2. Memahami dan mampu menyelesaikan Permasalahan yang berkaitan dengan vektor di Ruang Tiga, yaitu Persamaan Bidang

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "2. Memahami dan mampu menyelesaikan Permasalahan yang berkaitan dengan vektor di Ruang Tiga, yaitu Persamaan Bidang"

Transkripsi

1 TUJUAN EMBELAJARAN Agar pembaca memahami tentang Sistem Koordinat Kartesian beserta fungsinya yaitu titik, jarak dua titik, persamaan bola serta Vektor dalam ruang dimensi tiga beserta aplikasinya yaitu sudut antara dua vektor, persamaan bidang yang dibentuk dari vektor, hasil kali silang beserta penafsiran secara geometri OUTCOME EMBELAJARAN Setelah mempelajari bab ini diharapkan mahasiswa dapat :. Memahami dan mampu menyelesaikan segala permasalahan yang berkaitan dengan koordinat kartesian dalam ruang dimensi tiga, antara lain Titik, Jarak dua Titik, ersamaan Bola, osisi dua buah Bola, ersamaan Bidang secara Geometri dan Aljabar. Memahami dan mampu menyelesaikan ermasalahan yang berkaitan dengan vektor di Ruang Tiga, yaitu ersamaan Bidang. Memahami dan mampu menafsirkan sebuah Hasil Kali Silang dua vektor beserta penerapannya dalam sebuah bidang Geometri dalam Ruang, Vektor 9

2 4.. Sistem Koordinat Dimensi Tiga ada pembahasan yang telah kita lakukan, kita telah memahami dan belajar pada bidang datar yang dikenal sebagai bidang Euclides atau ruang dimensi dua hal ini telah diterapkan pada fungsi variable tunggal yaitu fungsi yang dapat digambarkan pada bidang datar. Bagaimana jika fungsi yang akan kita pelajari adalah fungsi yang mempunyai variable ganda atau yang sering kita sebut dengan kalkulus peubah ganda, yaitu yang diterapkan pada suatu fungsi yang mempunyai dua peubah atau lebih. Ambil tiga garis koordinat yang saling tegak lurus, misalnya sumbusumbu, dan dengan titik Nol berada pada suatu titik O yang sama.disebut titik asal. Sistem koordinat dimensi tiga dapat digambarkan seperti Gambar 4. O Ketiga sumbu tersebut menentukan tiga bidang, yaitu bidang, bidang dan bidang yang membagi ruang menjadi delapan Gambar 4.. Sistem Koordinat Dimensi y oktan, Jika titik dalam ruang, maka koordinat kartesiusnya dituliskan berupa bilangan ganda tiga yaitu (, y, ) Dalam sistem koordinat dimensi tiga terbagi atas tiga bidang, yaitu :. bidang y yaitu bidang yang tegak lurus sumbu-. bidang yaitu bidang yang tegak lurus sumbu-y. bidang y yaitu bidang yang tegak lurus sumbu- ketiga bidang tersebut dapat digambarkan seperti Gambar 4. berikut y Geometri dalam Ruang, Vektor 0

3 O O (a) Bidang y (b) Bidang y O (c) Bidang Gambar 4.. Tiga Bidang dalam Koordinat Dimensi Tiga Contoh 4. : Diketahui dua Titik yaitu titik (,, ) dan titik Q (,,4) dimana letak kedua titik tersebut enyelesaian 4. :. Titik (,, ), maka artinya titik terletak pada satuan dari Sumbu, satuan dari Sumbu dan satuan dari Sumbu artinya titik terletak pada Oktan pertama. Titik Q (,,4), maka artinya titik Q terletak pada - satuan Sumbu, - satuan dari Sumbu dan 4 satuan dari Sumbu artinya titik Q terletak pada Oktan ketiga dari Geometri dalam Ruang, Vektor

4 Jika titik tersebut, titik (, y, ) (, y, ) sebenarnya merupakan jarak dari tiga bidang berarti berjarak dari bidang y, berjarak y dari dan berjarak dari bidang y sehingga jika digambar dalam sistem koordinat dimensi tiga seperti Gambar 4.. O y (,y,) Gambar 4.. Jarak ke tiga bidang Contoh 4. : Diketahui titik ( 4,, 5) gambarkan dalam sistem koordinat dimesi tiga enyelesaian 4. : Gambar titik ( 4,, 5) seperti bangun sebuah balok O -4-5 (-4,,-5) Geometri dalam Ruang, Vektor

5 4... Jarak Dua Titik Misalnya ada dua titik yaitu, y ruang dimensi tiga dimana dan dalam,, y y dan, dan merupakan titik sudut yang berlawanan didalam suatu balok seperti pada Gambar 4.4., y,, y,, y, Q R Gambar 4.4. Jarak Dua Titik Jika kita letakan sebuah titik Q dan titik R ternyata masing-masing titik mempunyai koordinat Q, y, dan titik R mempunyai koordinat R, y,, karena segiriga Q siku-siku di Q dan segitiga QR siku-siku di, maka akan diperoleh panjang garis dan panjang garis. Q Q Dan. R Q menurut rumus ytagoras yaitu Q QR R sehingga panjang garis Q QR R y y atau y y y y Geometri dalam Ruang, Vektor

6 Secara umum jika diketahui dua titik, y maka panjang atau jarak antara titik berikut : dan, dan, dirumuskan sebagai y y, y Contoh 4. :,4, Diketahui titik titik Q atau Q Q tentukan jarak titik dan 4,,5 ke enyelesaian 4. : Diketahui,4, dan Q 4,,5 adalah : Q y y Q Q 4 5 ( ) Q Q 0 Q 0, 95, maka jarak kedua titik itu Contoh 4.4 : Diketahui titik 4, 5, dan,, 7 ke titik Q atau Q Q tentukan jarak titik Geometri dalam Ruang, Vektor 4

7 enyelesaian 4.4 : Diketahui titik 4, 5, dan titik Q,, 7 titik itu adalah : Q y y Q ( ) Q Q Q 64 Q 8, maka jarak kedua 4... Bola dan ersamaanya ada pembahasan materi sebelumnya, yaitu telah diketahui bahwa dan titik jarak dua buah titik misalnya titik, y,, y, adalah y y karena sebuah bola merupakan himpunan titik y,,, yang berjarak sama atau konstan yaitu atau jari-jari dari suatu titik tetap Q a, b, c sebagai titik pusat bola, maka jarak setiap titik y, Q a, b, c menurut rumus jarak dua titik, ke titik pusat Q a adalah titik Q atau Q Q R y b c, karena jarak titik sama dengan jari-jari sebuah bola, maka a y b c, maka dan karena Q a y b c ke Q R karena Q R, maka didapat Q R, sehingga diperoleh R a y b c maka persamaan bola dapat dirumuskan sebagai berikut : a y b c R Geometri dalam Ruang, Vektor 5

8 Jika kita gambarkan sebuah bola dengan titik pusat a, b, c dengan jari-jari R seperti pada Gambar 4.5. R a, b, c, y, Jika persamaan a y b c R kita uraikan, maka akan menjadi persamaan : a y b c R a a y by b c c R y y Gambar 4.5. Bola dengan titik pusat (a,b,c) a by c a b c R a by c a b 0 A, B b, C c c R Jika a dan D a b c R, maka persamaan akan menjadi : y A By C D 0 Sehingga persamaan bola dengan titik pusat di a, b, c dengan jarijari R adalah : y A By C D 0 Dengan Catatan : A a B b C c D a b c R Geometri dalam Ruang, Vektor 6

9 Contoh 4.5 : dengan jari- Tentukan persamaan bola yang berpusat di titik jari 4.,4, enyelesaian 4.5 : Diketahui titik pusat bola,4, persamaanya : a y b c R y 4 4 Sehingga persamaan bolanya adalah : y 4 jari-jarinya 6 R 4, maka Contoh 4.6 : Tentukan persamaan bola yang berpusat di titik 0,0,0 dengan jarijari. enyelesaian 4.6 : Diketahui titik pusat bola,0,0 persamaanya : a y b c R 0 y jari-jarinya y Sehingga persamaan bolanya adalah : 9 R, maka Contoh 4.7 : y 0 8y 68 Diketahui bola 0, tentukan pusat dan kari-jarinya Geometri dalam Ruang, Vektor 7

