKSI-KONSTRUKSI DASAR KONSTRUKSI GEOMETRI Unsur-unsur geometri sering digunakan seorang juru gambar atau ahli gambar teknik untuk menggambar konstruksi mesin. Unsurunsur goemetri yang dimaksudkan ini adalah busur-busur, lingkaran,

Lebih terperinci

Jika persegi panjang ABCD di atas diketahui OA = 26 cm, maka panjang BO adalah... A. 78 cm. C. 26 cm B. 52 cm. D. 13 cm Kunci : C Penyelesaian :

Jika persegi panjang ABCD di atas diketahui OA = 26 cm, maka panjang BO adalah... A. 78 cm. C. 26 cm B. 52 cm. D. 13 cm Kunci : C Penyelesaian : 1. Jika persegi panjang ABCD di atas diketahui OA = 26 cm, maka panjang BO adalah... A. 78 cm C. 26 cm B. 52 cm D. 13 cm 2. Gambar disamping adalah persegi panjang. Salah satu sifat persegi panjang adalah

Lebih terperinci

MODUL 2 GARIS LURUS. Mesin Antrian Bank

MODUL 2 GARIS LURUS. Mesin Antrian Bank 1 MODUL 2 GARIS LURUS Gambar 4. 4 Mesin Antrian Bank Persamaan garis lurus sangat berperan penting terhadap kemajuan teknologi sekarang ini. Bagi programmer handal, banyak aplikasi yang membutuhkan persamaan

Lebih terperinci

MAT. 04. Geometri Dimensi Dua

MAT. 04. Geometri Dimensi Dua MAT. 04. Geometri Dimensi Dua i Kode MAT. 04 Geometri Dimensi Dua BAGIAN PROYEK PENGEMBANGAN KURIKULUM DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DEPARTEMEN

Lebih terperinci

PREDIKSI UN 2012 MATEMATIKA SMP

PREDIKSI UN 2012 MATEMATIKA SMP Dibuat untuk persiapan menghadapi UN 2012 PREDIKSI UN 2012 MATEMATIKA SMP Lengkap dengan kisi-kisi dan pembahasan Mungkin (tidak) JITU 12 1. Menghitung hasil operasi tambah, kurang, kali dan bagi pada

Lebih terperinci

MBS - DTA. Sucipto UNTUK KALANGAN SENDIRI. SMK Muhammadiyah 3 Singosari

MBS - DTA. Sucipto UNTUK KALANGAN SENDIRI. SMK Muhammadiyah 3 Singosari MBS - DTA Sucipto UNTUK KALANGAN SENDIRI SMK Muhammadiyah Singosari SERI : MBS-DTA FUNGSI STANDAR KOMPETENSI Siswa mampu memecahkan masalah yang berkaitan dengan fungsi, persamaan fungsi linear dan fungsi

Lebih terperinci

Mata Pelajaran Wajib. Disusun Oleh: Ngapiningsih

Mata Pelajaran Wajib. Disusun Oleh: Ngapiningsih Mata Pelajaran Wajib Disusun Oleh: Ngapiningsih Disklaimer Daftar isi Disklaimer Powerpoint pembelajaran ini dibuat sebagai alternatif guna membantu Bapak/Ibu Guru melaksanakan pembelajaran. Materi powerpoint

Lebih terperinci

MAT. 11. Statistika i

MAT. 11. Statistika i MAT. 11. Statistika i Kode MAT.11 Statistika Daftar Pendapatan PT.Jualan Pendapatan 8000000 7000000 6000000 5000000 4000000 3000000 2000000 1000000 0 Januari Februari Maret April Mei Juni Juli Agustus

Lebih terperinci

Persamaan Parabola KEGIATAN BELAJAR 10

Persamaan Parabola KEGIATAN BELAJAR 10 1 KEGIATAN BELAJAR 10 Persamaan Parabola Setelah mempelajari kegiatan belajar 10 ini, mahasiswa diharapkan mampu: 1. Menentukan persamaan Parabola 2. Melukis Persamaan Parabola Anda tentu sangat mengenal

