MODUL 8 FUNGSI LINGKARAN & ELLIPS

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "MODUL 8 FUNGSI LINGKARAN & ELLIPS"

Transkripsi

1 MODUL 8 FUNGSI LINGKARAN & ELLIPS 8.1. LINGKARAN A. PERSAMAAN LINGKARAN DENGAN PUSAT PADA TITIK ASAL DAN JARI-JARI R Persamaan lingkaran dengan pusat (0,0) dan jari jari R adalah : x 2 + y 2 = R 2 B. PERSAMAAN LINGKARAN DENGAN PUSAT (a,b) DAN JARI-JARI R Persamaan lingkaran dengan pusat (a,b) dan jari-jari R adalah : (x a) 2 + (y b) 2 = R 2 C. PERSAMAAN UMUM LINGKARAN Bentuk Umum persamaan lingkaran adalah : x 2 + y 2 + Ax + By + C = 0 Dimana : - Pusatnya : - Jari-jarinya = : Keterangan :

2 1. Koefisien x 2 dan y 2 adalah sama 2. Tidak ada suku yang berbentuk xy D. PERPOTONGAN GARIS DENGAN LINGKARAN Jika diketahui garis g : y = mx + n Lingkaran L : x 2 + y 2 = R 2 Maka jika garis g disubstitusikan pada lingkaran L akan didapat : x 2 + (mx + n) 2 = R 2 Jika persamaan ini diselesaikan akan didapatkan suatu persamaan kuadarat dalam x sebagai berikut : (1 - m 2 ) x 2 + 2mnx + n 2 - R 2 = 0 Diskriminan dari persamaan kuadrat ini adalah : D = -4 n R 2 ( 1 + m 2 ) Jika : - D < 0 berarti g tidak memotong L - D > 0 berarti g memotong L pada dua titik yang berbeda - D = 0 berarti g memotong L pada satu titik (garis g menyinggung L) E. GARIS SINGGUNG PADA LINGKARAN Jika diketahui garis g : y = mx + n Lingkaran L : x 2 + y 2 = R 2

3 Jika g disubstitusikan pada L, maka didapat persamaan kuadrat dengan D = -4 n R 2 ( 1 + m 2 ) Agar g menyinggung L, maka D = 0, sehingga diperoleh : -4 n R 2 ( 1 + m 2 ) = 0 Jika persamaan tersebut diuraikan, maka diperoleh : n = Jika harga ini disubstitusikan pada persamaan garis g, maka akan didapatkan persamaan garis singgung dengan koefisien arah m pada lingkaran yang berpusat di titik asal dengan jari-jari R sebagai berikut : y = Dari hasil di atas didapatkan persamaan garis singgung dengan koefisien arah m pada lingkaran L = (x - a) 2 + (y b) 2 = R 2 sebagai berikut : (y b) = Jika diketahu titik P (x 1, y 1 ) erletak pada lingkaran x 2 + y 2 = R 2 maka persamaan garis singgung di titik x 1 x + y 1 y = R 2

4 Contoh SOAL : 1. Persamaan lingkaran. Tentukan titik pusat lingkaran tersebut! Diketahui :. Dit anya : Titik Pusat lingkaran? Maka : Titik Pusat Lingkaran =, dimana A = -4 dan B = 6 = = (2, -3) ===== 2. Persamaan Lingkaran. Tentukan titik pusat dan jari-jarinya! Diketahui :. Ditanya : Titik pusat dan jari-jari? Maka : Titik Pusat Lingkaran =, dimana A = -2 dan B = -6 = = (1, 3) ===== Jari-jari lingkaran = dimana A = -2 dan B = -6, C = 6 =

5 = = = = 2 3. Lingkaran L dengan persamaan (x 5) 2 + (y + 3) 2 = 49 dan garis g dengan persamaan y = 3. Buktikan bahwa garis g tersebut memotong lingkaran L! Diketahui : (x 5) 2 + (y + 3) 2 = 49 dan y = 3 Ditanya : Buktikan bahwa garis g tersebut memotong lingkaran L! Maka : Untuk memotong suatu lingkaran : Diskriminan > 0 (x 5) 2 + (y + 3) 2 = 49 dan y = 3 (x 5) 2 + (3 + 3) 2 = 49 (x 5) = 49 (x 5) = 0 x 2-10x = 0 x 2-10x = 0 x 2-10x + 12 = 0 D = b 2 4ac dimana : a = 1, b = -10 dan c = 12 D = (-10) 2 4(1)(12) D = D = 52 > 0 Garis g memotong lingkaran L 4. Lingkaran L : x 2 + Y 2 = 25 dan titik P(3,4) maka tentukanlah garis singgung di titik P! Diketahui : L : x 2 + Y 2 = 25 dan titik P(3,4) Ditanya : Garis singgung??? Maka Garis singgung pada lingkaran tersebut adalah : Dengan menggunakan persamaan x 1 x + y 1 y = R 2, didapat garis singgung di (3, 4) : 3x + 4y = 25

6 5. Tentukan persamaan garis singgung di titik (4, -1) pada lingkaran : x 2 + y 2 + 6x 4y 45 = 0 x 2 + y 2 + 6x 4y 45 = 0 pusat = ( -1/2 (6), -1/2(-4)) = (-3, 2) Persamaan garis g melalui pusat lingkaran (-3, 2) dan titik (4, -1) adalah : (y 2) = x + 3 y 2 = x y 2 = -3x 9 y = -3x + 11 m 1 = -3 Persamaan garis l melalui titik (4, -1) adalah : (y + 1) = m 2 (x 4) y = m 2 x (4m 2 + 1) Agar I merupakan garis singgung lingkaran haruslah m 1 m 2 = -1 (-3)m 2 = -1 m 2 = 1/3 Persamaan garis singgung di (4, -1) ialah : Y = 1/3 x (4. 1/3 + 1) Y = 1/3 x 1/3 ========= 6. Tentukan persamaan garis singgung lingkaran x 2 + y 2 = 9 yang melalui titik ( 0, -5) di luar lingkaran Persamaan garis singgung melaui (0, -5) y + 5 = m(x 0) y= mx 5. 1 Garis ini memotong lingkaran (x 2 + y 2 ) = 9. Pada titik potong tersebut berlaku : x 2 + (mx 5) 2 = 9 x 2 + m 2 x 2 10 mx + 25 = 9 (1 + m 2 )x 2-10 mx + 16 = 0 Agar (1) merupakan garis singgung haruslah D = 0

7 D = 0 (-10m) 2 4(1 + m 2 )16 = m 2 64m 2 64 = 0 36m 2 = 64 m = ±4/3 Garis singgung : y = 4/3x 5 dan y = -4/3x 5 SOAL LATIHAN : 1. Tentukan persamaan garis singgung lingkaran x 2 + y 2 = 9 dan tegak lurus sumbu x 2. Tentukan pusat lingkaran 4x 2 + 4y 2 16x + 24y 48 = 0 3. Tentukan garis singgung lingkaran x 2 + y 2 4x + 6y 12 = 0 di titik (5, 1) 4. Tentukan persamaan lingkaran dengan pusat (0, 0) dan melalui titik (7, 1) 5. Tentukan persamaan garis singgung lingkaran x 2 + y 2 = 25 yang ditarik dari (7, 1) 6. Diketahui garis y = x 1 dan lingkaran x 2 + y 2 4x 6 = 0, maka perpotongan keduanya : 7. Persamaan garis singgung pada lingkaran x 2 + y 2 = 16 dengan koefisien arah m = 3 8. Persamaan lingkaran dengan pusat (2, 3) dan melalui (5, -1) 9. Selidiki apakah garis y = mx + 1 dan lingkaran x 2 + y 2 2x 2y + 1 = Jika garis g : y = 3, dan lingkaran L = (x - 5) 2 + (y + 3) 2 = 49. Bagaimana keadaan garis g tersebut????