10 enyelesaian 4.7 : Diketahui persamaan bola y 0 8y 68 0, A 0, B 8, maka diperoleh data. a 0. B b 8. C c. D a b c R A a C dan a 5 D 68, karena b b 4 c c R R R 9 Sehingga diperoleh kesimpulan bola tersebut mempunyai titik pusat 5,4,6 di titik dengan jari-jari Grafiknya seperti Gambar 4.6 R R 5,4,6 4 5 Gambar 4.6. Bola dengan pusat (5,4,6) dan R= 4... Titik Tengah Hal lain yang berkaitan dengan jarak antara dua titik adalah titik tengah, misalkan diketahui dua titik, y dan, y, Geometri dalam Ruang, Vektor 8, yang masing-masing merupakan titik ujung dari sebuah garis, jika titik tengah dari garis tersebut dituliskan sebagai M m, m m dimana m, m dan m diperoleh dari rumus : y y m m m,,.,

11 Jika kita gambar, maka seperti Gambar 4.7 y m y, m, y m M m, m m, y,, Gambar 4.7. Titik tengah pada suatu Garis Contoh 4.8 : Tentukan titik tengah antara titik,4, dan titi 6, 4, 8 enyelesaian 4.8 : Diketahui titik,4, dan titik 6, 4, 8 tengahnya adalah M m, m m dimana :..., 6 8 m m 4 y y m m m m maka koordinattitik Sehingga titik tengah mempunyai koordinat 4,0, 5 kitagambarkan seperti pada Gambar M, jika Geometri dalam Ruang, Vektor 9

12 -4 6, 4, 8 6 M 4,0, 5-5,4, 4 Gambar 4.8. Titik tengah pada suatu Garis Contoh 4.9 : Tentukan persamaan bola yang pusatnya merupakan titik tengah dan titik dari suatu garis yang dibentuk dari dua titik,, 5,,7 enyelesaian 4.9 : ersoalan yang kita hadapi adalah pusat bola belum diketahui, jarijari belum diketahui, maka langkah pertama adalah menentukan pusat bola dan jari-jari.. Koordinat Titik tengah antara titik,, dan titik 5,,7 adalah M m, m m dimana :, 5 4 m m y y 0 m m m m 5 Jadi titik tengahnya M,0,5 dan titik tengah ini merupakan titik pusat bola Geometri dalam Ruang, Vektor 40

13 . Jari-jari bola adalah jarak titik tengah M,0,5 ke titik yaitu atau jarak titik ke titik yaitu,, 5,,7 M M M m m y m M 0 5 M M M 7 Sehingga persamaan bola yang dimaksud adalah : y 0 5 y 5 7 Atau dalam bentuk : y M,0, ersamaan Bidang Datar Grafik dalam ruang dimensi tiga pada prinsipnya sama dengan grafik pada bidang dimensi dua, jika pada dimensi dua berupa garis, maka pada dimensi tiga akan berupa bidang, demikian juga jika pada dimensi dua berupa bidang, maka jika digambar pada dimensi tiga akan berupa ruang. ersamaan linier pada ruang dimensi tiga merupakan sebuah bidang, secara umum persamaan linier dalam ruang dimensi tiga dirumuskan sebagai berikut : A By C D dengan syarat A B C 0 jika suatu bidang S memotong ke tiga sumbu koordinat yaitu sumbu-, sumbu-y dan sumbu-, maka untuk menggambar grafiknya kita tentukan titik potong pada ketiga sumbu tersebut, yaitu titik potong sumbu- yaitu,0,0, titik potong sumbu-y yaitu Q 0, y,0 Geometri dalam Ruang, Vektor 4

14 dan titik potong sumbu- yaitu R,0, 0, untuk menentukan nilai dan sebagai berikut :. Untuk menentukan nilai, maka kita beri nilai y 0 dan. Untuk menentukan nilai, maka kita beri nilai 0 dan 0. Untuk menentukan nilai, maka kita beri nilai dan y 0, y y 0,0,0 0 Q 0, y,0 Sehingga akan diperoleh ketiga titik potong yaitu, dan R 0,0, Contoh 4.0 : Gambarkan grafik dari persamaan 4y enyelesaian 4.0 : Untuk menentukan ke tiga titik potong terhadap sumbu-sumbu koordinat, maka kita tentukan nilai-nilai dan, yaitu :. Untuk menentukan nilai, maka kita beri nilai y 0 dan 0 dan kita substitusikan ke persamaan 4y, maka diperoleh 4(0) (0) 0 0 4, y sehingga titik potong sumbu- adalah 4,0,0 y. Untuk menentukan nilai, maka kita beri nilai 0 dan kita substitusikan ke persamaan 4y, maka diperoleh (0) 4y (0) 0 4y 0 4y y sehingga titik potong sumbu-y adalah Q 0,,0 Geometri dalam Ruang, Vektor 4 dan 0. Untuk menentukan nilai, maka kita beri nilai 0 dan y 0 dan kitasubstitusikan ke persamaan 4y, maka diperoleh (0) 4(0) 0 0

15 6 R 0,0,6 sehingga titik potong sumbu- adalah Sehingga kita peroleh titik-titik potong terhadap ke tiga sumbu yaitu 4,0,0, Q 0,,0 dan R 0,0,6 jika kita letakkan ketiga titik tersebut pada sistem koordinat dimensi tiga, maka akan terlihat pada Gambar 4.9 R0,0,6 4 y Q 0,,0 4,0,0 Gambar 4.9. Bidang dari sebuah persamaan Contoh 4. : Gambarkan grafik dari persamaan 4 6y enyelesaian 4. : Karena persamaannya 4 6y dimana tidak mengandung variable, maka grafiknya sebuah bidang yang sejajar dengan sumbu-, artinya tidak memiliki titik potong terhadap sumbu-, Untuk menentukan ke dua titik potong terhadap sumbu-sumbu koordinat, maka kita tentukan nilai-nilai dan y, yaitu :. Untuk menentukan nilai, maka kita beri nilai y 0 dan kita substitusikan ke persamaan 4 6y, maka diperoleh 4 6(0) sehingga titik potong sumbu- adalah,0,0 Geometri dalam Ruang, Vektor 4

16 . Untuk menentukan nilai, maka kita beri nilai 0 dan kita substitusikan ke persamaan 4 6y, maka diperoleh 4 6y 4(0) 6y 6y y y Q 0,,0 sehingga titik potong sumbu-y adalah Karena dalam persamaan 4 6y tidak ada variabel, maka berarti bidang datar tersebut sejajar dengan sumbu-, sehingga tidak ada titik potong sumbu-, kita hanya memperoleh titik potong,0,0 terhadap sumbu- yaitu Q 0,,0, dan titik potong sumbu-y yaitu jika kita letakkan kedua titik tersebut pada sistem koordinat dimensi tiga, maka akan terlihat pada Gambar y Q 0,,0,0,0 Gambar 4.0. Bidang Sejajar Sumbu- Contoh 4. : 4 Gambarkan grafik dari persamaan 8 enyelesaian 4. : Karena persamaannya 4 8 dimana tidak mengandung variable, maka grafiknya sebuah bidang yang sejajar dengan sumbu- y, artinya tidak memiliki titik potong terhadap sumbu- y, y Geometri dalam Ruang, Vektor 44

17 Untuk menentukan ke dua titik potong terhadap sumbu-sumbu koordinat, maka kita tentukan nilai-nilai dan, yaitu :. Untuk menentukan nilai, maka kita beri nilai dan kita substitusikan ke persamaan 4 8, maka diperoleh 4(0) ,0,0. Untuk menentukan nilai, maka kita beri nilai 0 dan kita substitusikan ke persamaan 4 8, maka diperoleh 4 8 (0) sehingga titik potong sumbu- adalah R 0,0, sehingga titik potong sumbu- adalah 4 Karena dalam persamaan 8 tidak ada variabel, maka berarti bidang datar tersebut sejajar dengan sumbu-y, sehingga tidak ada titik potong sumbu-y, kita hanya memperoleh titik potong terhadap sumbu- yaitu 4,0,0 0,0,, dan titik potong sumbu- yaitu R jika kita letakkan kedua titik tersebut pada sistem koordinat dimensi tiga, maka akan terlihat pada Gambar 4. y Q 0,0, 4 8 4,0,0 Gambar 4.. Bidang Sejajar Sumbu Geometri dalam Ruang, Vektor 45

