King s Learning Be Smart Without Limits

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "King s Learning Be Smart Without Limits"

Transkripsi

1 Nama Siswa : LEMBAR AKTIVITAS SISWA PERSAMAAN LINGKARAN Jadi dapat disimpulkan bahwa persamaan lingkaran dengan pusat O(0,0) dan jari-jari = r adalah Kelas : Persamaan lingkaran: Kompetensi Dasar (KURIKULUM 2013): 3.11 Memahami konsep persamaan lingkaran dan menganalisis sifat garis singgung lingkaran dengan menggunakan metode koordinat Memahami konsep dan kurva lingkaran dengan titik pusat tertentu dan menurunkan persamaan umum lingkaran dengan metode koordinat. 4.8 Mengolah informasi dari suatu masalah nyata, mengidentifikasi sebuah titik sebagai pusat lingkaran yang melalui suatu titik tertentu, membuat model matematika berupa persamaan lingkaran dan menyelesaikan masalah tersebut. 4.9 Merancang dan mengajukan masalah nyata terkait garis singgung lingkaran serta menyelesaikannya dengan melakukan manipulasi aljabar dan menerapkan berbagai konsep lingkaran. A. PERSAMAAN LINGKARAN Definisi Lingkaran adalah tempat kedudukan titik-titik yang berjarak sama terhadap satu titik tertentu. Titik tertentu itu disebut pusat lingkaran dan jarak titik itu terhadapa lingkaran disebut jari-jari lingkaran. Contoh 1: Tentukan persamaan lingkaran yang berpusat di O(0,0) dan berjari-jari sama dengan 4. Contoh 2: Tentukan persamaan lingkaran yang berpusat di O (0,0) dan melalui titik (3,7). 1. Persamaan Lingkaran Berpusat di O(0,0) dan jari-jari = r Misal titik T(x,y) adalah sembarang titik pada lingkaran yang berpusat di titik O(0,0) dan berjari-jari = r. Perhatikan gambar berikut! Jarak titik O(0,0) dengan T(x,y) adalah: OT = ( ) + ( ) OT 2 = 2. Persamaan Lingkaran Berpusat di P(a,b) dan jari-jari = r Persamaan lingkaran yang berpusat di P(a,b) dan jari-jari = r dapat dihasilkan dengan menggeser bentuk lingkaran yang berpusat di O(0,0) dan jari-jari = r. OT 2 = Karena OT = r, maka:. 1

2 Contoh 3: Tentukan persamaan lingkaran yang berpusat di (3,1) dan jarijari sama dengan 5. 3) Bentuk Umum Persamaan Lingkaran Contoh 4: Tentukan persamaan lingkaran yang berpusat di (2,-3) dan melalui titik (4,5). Contoh 7: Tentukan koordinat pusat dan panjang jari-jari lingkaran apabila diketahui persamaan lingkaran sebagai berikut: a. x 2 + y 2 2x 6y 15 = 0 Contoh 5: Tentukan persamaan lingkaran yang berpusat dai (-3,2) dan menyinggung garis x = 1. b. 2x 2 + 2y 2 4x + 3y = 0 Contoh 6: Tentukan persamaan lingkaran jika koordinat diameter lingkarannya adalah A(2,-5) dan B(14,13). c. 3x 2 + 3y x + 72 = 0 2

3 Latihan

4

5

6 23. B. TITIK, GARIS, DAN LINGKARAN 1. Titik dan Lingkaran Kegiatan Siswa Contoh 8: 6

7 2. Garis dan Lingkaran Latihan 2 1. Jika: Persamaan garis: y = mx + c... (1) Persamaan lingkaran: x 2 + y 2 + 2Ax + 2By + C = 0... (2) Jika persamaan (1) di subtitusi ke (2), Maka akan didapat Persamaan kuadrat baru dan berlaku: 2. Contoh 9: Tentukan posisi garis 2x y + 1 = 0 terhadap lingkaran x 2 + y 2 4x 2y + 2 =

8

9 C. PERSAMAAN GARIS SINGGUNG LINGKARAN 1. Persamaan Garis Singgung Lingkaran Dari Titik (x 1,y 1 ) pada Lingkaran 3. Persamaan Garis Singgung Lingkaran di tarik dari titik di luar lingkaran Contoh 10: Tentukan persamaan garis singgung lingkaran: x 2 + y 2 = 34 pada titik singgung (3,5). Contoh 13: Contoh 11: Tentukan persamaan garis singgung lingkaran: (x-3) 2 + (y-1) 2 = 10 pada titik singgung (2,4). 2. Persamaan Garis Singgung Lingkaran Dengan Gradien M Contoh 12: Tentukan persamaan garis singgung lingkaran: x 2 + y 2 4x + 2y - 5 = 0 jika gradien garis singgung = 3. 9

10 Latihan

11

12

Persamaan Garis singgung Melalui titik (x 1, y 1 ) diluar lingkaran. Pusat Lingkaran (a, b) Persamaan Garis singgung. Jari Jari r.

Persamaan Garis singgung Melalui titik (x 1, y 1 ) diluar lingkaran. Pusat Lingkaran (a, b) Persamaan Garis singgung. Jari Jari r. PERSAMAAN LINGKARAN Pusat Lingkaran (0, 0) Melalui titik (x, y ) pada lingkaran Jika diketahui gradient m xx y mx r yy r m x y r Persamaan Garis singgung Melalui titik (x, y ) diluar lingkaran Jari Jari

Lebih terperinci

LINGKARAN. Lingkaran. pusat lingkaran diskriminan posisi titik posisi garis garis kutub gradien. sejajar tegak lurus persamaan lingkaran

LINGKARAN. Lingkaran. pusat lingkaran diskriminan posisi titik posisi garis garis kutub gradien. sejajar tegak lurus persamaan lingkaran LINGKARAN Persamaan Persamaan garis singgung lingkaran Persamaan lingkaran berpusat di (0, 0) dan (a, b) Kedudukan titik dan garis terhadap lingkaran Merumuskan persamaan garis singgung yang melalui suatu

Lebih terperinci

IRISAN DUA LINGKARAN

IRISAN DUA LINGKARAN LINGKARAN IRISAN DUA LINGKARAN Oleh : Saptana Surahmat Konsep hubungan dua lingkaran sangat penting dalam kehidupan kita. Sepasang roda pada sepeda, sepeda motor, kendaraan bermotor, roda gigi pada pengatur

Lebih terperinci

Pertemuan 2 KOORDINAT CARTESIUS

Pertemuan 2 KOORDINAT CARTESIUS Kalkulus Pertemuan 2 KOORDINAT CARTESIUS Koordinat Cartesius 1 2 3 Jarak y Hitunglah jarak dari A(3,-5) ke B(4,2) A(3,-5) maka x 1 = 3 dan y 1 = -5 B(4,9) maka x 2 = 4 dan y 2 = 2 sehingga d(a, B) = (x

Lebih terperinci

Silabus. 1 Sistem Bilangan Real. 2 Fungsi Real. 3 Limit dan Kekontinuan. Kalkulus 1. Arrival Rince Putri. Sistem Bilangan Real.