8 8.2. ELLIPS Dalam matematika, sebuah elips adalah gambar yang menyerupai lingkaran yang telah dipanjangkan ke satu arah. Elips adalah salah satu contoh dari irisan kerucut dan dapat didefinisikan sebagai lokus dari semua titik, dalam satu bidang, yang memiliki jumlah jarak yang sama dari dua titik tetap yang telah ditentukan sebelumnya (disebut fokus). Ellips & Sifat-sifat Matematisnya Irisan kerucut dalam suatu bidang datar dapat membentuk elips ================

matematika KTSP & K-13 GARIS SINGGUNG LINGKARAN K e a s A. Definisi Garis Singgung Lingkaran Tujuan Pembelajaran

matematika KTSP & K-13 GARIS SINGGUNG LINGKARAN K e a s A. Definisi Garis Singgung Lingkaran Tujuan Pembelajaran KTSP & K-3 matematika K e l a s XI GARIS SINGGUNG LINGKARAN Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Memahami definisi garis singgung lingkaran..

Lebih terperinci

RINGKASAN IRISAN KERUCUT (PARABOLA, ELIPS, DAN HIPERBOLA)

RINGKASAN IRISAN KERUCUT (PARABOLA, ELIPS, DAN HIPERBOLA) NAMA: KELAS: PENGERTIAN IRISAN KERUCUT Bangun Ruang Kerucut yang dipotong oleh sebuah bidang datar. RINGKASAN IRISAN KERUCUT (PARABOLA, ELIPS, DAN HIPERBOLA) Macam-macam Irisan Kerucut: 1. Parabola 2.

Lebih terperinci

LINGKARAN. Lingkaran. pusat lingkaran diskriminan posisi titik posisi garis garis kutub gradien. sejajar tegak lurus persamaan lingkaran

LINGKARAN. Lingkaran. pusat lingkaran diskriminan posisi titik posisi garis garis kutub gradien. sejajar tegak lurus persamaan lingkaran LINGKARAN Persamaan Persamaan garis singgung lingkaran Persamaan lingkaran berpusat di (0, 0) dan (a, b) Kedudukan titik dan garis terhadap lingkaran Merumuskan persamaan garis singgung yang melalui suatu

Lebih terperinci

Kelas XI MIA Peminatan

Kelas XI MIA Peminatan Kelas Disusun : Markus Yuniarto, S.Si Tahun Pelajaran 017 018 Peta Konsep Glosarium Istilah Keterangan Lingkaran Himpunan titik-titik (pada bidang datar) yang memiliki jarak tetap terhadap suatu titik

Lebih terperinci

Persamaan Lingkaran. Pusat Jari-jari Pusat. Jari-jari Menentukan persamaan lingkaran atau garis singgung lingkaran. Persamaan Lingkaran

Persamaan Lingkaran. Pusat Jari-jari Pusat. Jari-jari Menentukan persamaan lingkaran atau garis singgung lingkaran. Persamaan Lingkaran 2. 5. Menentukan persamaan lingkaran atau garis singgung lingkaran. Persamaan Lingkaran Persamaan Lingkaran () () Bentuk Umum 0 dibagi (2) Pusat Jari-jari Pusat (,), Jumlah kuadrat pusat dikurangi Jari-jari

Lebih terperinci

Matematika Ekonomi KUADRAT DAN FUNGSI RASIONAL (FUNGSI PECAH) GRAFIK FUNGSI KUADRAT BERUPA PARABOLA GRAFIK FUNGSI RASIONAL BERUPA HIPERBOLA

Matematika Ekonomi KUADRAT DAN FUNGSI RASIONAL (FUNGSI PECAH) GRAFIK FUNGSI KUADRAT BERUPA PARABOLA GRAFIK FUNGSI RASIONAL BERUPA HIPERBOLA Fungsi Non Linier Diskripsi materi: -Harga ekstrim pada fungsi kuadrat 1 Fungsi non linier FUNGSI LINIER DAPT BERUPA FUNGSI KUADRAT DAN FUNGSI RASIONAL (FUNGSI PECAH) GRAFIK FUNGSI KUADRAT BERUPA PARABOLA

Lebih terperinci

fungsi Dan Grafik fungsi

fungsi Dan Grafik fungsi fungsi Dan Grafik fungsi Suatu fungsi adalah pemadanan dua himpunan tidak kosong dengan pasangan terurut (x, y) dimana tidak terdapat elemen kedua yang berbeda. Fungsi (pemetaan) himpunan A ke himpunan

Lebih terperinci

MATEMATIKA EKONOMI DAN BISNIS. Nuryanto.ST.,MT

MATEMATIKA EKONOMI DAN BISNIS. Nuryanto.ST.,MT MATEMATIKA EKONOMI DAN BISNIS Fungsi Non Linear Fungsi non-linier merupakan bagian yang penting dalam matematika untuk ekonomi, karena pada umumnya fungsi-fungsi yang menghubungkan variabel-variabel ekonomi

Lebih terperinci

Modul Matematika 2012

Modul Matematika 2012 Modul Matematika MINGGU V Pokok Bahasan : Fungsi Non Linier Sub Pokok Bahasan :. Pendahuluan. Fungsi kuadrat 3. Fungsi pangkat tiga. Fungsi Rasional 5. Lingkaran 6. Ellips Tujuan Instruksional Umum : Agar

Lebih terperinci

Bab 1. Irisan Kerucut

Bab 1. Irisan Kerucut Tahun Ajaran 01 01-013/Genap Bab 1. Irisan Kerucut e=0 e 1 A. Lingkaran Persamaan Lingkaran yang berpusat di titik (0,0) Pada segitiga siku-siku, siku, menurut dalil phytagoras berlaku : c =

Lebih terperinci

PERSAMAAN DAN FUNGSI KUADRAT

PERSAMAAN DAN FUNGSI KUADRAT Materi W2e PERSAMAAN DAN FUNGSI KUADRAT Kelas X, Semester 1 E. Grafik Fungsi Kuadrat www.yudarwi.com E. Grafik Fungsi Kuadrat Grafik fungsi kuadrat f(x) = ax 2 + bx + c dapat dilukis dengan langkah-langkah

Lebih terperinci

Persamaan Garis singgung Melalui titik (x 1, y 1 ) diluar lingkaran. Pusat Lingkaran (a, b) Persamaan Garis singgung. Jari Jari r.