18 4..5. Soal-Soal Latihan 6,,. Tentukan jarak titik ke titik Q,, 5. Diketahui titik-titik 4,5,,,7, dan,4,5 merupakan titik sudut suatu segitiga, perlihatkan bahwa segitiga tersebut adalah segitiga sama sisi,0,5. Diketahui titik-titik, dan merupakan titiktitik sudut suatu segitiga, perlihatkan bahwa segitiga tersebut adalah segitiga siku-siku dengan bantuan teorema hytagoras,6,8 7,4, 7 4. Sebuah kotak persegipanjang sisi-sisinya sejajar bidang-bidang koordinat dan sebagai titik ujung diagonal utamanya adalah dan, Gambarkan kotak itu dan cari koordinat ke delapan titik sudutnya 5,,0,,4 5. Tuliskan persamaan bola yang titik pusatnya dan jari-jarinya sebagai berikut :, 6 a.,,4, 5 b.,0,4 c. 6,,, d.,0,0, 6. Cari persamaan bola yang pusatnya,4,5 bidang y dan menyinggung 7. Tentukan pusat bola dan jari-jarinya dari persamaan bola di bawah ini a. y 4y 8 0 y 6y 0 4 b y 4 4 8y 6 c. 0 y 8 4y 77 d Buatkan sketsa grafik dari persamaan yang diketahui a. 6y b. 4y 4 c. y 6 d. y 6 9. Tentukan persamaan bola yang mempunyai ruas garis yang menghubungkan titi,,6 dan 4,,5 sebagai garis tengah Geometri dalam Ruang, Vektor 46

BAB II VEKTOR DAN GERAK DALAM RUANG

BAB II VEKTOR DAN GERAK DALAM RUANG BAB II VEKTOR DAN GERAK DALAM RUANG 1. KOORDINAT CARTESIUS DALAM RUANG DIMENSI TIGA SISTEM TANGAN KANAN SISTEM TANGAN KIRI RUMUS JARAK,,,, 16 Contoh : Carilah jarak antara titik,, dan,,. Solusi :, Persamaan

Lebih terperinci

Geometri dalam Ruang, Vektor

Geometri dalam Ruang, Vektor Prodi Matematika FMIPA Unsyiah July 11, 2011 Koordinat Cartesius: Tiga garis koordinat yang saling tegak lurus (sumbu x, sumbu y dan sumbvu z); Titik nol ketiga garis berada pada titik O yang sama yang

Lebih terperinci

SILABUS PEMBELAJARAN

SILABUS PEMBELAJARAN SILABUS PEMBELAJARAN Sekolah :... Kelas : VIII (Delapan) Mata Pelajaran : Matematika Semester : I (satu) ALJABAR Standar : 1. Memahami bentuk aljabar, relasi,, dan persamaan garis lurus Indikator Kegiatan

Lebih terperinci

VII III II VIII HAND OUT PERKULIAHAN GEOMETRI ANALITIK

VII III II VIII HAND OUT PERKULIAHAN GEOMETRI ANALITIK HAND OUT PERKULIAHAN GEOMETRI ANALITIK A. Sistem Koordinat Tegak Lurus Suatu sistem koordinat tegak lurus disebut juga dengan sistem koordinat cartesian. Di dalam ruang, terdapat tiga buah garis lurus

Lebih terperinci

PERSAMAAN BIDANG RATA DAN VEKTOR NORMAL. (,, ) dan (,, ). Dan misalkan

PERSAMAAN BIDANG RATA DAN VEKTOR NORMAL. (,, ) dan (,, ). Dan misalkan PERSAAAN BIDANG RATA DAN VEKTOR NORAL Bila terdapat tiga titik yang tidak kolinear maka ketiga titik itu menentukan sebuah bidang rata. dan. Dan misalkan isalkan ketiga titik itu masing-masing vector-vektor

Lebih terperinci

MODUL 1 SISTEM KOORDINAT KARTESIUS

MODUL 1 SISTEM KOORDINAT KARTESIUS 1 MODUL 1 SISTEM KOORDINAT KARTESIUS Dalam matematika, sistem koordinat kartesius digunakan untuk menentukan tiap titik dalam bidang dengan menggunakan dua bilangan yang biasa disebut koordinat x (absis)

Lebih terperinci

MODUL 3 BIDANG RATA. [Program Studi Pendidikan Matematika STKIP PGRI Sumatera Barat]

MODUL 3 BIDANG RATA. [Program Studi Pendidikan Matematika STKIP PGRI Sumatera Barat] 1 MODUL 3 BIDANG RATA Setelah mempelajari modul 1 dan 2 anda akan melanjutkan mempelajari modul 3 tentang bidang rata. Materi bidang rata ini berkaitan dengan materi pada modul sebelumnya. Pada modul 3

Lebih terperinci

LINGKARAN. Lingkaran. pusat lingkaran diskriminan posisi titik posisi garis garis kutub gradien. sejajar tegak lurus persamaan lingkaran

LINGKARAN. Lingkaran. pusat lingkaran diskriminan posisi titik posisi garis garis kutub gradien. sejajar tegak lurus persamaan lingkaran LINGKARAN Persamaan Persamaan garis singgung lingkaran Persamaan lingkaran berpusat di (0, 0) dan (a, b) Kedudukan titik dan garis terhadap lingkaran Merumuskan persamaan garis singgung yang melalui suatu

Lebih terperinci

PROGRAM PEMBELAJARAN KELAS VII SEMESTER I. Mata Pelajaran : Matematika

PROGRAM PEMBELAJARAN KELAS VII SEMESTER I. Mata Pelajaran : Matematika PROGRAM PEMBELAJARAN KELAS VII SEMESTER I Mata Pelajaran : Matematika 191 PROGRAM SEMESTER TAHUN PELAJARAN 20 / 20 Nama Sekolah : Kelas/ Semester : VII/1 Mata Pelajaran : Matematika Aspek : BILANGAN Standar

Lebih terperinci

PERSAMAAN BIDANG RATA

PERSAMAAN BIDANG RATA 1 KEGIATAN BELAJAR 5 PERSAMAAN BIDANG RATA Setelah mempelajari kegiatan belajar 5 ini, mahasiswa diharapkan mampu: 1. Menentukan persamaan vektoris bidang rata 2. Menentukan persamaan linier bidang rata

Lebih terperinci

SISTEM KOORDINAT. Berikut ini kita akan mempelajari bagaimana menentukan sistem koordinat dibidang dan diruang.

SISTEM KOORDINAT. Berikut ini kita akan mempelajari bagaimana menentukan sistem koordinat dibidang dan diruang. 1 KEGIATAN BELAJAR 1 SISTEM KOORDINAT Setelah mempelajari kegiatan belajar 1 ini, mahasiswa diharapkan mampu menggambarkan dan membedakan sebuah titik yang terletak di bidang dan Berikut ini kita akan

Lebih terperinci

Lingkaran adalah tempat kedudukan titik-titik pada bidang yang berjarak

Lingkaran adalah tempat kedudukan titik-titik pada bidang yang berjarak 4 Lingkaran 4.1. Persamaan Lingkaran Bentuk Baku. Lingkaran adalah tempat kedudukan titik-titik pada bidang yang berjarak tetap dari suatu titik tetap. Titik tetap dari lingkaran disebut pusat lingkaran,

Lebih terperinci

VEKTOR. Gambar 1.1 Gambar 1.2 Gambar 1.3. Liduina Asih Primandari, S.Si., M.Si.

VEKTOR. Gambar 1.1 Gambar 1.2 Gambar 1.3. Liduina Asih Primandari, S.Si., M.Si. VEKTOR 1 A. Definisi vektor Beberapa besaran Fisika dapat dinyatakan dengan sebuah bilangan dan sebuah satuan untuk menyatakan nilai besaran tersebut. Misal, massa, waktu, suhu, dan lain lain. Namun, ada

Lebih terperinci

PERSAMAAN GARIS LURUS

PERSAMAAN GARIS LURUS PERSAMAAN GARIS LURUS A. Menggambar grafik garis lurus Langkah langkah mengambar grafik persamaan garis lurus sama dengan langkahlangkah membuat grafik pada sistim koordinat. Gambarlah grafik persamaan

Lebih terperinci

Dr. Ramadoni Syahputra Jurusan Teknik Elektro FT UMY

Dr. Ramadoni Syahputra Jurusan Teknik Elektro FT UMY SISTEM-SISTEM KOORDINAT Dr. Ramadoni Syahputra Jurusan Teknik Elektro FT UMY Sistem Koordinat Kartesian Dalam sistem koordinat Kartesian, terdapat tiga sumbu koordinat yaitu sumbu x, y, dan z. Suatu titik

Lebih terperinci

Tabel 1. Rata-rata Nilai Ujian Nasional Secara Nasional

Tabel 1. Rata-rata Nilai Ujian Nasional Secara Nasional Rekap Nilai Ujian Nasional tahun 2011 Pada tahun 2011 rata-rata nilai matematika 7.31, nilai terendah 0.25, nilai tertinggi 10, dengan standar deviasi sebesar 1.57. Secara rinci perolehan nilai Ujian Nasional