Silabus. 1 Sistem Bilangan Real. 2 Fungsi Real. 3 Limit dan Kekontinuan. Kalkulus 1. Arrival Rince Putri. Sistem Bilangan Real. Silabus 1 2 3 Referensi E. J. Purcell, D. Varberg, and S. E. Rigdon, Kalkulus, Jilid 1 Edisi Kedelapan, Erlangga, 2003. Penilaian 1 Ujian Tengah Semester (UTS) : 30 2 Ujian Akhir Semester (UAS) : 20 3

Lebih terperinci

LINGKARAN. Bab. Di unduh dari : Bukupaket.com

LINGKARAN. Bab. Di unduh dari : Bukupaket.com Bab 9 LINGKARAN A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR Kompetensi Dasar Setelah mengikuti pembelajaran lingkaran siswa mampu: 1. Mendeskripsikan konsep persamaan lingkaran dan menganalisis sifat garis

Lebih terperinci

BAB 4 PERSAMAAN LINGKARAN

BAB 4 PERSAMAAN LINGKARAN STANDAR KOMPETENSI: BAB 4 PERSAMAAN LINGKARAN Menusun persamaan lingkaran dan garis singgungna. KOMPETENSI DASAR Menusun persamaan lingkaran ang memenuhi persaratan ang ditentukan Menentukan persamaan

Lebih terperinci

4. Persamaan garis lingkaran yang berpusat di ( 1,4 ) dan menyinggung garis 3x 4y 2 = 0 adalah.

4. Persamaan garis lingkaran yang berpusat di ( 1,4 ) dan menyinggung garis 3x 4y 2 = 0 adalah. . Salah satu persamaan garis singgung lingkaran ( x )² + ( y + )² =3 di titik yang berabsis adalah. a. 3x y 3 = 0 b. 3x y 5 = 0 c. 3x + y 9 = 0 d. 3x + y + 9 = 0 e. 3x + y + 5 = 0 Langkah : Substitusi

Lebih terperinci

matematika KTSP & K-13 GARIS SINGGUNG LINGKARAN K e a s A. Definisi Garis Singgung Lingkaran Tujuan Pembelajaran

matematika KTSP & K-13 GARIS SINGGUNG LINGKARAN K e a s A. Definisi Garis Singgung Lingkaran Tujuan Pembelajaran KTSP & K-3 matematika K e l a s XI GARIS SINGGUNG LINGKARAN Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Memahami definisi garis singgung lingkaran..

Lebih terperinci

1. Salah satu persamaan garis singgung lingkaran ( x 2 )² + ( y + 1 )² =13 di titik yang berabsis 1 adalah. a. 3x 2y 3 = 0 b. 3x 2y 5 = 0 c.

1. Salah satu persamaan garis singgung lingkaran ( x 2 )² + ( y + 1 )² =13 di titik yang berabsis 1 adalah. a. 3x 2y 3 = 0 b. 3x 2y 5 = 0 c. . Salah satu persamaan garis singgung lingkaran ( x )² + ( y + )² =3 di titik yang berabsis adalah. a. 3x y 3 = 0 b. 3x y 5 = 0 c. 3x + y 9 = 0 d. 3x + y + 9 = 0 e. 3x + y + 5 = 0 Soal Ujian Nasional tahun

Lebih terperinci

BAB I INTEGRAL TAK TENTU ( ANTIDEFFERENSIAL) : Kompetensi Dasar

BAB I INTEGRAL TAK TENTU ( ANTIDEFFERENSIAL) : Kompetensi Dasar BAB I INTEGRAL TAK TENTU ( ANTIDEFFERENSIAL) : Kompetensi Dasar.0 Mendeskripsikan integral tak tentu (anti turunan) fungsi aljabar dan menganalisis sifat-sifatnya berdasarkan sifat-sifat turunan fungsi.0

Lebih terperinci

(x- x 1. Contoh soal: jawab: x 2 + y 2 = 2 2 x 2 + y 2 = 4. x 2 + y 2 = 4. jawab: (x 5) 2 + (y 2) 2 = 4 2

(x- x 1. Contoh soal: jawab: x 2 + y 2 = 2 2 x 2 + y 2 = 4. x 2 + y 2 = 4. jawab: (x 5) 2 + (y 2) 2 = 4 2 BB XI. LINGKRN (x- x ) (x- x ) + (y- y ) (y- y ) = 0 Contoh soal: Pengertian : Lingkaran adalah tepat kedudukan titik-titik yang berjarak konstan/saa terhadap sebuah titik tertentu. Sebuah titik tertentu

Lebih terperinci

PERSAMAAN LINGKARAN. Tujuan Pembelajaran

PERSAMAAN LINGKARAN. Tujuan Pembelajaran KTSP & K-3 matematika K e l a s XI PERSAMAAN LINGKARAN Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan mempunyai kemampuan sebagai berikut.. Memahami definisi lingkaran.. Memahami persamaan

Lebih terperinci

LINGKARAN 2. A. Kedudukan titik dan Garis terhadap Lingkaran 11/18/2015. Peta Konsep. A. Kedudukan Titik dan Garis Terhadap. Lingkaran.

LINGKARAN 2. A. Kedudukan titik dan Garis terhadap Lingkaran 11/18/2015. Peta Konsep. A. Kedudukan Titik dan Garis Terhadap. Lingkaran. /8/205 Peta Konsep Jurnal Materi MIPA Peta Konsep Lingkaran Daftar Hadir MateriA LINGKARAN 2 Kelas XI, Semester 3 Berpusat di O(0, 0) Berpusat di P(a, b) A. Kedudukan Titik dan Garis Terhadap Lingkaran

Lebih terperinci

PERSAMAAN BIDANG RATA DAN VEKTOR NORMAL. (,, ) dan (,, ). Dan misalkan

PERSAMAAN BIDANG RATA DAN VEKTOR NORMAL. (,, ) dan (,, ). Dan misalkan PERSAAAN BIDANG RATA DAN VEKTOR NORAL Bila terdapat tiga titik yang tidak kolinear maka ketiga titik itu menentukan sebuah bidang rata. dan. Dan misalkan isalkan ketiga titik itu masing-masing vector-vektor

Lebih terperinci

FUNGSI. Riri Irawati, M.Kom 3 sks

FUNGSI. Riri Irawati, M.Kom 3 sks FUNGSI Riri Irawati, M.Kom 3 sks Agenda 1. Sistem Koordinat Kartesius. Garis Lurus 3. Grafik persamaan Tujuan Agar mahasiswa dapat : Menggunakan sistem koordinat untuk menentukan titik-titik dan kurva-kurva.