Persamaan Garis singgung Melalui titik (x 1, y 1 ) diluar lingkaran. Pusat Lingkaran (a, b) Persamaan Garis singgung. Jari Jari r. PERSAMAAN LINGKARAN Pusat Lingkaran (0, 0) Melalui titik (x, y ) pada lingkaran Jika diketahui gradient m xx y mx r yy r m x y r Persamaan Garis singgung Melalui titik (x, y ) diluar lingkaran Jari Jari

Lebih terperinci

Solusi dan Penyelesaian. Persamaan Lingkaran. Solusi 6. (a) m = 8 (b) m = ±2 (c*) m = 1 (d*) m > 10. (b) di luar lingkaran (c) di dalam lingkaran

Solusi dan Penyelesaian. Persamaan Lingkaran. Solusi 6. (a) m = 8 (b) m = ±2 (c*) m = 1 (d*) m > 10. (b) di luar lingkaran (c) di dalam lingkaran Solusi dan Penyelesaian Persamaan Lingkaran # Ralat Soal --- tidak ada --- Bagian A Solusi Solusi 1. (a) x 2 + y 2 = 13 (b) x 2 + y 2 = 1 5 Solusi 2. (a) (x + 1) 2 + (y 2) 2 = 9 (b*) tidak ada persamaan

Lebih terperinci

PERSAMAAN BAKU PARABOLA DAN PERSAMAAN GARIS SINGGUNG PARABOLA MAKALAH

PERSAMAAN BAKU PARABOLA DAN PERSAMAAN GARIS SINGGUNG PARABOLA MAKALAH PERSAMAAN BAKU PARABOLA DAN PERSAMAAN GARIS SINGGUNG PARABOLA MAKALAH Dibuat untuk Memenuhi Tugas Mata Kuliah Geometri Analitik Ruang yang diampu oleh M. Khoridatul Huda, S. Pd., M. Si. Oleh: TMT 5E Kelompok

Lebih terperinci

Lingkaran. A. Persamaan Lingkaran B. Persamaan Garis Singgung Lingkaran

Lingkaran. A. Persamaan Lingkaran B. Persamaan Garis Singgung Lingkaran Bab Sumber: www.panebiancod.com Setelah mempelajari bab ini, Anda harus mampu merumuskan persamaan lingkaran dan menggunakannya dalam pemecahan masalah; menentukan persamaan garis singgung pada lingkaran

Lebih terperinci

BAB XI PERSAMAAN GARIS LURUS

BAB XI PERSAMAAN GARIS LURUS BAB XI PERSAMAAN GARIS LURUS A. Pengertian Pesamaan Garis Lurus Persamaan garis lurus adalah suatu fungsi yang apabila digambarkan ke dalam bidang Cartesius akan berbentuk garis lurus. Garis lurus ini

Lebih terperinci

MATERI PRASYARAT. ke y= f(x) =ax2 + bx +c

MATERI PRASYARAT. ke y= f(x) =ax2 + bx +c 1 MATERI PRASYARAT A. Fungsi Kuadrat Bentuk umum : y= f(x) = ax 2 + bx +c dengan a 0. Langkah-langkah dalam menggambar grafik fungsi kuadrat y= f(x) = ax 2 + bx +c 1. Tentukan titik potong dengan sumbu

Lebih terperinci

Sistem PERSAMAAN dan PERTIDAKSAMAAN linier

Sistem PERSAMAAN dan PERTIDAKSAMAAN linier Materi W4a Sistem PERSAMAAN dan PERTIDAKSAMAAN linier Kelas X, Semester 1 A. Sistem Persamaan Linier dengan Dua Variabel www.yudarwi.com A. Sistem Persamaan Linier dengan dua Variabel Bentuk umum : ax

Lebih terperinci

6 FUNGSI LINEAR DAN FUNGSI

6 FUNGSI LINEAR DAN FUNGSI 6 FUNGSI LINEAR DAN FUNGSI KUADRAT 5.1. Fungsi Linear Pada Bab 5 telah dijelaskan bahwa fungsi linear merupakan fungsi yang variabel bebasnya paling tinggi berpangkat satu. Bentuk umum fungsi linear adalah

Lebih terperinci

PERSAMAAN LINGKARAN. Tujuan Pembelajaran

PERSAMAAN LINGKARAN. Tujuan Pembelajaran KTSP & K-3 matematika K e l a s XI PERSAMAAN LINGKARAN Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan mempunyai kemampuan sebagai berikut.. Memahami definisi lingkaran.. Memahami persamaan

Lebih terperinci

LINGKARAN 2. A. Kedudukan titik dan Garis terhadap Lingkaran 11/18/2015. Peta Konsep. A. Kedudukan Titik dan Garis Terhadap. Lingkaran.

LINGKARAN 2. A. Kedudukan titik dan Garis terhadap Lingkaran 11/18/2015. Peta Konsep. A. Kedudukan Titik dan Garis Terhadap. Lingkaran. /8/205 Peta Konsep Jurnal Materi MIPA Peta Konsep Lingkaran Daftar Hadir MateriA LINGKARAN 2 Kelas XI, Semester 3 Berpusat di O(0, 0) Berpusat di P(a, b) A. Kedudukan Titik dan Garis Terhadap Lingkaran

Lebih terperinci

LINGKARAN. Lingkaran merupakan tempat kedudukan titik-titik yang berjarak sama terhadap titik tertentu. Perhatikan gambar berikut.

LINGKARAN. Lingkaran merupakan tempat kedudukan titik-titik yang berjarak sama terhadap titik tertentu. Perhatikan gambar berikut. LINGKARAN Lingkaran merupakan tempat kedudukan titik-titik ang berjarak sama terhadap titik tertentu. Perhatikan gambar berikut. r P Titik P disebut pusat, sedangkan Jarak P ke lingkaran dinamakan jari-jari.

Lebih terperinci

Matematika Teknik Dasar-2 7 Silinder. Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya

Matematika Teknik Dasar-2 7 Silinder. Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya Matematika Teknik Dasar- 7 Silinder Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya Definisi dan Persamaan Silinder adalah sebuah permukaan yang didapatkan dari sebuah garis yang

Lebih terperinci

FUNGSI. A. Relasi dan Fungsi Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii)

FUNGSI. A. Relasi dan Fungsi Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) FUNGSI A. Relasi dan Fungsi Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) Relasi himpunan A ke himpunan B adalah relasi yang memasangkan/mengkawankan/mengkorepodensikan

Lebih terperinci

K13 Antiremed Kelas 11 Matematika Peminatan

K13 Antiremed Kelas 11 Matematika Peminatan K13 Antiremed Kelas 11 Matematika Peminatan Persiapan UAS 1 Doc. Name: K13AR11MATPMT01UAS Version : 015-11 halaman 1 01. Sukubanyak f() = 3 + + 3- dapat ditulis sebagai. f() = [( + ) - 3] + f() = [( -