Lebih terperinci

DALIL PYTHAGORAS DAN PEMECAHAN MASALAH GEOMETRI

DALIL PYTHAGORAS DAN PEMECAHAN MASALAH GEOMETRI DALIL PYTHAGORAS DAN PEMECAHAN MASALAH GEOMETRI Segitiga 1. Beberapa sifat yang berlaku pada segitiga adalah : Jumlah sudut-sudut sembarang segitiga adalah 180 0 Pada segitiga ABC berlaku AC = BC B = A

Lebih terperinci

KISI-KISI UJIAN SEKOLAH

KISI-KISI UJIAN SEKOLAH KISI-KISI UJIAN SEKOLAH Matematika SEKOLAH MENENGAH PERTAMA DAERAH KHUSUS IBUKOTA (DKI) JAKARTA TAHUN PELAJARAN 2012-2013 KISI KISI PENULISAN SOAL UJIAN SEKOLAH TAHUN PELAJARAN 2012-2013 Jenjang : SMP

Lebih terperinci

BAB 4 PERSAMAAN LINGKARAN

BAB 4 PERSAMAAN LINGKARAN STANDAR KOMPETENSI: BAB 4 PERSAMAAN LINGKARAN Menusun persamaan lingkaran dan garis singgungna. KOMPETENSI DASAR Menusun persamaan lingkaran ang memenuhi persaratan ang ditentukan Menentukan persamaan

Lebih terperinci

MODUL 5 PROGRAM LINEAR

MODUL 5 PROGRAM LINEAR MODUL 5 PROGRAM LINEAR 1 KATA PENGANTAR Modul pembelajaran ini dirancang untuk mengarahkan bagaimana siswa belajar menguasai kompetensi Menerapkan Konsep Program Linear secara mandiri, tanpa mengesampingkan

Lebih terperinci

MODUL 1 SISTEM KOORDINAT KARTESIUS

MODUL 1 SISTEM KOORDINAT KARTESIUS 1 MODUL 1 SISTEM KOORDINAT KARTESIUS Dalam matematika, sistem koordinat kartesius digunakan untuk menentukan tiap titik dalam bidang dengan menggunakan dua bilangan yang biasa disebut koordinat x (absis)

Lebih terperinci

Hand-Out Geometri Transformasi. Bab I. Pendahuluan

Hand-Out Geometri Transformasi. Bab I. Pendahuluan Hand-Out Geometri Transformasi Bab I. Pendahuluan 1.1 Vektor dalam R 2 Misalkan u = (x 1,y 1 ), v = (x 2,y 2 ) dan w = (x 3,y 3 ) serta k skalar (bilangan real) Definisi 1. : Penjumlahan vektor u + v =

Lebih terperinci

PERSAMAAN GARIS LURUS

PERSAMAAN GARIS LURUS 1 KEGIATAN BELAJAR 3 PERSAMAAN GARIS LURUS Setelah mempelajari kegiatan belajar 3 ini, mahasiswa diharapkan mampu: 1. menentukan persamaan gradien garis lurus, 2. menentukan persamaan vektoris dan persamaan

Lebih terperinci

SILABUS ALOKASI WAKTU TM PS PI SUMBER BELAJAR KOMPETENSI DASAR INDIKATOR MATERI PEMBELAJARAN KEGIATAN PEMBELAJARAN PENILAIAN

SILABUS ALOKASI WAKTU TM PS PI SUMBER BELAJAR KOMPETENSI DASAR INDIKATOR MATERI PEMBELAJARAN KEGIATAN PEMBELAJARAN PENILAIAN SILABUS KELAS / SEMESTER : X / 1 STANDAR : Memecahkan masalah berkaitan dengan konsep operasi bilangan riil KODE : D.20 : 40 x 45 menit 1. Menerapkan operasi pada bilangan riil PEMAN KEGIATAN PEMAN Mengoperasikan