Lebih terperinci

(x- x 1. Contoh soal: jawab: x 2 + y 2 = 2 2 x 2 + y 2 = 4. x 2 + y 2 = 4. jawab: (x 5) 2 + (y 2) 2 = 4 2

(x- x 1. Contoh soal: jawab: x 2 + y 2 = 2 2 x 2 + y 2 = 4. x 2 + y 2 = 4. jawab: (x 5) 2 + (y 2) 2 = 4 2 LINGKRN (x- x ) (x- x ) + (y- y ) (y- y ) = 0 Contoh soal: Pengertian : Lingkaran adalah tepat kedudukan titik-titik yang berjarak konstan/saa terhadap sebuah titik tertentu. Sebuah titik tertentu itu

Lebih terperinci

SEKOLAH MENENGAH PERTAMA (SMP) NEGERI 103 JAKARTA

SEKOLAH MENENGAH PERTAMA (SMP) NEGERI 103 JAKARTA PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN SEKOLAH MENENGAH PERTAMA (SMP) NEGERI 103 JAKARTA SEKOLAH STANDAR NASIONAL (SSN) Jl. RA Fadillah Komp. Kopassus Cijantung Telp. 8400005,

Lebih terperinci

PEMBELAJARAN IRISAN KERUCUT: LINGKARAN DI SMA

PEMBELAJARAN IRISAN KERUCUT: LINGKARAN DI SMA PAKET PEMBINAAN PENATARAN Drs. M. Danuri, M.Pd. PEMBELAJARAN IRISAN KERUCUT: LINGKARAN DI SMA 45 O 1 3 4 DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH PUSAT PENGEMBANGAN

Lebih terperinci

LINGKARAN. Lingkaran merupakan tempat kedudukan titik-titik yang berjarak sama terhadap titik tertentu. Perhatikan gambar berikut.

LINGKARAN. Lingkaran merupakan tempat kedudukan titik-titik yang berjarak sama terhadap titik tertentu. Perhatikan gambar berikut. LINGKARAN Lingkaran merupakan tempat kedudukan titik-titik ang berjarak sama terhadap titik tertentu. Perhatikan gambar berikut. r P Titik P disebut pusat, sedangkan Jarak P ke lingkaran dinamakan jari-jari.

Lebih terperinci

c. 2 d Jika suatu garis mempunyai persamaan 2x + y + 4 = 0, maka gradiennya adalah a. 2 b. ½ c. 2 d. ½

c. 2 d Jika suatu garis mempunyai persamaan 2x + y + 4 = 0, maka gradiennya adalah a. 2 b. ½ c. 2 d. ½ 1 SOAL LATIHAN UH MATEMATIKA PERSAMAAN GARIS LURUS KELAS 8 SMP I. Pilihan Ganda GRADIEN (m) 1. Persamaan garis y = x, maka gradiennya adalah a. b. 4 c. d.. Persamaan garis y = x, maka gradiennya adalah

Lebih terperinci

Modul Statistika Kelas XII SMKN 1 Stabat. Lingkaran. Elips

Modul Statistika Kelas XII SMKN 1 Stabat. Lingkaran. Elips IR Lingkaran Elips 1 Smk n 1 stabat IRISAN KERUCUT Disusun Oleh : Dian Septiana 07144110049 Dalam PPL-T Unimed SMK N 1 Stabat SEKOLAH MENENGAH KEJURUAN NEGERI 1 STABAT LANGKAT 010 KATA PENGANTAR Puji syukur

Lebih terperinci

PEMBAHASAN TRANSFORMASI KEBALIKAN

PEMBAHASAN TRANSFORMASI KEBALIKAN PEMBAHASAN TRANSFORMASI KEBALIKAN.` Definisi Suatu transformasi yang didasarkan pada fungsi dengan dinamakan transformasi kebalikan. Secara geometric, transformasi akan memetakan titik-titik yang mendekati

Lebih terperinci

Pembelajaran Lingkaran SMA dengan Geometri Analitik

Pembelajaran Lingkaran SMA dengan Geometri Analitik PAKET FASILITASI PEMBERDAYAAN KKG/MGMP MATEMATIKA Pembelajaran Lingkaran SMA dengan Geometri Analitik Penulis Drs. M. Danuri, M.Pd. Penilai Drs. Sukardjono, M.Pd. Editor Titik Sutanti, S.Pd.Si. Ilustrator

Lebih terperinci

Fungsi Linear dan Fungsi Kuadrat

Fungsi Linear dan Fungsi Kuadrat Modul 1 Fungsi Linear dan Fungsi Kuadrat Drs. Susiswo, M.Si. K PENDAHULUAN ompetensi umum yang diharapkan, setelah mempelajari modul ini, adalah Anda dapat memahami konsep tentang persamaan linear dan

Lebih terperinci

A. Persamaan-Persamaan Lingkaran

A. Persamaan-Persamaan Lingkaran Peta Konsep Jurnal Materi Umum Peta Konsep Lingkaran Daftar Hadir Materi A LINGKARAN 1 Kelas XI, Semester 3 Berpusat di O(0, 0) Berpusat di P(a, b) A. Persamaan-Persamaan Lingkaran Kedudukan Titik dan

Lebih terperinci

fungsi Dan Grafik fungsi

fungsi Dan Grafik fungsi fungsi Dan Grafik fungsi Suatu fungsi adalah pemadanan dua himpunan tidak kosong dengan pasangan terurut (x, y) dimana tidak terdapat elemen kedua yang berbeda. Fungsi (pemetaan) himpunan A ke himpunan

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) RENCANA PELAKSANAAN PEMBELAJARAN (RPP) A. IDENTITAS Satuan Pendidikan Kelas / Semester Mata Pelajaran Program Pokok Bahasan Alokasi Waktu : Sekolah Menengah Atas : XI / 3 (tiga) : Matematika : Wajib :

Lebih terperinci

Aplikasi Geogebra dalam Pembelajaran Geometri Bidang

Aplikasi Geogebra dalam Pembelajaran Geometri Bidang Aplikasi Geogebra dalam Pembelajaran Geometri Bidang Dendy Suprihady /13514070 Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132,

Lebih terperinci

MAT. 10. Irisan Kerucut

MAT. 10. Irisan Kerucut MAT. 0. Irisan Kerucut i Kode MAT.0 Irisan Kerucut BAGIAN PROYEK PENGEMBANGAN KURIKULUM DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DEPARTEMEN PENDIDIKAN NASIONAL

Lebih terperinci

Lingkaran. A. Persamaan Lingkaran B. Persamaan Garis Singgung Lingkaran

Lingkaran. A. Persamaan Lingkaran B. Persamaan Garis Singgung Lingkaran Bab Sumber: www.panebiancod.com Setelah mempelajari bab ini, Anda harus mampu merumuskan persamaan lingkaran dan menggunakannya dalam pemecahan masalah; menentukan persamaan garis singgung pada lingkaran