Lebih terperinci

IRISAN DUA LINGKARAN. Tujuan Pembelajaran. ). Segmen garis dari P ke Q disebut sebagai tali busur. Tali busur ini memotong tegak lurus garis C 1

IRISAN DUA LINGKARAN. Tujuan Pembelajaran. ). Segmen garis dari P ke Q disebut sebagai tali busur. Tali busur ini memotong tegak lurus garis C 1 K- matematika K e l a s I IRISAN DUA LINGKARAN Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Dapat menentukan persamaan dan panjang tali busur dua lingkaran

Lebih terperinci

PERSAMAAN GARIS SINGGUNG ELLIPS

PERSAMAAN GARIS SINGGUNG ELLIPS 1 KEGIATAN BELAJAR 13 PERSAMAAN GARIS SINGGUNG ELLIPS Setelah mempelajari kegiatan belajar 13 ini, mahasiswa diharapkan mampu Menentukan Persamaan Garis Singgung Elips, Titik Singung dan Garis Pada kegiatan

Lebih terperinci

MBS - DTA. Sucipto UNTUK KALANGAN SENDIRI. SMK Muhammadiyah 3 Singosari

MBS - DTA. Sucipto UNTUK KALANGAN SENDIRI. SMK Muhammadiyah 3 Singosari MBS - DTA Sucipto UNTUK KALANGAN SENDIRI SMK Muhammadiyah Singosari SERI : MBS-DTA FUNGSI STANDAR KOMPETENSI Siswa mampu memecahkan masalah yang berkaitan dengan fungsi, persamaan fungsi linear dan fungsi

Lebih terperinci

GEOMETRI ANALITIK BIDANG & RUANG

GEOMETRI ANALITIK BIDANG & RUANG HANDOUT (BAHAN AJAR) GEOMETRI ANALITIK BIDANG & RUANG Sofyan Mahfudy IAIN Mataram KATA PENGANTAR Alhamdulillah puji syukur kepada Alloh Ta ala yang dengan rahmat dan karunia-nya penulis dapat menyelesaikan

Lebih terperinci

http://meetabied.wordpress.com SMAN 1 Bone-Bone, Luwu Utara, Sul-Sel Kebahagiaan tertinggi dalam kehidupan adalah kepastian bahwa Anda dicintai apa adanya, atau lebih tepatnya dicintai walaupun Anda seperti

Lebih terperinci

A. Sistem Persamaan Linier dengan dua Variabel

A. Sistem Persamaan Linier dengan dua Variabel Jurnal Materi Umum Peta Konsep Peta Konsep Daftar Hadir MateriA SISTEM PERSAMAAN DAN PERTIDAKSAMAAN LINIER Kelas X, Semester 1 Sistem Persamaan Linier Dua Variabel Tiga Variabel Sistem Pertidaksamaan linier

Lebih terperinci

y

y Menyelesaikan Persamaan Kuadrat dengan Grafik Menyesaikan persamaan ax 2 +bx+c=0. Berarti menentukan nilai-nilai x bila f(x) = 0, dimana f(x) = ax 2 +bx+c. apabila grafik fungsi f(x) telah dilukis, maka

Lebih terperinci

D. (1 + 2 ) 27 E. (1 + 2 ) 27

D. (1 + 2 ) 27 E. (1 + 2 ) 27 1. Nilai dari untuk x = 4 dan y = 27 adalah... A. (1 + 2 ) 9 B. (1 + 2 ) 9 C. (1 + 2 ) 18 D. (1 + 2 ) 27 E. (1 + 2 ) 27 2. Persamaan 2x² + qx + (q - 1) = 0, mempunyai akar-akar x 1 dan x 2. Jika x 1 2

Lebih terperinci

LINGKARAN. Bab. Di unduh dari : Bukupaket.com

LINGKARAN. Bab. Di unduh dari : Bukupaket.com Bab 9 LINGKARAN A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR Kompetensi Dasar Setelah mengikuti pembelajaran lingkaran siswa mampu: 1. Mendeskripsikan konsep persamaan lingkaran dan menganalisis sifat garis

Lebih terperinci

Fungsi Linear dan Fungsi Kuadrat

Fungsi Linear dan Fungsi Kuadrat Modul 1 Fungsi Linear dan Fungsi Kuadrat Drs. Susiswo, M.Si. K PENDAHULUAN ompetensi umum yang diharapkan, setelah mempelajari modul ini, adalah Anda dapat memahami konsep tentang persamaan linear dan

Lebih terperinci

5.1 KONSTRUKSI-KONSTRUKSI DASAR

5.1 KONSTRUKSI-KONSTRUKSI DASAR KONSTRUKSI GEOMETRI Unsur-unsur geometri sering digunakan seorang juru gambar atau ahli gambar teknik untuk menggambar konstruksi mesin. Unsurunsur goemetri yang dimaksudkan ini adalah busur-busur, lingkaran,

Lebih terperinci

B. 30 X + 10 Y 300; 20 X + 20 Y 400; X 0, Y 0 C. 10 X + 30 Y 300; 20 X + 20 Y 400, X 0, Y 0 D. 10 X + 30 Y 300, 20 X + 20 Y 400, X 0, Y 0

B. 30 X + 10 Y 300; 20 X + 20 Y 400; X 0, Y 0 C. 10 X + 30 Y 300; 20 X + 20 Y 400, X 0, Y 0 D. 10 X + 30 Y 300, 20 X + 20 Y 400, X 0, Y 0 BIDANG STUDI : MATEMATIKA 1. Harga 3 kg pepaya dan 5 kg jeruk adalah Rp 13.000, sedangkan harga 4 kg papaya dan 3 kg jeruk adalah Rp 10.000, maka harga 2 kg papaya dan 4 kg jeruk adalah. A. Rp 10.000 B.

Lebih terperinci

Fungsi Non-Linear. Modul 5 PENDAHULUAN

Fungsi Non-Linear. Modul 5 PENDAHULUAN Modul 5 Fungsi Non-Linear F PENDAHULUAN Drs. Wahyu Widayat, M.Ec ungsi non-linier merupakan bagian yang penting dalam matematika untuk ekonomi, karena pada umumnya fungsi-fungsi yang menghubungkan variabel-variabel

Lebih terperinci

IRISAN DUA LINGKARAN

IRISAN DUA LINGKARAN LINGKARAN IRISAN DUA LINGKARAN Oleh : Saptana Surahmat Konsep hubungan dua lingkaran sangat penting dalam kehidupan kita. Sepasang roda pada sepeda, sepeda motor, kendaraan bermotor, roda gigi pada pengatur

Lebih terperinci

BAB 4 PERSAMAAN LINGKARAN

BAB 4 PERSAMAAN LINGKARAN STANDAR KOMPETENSI: BAB 4 PERSAMAAN LINGKARAN Menusun persamaan lingkaran dan garis singgungna. KOMPETENSI DASAR Menusun persamaan lingkaran ang memenuhi persaratan ang ditentukan Menentukan persamaan