Lebih terperinci

Sistem PERSAMAAN dan PERTIDAKSAMAAN linier

Sistem PERSAMAAN dan PERTIDAKSAMAAN linier Materi W4a Sistem PERSAMAAN dan PERTIDAKSAMAAN linier Kelas X, Semester 1 A. Sistem Persamaan Linier dengan Dua Variabel www.yudarwi.com A. Sistem Persamaan Linier dengan dua Variabel Bentuk umum : ax

Lebih terperinci

Pembahasan Soal SIMAK UI 2012 SELEKSI MASUK UNIVERSITAS INDONESIA. Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS. Matematika IPA

Pembahasan Soal SIMAK UI 2012 SELEKSI MASUK UNIVERSITAS INDONESIA. Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS. Matematika IPA Pembahasan Soal SIMAK UI 0 SELEKSI MASUK UNIVERSITAS INDONESIA Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS Matematika IPA Disusun Oleh : Pak Anang Kumpulan SMART SOLUTION dan TRIK SUPERKILAT Pembahasan

Lebih terperinci

MATEMATIKA DASAR TAHUN 1987

MATEMATIKA DASAR TAHUN 1987 MATEMATIKA DASAR TAHUN 987 MD-87-0 Garis singgung pada kurva y di titik potong nya dengan sumbu yang absisnya positif mempunyai gradien 0 MD-87-0 Titik potong garis y + dengan parabola y + ialah P (5,

Lebih terperinci

PERSAMAAN GARIS SINGGUNG ELLIPS

PERSAMAAN GARIS SINGGUNG ELLIPS 1 KEGIATAN BELAJAR 13 PERSAMAAN GARIS SINGGUNG ELLIPS Setelah mempelajari kegiatan belajar 13 ini, mahasiswa diharapkan mampu Menentukan Persamaan Garis Singgung Elips, Titik Singung dan Garis Pada kegiatan

Lebih terperinci

PENERAPAN FAKTOR PRIMA DALAM MENYELESAIKAN BENTUK ALJABAR (Andi Syamsuddin*)

PENERAPAN FAKTOR PRIMA DALAM MENYELESAIKAN BENTUK ALJABAR (Andi Syamsuddin*) PENERAPAN FAKTOR PRIMA DALAM MENYELESAIKAN BENTUK ALJABAR (Andi Syamsuddin*) A. Faktor Prima Dalam tulisan ini yang dimaksud dengan faktor prima sebuah bilangan adalah pembagi habis dari sebuah bilangan

Lebih terperinci

PEMBAHASAN SOAL UN MATEMATIKA SMK Kelompok Pariwisata, Seni, dan Kerajinan, Teknologi Kerumahtanggaan, Pekerjaan Sosial, dan Administrasi Perkantoran

PEMBAHASAN SOAL UN MATEMATIKA SMK Kelompok Pariwisata, Seni, dan Kerajinan, Teknologi Kerumahtanggaan, Pekerjaan Sosial, dan Administrasi Perkantoran PEMBAHASAN SOAL UN MATEMATIKA SMK Kelompok Pariwisata, Seni, dan Kerajinan, Teknologi Kerumahtanggaan, Pekerjaan Sosial, dan Administrasi Perkantoran TAHUN PELAJARAN 9/ MATEMATIKA PEMBAHAS: UJIAN NASIONAL

Lebih terperinci

D. 90 meter E. 95 meter

D. 90 meter E. 95 meter 1. Persamaan kuadrat yang akar-akarnya 5 dan -2 adalah... A. x² + 7x + 10 = 0 B. x² - 7x + 10 = 0 C. x² + 3x + 10 = 0 Kunci : E Rumus : (x - x 1 ) (x - x 2 ) = 0 dimana x 1 = 5, dan x 2 = -2 (x - 5) (x