Lebih terperinci

KALKULUS BAB I. PENDAHULUAN DEPARTEMEN TEKNIK KIMIA

KALKULUS BAB I. PENDAHULUAN DEPARTEMEN TEKNIK KIMIA KALKULUS BAB I. PENDAHULUAN DEPARTEMEN TEKNIK KIMIA BAB I Bilangan Real dan Notasi Selang Pertaksamaan Nilai Mutlak Sistem Koordinat Cartesius dan Grafik Persamaan Bilangan Real dan Notasi Selang Bilangan

Lebih terperinci

(x- x 1. Contoh soal: jawab: x 2 + y 2 = 2 2 x 2 + y 2 = 4. x 2 + y 2 = 4. jawab: (x 5) 2 + (y 2) 2 = 4 2

(x- x 1. Contoh soal: jawab: x 2 + y 2 = 2 2 x 2 + y 2 = 4. x 2 + y 2 = 4. jawab: (x 5) 2 + (y 2) 2 = 4 2 BB XI. LINGKRN (x- x ) (x- x ) + (y- y ) (y- y ) 0 Contoh soal: Pengertian : Lingkaran adalah tepat kedudukan titik-titik yang berjarak konstan/saa terhadap sebuah titik tertentu. Sebuah titik tertentu

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) RENCANA PELAKSANAAN PEMBELAJARAN (RPP) A. IDENTITAS Satuan Pendidikan : Sekolah Menengah Atas Kelas / Semester : XI / 3 (tiga) Mata Pelajaran : Matematika Program : Umum Pokok Bahasan : Lingkaran 1 Alokasi

Lebih terperinci

Masukan pengertian dan di setiap topik dan buat daftar pustaka.. latar dan tujuan ambil dari silabus online book,,, ingat ok!!!!

Masukan pengertian dan di setiap topik dan buat daftar pustaka.. latar dan tujuan ambil dari silabus online book,,, ingat ok!!!! Masukan pengertian dan di setiap topik dan buat daftar pustaka.. latar dan tujuan ambil dari silabus online book,,, ingat ok!!!! LINGKARAN Lingkaran adalah kurva tertutup sederhana yang merupakan tempat

Lebih terperinci

Pembahasan SNMPTN 2011 Matematika IPA Kode 576

Pembahasan SNMPTN 2011 Matematika IPA Kode 576 Pembahasan SNMPTN 011 Matematika IPA Kode 576 Oleh Tutur Widodo Juni 011 1. Diketahui vektor u = (a,, 1) dan v = (a, a, 1). Jika vektor u tegak lurus pada v, maka nilai a adalah... a. 1 b. 0 c. 1 d. e.

Lebih terperinci

Matematika EBTANAS Tahun 1991

Matematika EBTANAS Tahun 1991 Matematika EBTANAS Tahun 99 EBT-SMA-9-0 Persamaan sumbu simetri dari parabola y = 8 x x x = 4 x = x = x = x = EBT-SMA-9-0 Salah satu akar persamaan kuadrat mx 3x + = 0 dua kali akar yang lain, maka nilai

Lebih terperinci

MODUL 8 FUNGSI LINGKARAN & ELLIPS

MODUL 8 FUNGSI LINGKARAN & ELLIPS MODUL 8 FUNGSI LINGKARAN & ELLIPS 8.1. LINGKARAN A. PERSAMAAN LINGKARAN DENGAN PUSAT PADA TITIK ASAL DAN JARI-JARI R Persamaan lingkaran dengan pusat (0,0) dan jari jari R adalah : x 2 + y 2 = R 2 B. PERSAMAAN

Lebih terperinci

PERSAMAAN GARIS SINGGUNG LINGKARAN

PERSAMAAN GARIS SINGGUNG LINGKARAN PERSAMAAN GARIS SINGGUNG LINGKARAN Dari gabar orang bersepeda di atas jelas terlihat bahwa jalan yang dilalui sepeda selalu enyinggung roda sepeda, baik depan aupun belakang asing-asing di titik A dan

Lebih terperinci

SILABUS MATERI PEMBELAJARAN. Statistika: Diagram batang Diagram garis Diagram Lingkaran Tabel distribusi frekuensi Histogram dan Ogif

SILABUS MATERI PEMBELAJARAN. Statistika: Diagram batang Diagram garis Diagram Lingkaran Tabel distribusi frekuensi Histogram dan Ogif SILABUS Nama Sekolah : SMA Negeri 1 Sungai Penuh Mata Pelajaran : MATEMATIKA Kelas/Program : XI / IPA Semester : 1 STANDAR KOMPETENSI: 1. Menggunakan aturan statistika, kaidah pencacahan, dan sifat-sifat

Lebih terperinci

Kita mungkin akan kecewa jika gagal, tapi kita telah gagal bila kita tidak mencoba. (Beverly Sills)

Kita mungkin akan kecewa jika gagal, tapi kita telah gagal bila kita tidak mencoba. (Beverly Sills) http://meetabied.wordpress.com Matematika X Semester SMAN Bone-Bone Kita mungkin akan kecewa jika gagal, tapi kita telah gagal bila kita tidak mencoba. (Beverly Sills) [BAB 2 PERSAMAAN, PERTIDAKSAMAAN

Lebih terperinci

15. TURUNAN (DERIVATIF)

15. TURUNAN (DERIVATIF) 5. TURUNAN (DERIVATIF) A. Rumus-Rumus Turunan Fungsi Aljabar dan Trigonometri Untuk u dan v adalah fungsi dari x, dan c adalah konstanta, maka:. y = u + v, y = u + v. y = c u, y = c u. y = u v, y = v u

Lebih terperinci

PERSAMAAN GARIS LURUS

PERSAMAAN GARIS LURUS PERSAMAAN GARIS LURUS A. Menggambar grafik garis lurus Langkah langkah mengambar grafik persamaan garis lurus sama dengan langkahlangkah membuat grafik pada sistim koordinat. Gambarlah grafik persamaan

Lebih terperinci

FUNGSI. A. Relasi dan Fungsi Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii)

FUNGSI. A. Relasi dan Fungsi Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) FUNGSI A. Relasi dan Fungsi Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) Relasi himpunan A ke himpunan B adalah relasi yang memasangkan/mengkawankan/mengkorepodensikan

Lebih terperinci

22. MATEMATIKA SMA/MA (PROGRAM IPA)

22. MATEMATIKA SMA/MA (PROGRAM IPA) 22. MATEMATIKA SMA/MA (PROGRAM IPA) NO. 1. Memahami pernyataan dalam matematika dan ingkarannya, menentukan nilai kebenaran pernyataan majemuk serta menggunakan prinsip logika matematika dalam pemecahan

Lebih terperinci

GEOMETRI ANALITIK BIDANG & RUANG

GEOMETRI ANALITIK BIDANG & RUANG HANDOUT (BAHAN AJAR) GEOMETRI ANALITIK BIDANG & RUANG Sofyan Mahfudy IAIN Mataram KATA PENGANTAR Alhamdulillah puji syukur kepada Alloh Ta ala yang dengan rahmat dan karunia-nya penulis dapat menyelesaikan