Lebih terperinci

Matematik Ekonom Fungsi nonlinear

Matematik Ekonom Fungsi nonlinear 1 FUNGSI Fungsi adalah hubungan antara 2 buah variabel atau lebih, dimana masing-masing dari dua variabel atau lebih tersebut saling pengaruh mempengaruhi. Variabel merupakan suatu besaran yang sifatnya

Lebih terperinci

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a Soal - Soal UM UGM. Soal Matematika Dasar UM UGM 00. Jika x = 3 maka + 3 log 4 x =... a. b. c. d. e.. Jika x+y log = a dan x y log 8 = b dengan 0 < y < x maka 4 log (x y ) =... a. a + 3b ab b. a + b ab

Lebih terperinci

MAT. 10. Irisan Kerucut

MAT. 10. Irisan Kerucut MAT. 0. Irisan Kerucut i Kode MAT.0 Irisan Kerucut BAGIAN PROYEK PENGEMBANGAN KURIKULUM DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DEPARTEMEN PENDIDIKAN NASIONAL

Lebih terperinci

Pembahasan Matematika IPA SIMAK UI 2009

Pembahasan Matematika IPA SIMAK UI 2009 Pembahasan Matematika IPA SIMAK UI 2009 Kode 924 Oleh Kak Mufidah 1. Diketahui fungsi. Agar fungsi tersebut senantiasa berada di bawah sumbu x, maka nilai m yang mungkin adalah Agar fungsi tersebut senantiasa

Lebih terperinci

PEMBELAJARAN IRISAN KERUCUT: LINGKARAN DI SMA

PEMBELAJARAN IRISAN KERUCUT: LINGKARAN DI SMA PAKET PEMBINAAN PENATARAN Drs. M. Danuri, M.Pd. PEMBELAJARAN IRISAN KERUCUT: LINGKARAN DI SMA 45 O 1 3 4 DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH PUSAT PENGEMBANGAN

Lebih terperinci

Modul Matematika XI MIA Semester 1 Lingkaran

Modul Matematika XI MIA Semester 1 Lingkaran Lingkaran XI MIA 017/018 Modul Matematika XI MIA Semester 1 Lingkaran Oleh : Markus Yuniarto, S.Si 1 Tahun Pelajaran 017/018 SMA Santa Angela Jl. Merdeka No. Bandung Lingkaran XI MIA 017/018 Peta Konsep

Lebih terperinci

Fungsi Dua Peubah dan Turunan Parsial

Fungsi Dua Peubah dan Turunan Parsial Fungsi Dua Peubah dan Turunan Parsial Irisan Kerucut, Permukaan Definisi fungsi dua peubah Turunan Parsial Maksimum dan Minimum Handout Matematika Teknik, D3 Teknik Telekomunikasi IT Telkom Bandung 1 Irisan

Lebih terperinci

Sistem Koordinat dalam 2 Dimensi Ruang Mengingat kembali sebelum belajar kalkulus

Sistem Koordinat dalam 2 Dimensi Ruang Mengingat kembali sebelum belajar kalkulus Sistem Koordinat dalam 2 Dimensi Ruang Mengingat kembali sebelum belajar kalkulus Sistem Koordinat pada Bidang Datar Disusun dengan pasangan angka urut (ordered pair) (a,b) : a dan b berturut- turut adalah

Lebih terperinci

Matematika EBTANAS Tahun 1991

Matematika EBTANAS Tahun 1991 Matematika EBTANAS Tahun 99 EBT-SMA-9-0 Persamaan sumbu simetri dari parabola y = 8 x x x = 4 x = x = x = x = EBT-SMA-9-0 Salah satu akar persamaan kuadrat mx 3x + = 0 dua kali akar yang lain, maka nilai

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2009/2010

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2009/2010 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 9/. Diberikan premis sebagai berikut : Premis : Jika harga BBM naik, maka harga bahan pokok naik. Premis : Jika harga bahan pokok naik maka

Lebih terperinci

Modul Matematika XI IPA Semester 1 Lingkaran

Modul Matematika XI IPA Semester 1 Lingkaran Modul Matematika XI IPA Semester 1 Lingkaran Oleh : Markus Yuniarto, S.Si Tahun Pelajaran 015 016 SMA Santa Angela Jl. Merdeka No. 4 Bandung Lingkaran XI IPA Sem 1/014-015 4 Peta Konsep Persamaan Lingkaran

Lebih terperinci

Bank Soal dan Pembahasan Persamaan Garis Lurus

Bank Soal dan Pembahasan Persamaan Garis Lurus Bank Soal dan Pembahasan Persamaan Garis Lurus 1. Garis m mempunyai persamaan y = -3x + 2. Garis tersebut memotong sumbu Y dititik... a. (0, -3) b. (0, 2) c. (0, 3) d. (0, -2) e. (0, 4) Pembahasan : Persamaan

Lebih terperinci

2. PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT

2. PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT 2. PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT A. Persamaan Kuadrat 1) Bentuk umum persamaan kuadrat : ax 2 + bx + c =, a 2) Nilai determinan persamaan kuadrat : D = b 2 4ac 3) Akar-akar persamaan kuadrat

Lebih terperinci

Pembahasan Matematika IPA SNMPTN 2012 Kode 483

Pembahasan Matematika IPA SNMPTN 2012 Kode 483 Tutur Widodo Pembahasan Matematika IPA SNMPTN 0 Pembahasan Matematika IPA SNMPTN 0 Kode 8 Oleh Tutur Widodo. Di dalam kotak terdapat bola biru, 6 bola merah dan bola putih. Jika diambil 8 bola tanpa pengembalian,

Lebih terperinci

BAB VI FUNGSI KUADRAT (PARABOLA) a < 0 dan D = 0 a < 0 dan D < 0. a < 0 0 x 0 x

BAB VI FUNGSI KUADRAT (PARABOLA) a < 0 dan D = 0 a < 0 dan D < 0. a < 0 0 x 0 x BAB VI FUNGSI KUADRAT (PARABOLA) Secara umum, persamaan kuadrat dituliskan sebagai ax 2 + bx + c = 0 atau dalam bentuk fungsi dituliskan sebagai f(x) = ax 2 + bx + c. Sifat matematis dari persamaan kuadrat

Lebih terperinci

Matematika EBTANAS Tahun 1986

Matematika EBTANAS Tahun 1986 Matematika EBTANAS Tahun 986 EBT-SMA-86- Bila diketahui A = { x x bilangan prima < }, B = { x x bilangan ganjil < }, maka eleman A B =.. 3 7 9 EBT-SMA-86- Bila matriks A berordo 3 dan matriks B berordo

Lebih terperinci

Sistem-sistem Persamaan (Linear dan Non Linear)

Sistem-sistem Persamaan (Linear dan Non Linear) Sistem-sistem Persamaan (Linear dan Non Linear) Pendekatan Menu Restoran Oleh: Drs. Turmudi, M.Ed., M.Sc., Ph.D. 27 Bab 3 Sistem-Sistem Persamaan A. Pengantar Di dalam Aljabar representasi suatu besaran

Lebih terperinci

Solusi Pengayaan Matematika

Solusi Pengayaan Matematika Solusi Pengaaan Matematika Edisi Januari Pekan Ke-, 006 Nomor Soal: 1-0 1. Melalui (0, 0) buatlah garis-garis ang memotong lingkaran 0 pada dua titik. Carilah tempat kedudukan pertengahan ke dua titik.