Lebih terperinci

Persamaan dan Pertidaksamaan

Persamaan dan Pertidaksamaan I TU URI HANDAY AN TW DIKLAT GURU PENGEMBANG MATEMATIKA SMK JENJANG DASAR TAHUN 009 Persamaan dan Pertidaksamaan GY A Y O M AT E M A T AK A R Markaban, M.Si. DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL

Lebih terperinci

Matematika EBTANAS Tahun 1991

Matematika EBTANAS Tahun 1991 Matematika EBTANAS Tahun 99 EBT-SMA-9-0 Persamaan sumbu simetri dari parabola y = 8 x x x = 4 x = x = x = x = EBT-SMA-9-0 Salah satu akar persamaan kuadrat mx 3x + = 0 dua kali akar yang lain, maka nilai

Lebih terperinci

BAB II TINJAUAN PUSTAKA. tegak, perlu diketahui tentang materi-materi sebagai berikut.

BAB II TINJAUAN PUSTAKA. tegak, perlu diketahui tentang materi-materi sebagai berikut. BAB II TINJAUAN PUSTAKA Sebelum pembahasan mengenai irisan bidang datar dengan tabung lingkaran tegak, perlu diketahui tentang materi-materi sebagai berikut. A. Matriks Matriks adalah himpunan skalar (bilangan

Lebih terperinci

PERSAMAAN GARIS SINGGUNG PARABOLA

PERSAMAAN GARIS SINGGUNG PARABOLA 1 KEGIATAN BELAJAR 11 PERSAMAAN GARIS SINGGUNG PARABOLA Setelah mempelajari kegiatan belajar 11 ini, mahasiswa diharapkan mampu Menentukan Persamaan Garis Singgung Parabola, Titik dan Garis Polar Pada

Lebih terperinci

Catatan Kuliah MA1123 Kalkulus Elementer I

Catatan Kuliah MA1123 Kalkulus Elementer I Catatan Kuliah MA1123 Kalkulus Elementer I Oleh Hendra Gunawan, Ph.D. Departemen Matematika ITB Sasaran Belajar Setelah mempelajari materi Kalkulus Elementer I, mahasiswa diharapkan memiliki (terutama):

Lebih terperinci

VII III II VIII HAND OUT PERKULIAHAN GEOMETRI ANALITIK

VII III II VIII HAND OUT PERKULIAHAN GEOMETRI ANALITIK HAND OUT PERKULIAHAN GEOMETRI ANALITIK A. Sistem Koordinat Tegak Lurus Suatu sistem koordinat tegak lurus disebut juga dengan sistem koordinat cartesian. Di dalam ruang, terdapat tiga buah garis lurus

Lebih terperinci

SOAL&PEMBAHASAN MATEMATIKATKDSAINTEK SBMPTN. yos3prens.wordpres.com

SOAL&PEMBAHASAN MATEMATIKATKDSAINTEK SBMPTN. yos3prens.wordpres.com SOAL&PEMBAHASAN MATEMATIKATKDSAINTEK SBMPTN 05 yosprens.wordpres.com SOAL DAN PEMBAHASAN MATA UJI MATEMATIKA TKD SAINTEK SBMPTN 05 Berikut ini 5 soal mata uji matematika beserta pembahasannya yang diujikan

Lebih terperinci

MATERI PRASYARAT. ke y= f(x) =ax2 + bx +c

MATERI PRASYARAT. ke y= f(x) =ax2 + bx +c 1 MATERI PRASYARAT A. Fungsi Kuadrat Bentuk umum : y= f(x) = ax 2 + bx +c dengan a 0. Langkah-langkah dalam menggambar grafik fungsi kuadrat y= f(x) = ax 2 + bx +c 1. Tentukan titik potong dengan sumbu