Lebih terperinci

Bab 2. Persamaan Parametrik dan Sistim Koordinat Kutub

Bab 2. Persamaan Parametrik dan Sistim Koordinat Kutub Bab. Persamaan Parametrik dan Sistim Koordinat Kutub Persamaan Parametrik Kurva-kurva ang berada dalam bidang datar dapat representasikan dalam bentuk persamaan parametrik. Dalam persamaan ini, setiap

Lebih terperinci

Uji Kompetensi Semester Akhir

Uji Kompetensi Semester Akhir I. Pilihan Ganda Jawaban: a 1. Uji Kompetensi Semester Akhir (1), (), dan (3) Statistika adalah cabang dari matematika terapan yang mempunyai cara-cara, maksudnya mengkaji/membahas, mengumpulkan, dan menyusun

Lebih terperinci

Matematika SMA (Program Studi IPA)

Matematika SMA (Program Studi IPA) Smart Solution UJIAN NASIONAL TAHUN PELAJARAN 2012/2013 Disusun Sesuai Indikator Kisi-Kisi UN 2013 Matematika SMA (Program Studi IPA) Disusun oleh : Pak Anang 2. 5. Menentukan persamaan lingkaran atau

Lebih terperinci

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDI IPA

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDI IPA PEMBAHASAN UN SMA TAHUN PELAJARAN 009/00 MATEMATIKA PROGRAM STUDI IPA PEMBAHAS :. Sigit Tri Guntoro, M.Si.. Jakim Wiyoto, S.Si. 3. Marfuah, M.T. 4. Rohmitawati, S.Si. PPPPTK MATEMATIKA 00 . Perhatikan

Lebih terperinci

A. PERSAMAAN GARIS LURUS

A. PERSAMAAN GARIS LURUS A. PERSAMAAN GARIS LURUS Persamaan garis lurus adalah hubungan nilai x dan nilai y yang terletak pada garis lurus serta dapat di tulis px + qy = r dengan p, q, r bilangan real dan p, q 0. Persamaan dalam

Lebih terperinci

TUJUAN INSTRUKSIONAL KHUSUS

TUJUAN INSTRUKSIONAL KHUSUS PREVIEW KALKULUS TUJUAN INSTRUKSIONAL KHUSUS Mahasiswa mampu: menyebutkan konsep-konsep utama dalam kalkulus dan contoh masalah-masalah yang memotivasi konsep tersebut; menjelaskan menyebutkan konsep-konsep

Lebih terperinci

TUGAS MATEMATIKA SMP NEGERI 9 CIMAHI. PYTHAGORAS dan LINGKARAN DISUSUN OLEH : ESTI KARTIKA W, 8 I. Sudah diperiksa.

TUGAS MATEMATIKA SMP NEGERI 9 CIMAHI. PYTHAGORAS dan LINGKARAN DISUSUN OLEH : ESTI KARTIKA W, 8 I. Sudah diperiksa. SMP NEGERI 9 CIMAHI PYTHAGORAS an LINGKARAN DISUSUN OLEH : ESTI KARTIKA W, 8 I Suah iperiksa Guru Matematika Lilis Kurniasih,SP 2011-2012 EMAIL : smpn9.cimahi@yahoo.com SITUS WEB : http://smpn9- cimahi.blogspot.com

Lebih terperinci

BAB 3 FUNGSI & GRAFIKNYA

BAB 3 FUNGSI & GRAFIKNYA BAB 3 FUNGSI & GRAFIKNYA . DEFINISI RELASI Dua himpunan A dan B dikatakan mempunyai relasi apabila ada cara atau aturan tertentu untuk mengkaitkan antara anggota A dengan anggota B. Relasi antara himpunan

Lebih terperinci

MODUL 4 LINGKARAN DAN BOLA

MODUL 4 LINGKARAN DAN BOLA 1 MODUL 4 LINGKARAN DAN BOLA Sumber: www.google.co.id Gambar 6. 6 Benda berbentuk lingkaran dan bola Dalam kehidupan sehari-hari kita banyak menjumpai benda-benda yang berbentuk bola maupun lingkaran.

Lebih terperinci

Bagian 1 Sistem Bilangan

Bagian 1 Sistem Bilangan Bagian 1 Sistem Bilangan Dalam bagian 1 Sistem Bilangan kita akan mempelajari berbagai jenis bilangan, pemakaian tanda persamaan dan pertidaksamaan, menggambarkan himpunan penyelesaian pada selang bilangan,

Lebih terperinci

Institut Manajemen Telkom

Institut Manajemen Telkom Institut Manajemen Telkom Osa Omar Sharif JENIS JENIS FUNGSI1 JENIS JENIS FUNGSI 2 Jenis Fungsi Gambar 1. FUNGSI POLINOM mengandung banyak suku (polinom) dalam variabel bebas y = a 0 + a 1 x + a 2 x 2

Lebih terperinci

Modul Matematika 2012

Modul Matematika 2012 Modul Matematika MINGGU V Pokok Bahasan : Fungsi Non Linier Sub Pokok Bahasan :. Pendahuluan. Fungsi kuadrat 3. Fungsi pangkat tiga. Fungsi Rasional 5. Lingkaran 6. Ellips Tujuan Instruksional Umum : Agar

Lebih terperinci

Peta Konsep. Standar Kompetensi. Kompetensi Dasar. Memahami bentuk aljabar, relasi, fungsi. persamaan garis lurus

Peta Konsep. Standar Kompetensi. Kompetensi Dasar. Memahami bentuk aljabar, relasi, fungsi. persamaan garis lurus PErSamaan GarIS lurus Untuk SMP Kelas VIII Peta Konsep Standar Kompetensi Memahami bentuk aljabar, relasi, fungsi dan persamaan garis lurus Kompetensi Dasar Menentukan gradien, persamaan dan grafik garis

Lebih terperinci

Bab 1. Irisan Kerucut

Bab 1. Irisan Kerucut Tahun Ajaran 01 01-013/Genap Bab 1. Irisan Kerucut e=0 e 1 A. Lingkaran Persamaan Lingkaran yang berpusat di titik (0,0) Pada segitiga siku-siku, siku, menurut dalil phytagoras berlaku : c =

Lebih terperinci

Matematika Semester IV

Matematika Semester IV F U N G S I KOMPETENSI DASAR Mendeskripsikan perbedaan konsep relasi dan fungsi Menerapkan konsep fungsi linear Menggambar fungsi kuadrat Menerapkan konsep fungsi kuadrat Menerapkan konsep fungsi trigonometri

Lebih terperinci

KUMPULAN SOAL MATEMATIKA SMP KELAS 8

KUMPULAN SOAL MATEMATIKA SMP KELAS 8 KUMPULAN SOAL MATEMATIKA SMP KELAS 8 Dirangkum oleh Moch. Fatkoer Rohman Website: http://fatkoer.co.cc http://zonamatematika.co,cc Email: fatkoer@gmail.com 009 Evaluasi Bab 1 Untuk nomor 1 sampai 5 pilihlah