Lebih terperinci

Lingkaran. A. Persamaan Lingkaran B. Persamaan Garis Singgung Lingkaran

Lingkaran. A. Persamaan Lingkaran B. Persamaan Garis Singgung Lingkaran Bab Sumber: www.panebiancod.com Setelah mempelajari bab ini, Anda harus mampu merumuskan persamaan lingkaran dan menggunakannya dalam pemecahan masalah; menentukan persamaan garis singgung pada lingkaran

Lebih terperinci

KRITERIA KETUNTASAN MINIMAL ( KKM ) MATA PELAJARAN MATEMATIKA KELAS VII ( 1 ) SEMESTER I

KRITERIA KETUNTASAN MINIMAL ( KKM ) MATA PELAJARAN MATEMATIKA KELAS VII ( 1 ) SEMESTER I KRITERIA KETUNTASAN MINIMAL ( KKM ) MATA PELAJARAN MATEMATIKA KELAS VII ( 1 ) SEMESTER I 16 KRITERIA KETUNTASAN MINIMAL ( KKM ) MATA PELAJARAN: MATEMATIKA Sekolah : SMP/MTs... Kelas : VII Semester : I

Lebih terperinci

PERSIAPAN UN MATEMATIKA SMP 2014

PERSIAPAN UN MATEMATIKA SMP 2014 PERSIAPAN UN MATEMATIKA SMP 014 Berilah tanda silang (x) pada huruf a, b, c, atau d di depan jawaban yang benar! 1. Di suatu daerah yang berada pada ketinggian.500 meter di atas permukaan laut suhunya

Lebih terperinci

KUMPULAN SOAL MATEMATIKA SMP KELAS 8

KUMPULAN SOAL MATEMATIKA SMP KELAS 8 KUMPULAN SOAL MATEMATIKA SMP KELAS 8 Dirangkum oleh Moch. Fatkoer Rohman Website: http://fatkoer.co.cc http://zonamatematika.co,cc Email: fatkoer@gmail.com 009 Evaluasi Bab 1 Untuk nomor 1 sampai 5 pilihlah

Lebih terperinci

MODUL 4 LINGKARAN DAN BOLA

MODUL 4 LINGKARAN DAN BOLA 1 MODUL 4 LINGKARAN DAN BOLA Sumber: www.google.co.id Gambar 6. 6 Benda berbentuk lingkaran dan bola Dalam kehidupan sehari-hari kita banyak menjumpai benda-benda yang berbentuk bola maupun lingkaran.

Lebih terperinci

Sumber Belajar 2x40mnt Buku teks. 2x40mnt. 2x40mnt. (2x + 3) + (-5x 4) (-x + 6)(6x 2) Tes tulis Tes uraian Berapakah: berikut: Teknik Bentuk

Sumber Belajar 2x40mnt Buku teks. 2x40mnt. 2x40mnt. (2x + 3) + (-5x 4) (-x + 6)(6x 2) Tes tulis Tes uraian Berapakah: berikut: Teknik Bentuk Sekolah : SMP Kelas : VIII Mata Pelajaran : Matematika Semester : I(satu) SILABUS Standar : ALJABAR 1. Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus 1.1 Melakukan operasi aljabar Bentuk

Lebih terperinci

BAB I VEKTOR DALAM BIDANG

BAB I VEKTOR DALAM BIDANG BAB I VEKTOR DALAM BIDANG I. KURVA BIDANG : Penyajian secara parameter Suatu kurva bidang ditentukan oleh sepasang persamaan parameter. ; dalam I dan kontinue pada selang I, yang pada umumnya sebuah selang

Lebih terperinci

41. Mata Pelajaran Matematika untuk Sekolah Menengah Pertama (SMP)/Madrasah Tsanawiyah (MTs)

41. Mata Pelajaran Matematika untuk Sekolah Menengah Pertama (SMP)/Madrasah Tsanawiyah (MTs) 41. Mata Pelajaran Matematika untuk Sekolah Menengah Pertama (SMP)/Madrasah Tsanawiyah (MTs) A. Latar Belakang Matematika merupakan ilmu universal yang mendasari perkembangan teknologi modern, mempunyai

Lebih terperinci

Matematika Semester IV

Matematika Semester IV F U N G S I KOMPETENSI DASAR Mendeskripsikan perbedaan konsep relasi dan fungsi Menerapkan konsep fungsi linear Menggambar fungsi kuadrat Menerapkan konsep fungsi kuadrat Menerapkan konsep fungsi trigonometri

Lebih terperinci

Persamaan Lingkaran. Pusat Jari-jari Pusat. Jari-jari Menentukan persamaan lingkaran atau garis singgung lingkaran. Persamaan Lingkaran

Persamaan Lingkaran. Pusat Jari-jari Pusat. Jari-jari Menentukan persamaan lingkaran atau garis singgung lingkaran. Persamaan Lingkaran 2. 5. Menentukan persamaan lingkaran atau garis singgung lingkaran. Persamaan Lingkaran Persamaan Lingkaran () () Bentuk Umum 0 dibagi (2) Pusat Jari-jari Pusat (,), Jumlah kuadrat pusat dikurangi Jari-jari

Lebih terperinci

BAB II TINJAUAN PUSTAKA. tegak, perlu diketahui tentang materi-materi sebagai berikut.

BAB II TINJAUAN PUSTAKA. tegak, perlu diketahui tentang materi-materi sebagai berikut. BAB II TINJAUAN PUSTAKA Sebelum pembahasan mengenai irisan bidang datar dengan tabung lingkaran tegak, perlu diketahui tentang materi-materi sebagai berikut. A. Matriks Matriks adalah himpunan skalar (bilangan

Lebih terperinci

Program Studi Pendidikan Matematika STKIP PGRI SUMBAR

Program Studi Pendidikan Matematika STKIP PGRI SUMBAR VEKTOR DAN SKALAR Materi pokok pertemuan ke I: 1. Vektor dan skalar 2. Komponen vektor 3. Operasi dasar aljabar vektor URAIAN MATERI Masih ingatkah Anda tentang vektor? Apa beda vektor dengan skalar? Ya,

Lebih terperinci

KISI-KISI UJIAN SEKOLAH

KISI-KISI UJIAN SEKOLAH KISI-KISI UJIAN SEKOLAH Matematika SEKOLAH MENENGAH PERTAMA DAERAH KHUSUS IBUKOTA (DKI) JAKARTA TAHUN PELAJARAN 2012-2013 KISI KISI PENULISAN SOAL UJIAN SEKOLAH TAHUN PELAJARAN 2012-2013 Jenjang : SMP

Lebih terperinci

GEOMETRI ANALITIK RUANG. Dr. Susanto, MPd

GEOMETRI ANALITIK RUANG. Dr. Susanto, MPd GEOMETRI ANALITIK RUANG Dr. Susanto, MPd PROGRAM STUDI PENDIDIKAN MATEMATIKA JURUSAN PENDIDIKAN MATEMATIKA DAN IPA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS JEMBER TAHUN 2012 KATA PENGANTAR Puji

Lebih terperinci

41. Mata Pelajaran Matematika untuk Sekolah Menengah Pertama (SMP)/Madrasah Tsanawiyah (MTs)

41. Mata Pelajaran Matematika untuk Sekolah Menengah Pertama (SMP)/Madrasah Tsanawiyah (MTs) 41. Mata Pelajaran Matematika untuk Sekolah Menengah Pertama (SMP)/Madrasah Tsanawiyah (MTs) A. Latar Belakang Matematika merupakan ilmu universal yang mendasari perkembangan teknologi modern, mempunyai

Lebih terperinci

Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis Lurus

Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis Lurus Modul 1 Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis Lurus Drs. Sukirman, M.Pd. D alam Modul Pertama ini, kita akan membahas tentang Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis

Lebih terperinci

MODUL PEMBELAJARAN KALKULUS II. ALFIANI ATHMA PUTRI ROSYADI, M.Pd

MODUL PEMBELAJARAN KALKULUS II. ALFIANI ATHMA PUTRI ROSYADI, M.Pd MODUL PEMBELAJARAN KALKULUS II ALFIANI ATHMA PUTRI ROSYADI, M.Pd IDENTITAS MAHASISWA NAMA : KLS/NIM :. KELOMPOK:. Daftar Isi Kata Pengantar Peta Konsep Materi. BAB I Analisis Vektor a. Vektor Pada Bidang.6