Lebih terperinci

King s Learning Be Smart Without Limits

King s Learning Be Smart Without Limits Nama Siswa : LEMBAR AKTIVITAS SISWA PERSAMAAN LINGKARAN Jadi dapat disimpulkan bahwa persamaan lingkaran dengan pusat O(0,0) dan jari-jari = r adalah Kelas : Persamaan lingkaran: Kompetensi Dasar (KURIKULUM

Lebih terperinci

5 F U N G S I. 1 Matematika Ekonomi

5 F U N G S I. 1 Matematika Ekonomi 5 F U N G S I Pemahaman tentang konsep fungsi sangat penting dalam mempelajari ilmu ekonomi, mengingat kajian ekonomi banyak bekerja dengan fungsi. Fungsi dalam matematika menyatakan suatu hubungan formal

Lebih terperinci

Bab 3. Persamaan Garis Lurus. Standar Kompetensi. Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus.

Bab 3. Persamaan Garis Lurus. Standar Kompetensi. Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus. Bab 3 Persamaan Garis Lurus Standar Kompetensi Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus. Kompetensi Dasar 1.4 Menentukan gradien, persamaan dan grafik garis lurus 3.1 Pengertian

Lebih terperinci

Materi Olimpiade Matematika Vektor Nasional 2016 Jenjang SD:

Materi Olimpiade Matematika Vektor Nasional 2016 Jenjang SD: Materi Olimpiade Matematika Vektor Nasional 2016 Jenjang SD: 1. Bilangan dan Operasinya 2. Kelipatan dan Faktor 3. Angka Romawi, Pecahan dan Skala 4. Perpangkatan dan Akar 5. Waktu, Kecepatan, dan Debit

Lebih terperinci

PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT

PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT LA - WB (Lembar Aktivitas Warga Belajar) PERSAMAAN, FUNGSI DAN PERTIDAKSAMAAN KUADRAT Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X Created By Ita Yuliana

Lebih terperinci

1. Akar-akar persamaan 2x² + px - q² = 0 adalah p dan q, p - q = 6. Nilai pq =... A. 6 B. -2 C. -4 Kunci : E Penyelesaian : D. -6 E.

1. Akar-akar persamaan 2x² + px - q² = 0 adalah p dan q, p - q = 6. Nilai pq =... A. 6 B. -2 C. -4 Kunci : E Penyelesaian : D. -6 E. 1. Akar-akar persamaan 2x² + px - q² = 0 adalah p dan q, p - q = 6. Nilai pq =... A. 6-2 -4 Kunci : E -6-8 2. Himpunan penyelesaian sistem persamaan Nilai 6x 0.y 0 =... A. 1 Kunci : C 6 36 3. Absis titik

Lebih terperinci

Peta Kompetensi Mata Kuliah Geometri Analitik Bidang dan Ruang (PEMA4317) xiii

Peta Kompetensi Mata Kuliah Geometri Analitik Bidang dan Ruang (PEMA4317) xiii ix G Tinjauan Mata Kuliah eometri Analitik merupakan suatu bidang studi dari hasil perkawinan antara Geometri dan Aljabar. Kita telah mengetahui bahwa himpunan semua titik pada suatu garis lurus berkorespondensi

Lebih terperinci

09. Mata Pelajaran Matematika A. Latar Belakang B. Tujuan

09. Mata Pelajaran Matematika A. Latar Belakang B. Tujuan 09. Mata Pelajaran Matematika A. Latar Belakang Matematika merupakan ilmu universal yang mendasari perkembangan teknologi modern, mempunyai peran penting dalam berbagai disiplin dan memajukan daya pikir

Lebih terperinci

SILABUS INDIKATOR MATERI PEMBELAJARAN KEGIATAN PEMBELAJARAN PENILAIAN KHARAKTER

SILABUS INDIKATOR MATERI PEMBELAJARAN KEGIATAN PEMBELAJARAN PENILAIAN KHARAKTER SILABUS NAMA SEKOLAH : SMK Negeri 1 Surabaya MATA PELAJARAN : MATEMATIKA (Kelompok Teknologi Informasi) KELAS / SEMESTER : X / 1 STANDAR : Memecahkan masalah berkaitan dengan konsep operasi bilangan riil