Lebih terperinci

Matematik Ekonom Fungsi nonlinear

Matematik Ekonom Fungsi nonlinear 1 FUNGSI Fungsi adalah hubungan antara 2 buah variabel atau lebih, dimana masing-masing dari dua variabel atau lebih tersebut saling pengaruh mempengaruhi. Variabel merupakan suatu besaran yang sifatnya

Lebih terperinci

Penyelesaian Model Matematika Masalah yang Berkaitan dengan Ekstrim Fungsi dan Penafsirannya

Penyelesaian Model Matematika Masalah yang Berkaitan dengan Ekstrim Fungsi dan Penafsirannya . Tentukan nilai maksimum dan minimum pada interval tertutup [, 5] untuk fungsi f(x) x + 9 x. 4. Suatu kolam ikan dipagari kawat berduri, pagar kawat yang tersedia panjangnya 400 m dan kolam berbentuk

Lebih terperinci

1. Akar-akar persamaan 2x² + px - q² = 0 adalah p dan q, p - q = 6. Nilai pq =... A. 6 B. -2 C. -4 Kunci : E Penyelesaian : D. -6 E.

1. Akar-akar persamaan 2x² + px - q² = 0 adalah p dan q, p - q = 6. Nilai pq =... A. 6 B. -2 C. -4 Kunci : E Penyelesaian : D. -6 E. 1. Akar-akar persamaan 2x² + px - q² = 0 adalah p dan q, p - q = 6. Nilai pq =... A. 6-2 -4 Kunci : E -6-8 2. Himpunan penyelesaian sistem persamaan Nilai 6x 0.y 0 =... A. 1 Kunci : C 6 36 3. Absis titik

Lebih terperinci

TURUNAN FUNGSI. dy (y atau f (x) atau ) dx. Hal-hal yang perlu diingat untuk menyelesaikan turunan fungsi aljabar adalah :

TURUNAN FUNGSI. dy (y atau f (x) atau ) dx. Hal-hal yang perlu diingat untuk menyelesaikan turunan fungsi aljabar adalah : TURUNAN FUNGSI dy (y atau f () atau ) d Hal-hal yang perlu diingat untuk menyelesaikan turunan fungsi aljabar adalah :. ( a + b) = ( a + ab + b ). ( a b) = ( a ab + b ) m n m n. a = a 4. a m = a m m m.

Lebih terperinci

KISI-KISI PENULISAN SOAL TRY OUT UJIAN NASIONAL MATEMATIKA IPA SANGGAR 07 TAHUN 2014/2015

KISI-KISI PENULISAN SOAL TRY OUT UJIAN NASIONAL MATEMATIKA IPA SANGGAR 07 TAHUN 2014/2015 KISI-KISI PENULISAN SOAL TRY OUT UJIAN NASIONAL MATEMATIKA IPA SANGGAR 07 TAHUN 2014/2015 Jenis Sekolah : SMA Bentuk : P.G Kurikulum : Irisan kurikulum 1994, 2004 dan S.I Alokasi : 120 menit Program :

Lebih terperinci

Notasi turunan. Penggunaan turunan. 6. Menggunakan konsep limit fungsi dan turunan fungsi dalam pemecahan masalah.

Notasi turunan. Penggunaan turunan. 6. Menggunakan konsep limit fungsi dan turunan fungsi dalam pemecahan masalah. Turunan fungsi adalah fungsi lain dari suatu fungsi sebelumnya misalkan fungsi f menjadi f' TURUNAN Notasi turunan y' atau f'(x) atau dy/dx fungsi naik Penggunaan turunan fungsi turun persamaan garis singgung

Lebih terperinci

D. (1 + 2 ) 27 E. (1 + 2 ) 27

D. (1 + 2 ) 27 E. (1 + 2 ) 27 1. Nilai dari untuk x = 4 dan y = 27 adalah... A. (1 + 2 ) 9 B. (1 + 2 ) 9 C. (1 + 2 ) 18 D. (1 + 2 ) 27 E. (1 + 2 ) 27 2. Persamaan 2x² + qx + (q - 1) = 0, mempunyai akar-akar x 1 dan x 2. Jika x 1 2

Lebih terperinci

HOME PETA KONSEP MATERI CONTOH SOAL LATIHAN SOAL PROFIL STANDAR KOMPETENSI

HOME PETA KONSEP MATERI CONTOH SOAL LATIHAN SOAL PROFIL STANDAR KOMPETENSI HOME STANDAR KOMPETENSI PETA KONSEP MATERI CONTOH SOAL LATIHAN SOAL PROFIL STANDAR KOMPETENSI Menentukan persamaan lingkaran Menentukan persamaan garis singgung lingkaran Peta konsep lingkaran persamaan

Lebih terperinci

Sahid Lab Komputer Jurdik Matematika FMIPA UNY

Sahid Lab Komputer Jurdik Matematika FMIPA UNY Aktivitas Belajar Persamaan Lingkaran dan Garis Singgungnya dengan Software GeoGebra Sahid Lab Komputer Jurdik Matematika FMIPA UNY sahidyk@gmail.com Pendahuluan Tulisan ini dimaksudkan untuk memberikan

Lebih terperinci

f(-1) = = -7 f (4) = = 3 Dari ketiga fungsi yang didapat ternyata yang terkecil -7 dan terbesar 11. Rf = {y -7 y 11, y R}

f(-1) = = -7 f (4) = = 3 Dari ketiga fungsi yang didapat ternyata yang terkecil -7 dan terbesar 11. Rf = {y -7 y 11, y R} 1. Persamaan (m - 1)x 2-8x - 8m = 0 mempunyai akar-akar real, maka nilai m adalah... -2 m -1-2 m 1-1 m 2 Kunci : C D 0 b 2-4ac 0 (-8)² - 4(m - 1) 8m 0 64-32m² + 32m 0 m² - m - 2 0 (m - 2)(m + 1) 0 m -1

Lebih terperinci

Materi Fungsi Linear Fungsi Variabel, koefisien, dan konstanta Variabel variabel bebas Koefisien Konstanta 1). Pengertian fungsi linier

Materi Fungsi Linear Fungsi Variabel, koefisien, dan konstanta Variabel variabel bebas Koefisien Konstanta 1). Pengertian fungsi linier Materi Fungsi Linear Admin 8:32:00 PM Duhh akhirnya nongol lagi... kali ini saya akan bahas mengenai pelajaran yang paling disukai oleh hampir seluruh warga dunia :v... MATEMATIKA, ya itu namanya. materi

Lebih terperinci

D. 90 meter E. 95 meter

D. 90 meter E. 95 meter 1. Persamaan kuadrat yang akar-akarnya 5 dan -2 adalah... A. x² + 7x + 10 = 0 B. x² - 7x + 10 = 0 C. x² + 3x + 10 = 0 Kunci : E Rumus : (x - x 1 ) (x - x 2 ) = 0 dimana x 1 = 5, dan x 2 = -2 (x - 5) (x

Lebih terperinci

RINGKASAN IRISAN KERUCUT (PARABOLA, ELIPS, DAN HIPERBOLA)

RINGKASAN IRISAN KERUCUT (PARABOLA, ELIPS, DAN HIPERBOLA) NAMA: KELAS: PENGERTIAN IRISAN KERUCUT Bangun Ruang Kerucut yang dipotong oleh sebuah bidang datar. RINGKASAN IRISAN KERUCUT (PARABOLA, ELIPS, DAN HIPERBOLA) Macam-macam Irisan Kerucut: 1. Parabola 2.