Lebih terperinci

SMAN Bone-Bone, Luwu Utara, Sul-Sel Dan bahwa setiap pengalaman mestilah dimasukkan ke dalam kehidupan, guna memperkaya kehidupan itu sendiri. Karena tiada kata akhir untuk belajar seperti juga tiada kata

Lebih terperinci

Pembelajaran Lingkaran SMA dengan Geometri Analitik

Pembelajaran Lingkaran SMA dengan Geometri Analitik PAKET FASILITASI PEMBERDAYAAN KKG/MGMP MATEMATIKA Pembelajaran Lingkaran SMA dengan Geometri Analitik Penulis Drs. M. Danuri, M.Pd. Penilai Drs. Sukardjono, M.Pd. Editor Titik Sutanti, S.Pd.Si. Ilustrator

Lebih terperinci

Pembahasan SNMPTN 2011 Matematika IPA Kode 576

Pembahasan SNMPTN 2011 Matematika IPA Kode 576 Pembahasan SNMPTN 011 Matematika IPA Kode 576 Oleh Tutur Widodo Juni 011 1. Diketahui vektor u = (a,, 1) dan v = (a, a, 1). Jika vektor u tegak lurus pada v, maka nilai a adalah... a. 1 b. 0 c. 1 d. e.

Lebih terperinci

1. Salah satu persamaan garis singgung lingkaran ( x 2 )² + ( y + 1 )² =13 di titik yang berabsis 1 adalah. a. 3x 2y 3 = 0 b. 3x 2y 5 = 0 c.

1. Salah satu persamaan garis singgung lingkaran ( x 2 )² + ( y + 1 )² =13 di titik yang berabsis 1 adalah. a. 3x 2y 3 = 0 b. 3x 2y 5 = 0 c. . Salah satu persamaan garis singgung lingkaran ( x )² + ( y + )² =3 di titik yang berabsis adalah. a. 3x y 3 = 0 b. 3x y 5 = 0 c. 3x + y 9 = 0 d. 3x + y + 9 = 0 e. 3x + y + 5 = 0 Soal Ujian Nasional tahun

Lebih terperinci

Matematika Teknik Dasar-2 6 Koordinat Bola dan Silinder. Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya

Matematika Teknik Dasar-2 6 Koordinat Bola dan Silinder. Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya Matematika Teknik Dasar-2 6 Koordinat Bola dan Silinder Sebrian Mirdeklis Beselly Putra Teknik Pengairan Universitas Brawijaya BOLA - definisi Bola adalah lokus sebuah titik yang bergerak sehingga jaraknya

Lebih terperinci

Melukis Grafik Irisan Kerucut Tanpa Transformasi Sumbu-sumbu Koordinat

Melukis Grafik Irisan Kerucut Tanpa Transformasi Sumbu-sumbu Koordinat JURNAL PENDIDIKAN MATEMATIKA VOLUME NOMOR JANUARI 0 Melukis Grafik Irisan Kerucut Tanpa Transformasi Sumbu-sumbu Koordinat La Arapu (Lektor pada Program Pendidikan Matematika FKIP Universitas Haluoleo)

Lebih terperinci

PERSAMAAN GARIS LURUS

PERSAMAAN GARIS LURUS PERSAMAAN GARIS LURUS A. Menggambar grafik garis lurus Langkah langkah mengambar grafik persamaan garis lurus sama dengan langkahlangkah membuat grafik pada sistim koordinat. Gambarlah grafik persamaan

Lebih terperinci

Hendra Gunawan. 30 Agustus 2013

Hendra Gunawan. 30 Agustus 2013 MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 30 Agustus 2013 Latihan (Kuliah yang Lalu) Selesaikan pertaksamaan berikut: 1. x + 1 < 2/x. (sudah dijawab) 2. x 3 < x + 1. 8/30/2013 (c) Hendra

Lebih terperinci

Bilangan Real. Modul 1 PENDAHULUAN

Bilangan Real. Modul 1 PENDAHULUAN Modul 1 Bilangan Real S PENDAHULUAN Drs. Soemoenar emesta pembicaraan Kalkulus adalah himpunan bilangan real. Jadi jika akan belajar kalkulus harus paham terlebih dahulu tentang bilangan real. Bagaimanakah

Lebih terperinci

Pembahasan Soal SIMAK UI 2012 SELEKSI MASUK UNIVERSITAS INDONESIA. Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS. Matematika IPA

Pembahasan Soal SIMAK UI 2012 SELEKSI MASUK UNIVERSITAS INDONESIA. Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS. Matematika IPA Pembahasan Soal SIMAK UI 0 SELEKSI MASUK UNIVERSITAS INDONESIA Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS Matematika IPA Disusun Oleh : Pak Anang Kumpulan SMART SOLUTION dan TRIK SUPERKILAT Pembahasan

Lebih terperinci

Pedoman Penskoran Kemampuan Berpikir Kritis Matematis Siswa

Pedoman Penskoran Kemampuan Berpikir Kritis Matematis Siswa Pedoman Penskoran Kemampuan Berpikir Kritis Matematis Siswa Aspek yang Diukur Mengevaluasi Mengidentifikasi Menghubungkan Respon Siswa terhadap Soal Skor Tidak menjawab atau memberikan jawaban yang salah.

Lebih terperinci

KETIDAKSAMAAN. A. Pengertian

KETIDAKSAMAAN. A. Pengertian A. Pengertian KETIDAKSAMAAN Ketidaksamaan dinotasikan dengan 1. < (lebih Kecil 2. ( lebih kecil atau sama dengan)) 3. > ( lebih besar) 4. ( lebih besar atau sama dengan) Tanda di atas digunakan untuk membuat

Lebih terperinci

Materi Fungsi Linear Fungsi Variabel, koefisien, dan konstanta Variabel variabel bebas Koefisien Konstanta 1). Pengertian fungsi linier

Materi Fungsi Linear Fungsi Variabel, koefisien, dan konstanta Variabel variabel bebas Koefisien Konstanta 1). Pengertian fungsi linier Materi Fungsi Linear Admin 8:32:00 PM Duhh akhirnya nongol lagi... kali ini saya akan bahas mengenai pelajaran yang paling disukai oleh hampir seluruh warga dunia :v... MATEMATIKA, ya itu namanya. materi

Lebih terperinci

MATEMATIKA EKONOMI DAN BISNIS. Nuryanto.ST.,MT

MATEMATIKA EKONOMI DAN BISNIS. Nuryanto.ST.,MT MATEMATIKA EKONOMI DAN BISNIS Fungsi Dalam ilmu ekonomi, kita selalu berhadapan dengan variabel-variabel ekonomi seperti harga, pendapatan nasional, tingkat bunga, dan lainlain. Hubungan kait-mengkait