Lebih terperinci

MODUL 2 GARIS LURUS. Mesin Antrian Bank

MODUL 2 GARIS LURUS. Mesin Antrian Bank 1 MODUL 2 GARIS LURUS Gambar 4. 4 Mesin Antrian Bank Persamaan garis lurus sangat berperan penting terhadap kemajuan teknologi sekarang ini. Bagi programmer handal, banyak aplikasi yang membutuhkan persamaan

Lebih terperinci

BOLA. Geometri Analitik Ruang. Oleh Mega Teguh Budiarto

BOLA. Geometri Analitik Ruang. Oleh Mega Teguh Budiarto BOLA Geometri Analitik Ruang Oleh Mega Teguh Budiarto Persamaan Bola Q P DISKUSI Berikan minimal 3 contoh persamaan bola, beri alasan mengapa contoh yang saudara buat persamaan bola. Berikan minimal 3

Lebih terperinci

PROGRAM TAHUNAN MATA PELAJARAN : MATEMATIKA

PROGRAM TAHUNAN MATA PELAJARAN : MATEMATIKA PERANGKAT PEMBELAJARAN PROGRAM TAHUNAN MATA PELAJARAN : MATEMATIKA Kelas VII SEMESTER 1 & 2 MTs.... PROGRAM TAHUNAN Sekolah : MTs.... Mata Pelajaran : MATEMATIKA Kelas / Semester : VII / 1 dan 2 Tahun

Lebih terperinci

PERSAMAAN GARIS LURUS

PERSAMAAN GARIS LURUS 1 KEGIATAN BELAJAR 3 PERSAMAAN GARIS LURUS Setelah mempelajari kegiatan belajar 3 ini, mahasiswa diharapkan mampu: 1. menentukan persamaan gradien garis lurus, 2. menentukan persamaan vektoris dan persamaan

Lebih terperinci

Modul Matematika 2012

Modul Matematika 2012 Modul Matematika MINGGU V Pokok Bahasan : Fungsi Non Linier Sub Pokok Bahasan :. Pendahuluan. Fungsi kuadrat 3. Fungsi pangkat tiga. Fungsi Rasional 5. Lingkaran 6. Ellips Tujuan Instruksional Umum : Agar

Lebih terperinci

Bagian 4 Terapan Differensial

Bagian 4 Terapan Differensial Bagian 4 Terapan Differensial Dalam bagian 4 Terapan Differensial, kita akan mempelajari materi bagaimana konsep differensial dapat dipergunakan untuk mengatasi persoalan yang terjadi di sekitar kita.

Lebih terperinci

Outline Vektor dan Garis Koordinat Norma Vektor Hasil Kali Titik dan Proyeksi Hasil Kali Silang. Geometri Vektor. Kusbudiono. Jurusan Matematika

Outline Vektor dan Garis Koordinat Norma Vektor Hasil Kali Titik dan Proyeksi Hasil Kali Silang. Geometri Vektor. Kusbudiono. Jurusan Matematika Jurusan Matematika 1 Nopember 2011 1 Vektor dan Garis 2 Koordinat 3 Norma Vektor 4 Hasil Kali Titik dan Proyeksi 5 Hasil Kali Silang Definisi Vektor Definisi Jika AB dan CD ruas garis berarah, keduanya

Lebih terperinci

09. Mata Pelajaran Matematika A. Latar Belakang B. Tujuan

09. Mata Pelajaran Matematika A. Latar Belakang B. Tujuan 09. Mata Pelajaran Matematika A. Latar Belakang Matematika merupakan ilmu universal yang mendasari perkembangan teknologi modern, mempunyai peran penting dalam berbagai disiplin dan memajukan daya pikir

Lebih terperinci

Materi Olimpiade Matematika Vektor Nasional 2016 Jenjang SD:

Materi Olimpiade Matematika Vektor Nasional 2016 Jenjang SD: Materi Olimpiade Matematika Vektor Nasional 2016 Jenjang SD: 1. Bilangan dan Operasinya 2. Kelipatan dan Faktor 3. Angka Romawi, Pecahan dan Skala 4. Perpangkatan dan Akar 5. Waktu, Kecepatan, dan Debit

Lebih terperinci

SILABUS. tentu. Menentukan integral tentu dengan menggunakan sifat-sifat integral. Menyelesaikan masalah

SILABUS. tentu. Menentukan integral tentu dengan menggunakan sifat-sifat integral. Menyelesaikan masalah SILABUS Nama Sekolah : SMA PGRI 1 AMLAPURA Mata Pelajaran : MATEMATIKA Kelas/Program : XII / IPA Semester : 1 STANDAR KOMPETENSI: 1. Menggunakan konsep integral dalam pemecahan masalah. KOMPETENSI DASAR

Lebih terperinci

BAB III TURUNAN DALAM RUANG DIMENSI-n

BAB III TURUNAN DALAM RUANG DIMENSI-n BAB III TURUNAN DALAM RUANG DIMENSI-n 1. FUNGSI DUA PEUBAH ATAU LEBIH fungsi bernilai riil dari peubah riil, fungsi bernilai vektor dari peubah riil Fungsi bernilai riil dari dua peubah riil yakni, fungsi

Lebih terperinci

SILABUS PENGALAMAN BELAJAR ALOKASI WAKTU

SILABUS PENGALAMAN BELAJAR ALOKASI WAKTU SILABUS Mata Pelajaran : Matematika Satuan Pendidikan : SMA Ungguan BPPT Darus Sholah Jember kelas : XII IPA Semester : Ganjil Jumlah Pertemuan : 44 x 35 menit (22 pertemuan) STANDAR 1. Menggunakan konsep

Lebih terperinci

KEDUDUKAN DUA GARIS LURUS, SUDUT DAN JARAK

KEDUDUKAN DUA GARIS LURUS, SUDUT DAN JARAK 1 KEGIATAN BELAJAR 4 KEDUDUKAN DUA GARIS LURUS, SUDUT DAN JARAK Setelah mempelajari kegiatan belajar 4 ini, mahasiswa diharapkan mampu: 1. Menentukan kedudukan dua garis lurus di bidang dan di ruang 2.

Lebih terperinci

Pembahasan Soal UN Matematika SMP Tahun Ajaran 2010/2011 Paket 12

Pembahasan Soal UN Matematika SMP Tahun Ajaran 2010/2011 Paket 12 Pembahasan Soal UN Matematika SMP Tahun Ajaran 2010/2011 Paket 12 Tim Pembahas : Th. Widyantini Untung Trisna Suwaji Wiworo Choirul Listiani Estina Ekawati Nur Amini Mustajab PPPPTK Matematika Yogyakarta

Lebih terperinci

yang tak terdefinisikan dalam arti keberadaannya tidak perlu didefinisikan.

yang tak terdefinisikan dalam arti keberadaannya tidak perlu didefinisikan. 3 Gariis Lurus Dalam geometri aksiomatik/euclide konsep garis merupakan salah satu unsur ang tak terdefinisikan dalam arti keberadaanna tidak perlu didefinisikan. Karakteristik suatu garis diberikan pada

Lebih terperinci

IKIP BUDI UTOMO MALANG. Analytic Geometry TEXT BOOK. Alfiani Athma Putri Rosyadi, M.Pd

IKIP BUDI UTOMO MALANG. Analytic Geometry TEXT BOOK. Alfiani Athma Putri Rosyadi, M.Pd IKIP BUDI UTOMO MALANG Analytic Geometry TEXT BOOK Alfiani Athma Putri Rosyadi, M.Pd 2012 DAFTAR ISI 1 VEKTOR 1.1 Vektor Pada Bidang... 4 1.2 Vektor Pada Ruang... 6 1.3 Operasi Vektor.. 8 1.4 Perkalian

Lebih terperinci

DALIL PYTHAGORAS DAN PEMECAHAN MASALAH GEOMETRI

DALIL PYTHAGORAS DAN PEMECAHAN MASALAH GEOMETRI DALIL PYTHAGORAS DAN PEMECAHAN MASALAH GEOMETRI Segitiga 1. Beberapa sifat yang berlaku pada segitiga adalah : Jumlah sudut-sudut sembarang segitiga adalah 180 0 Pada segitiga ABC berlaku AC = BC B = A

Lebih terperinci

syarat tertentu yang diberikan. Atau bisa juga diartikan sebagai lintasan dari sebuah

syarat tertentu yang diberikan. Atau bisa juga diartikan sebagai lintasan dari sebuah 2 Tempat Kedudukan dan Persamaan 2.1. Tempat Kedudukan Tempat kedudukan (locus) adalah himpunan titik-titik yang memenuhi suatu syarat tertentu yang diberikan. Atau bisa juga diartikan sebagai lintasan

Lebih terperinci

Perkalian Titik dan Silang

Perkalian Titik dan Silang PERKALIAN TITIK DAN SILANG Materi pokok pertemuan ke 3: 1. Perkalian titik URAIAN MATERI Perkalian Titik Perkalian titik dari dua buah vektor dan dinyatakan oleh (baca: titik ). Untuk lebih jelas, berikut

Lebih terperinci

Pembahasan SNMPTN 2011 Matematika IPA Kode 576

Pembahasan SNMPTN 2011 Matematika IPA Kode 576 Pembahasan SNMPTN 011 Matematika IPA Kode 576 Oleh Tutur Widodo Juni 011 1. Diketahui vektor u = (a,, 1) dan v = (a, a, 1). Jika vektor u tegak lurus pada v, maka nilai a adalah... a. 1 b. 0 c. 1 d. e.