Lebih terperinci

PERSAMAAN HIPERBOLA KEGIATAN BELAJAR 14

PERSAMAAN HIPERBOLA KEGIATAN BELAJAR 14 1 KEGIATAN BELAJAR 14 PERSAMAAN HIPERBOLA Setelah mempelajari kegiatan belajar 14 ini, mahasiswa diharapkan mampu: 1. Menentukan Persamaan Hiperbola 2. Melukis Persamaan Hiperbola Sebelumnya anda telah

Lebih terperinci

SUSUNAN KOORDINAT BAGIAN-1. Oleh: Fitria Khasanah, M. Pd

SUSUNAN KOORDINAT BAGIAN-1. Oleh: Fitria Khasanah, M. Pd SUSUNAN KOORDINAT BAGIAN-1 Oleh: Fitria Khasanah, M. Pd Program Studi Pendidikan Matematika Fakultas Keguruan dan Ilmu Pendidikan Universitas PGRI Yogyakarta 2010 Letak Suatu Titik pada Garis Lurus O g

Lebih terperinci

Fungsi dan Grafik Diferensial dan Integral

Fungsi dan Grafik Diferensial dan Integral Sudaratno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral ii Darpublic BAB 5 Bangun Geometris 5.1. Persamaan Kurva Persamaan suatu kurva secara umum dapat kita tuliskan sebagai F (, )

Lebih terperinci

MATEMATIKA EBTANAS TAHUN 1992

MATEMATIKA EBTANAS TAHUN 1992 MATEMATIKA EBTANAS TAHUN 99 EBT-SMP-9-0 Diketahui: A = {m, a, d, i, u, n} dan B = {m, a, n, a, d, o} Diagram Venn dari kedua himpunan di atas A. m a d o a m o i e e I d u a a u n e m i d o m i d a u n

Lebih terperinci

UJIAN NASIONAL TAHUN 2009/2010 MATEMATIKA (E-4.2) SMK

UJIAN NASIONAL TAHUN 2009/2010 MATEMATIKA (E-4.2) SMK UJIAN NASIONAL TAHUN 009/00 MATEMATIKA (E-.) SMK Kelompok Pariwisata, Seni, dan Kerajinan, Teknologi Kerumahtanggaan, Pekerjaan Sosial, dan Administrasi Perkantoran (P UTAMA). Konveksi milik Bu Nina mengerjakan

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN

BAB IV HASIL PENELITIAN DAN PEMBAHASAN BAB IV HASIL PENELITIAN DAN PEMBAHASAN A. HASIL PENELITIAN 1. Hasil Pengembangan Produk Penelitian ini merupakan penelitian pengembangan yang bertujuan untuk mengembangkan produk berupa Skema Pencapaian

Lebih terperinci

KELAS XI PROGRAM KEAHLIAN : BISNIS DAN MANAJEMEN & PARIWISATA SMK NEGERI 1 SURABAYA. BY : Drs. Abd. Salam, MM

KELAS XI PROGRAM KEAHLIAN : BISNIS DAN MANAJEMEN & PARIWISATA SMK NEGERI 1 SURABAYA. BY : Drs. Abd. Salam, MM KELAS XI PROGRAM KEAHLIAN : BISNIS DAN MANAJEMEN & PARIWISATA SMK NEGERI 1 SURABAYA BAHAN AJAR FUNGSI LINIER & KUADRAT SMK NEGERI 1 SURABAYA Halaman 1 BAB FUNGSI A. FUNGSI DAN RELASI Topik penting yang

Lebih terperinci

K13 Antiremed Kelas 11 Matematika Peminatan

K13 Antiremed Kelas 11 Matematika Peminatan K13 Antiremed Kelas 11 Matematika Peminatan Persiapan UAS 1 Doc. Name: K13AR11MATPMT01UAS Version : 015-11 halaman 1 01. Sukubanyak f() = 3 + + 3- dapat ditulis sebagai. f() = [( + ) - 3] + f() = [( -