Lebih terperinci

Bentuk Volumetric Irisan Kerucut (Persiapan Modul Cara Menghitung Volume Irisan Kerucut)

Bentuk Volumetric Irisan Kerucut (Persiapan Modul Cara Menghitung Volume Irisan Kerucut) Bentuk Volumetric Irisan Kerucut (Persiapan Modul Cara Menghitung Volume Irisan Kerucut) izky Maiza,a), Triati Dewi Kencana Wungu,b), Lilik endrajaya 3,c) Magister Pengajaran Fisika, Fakultas Matematika

Lebih terperinci

Pembahasan Matematika IPA SNMPTN 2012 Kode 132

Pembahasan Matematika IPA SNMPTN 2012 Kode 132 Tutur Widodo Pembahasan Matematika IPA SNMPTN 0 Pembahasan Matematika IPA SNMPTN 0 Kode Oleh Tutur Widodo. Lingkaran (x 6) + (y + ) = menyinggung garis x = di titik... (, 6) d. (, ) (, 6) e. (, ) c. (,

Lebih terperinci

4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN

4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN 4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN 4.1 Persamaan Garis a. Bentuk umum persamaan garis Garis lurus yang biasa disebut garis merupakan kurva yang paling sederhana dari semua kurva. Misalnya titik A(2,1)

Lebih terperinci

Peta Konsep. Standar Kompetensi. Kompetensi Dasar. Memahami bentuk aljabar, relasi, fungsi. persamaan garis lurus

Peta Konsep. Standar Kompetensi. Kompetensi Dasar. Memahami bentuk aljabar, relasi, fungsi. persamaan garis lurus PErSamaan GarIS lurus Untuk SMP Kelas VIII Peta Konsep Standar Kompetensi Memahami bentuk aljabar, relasi, fungsi dan persamaan garis lurus Kompetensi Dasar Menentukan gradien, persamaan dan grafik garis

Lebih terperinci

Matematika Proyek Perintis I Tahun 1979

Matematika Proyek Perintis I Tahun 1979 Matematika Proyek Perintis I Tahun 979 MA-79-0 Irisan himpunan : A = { x x < } dan himpunan B = { x < x < 8 } ialah himpunan A. { x x < 8 } { x x < } { x < x < 8 } { x < x < } { x < x } MA-79-0 Apabila

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2008/2009

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2008/2009 SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 008/009. Perhatikan premis premis berikut! - Jika saya giat belajar maka saya bisa meraih juara - Jika saya bisa meraih juara maka saya boleh

Lebih terperinci

Mata Pelajaran Wajib. Disusun Oleh: Ngapiningsih

Mata Pelajaran Wajib. Disusun Oleh: Ngapiningsih Mata Pelajaran Wajib Disusun Oleh: Ngapiningsih Disklaimer Daftar isi Disklaimer Powerpoint pembelajaran ini dibuat sebagai alternatif guna membantu Bapak/Ibu Guru melaksanakan pembelajaran. Materi powerpoint

Lebih terperinci

Bola dan bidang Rata

Bola dan bidang Rata 1 KEGIATAN BELAJAR 9 Bola dan Bidang Rata Setelah mempelajari kegiatan belajar 9 ini, mahasiswa diharapkan mampu menentukan persamaan bidang singgung bola dan titik kuasa bola. Pernahkah Anda memperhatikan

Lebih terperinci

SISTEM PERSAMAAN LINEAR DUA VARIABEL

SISTEM PERSAMAAN LINEAR DUA VARIABEL SMP - 1 SISTEM PERSAMAAN LINEAR DUA VARIABEL A. Pengertian persamaan linear dua variabel (PLDV) Persamaan linear dua variabel ialah persamaan yang mengandung dua variabel dimana pangkat/derajat tiap-tiap

Lebih terperinci

Soal-Soal dan Pembahasan SNMPTN Matematika IPA Tahun Pelajaran 2010/2011 Tanggal Ujian: 01 Juni 2011

Soal-Soal dan Pembahasan SNMPTN Matematika IPA Tahun Pelajaran 2010/2011 Tanggal Ujian: 01 Juni 2011 Soal-Soal dan Pembahasan SNMPTN Matematika IPA Tahun Pelajaran 00/0 Tanggal Ujian: 0 Juni 0. Diketahui vektor u = (a, -, -) dan v = (a, a, -). Jika vektor u tegak lurus pada v, maka nilai a adalah... A.

Lebih terperinci

PERSAMAAN GARIS SINGGUNG PARABOLA

PERSAMAAN GARIS SINGGUNG PARABOLA 1 KEGIATAN BELAJAR 11 PERSAMAAN GARIS SINGGUNG PARABOLA Setelah mempelajari kegiatan belajar 11 ini, mahasiswa diharapkan mampu Menentukan Persamaan Garis Singgung Parabola, Titik dan Garis Polar Pada

Lebih terperinci

FUNGSI. Berdasarkan hubungan antara variabel bebas dan terikat, fungsi dibedakan dua: fungsi eksplisit dan fungsi implisit.

FUNGSI. Berdasarkan hubungan antara variabel bebas dan terikat, fungsi dibedakan dua: fungsi eksplisit dan fungsi implisit. FUNGSI Fungsi merupakan hubungan antara dua variabel atau lebih. Variabel dibedakan :. Variabel bebas yaitu variabel yang besarannya dpt ditentukan sembarang, mis:,, 6, 0 dll.. Variabel terikat yaitu variabel

Lebih terperinci

(x- x 1. Contoh soal: jawab: x 2 + y 2 = 2 2 x 2 + y 2 = 4. x 2 + y 2 = 4. jawab: (x 5) 2 + (y 2) 2 = 4 2

(x- x 1. Contoh soal: jawab: x 2 + y 2 = 2 2 x 2 + y 2 = 4. x 2 + y 2 = 4. jawab: (x 5) 2 + (y 2) 2 = 4 2 BB XI. LINGKRN (x- x ) (x- x ) + (y- y ) (y- y ) = 0 Contoh soal: Pengertian : Lingkaran adalah tepat kedudukan titik-titik yang berjarak konstan/saa terhadap sebuah titik tertentu. Sebuah titik tertentu

Lebih terperinci

Soal-Soal dan Pembahasan SNMPTN Matematika IPA Tahun Pelajaran 2010/2011

Soal-Soal dan Pembahasan SNMPTN Matematika IPA Tahun Pelajaran 2010/2011 Soal-Soal dan Pembahasan SNMPTN Matematika IPA Tahun Pelajaran 00/0 Tanggal Ujian: 0 Juni 0. Diketahui vektor u (a, -, -) dan v (a, a, -). Jika vektor u tegak lurus pada v, maka nilai a adalah... A. -

Lebih terperinci

2. FUNGSI KUADRAT. , D = b 2 4ac

2. FUNGSI KUADRAT. , D = b 2 4ac . FUNGSI KUADRAT A. Persamaan Kuadrat 1) Bentuk umum persamaan kuadrat : ax + bx + c =, a ) Akar akar persamaan kuadrat dapat dicari dengan memfaktorkan ataupun dengan rumus: x 1, b D, D = b 4ac a 3) Jumlah,