Lebih terperinci

Peta Kompetensi Mata Kuliah Geometri Analitik Bidang dan Ruang (PEMA4317) xiii

Peta Kompetensi Mata Kuliah Geometri Analitik Bidang dan Ruang (PEMA4317) xiii ix G Tinjauan Mata Kuliah eometri Analitik merupakan suatu bidang studi dari hasil perkawinan antara Geometri dan Aljabar. Kita telah mengetahui bahwa himpunan semua titik pada suatu garis lurus berkorespondensi

Lebih terperinci

1.1 Fungsi Dua Peubah Atau Lebih 1.2 Turunan Parsial Fungsi Dua Peubah atau Lebih

1.1 Fungsi Dua Peubah Atau Lebih 1.2 Turunan Parsial Fungsi Dua Peubah atau Lebih ] 1 Pada Bab 1 ini akan dibahas antara lain sebagai berikut. 1.1 Fungsi Dua Peubah Atau Lebih 1.2 Turunan Parsial Fungsi Dua Peubah atau Lebih Tema sentral dari bab ini adalah kalkulus dari fungsi peubah

Lebih terperinci

PENJABARAN KISI-KISI UJIAN NASIONAL BERDASARKAN PERMENDIKNAS NOMOR 75 TAHUN SKL Kemampuan yang diuji Alternatif Indikator SKL

PENJABARAN KISI-KISI UJIAN NASIONAL BERDASARKAN PERMENDIKNAS NOMOR 75 TAHUN SKL Kemampuan yang diuji Alternatif Indikator SKL PENJABARAN KISI-KISI UJIAN NASIONAL BERDASARKAN PERMENDIKNAS NOMOR 75 TAHUN 2009 Mata Pelajaran : Matematika No. 1. Menggunakan konsep operasi 1. Menghitung operasi tambah, kurang, kali dan 1.1. Menentukan

Lebih terperinci

KEGIATAN BELAJAR SISWA

KEGIATAN BELAJAR SISWA KEGIATAN BELAJAR SISWA Bidang studi : Matematika Satuan Pendidikan: SLTP Kelas: 3 (tiga) Caturwulan: 1 (satu) Pokok Bahasan: Transformasi Subpokok Bahasan: Refleksi Waktu: 150 Menit Endang Mulyana 2003

Lebih terperinci

KTSP Perangkat Pembelajaran SMP/MTs, KURIKULUM TINGKAT SATUAN PENDIDIKAN (KTSP) Mapel Matematika kls VII s/d IX. 1-2

KTSP Perangkat Pembelajaran SMP/MTs, KURIKULUM TINGKAT SATUAN PENDIDIKAN (KTSP) Mapel Matematika kls VII s/d IX. 1-2 KTSP Perangkat Pembelajaran SMP/MTs, PERANGKAT PEMBELAJARAN STANDAR KOMPETENSI DAN KOMPETENSI DASAR Mata Pelajaran Satuan Pendidikan Kelas/Semester : Matematika. : SMP/MTs. : VII s/d IX /1-2 Nama Guru

Lebih terperinci

Modul 3 SIMETRI, PERSEGIPANJANG, PERSEGI, DAN KESEJAJARAN GARIS

Modul 3 SIMETRI, PERSEGIPANJANG, PERSEGI, DAN KESEJAJARAN GARIS Modul 3 SIMETRI, PERSEGIPANJANG, PERSEGI, DAN KESEJAJARAN GARIS A. Pengantar Materi yang akan di bahas pada kegiatan pembelajaran ini terdiri atas pengertian simetri lipat, simetri putar, setengah putaran,

Lebih terperinci

SILABUS ALOKASI WAKTU TM PS PI SUMBER BELAJAR KOMPETENSI DASAR INDIKATOR MATERI PEMBELAJARAN KEGIATAN PEMBELAJARAN PENILAIAN

SILABUS ALOKASI WAKTU TM PS PI SUMBER BELAJAR KOMPETENSI DASAR INDIKATOR MATERI PEMBELAJARAN KEGIATAN PEMBELAJARAN PENILAIAN SILABUS KELAS / SEMESTER : X / 1 STANDAR : Memecahkan masalah berkaitan dengan konsep operasi bilangan riil KODE : D.20 : 40 x 45 menit 1. Menerapkan operasi pada bilangan riil PEMAN KEGIATAN PEMAN Mengoperasikan

Lebih terperinci

Matematika Proyek Perintis I Tahun 1979

Matematika Proyek Perintis I Tahun 1979 Matematika Proyek Perintis I Tahun 979 MA-79-0 Irisan himpunan : A = { x x < } dan himpunan B = { x < x < 8 } ialah himpunan A. { x x < 8 } { x x < } { x < x < 8 } { x < x < } { x < x } MA-79-0 Apabila

Lebih terperinci

Semua informasi tentang buku ini, silahkan scan QR Code di cover belakang buku ini

Semua informasi tentang buku ini, silahkan scan QR Code di cover belakang buku ini GEOMETRI ANALITIK, oleh I Made Suarsana, S.Pd., M.Si. Hak Cipta 2014 pada penulis GRAHA ILMU Ruko Jambusari 7A Yogyakarta 55283 Telp: 0274-889398; Fax: 0274-889057; E-mail: info@grahailmu.co.id Hak Cipta

Lebih terperinci

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a Soal - Soal UM UGM. Soal Matematika Dasar UM UGM 00. Jika x = 3 maka + 3 log 4 x =... a. b. c. d. e.. Jika x+y log = a dan x y log 8 = b dengan 0 < y < x maka 4 log (x y ) =... a. a + 3b ab b. a + b ab

Lebih terperinci

kombinasi antara aljabar dan geometri. Dengan membuat korespondensi antara

kombinasi antara aljabar dan geometri. Dengan membuat korespondensi antara Sistem Koordinat Cartesius.. Geometri Analitik Geometri analitik adalah suatu cabang ilmu matematika yang merupakan kombinasi antara aljabar dan geometri. Dengan membuat korespondensi antara persamaan

Lebih terperinci

Teorema Divergensi, Teorema Stokes, dan Teorema Green

Teorema Divergensi, Teorema Stokes, dan Teorema Green TEOREMA DIVERGENSI, STOKES, DAN GREEN Materi pokok pertemuan ke 13: 1. Teorema divergensi Gauss URAIAN MATERI Untuk memudahkan perhitungan seringkali dibutuhkan penyederhanaan bentuk integral yang berdasarkan

Lebih terperinci

Persamaan Garis singgung Melalui titik (x 1, y 1 ) diluar lingkaran. Pusat Lingkaran (a, b) Persamaan Garis singgung. Jari Jari r.