Lebih terperinci

Matematika Dasar SBMPTN 2019 Saistem Persamaan, Pertidaksamaan, Fungsi Kuadrat & Transformasi MATEMATIKA DASAR

Matematika Dasar SBMPTN 2019 Saistem Persamaan, Pertidaksamaan, Fungsi Kuadrat & Transformasi MATEMATIKA DASAR Salam Belajar! Matematika Dasar SBMPTN 2019 Saistem Persamaan, Pertidaksamaan, Fungsi Kuadrat & Transformasi MATEMATIKA DASAR 1. Jumlah kuadrat kedua akar persamaan x 2 4x 8 = 0 sama dengan jumlah pangkat

Lebih terperinci

Modul Matematika XI MIA Semester 1 Lingkaran

Modul Matematika XI MIA Semester 1 Lingkaran Lingkaran XI MIA 017/018 Modul Matematika XI MIA Semester 1 Lingkaran Oleh : Markus Yuniarto, S.Si 1 Tahun Pelajaran 017/018 SMA Santa Angela Jl. Merdeka No. Bandung Lingkaran XI MIA 017/018 Peta Konsep

Lebih terperinci

A. DEFINISI DAN BENTUK UMUM SISTEM PERSAMAAN LINEAR KUADRAT

A. DEFINISI DAN BENTUK UMUM SISTEM PERSAMAAN LINEAR KUADRAT K-13 Kelas X matematika PEMINATAN SISTEM PERSAMAAN LINEAR KUADRAT TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi dan bentuk umum sistem

Lebih terperinci

Lingkaran adalah tempat kedudukan titik-titik pada bidang yang berjarak

Lingkaran adalah tempat kedudukan titik-titik pada bidang yang berjarak 4 Lingkaran 4.1. Persamaan Lingkaran Bentuk Baku. Lingkaran adalah tempat kedudukan titik-titik pada bidang yang berjarak tetap dari suatu titik tetap. Titik tetap dari lingkaran disebut pusat lingkaran,

Lebih terperinci

Sumber Belajar 2x40mnt Buku teks. 2x40mnt. 2x40mnt. (2x + 3) + (-5x 4) (-x + 6)(6x 2) Tes tulis Tes uraian Berapakah: berikut: Teknik Bentuk

Sumber Belajar 2x40mnt Buku teks. 2x40mnt. 2x40mnt. (2x + 3) + (-5x 4) (-x + 6)(6x 2) Tes tulis Tes uraian Berapakah: berikut: Teknik Bentuk Sekolah : SMP Kelas : VIII Mata Pelajaran : Matematika Semester : I(satu) SILABUS Standar : ALJABAR 1. Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus 1.1 Melakukan operasi aljabar Bentuk

Lebih terperinci

sama dengan p q. Perhatikan tabel berikut. p q B B S S B S S B S S B B S S S B B S B S S S S B B S B B

sama dengan p q. Perhatikan tabel berikut. p q B B S S B S S B S S B B S S S B B S B S S S S B B S B B Soal nomor 1, dengan soal sebagai berikut: Jawab : D Pernyataan majemuk pada soal ini adalah suatu disjungsi. Misalkan p: Petani panen beras. q: Harga beras murah., pernyataan di atas dapat dinotasikan

Lebih terperinci

1. Jika f ( x ) = sin² ( 2x + ), maka nilai f ( 0 ) =. a. 2 b. 2 c. 2. Diketahui f(x) = sin³ (3 2x). Turunan pertama fungsi f adalah f (x) =.

1. Jika f ( x ) = sin² ( 2x + ), maka nilai f ( 0 ) =. a. 2 b. 2 c. 2. Diketahui f(x) = sin³ (3 2x). Turunan pertama fungsi f adalah f (x) =. 1. Jika f ( x ) sin² ( 2x + ), maka nilai f ( 0 ). a. 2 b. 2 c. d. e. 2. Diketahui f(x) sin³ (3 2x). Turunan pertama fungsi f adalah f (x). a. 6 sin² (3 2x) cos (3 2x) b. 3 sin² (3 2x) cos (3 2x) c. 2

Lebih terperinci

Garis Singgung Lingkaran

Garis Singgung Lingkaran 1 KEGIATAN BELAJAR 8 Garis Singgung Lingkaran Setelah mempelajari kegiatan belajar 8 ini, mahasiswa diharapkan mampu menentukan persamaan garis singgung lingkaran dan kuasa lingkaran. Pernahkah Anda memperhatikan

Lebih terperinci

Modul Matematika XI IPA Semester 1 Lingkaran

Modul Matematika XI IPA Semester 1 Lingkaran Modul Matematika XI IPA Semester 1 Lingkaran Oleh : Markus Yuniarto, S.Si Tahun Pelajaran 015 016 SMA Santa Angela Jl. Merdeka No. 4 Bandung Lingkaran XI IPA Sem 1/014-015 4 Peta Konsep Persamaan Lingkaran

Lebih terperinci

4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN

4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN 4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN 4.1 Persamaan Garis a. Bentuk umum persamaan garis Garis lurus yang biasa disebut garis merupakan kurva yang paling sederhana dari semua kurva. Misalnya titik A(2,1)

Lebih terperinci

B. 30 X + 10 Y 300; 20 X + 20 Y 400; X 0, Y 0 C. 10 X + 30 Y 300; 20 X + 20 Y 400, X 0, Y 0 D. 10 X + 30 Y 300, 20 X + 20 Y 400, X 0, Y 0

B. 30 X + 10 Y 300; 20 X + 20 Y 400; X 0, Y 0 C. 10 X + 30 Y 300; 20 X + 20 Y 400, X 0, Y 0 D. 10 X + 30 Y 300, 20 X + 20 Y 400, X 0, Y 0 BIDANG STUDI : MATEMATIKA 1. Harga 3 kg pepaya dan 5 kg jeruk adalah Rp 13.000, sedangkan harga 4 kg papaya dan 3 kg jeruk adalah Rp 10.000, maka harga 2 kg papaya dan 4 kg jeruk adalah. A. Rp 10.000 B.