Lebih terperinci

KELAS XI PROGRAM KEAHLIAN : BISNIS DAN MANAJEMEN & PARIWISATA SMK NEGERI 1 SURABAYA. BY : Drs. Abd. Salam, MM

KELAS XI PROGRAM KEAHLIAN : BISNIS DAN MANAJEMEN & PARIWISATA SMK NEGERI 1 SURABAYA. BY : Drs. Abd. Salam, MM KELAS XI PROGRAM KEAHLIAN : BISNIS DAN MANAJEMEN & PARIWISATA SMK NEGERI 1 SURABAYA BAHAN AJAR FUNGSI LINIER & KUADRAT SMK NEGERI 1 SURABAYA Halaman 1 BAB FUNGSI A. FUNGSI DAN RELASI Topik penting yang

Lebih terperinci

OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN TINGKAT PROPINSI JAWA TENGAH 2010 BIDANG MATEMATIKA TEKNOLOGI

OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN TINGKAT PROPINSI JAWA TENGAH 2010 BIDANG MATEMATIKA TEKNOLOGI OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN TINGKAT PROPINSI JAWA TENGAH 2010 BIDANG MATEMATIKA TEKNOLOGI SESI III (ISIAN SINGKAT DAN ESSAY) WAKTU : 180 MENIT ============================================================

Lebih terperinci

FUNGSI DAN PERSAMAAN LINEAR. EvanRamdan

FUNGSI DAN PERSAMAAN LINEAR. EvanRamdan FUNGSI DAN PERSAMAAN LINEAR TEORI FUNGSI Fungsi yaitu hubungan matematis antara suatu variabel dengan variabel lainnya. Unsur-unsur pembentukan fungsi yaitu variabel (terikat dan bebas), koefisien dan

Lebih terperinci

(x- x 1. Contoh soal: jawab: x 2 + y 2 = 2 2 x 2 + y 2 = 4. x 2 + y 2 = 4. jawab: (x 5) 2 + (y 2) 2 = 4 2

(x- x 1. Contoh soal: jawab: x 2 + y 2 = 2 2 x 2 + y 2 = 4. x 2 + y 2 = 4. jawab: (x 5) 2 + (y 2) 2 = 4 2 LINGKRN (x- x ) (x- x ) + (y- y ) (y- y ) = 0 Contoh soal: Pengertian : Lingkaran adalah tepat kedudukan titik-titik yang berjarak konstan/saa terhadap sebuah titik tertentu. Sebuah titik tertentu itu

Lebih terperinci

Dosen Pengampu: Prof. Dr. H. Almasdi Syahza, SE., MP. Website : HUBUNGAN NONLINEAR

Dosen Pengampu: Prof. Dr. H. Almasdi Syahza, SE., MP.   Website :  HUBUNGAN NONLINEAR Dosen Pengampu: Prof. Dr. H. Almasdi Syahza, SE., MP. Email : asyahza@yahoo.co.id Website : http://almasdi.unri,ac,id HUBUNGAN NONLINEAR a. Fungsi Kuadrat b. Fungsi Kubik c. Penerapan Ekonomi Permintaan,

Lebih terperinci

4. Persamaan garis lingkaran yang berpusat di ( 1,4 ) dan menyinggung garis 3x 4y 2 = 0 adalah.

4. Persamaan garis lingkaran yang berpusat di ( 1,4 ) dan menyinggung garis 3x 4y 2 = 0 adalah. . Salah satu persamaan garis singgung lingkaran ( x )² + ( y + )² =3 di titik yang berabsis adalah. a. 3x y 3 = 0 b. 3x y 5 = 0 c. 3x + y 9 = 0 d. 3x + y + 9 = 0 e. 3x + y + 5 = 0 Langkah : Substitusi

Lebih terperinci

A. DEFINISI DAN BENTUK UMUM SISTEM PERSAMAAN LINEAR KUADRAT

A. DEFINISI DAN BENTUK UMUM SISTEM PERSAMAAN LINEAR KUADRAT K-13 Kelas X matematika PEMINATAN SISTEM PERSAMAAN LINEAR KUADRAT TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi dan bentuk umum sistem

Lebih terperinci

Solusi Pengayaan Matematika Edisi 3 Januari Pekan Ke-3, 2005 Nomor Soal: 21-30

Solusi Pengayaan Matematika Edisi 3 Januari Pekan Ke-3, 2005 Nomor Soal: 21-30 Solusi Pengayaan Matematika Edisi 3 Januari Pekan Ke-3, 005 Nomor Soal: -30. Garis 5y 60 memotong sumbu X dan sumbu Y masing-masing di titik A dan B, sehingga OAB membentuk segitiga siku-siku. Sebuah lingkaran

Lebih terperinci

A. Menentukan Letak Titik

A. Menentukan Letak Titik Apa yang akan Anda Pelajari? Koordinat Cartesius Mengenal pengertian dan menentukan gradien garis lurus Menentukan persamaan garis lurus Menggambar grafik garis lurus Menentukan Gradien, Persamaan garis

Lebih terperinci

Modul ini berisi teori tentang ELIPS dan praktek menggambarnya dengan bantuan lingkaran maupun dengan bantuan persegi panjang.

Modul ini berisi teori tentang ELIPS dan praktek menggambarnya dengan bantuan lingkaran maupun dengan bantuan persegi panjang. BAB. I PENDAHULUAN A. Deskripsi Modul ini berisi teori tentang ELIPS dan praktek menggambarnya dengan bantuan lingkaran maupun dengan bantuan persegi panjang. B. Prasyarat Dalam melaksanakan modul ini

Lebih terperinci

Institut Manajemen Telkom

Institut Manajemen Telkom Institut Manajemen Telkom Osa Omar Sharif JENIS JENIS FUNGSI1 JENIS JENIS FUNGSI 2 Jenis Fungsi Gambar 1. FUNGSI POLINOM mengandung banyak suku (polinom) dalam variabel bebas y = a 0 + a 1 x + a 2 x 2

Lebih terperinci

Hendra Gunawan. 8 November 2013

Hendra Gunawan. 8 November 2013 MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 013/014 8 November 013 Apa yang Telah Dipelajari pada Bab 4 1. Notasi Sigma dan Luas Daerah di Bawah Kurva. Jumlah Riemann dan Integral Tentu 3. Teorema

Lebih terperinci

FUNGSI KUADRAT. SOAL DAN PEMBAHASAN 3.1 Soal dan pembahasan titik potong Soal titik potong dapat diselesaikan dengan menggunakan konsep 3.

FUNGSI KUADRAT. SOAL DAN PEMBAHASAN 3.1 Soal dan pembahasan titik potong Soal titik potong dapat diselesaikan dengan menggunakan konsep 3. FUNGSI KUADRAT Jenis-jenis soal fungsi kuadrat yang sering diujikan adalah soal-soal tentang : 1. Titik potong 2. Titik puncak 3. Menggambar grafik 4. Menentukan tanda a, b, c dan D 5. Menentukan persamaan

Lebih terperinci