Persamaan Garis singgung Melalui titik (x 1, y 1 ) diluar lingkaran. Pusat Lingkaran (a, b) Persamaan Garis singgung. Jari Jari r. PERSAMAAN LINGKARAN Pusat Lingkaran (0, 0) Melalui titik (x, y ) pada lingkaran Jika diketahui gradient m xx y mx r yy r m x y r Persamaan Garis singgung Melalui titik (x, y ) diluar lingkaran Jari Jari

Lebih terperinci

LATIHAN SOAL-SOAL PERSIAPAN UJIAN NASIONAL MATEMATIKA 2015 EDISI SOAL NON RUTIN Disusun oleh : GHELVINNY, S.Si ( SMPN 199 Jakarta)

LATIHAN SOAL-SOAL PERSIAPAN UJIAN NASIONAL MATEMATIKA 2015 EDISI SOAL NON RUTIN Disusun oleh : GHELVINNY, S.Si ( SMPN 199 Jakarta) Luas padang rumput Luas padang rumput Luas padang rumput Luas padang rumput LATIHAN SOAL-SOAL PERSIAPAN UJIAN NASIONAL MATEMATIKA 2015 EDISI SOAL NON RUTIN Disusun oleh : GHELVINNY, S.Si ( SMPN 199 Jakarta)

Lebih terperinci

Pendahuluan. 1.1 Latar Belakang

Pendahuluan. 1.1 Latar Belakang Pendahuluan 1.1 Latar elakang Geometri datar, merupakan studi tentang titik, garis, sudut, dan bangun-bangun geometri yang terletak pada sebuah bidang datar. erbagai mekanisme peralatan dalam kehidupan

Lebih terperinci

UJIAN TENGAH SEMESTER KALKULUS I

UJIAN TENGAH SEMESTER KALKULUS I UJIAN TENGAH SEMESTER KALKULUS I Senin, 9 April 001 Waktu :,5 jam 1. Tentukan dy dx jika (a) y 5x (x + 1) (b) y cos x.. Dengan menggunakan de nisi turunan, tentukan f 0 (x) untuk fungsi f berikut f (x)

Lebih terperinci

KESEIMBANGAN BENDA TEGAR

KESEIMBANGAN BENDA TEGAR KESETIMBANGAN BENDA TEGAR 1 KESEIMBANGAN BENDA TEGAR Pendahuluan. Dalam cabang ilmu fisika kita mengenal MEKANIKA. Mekanika ini dibagi dalam 3 cabang ilmu yaitu : a. KINEMATIKA = Ilmu gerak Ilmu yang mempelajari

Lebih terperinci

fungsi Dan Grafik fungsi

fungsi Dan Grafik fungsi fungsi Dan Grafik fungsi Suatu fungsi adalah pemadanan dua himpunan tidak kosong dengan pasangan terurut (x, y) dimana tidak terdapat elemen kedua yang berbeda. Fungsi (pemetaan) himpunan A ke himpunan

Lebih terperinci

DESKRIPSI PEMELAJARAN - MATEMATIKA

DESKRIPSI PEMELAJARAN - MATEMATIKA DESKRIPSI PEMELAJARAN MATA DIKLAT : MATEMATIKA TUJUAN : Melatih berfikir dan bernalar secara logis dan kritis serta mengembangkan aktifitas kreatif dalam memecahkan masalah dan mengkomunikasikan ide/gagasan

Lebih terperinci

Buku Pendalaman Konsep. Trigonometri. Tingkat SMA Doddy Feryanto

Buku Pendalaman Konsep. Trigonometri. Tingkat SMA Doddy Feryanto Buku Pendalaman Konsep Trigonometri Tingkat SMA Doddy Feryanto Kata Pengantar Trigonometri merupakan salah satu jenis fungsi yang sangat banyak berguna di berbagai bidang. Di bidang matematika sendiri,

Lebih terperinci

dengan vektor tersebut, namun nilai skalarnya satu. Artinya

dengan vektor tersebut, namun nilai skalarnya satu. Artinya 1. Pendahuluan Penggunaan besaran vektor dalam kehidupan sehari-hari sangat penting mengingat aplikasi besaran vektor yang luas. Mulai dari prinsip gaya, hingga bidang teknik dalam memahami konsep medan

Lebih terperinci

SUSUNAN KOORDINAT BAGIAN-1. Oleh: Fitria Khasanah, M. Pd

SUSUNAN KOORDINAT BAGIAN-1. Oleh: Fitria Khasanah, M. Pd SUSUNAN KOORDINAT BAGIAN-1 Oleh: Fitria Khasanah, M. Pd Program Studi Pendidikan Matematika Fakultas Keguruan dan Ilmu Pendidikan Universitas PGRI Yogyakarta 2010 Letak Suatu Titik pada Garis Lurus O g

Lebih terperinci

Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f.

Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f. Pertemuan ke 8 GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(,y): y = f(), D f } disebut grafik fungsi f. Grafik metode yang paling umum untuk menyatakan hubungan antara dua himpunan yaitu dengan menggunakan

Lebih terperinci

SOAL&PEMBAHASAN MATEMATIKATKDSAINTEK SBMPTN. yos3prens.wordpres.com

SOAL&PEMBAHASAN MATEMATIKATKDSAINTEK SBMPTN. yos3prens.wordpres.com SOAL&PEMBAHASAN MATEMATIKATKDSAINTEK SBMPTN 05 yosprens.wordpres.com SOAL DAN PEMBAHASAN MATA UJI MATEMATIKA TKD SAINTEK SBMPTN 05 Berikut ini 5 soal mata uji matematika beserta pembahasannya yang diujikan

Lebih terperinci

Kalkulus Peubah Banyak Modul Pembelajaran. January UNIVERSITAS MUHAMMADIYAH MALANG ALFIANI ATHMA PUTRI ROSYADI, M.Pd

Kalkulus Peubah Banyak Modul Pembelajaran. January UNIVERSITAS MUHAMMADIYAH MALANG ALFIANI ATHMA PUTRI ROSYADI, M.Pd Kalkulus Peubah Banyak Modul Pembelajaran January UNIVERSITAS MUHAMMADIYAH MALANG ALFIANI ATHMA PUTRI ROSYADI, M.Pd IDENTITAS MAHASISWA NAMA : KLS/NIM :. KELOMPOK:. A l f i a n i A t h m a P u t r i R

Lebih terperinci

SILABUS KURIKULUM BERBASIS KOMPETENSI FAKULTAS TARBIYAH BANJARMASIN

SILABUS KURIKULUM BERBASIS KOMPETENSI FAKULTAS TARBIYAH BANJARMASIN SILABUS KURIKULUM BERBASIS KOMPETENSI FAKULTAS TARBIYAH BANJARMASIN 1. Mata Kuliah / Kode : Geometri Analitik/ PMK 708 2. Jumlah SKS : 3 SKS 3. Jurusan / Program Studi : TMIPA / Tadris Matematika 4. Tujuan

Lebih terperinci

Fungsi Linear dan Fungsi Kuadrat

Fungsi Linear dan Fungsi Kuadrat Modul 1 Fungsi Linear dan Fungsi Kuadrat Drs. Susiswo, M.Si. K PENDAHULUAN ompetensi umum yang diharapkan, setelah mempelajari modul ini, adalah Anda dapat memahami konsep tentang persamaan linear dan

Lebih terperinci

MBS - DTA. Sucipto UNTUK KALANGAN SENDIRI. SMK Muhammadiyah 3 Singosari

MBS - DTA. Sucipto UNTUK KALANGAN SENDIRI. SMK Muhammadiyah 3 Singosari MBS - DTA Sucipto UNTUK KALANGAN SENDIRI SMK Muhammadiyah Singosari SERI : MBS-DTA FUNGSI STANDAR KOMPETENSI Siswa mampu memecahkan masalah yang berkaitan dengan fungsi, persamaan fungsi linear dan fungsi

Lebih terperinci

( ) 2. Nilai x yang memenuhi log 9. Jadi 4x 12 = 3 atau x = 3,75

( ) 2. Nilai x yang memenuhi log 9. Jadi 4x 12 = 3 atau x = 3,75 Here is the Problem and the Answer. Diketahui premis premis berikut! a. Jika sebuah segitiga siku siku maka salah satu sudutnya 9 b. Jika salah satu sudutnya 9 maka berlaku teorema Phytagoras Ingkaran

Lebih terperinci

Silabus. Kegiatan Pembelajaran Instrume n. - Menentukan nilai. Tugas individu. (sinus, cosinus, tangen, cosecan, secan, dan

Silabus. Kegiatan Pembelajaran Instrume n. - Menentukan nilai. Tugas individu. (sinus, cosinus, tangen, cosecan, secan, dan Silabus Nama Sekolah Mata Pelajaran Kelas / Program Semester : SMK : MATEMATIKA : XI / TEKNOLOGI, KESEHATAN, DAN PERTANIAN : GANJIL Standar Kompetensi:7. Menerapkan perbandingan, fungsi,, dan identitas

Lebih terperinci

SILABUS MATAKULIAH. Indikator Pokok Bahasan/ Materi Aktivitas Pembelajaran

SILABUS MATAKULIAH. Indikator Pokok Bahasan/ Materi Aktivitas Pembelajaran SILABUS MATAKULIAH Revisi : 2 Tanggal Berlaku : Maret 2014 A. Identitas 1. Nama Matakuliah : A11.54201 / Kalkulus II 2. Program Studi : Teknik Informatika-S1 3. Fakultas : Ilmu Komputer 4. Bobot sks :