Lebih terperinci

LINGKARAN. A. PERSAMAAN LINGKARAN B. PERSAMAAN GARIS SINGGUNG LINGKARAN

LINGKARAN. A. PERSAMAAN LINGKARAN B. PERSAMAAN GARIS SINGGUNG LINGKARAN LINGKARAN. A. PERSAMAAN LINGKARAN B. PERSAMAAN GARIS SINGGUNG LINGKARAN 4 ia nc o3 D.c om Bab r: w be Su m. pa ww ne b Lingkaran Setelah mempelajari bab ini, Anda harus mampu merumuskan persamaan lingkaran

Lebih terperinci

KISI-KISI PENULISAN SOAL UJI COBA PREDIKSI UJIAN NASIONAL

KISI-KISI PENULISAN SOAL UJI COBA PREDIKSI UJIAN NASIONAL KISI-KISI PENULISAN UJI COBA UJIAN NASIONAL Jenis Sekolah : SMA/MA Alokasi Waktu : 0 Menit Mata Pelajaran : Matematika Jumlah Soal : 40 Soal Program : IPA Bentuk Soal : Pilihan Ganda Kurikulum : Irisan

Lebih terperinci

Silabus. Kegiatan Pembelajaran Instrumen. Tugas individu.

Silabus. Kegiatan Pembelajaran Instrumen. Tugas individu. Silabus Jenjang : SMP dan MTs Mata Pelajaran : Matematika Kelas : VIII Semester : 1 Standar Kompetensi : ALJABAR 1. Memahami bentuk aljabar, relasi, fungsi, dan garis lurus. Kompetensi Dasar Materi Ajar

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA1201 MATEMATIKA 2A Hendra Gunawan Semester II, 2016/2017 15 Maret 2017 Kuliah yang Lalu 10.1-2 Parabola, Elips, dan Hiperbola 10.4 Persamaan Parametrik Kurva di Bidang 10.5 Sistem Koordinat Polar 11.1

Lebih terperinci

SISTEM BILANGAN RIIL DAN FUNGSI

SISTEM BILANGAN RIIL DAN FUNGSI SISTEM BILANGAN RIIL DAN FUNGSI Matematika Juni 2016 Dosen : Dadang Amir Hamzah MATEMATIKA Juni 2016 1 / 67 Outline 1 Sistem Bilangan Riil Dosen : Dadang Amir Hamzah MATEMATIKA Juni 2016 2 / 67 Outline

Lebih terperinci

Format 1. ANALISIS STANDAR KOMPETENSI LULUSAN (SKL) Tahun Pelajaran 2012/2013 Tim Matematika SMA Negeri 6 Malang

Format 1. ANALISIS STANDAR KOMPETENSI LULUSAN (SKL) Tahun Pelajaran 2012/2013 Tim Matematika SMA Negeri 6 Malang Format 1. ANALISIS STANDAR KOMPETENSI LULUSAN (SKL) 01 Mata elajaran Matematika IPA Tahun Pelajaran 01/013 Pengembang Tim Matematika SMA Negeri 6 Malang KISI-KISI SKL 01 INDIKATOR KISI-KISI SKL SK KD 1.

Lebih terperinci

Hendra Gunawan. 30 Agustus 2013

Hendra Gunawan. 30 Agustus 2013 MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 30 Agustus 2013 Latihan (Kuliah yang Lalu) Selesaikan pertaksamaan berikut: 1. x + 1 < 2/x. (sudah dijawab) 2. x 3 < x + 1. 8/30/2013 (c) Hendra

Lebih terperinci

syarat tertentu yang diberikan. Atau bisa juga diartikan sebagai lintasan dari sebuah

syarat tertentu yang diberikan. Atau bisa juga diartikan sebagai lintasan dari sebuah 2 Tempat Kedudukan dan Persamaan 2.1. Tempat Kedudukan Tempat kedudukan (locus) adalah himpunan titik-titik yang memenuhi suatu syarat tertentu yang diberikan. Atau bisa juga diartikan sebagai lintasan

Lebih terperinci

Matematika EBTANAS Tahun 1986

Matematika EBTANAS Tahun 1986 Matematika EBTANAS Tahun 986 EBT-SMA-86- Bila diketahui A = { x x bilangan prima < }, B = { x x bilangan ganjil < }, maka eleman A B =.. 3 7 9 EBT-SMA-86- Bila matriks A berordo 3 dan matriks B berordo

Lebih terperinci

BOLA. Geometri Analitik Ruang. Oleh Mega Teguh Budiarto

BOLA. Geometri Analitik Ruang. Oleh Mega Teguh Budiarto BOLA Geometri Analitik Ruang Oleh Mega Teguh Budiarto Persamaan Bola Q P DISKUSI Berikan minimal 3 contoh persamaan bola, beri alasan mengapa contoh yang saudara buat persamaan bola. Berikan minimal 3

Lebih terperinci

GEOMETRI ANALITIK PERTEMUAN2: GARIS LURUS PADA BIDANG KOORDINAT. sofyan mahfudy-iain Mataram 1

GEOMETRI ANALITIK PERTEMUAN2: GARIS LURUS PADA BIDANG KOORDINAT. sofyan mahfudy-iain Mataram 1 GEOMETRI ANALITIK PERTEMUAN2: GARIS LURUS PADA BIDANG KOORDINAT sofyan mahfudy-iain Mataram 1 Sasaran kuliah hari ini 1. Mahasiwa dapat menjelaskan konsep kemiringan garis/gradien 2. Mahasiswa dapat menentukan

Lebih terperinci

Kurikulum 2013 Antiremed Kelas 11 Matematika

Kurikulum 2013 Antiremed Kelas 11 Matematika Kurikulum 03 Antiremed Kelas Matematika Turunan Fungsi dan Aplikasinya Soal Doc. Name: K3ARMATPMT060 Version: 05-0 halaman 0. Jika f(x) = 8x maka f (x). (A) 8x (B) 8x (C) 6x (D) 6x (E) 4x 0. Diketahui

Lebih terperinci

A. Pengertian Parabola. Menentukan panjang Latus Rectum DT = FS = DF = 2p Maka DE = 2.DF = 4p. B. Persamaan Parabola

A. Pengertian Parabola. Menentukan panjang Latus Rectum DT = FS = DF = 2p Maka DE = 2.DF = 4p. B. Persamaan Parabola htt://www.smkekalongan.sch.id Parabola A. Pengertian Parabola Parabola adalah temat kedudukan titik-titik ada geometri dimensi ang memiliki jarak ang sama terhada satu titik tertentu dan garis tertentu.

Lebih terperinci

UJIAN NASIONAL TAHUN PELAJARAN 2007/2008

UJIAN NASIONAL TAHUN PELAJARAN 2007/2008 UJIAN NASIONAL TAHUN PELAJARAN 2007/2008 PANDUAN MATERI SMA DAN MA M A T E M A T I K A PROGRAM STUDI BAHASA PUSAT PENILAIAN PENDIDIKAN BALITBANG DEPDIKNAS KATA PENGANTAR Dalam rangka sosialisasi kebijakan

Lebih terperinci