Lebih terperinci

β α α β SOAL MATEMATIKA UNTUK SMA istiyanto.com Mari Berbagi Ilmu Dengan Yang Lain A. Persamaan Kuadrat dan Fungsi Kuadrat

β α α β SOAL MATEMATIKA UNTUK SMA istiyanto.com Mari Berbagi Ilmu Dengan Yang Lain A. Persamaan Kuadrat dan Fungsi Kuadrat A. Persamaan Kuadrat dan Fungsi Kuadrat 1. Salah satu akar persamaan kuadrat ( a 1) x + (3a 1) x 3a = 0 adalah 1, maka akar lainnya adalah.... Nilai m yang memenuhi agar persamaan kuadrat ( m + 1) x +

Lebih terperinci

PERSAMAAN ELLIPS. Setelah mempelajari kegiatan belajar 12 ini, mahasiswa diharapkan mampu: 1. Menentukan persamaan elips. 2. Melukis persamaan elips

PERSAMAAN ELLIPS. Setelah mempelajari kegiatan belajar 12 ini, mahasiswa diharapkan mampu: 1. Menentukan persamaan elips. 2. Melukis persamaan elips 1 KEGIATAN BELAJAR 12 PERSAMAAN ELLIPS Setelah mempelajari kegiatan belajar 12 ini, mahasiswa diharapkan mampu: 1. Menentukan persamaan elips. 2. Melukis persamaan elips Anda tentu sangat mengenal sekali

Lebih terperinci

Pembahasan Soal UN Matematika SMP Tahun Ajaran 2010/2011 Paket 12

Pembahasan Soal UN Matematika SMP Tahun Ajaran 2010/2011 Paket 12 Pembahasan Soal UN Matematika SMP Tahun Ajaran 2010/2011 Paket 12 Tim Pembahas : Th. Widyantini Untung Trisna Suwaji Wiworo Choirul Listiani Estina Ekawati Nur Amini Mustajab PPPPTK Matematika Yogyakarta

Lebih terperinci

Bagian 1 Sistem Bilangan

Bagian 1 Sistem Bilangan Bagian 1 Sistem Bilangan Dalam bagian 1 Sistem Bilangan kita akan mempelajari berbagai jenis bilangan, pemakaian tanda persamaan dan pertidaksamaan, menggambarkan himpunan penyelesaian pada selang bilangan,

Lebih terperinci

A. Sistem Persamaan Linier dengan dua Variabel

A. Sistem Persamaan Linier dengan dua Variabel Jurnal Materi Umum Peta Konsep Peta Konsep Daftar Hadir MateriA SISTEM PERSAMAAN DAN PERTIDAKSAMAAN LINIER Kelas X, Semester 1 Sistem Persamaan Linier Dua Variabel Tiga Variabel Sistem Pertidaksamaan linier

Lebih terperinci

Matematika EBTANAS Tahun 1999

Matematika EBTANAS Tahun 1999 Matematika EBTANAS Tahun 999 EBT-SMA-99-0 Akar-akar persamaan kuadrat + = 0 adalah α dan β. Persamaan kuadrat baru yang akar-akarnya (α + ) dan (β + ) + = 0 + 7 = 0 + = 0 + 7 = 0 + = 0 EBT-SMA-99-0 Akar-akar

Lebih terperinci

Penggunaan Fungsi Non-Linear Dalam Ekonomi

Penggunaan Fungsi Non-Linear Dalam Ekonomi Modul 6 Penggunaan Fungsi Non-Linear Dalam Ekonomi Drs. Wahyu Widayat, M.Ec F PENDAHULUAN ungsi non-linier merupakan bagian yang penting dalam matematika untuk ekonomi, karena pada umumnya fungsi-fungsi

Lebih terperinci