Lebih terperinci

SILABUS. 1 / Silabus Matematika XII-IA. : 1.Menggunakan konsep integral dalam pemecahan masalah. Nilai Karakter

SILABUS. 1 / Silabus Matematika XII-IA. : 1.Menggunakan konsep integral dalam pemecahan masalah. Nilai Karakter SILABUS Satuan Pendidikan Mata Pelajaran Kelas/semester Reference Standar Kompetensi : SMA Negeri 5 Surabaya : : XII/1 : BSNP / CIE : 1.Menggunakan konsep integral dalam pemecahan masalah Kompetensi Dasar

Lebih terperinci

Zulfaneti Yulia Haryono Rina F ebriana. Berbasis Penemuan Terbimbing = = D(sec x)= sec x tan x, ( + ) ( ) ( )=

Zulfaneti Yulia Haryono Rina F ebriana. Berbasis Penemuan Terbimbing = = D(sec x)= sec x tan x, ( + ) ( ) ( )= Zulfaneti Yulia Haryono Rina F ebriana Berbasis Penemuan Terbimbing = = D(sec x)= sec x tan x, ()= (+) () Penyusun Zulfaneti Yulia Haryono Rina Febriana Nama NIm : : Untuk ilmu yang bermanfaat Untuk Harapan

Lebih terperinci

UKURAN RUAS-RUAS GARIS PADA SEGITIGA SKRIPSI

UKURAN RUAS-RUAS GARIS PADA SEGITIGA SKRIPSI UKURAN RUAS-RUAS GARIS PADA SEGITIGA SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk Memenuhi Sebagian Persyaratan guna Memperoleh Gelar Sarjana

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN

BAB IV HASIL PENELITIAN DAN PEMBAHASAN BAB IV HASIL PENELITIAN DAN PEMBAHASAN A. HASIL PENELITIAN 1. Hasil Pengembangan Produk Penelitian ini merupakan penelitian pengembangan yang bertujuan untuk mengembangkan produk berupa Skema Pencapaian

Lebih terperinci

Bilangan Real. Modul 1 PENDAHULUAN

Bilangan Real. Modul 1 PENDAHULUAN Modul 1 Bilangan Real S PENDAHULUAN Drs. Soemoenar emesta pembicaraan Kalkulus adalah himpunan bilangan real. Jadi jika akan belajar kalkulus harus paham terlebih dahulu tentang bilangan real. Bagaimanakah

Lebih terperinci

Analisis Vektor. Ramadoni Syahputra Jurusan Teknik Elektro FT UMY

Analisis Vektor. Ramadoni Syahputra Jurusan Teknik Elektro FT UMY Analisis Vektor Ramadoni Syahputra Jurusan Teknik Elektro FT UMY Analisis Vektor Analisis vektor meliputi bidang matematika dan fisika sekaligus dalam pembahasannya Skalar dan Vektor Skalar Skalar ialah

Lebih terperinci

4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN

4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN 4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN 4.1 Persamaan Garis a. Bentuk umum persamaan garis Garis lurus yang biasa disebut garis merupakan kurva yang paling sederhana dari semua kurva. Misalnya titik A(2,1)

Lebih terperinci

2.2 kinematika Translasi

2.2 kinematika Translasi II KINEMATIKA PARTIKEL Kompetensi yang akan diperoleh setelah mempelajari bab ini adalah pemahaman dan kemampuan menganalisis serta mengaplikasikan konsep kinematika partikel pada kehidupan sehari-hari

Lebih terperinci

PENGANTAR KALKULUS PEUBAH BANYAK. 1. Pengertian Vektor pada Bidang Datar

PENGANTAR KALKULUS PEUBAH BANYAK. 1. Pengertian Vektor pada Bidang Datar PENGANTAR KALKULUS PEUBAH BANYAK ERIDANI 1. Pengertian Vektor pada Bidang Datar Misalkan R menyatakan sistem bilangan real, yaitu himpunan bilangan real yang dilengkapi dengan empat operasi baku (tambah,

Lebih terperinci

BAB III RUANG VEKTOR R 2 DAN R 3. Bab ini membahas pengertian dan operasi vektor-vektor. Selain

BAB III RUANG VEKTOR R 2 DAN R 3. Bab ini membahas pengertian dan operasi vektor-vektor. Selain BAB III RUANG VEKTOR R DAN R 3 Bab ini membahas pengertian dan operasi ektor-ektor. Selain operasi aljabar dibahas pula operasi hasil kali titik dan hasil kali silang dari ektor-ektor. Tujuan Instruksional

Lebih terperinci

Penerapan Turunan MAT 4 D. PERSAMAAN GARIS SINGGUNG KURVA A. PENDAHULUAN B. DALIL L HÔPITAL C. PERSAMAAN PADA KINEMATIKA GERAK TURUNAN. materi78.co.

Penerapan Turunan MAT 4 D. PERSAMAAN GARIS SINGGUNG KURVA A. PENDAHULUAN B. DALIL L HÔPITAL C. PERSAMAAN PADA KINEMATIKA GERAK TURUNAN. materi78.co. Penerapan Turunan A. PENDAHULUAN Turunan dapat digunakan untuk: 1) Perhitungan nilai limit dengan dalil l Hôpital 2) Menentukan persamaan fungsi kecepatan dan percepatan dari persamaan fungsi posisi )

Lebih terperinci

IKIP BUDI UTOMO MALANG GEOMETRI HAND OUT 2

IKIP BUDI UTOMO MALANG GEOMETRI HAND OUT 2 IKIP BUDI UTOMO MALANG GEOMETRI HAND OUT 2 ALFIANI ATHMA PUTRI ROSYADI, M.Pd 4/14/2012 KUMPULAN DEFINISI DAN AKSIOMA DALAM GEOMETRI Nama Definisi 2.1 Definisi 2.2 Definisi 2.3 Definisi 2.4 Definisi 2.5

Lebih terperinci

KISI-KISI SOAL OLIMPIADE MATEMATIA VEKTOR NASIONAL (OMVN) 2015 HIMPUNAN MAHASISWA JURUSAN MATEMATIKA UNIVERSITAS NEGERI MALANG

KISI-KISI SOAL OLIMPIADE MATEMATIA VEKTOR NASIONAL (OMVN) 2015 HIMPUNAN MAHASISWA JURUSAN MATEMATIKA UNIVERSITAS NEGERI MALANG KISI-KISI SOAL OLIMPIADE MATEMATIA VEKTOR NASIONAL (OMVN) 2015 HIMPUNAN MAHASISWA JURUSAN MATEMATIKA UNIVERSITAS NEGERI MALANG TINGKAT SD 1. Bilangan dan Operasinya 2. Kelipatan dan Faktor 3. Angka Romawi,

Lebih terperinci

4. Himpunan penyelesaian dari sistem persamaan linear x + y = 5 dan x - 2y = -4 adalah... A.{ (1, 4) }

4. Himpunan penyelesaian dari sistem persamaan linear x + y = 5 dan x - 2y = -4 adalah... A.{ (1, 4) } 1. Diketahui himpunan P = ( bilangan prima kurang dari 13 ) Banyak himpunan bagian dari P adalah... 5 25 10 32 P = {Bilangan prima kurang dari 13} = {2, 3, 5, 7, 11} n(p) = 5 2. Dari diagram Venn di bawah,

Lebih terperinci

INFORMASI PENTING. No 1 Bilangan Bulat. 2 Pecahan Bentuk pecahan campuran p dapat diubah menjadi pecahan biasa Invers perkalian pecahan adalah

INFORMASI PENTING. No 1 Bilangan Bulat. 2 Pecahan Bentuk pecahan campuran p dapat diubah menjadi pecahan biasa Invers perkalian pecahan adalah No RUMUS 1 Bilangan Bulat Sifat penjumlahan bilangan bulat a. Sifat tertutup a + b = c; c juga bilangan bulat b. Sifat komutatif a + b = b + a c. Sifat asosiatif (a + b) + c = a + (b + c) d. Mempunyai

Lebih terperinci

PENGAYAAN ULANGAN AKHIR SEMESTER SMP ISLAM SABILILLAH MALANG TAHUN PELAJARAN 2014/2015

PENGAYAAN ULANGAN AKHIR SEMESTER SMP ISLAM SABILILLAH MALANG TAHUN PELAJARAN 2014/2015 PENGAYAAN ULANGAN AKHIR SEMESTER SMP ISLAM SABILILLAH MALANG TAHUN PELAJARAN 2014/2015 http://matematohir.wordpress.com/ Mata Pelajaran Kelas / Semester : Matematika : VIII / Ganjil Nama : Mathematics

Lebih terperinci