Bab 2. Persamaan Parametrik dan Sistim Koordinat Kutub

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Bab 2. Persamaan Parametrik dan Sistim Koordinat Kutub"

Transkripsi

1 Bab. Persamaan Parametrik dan Sistim Koordinat Kutub Persamaan Parametrik Kurva-kurva ang berada dalam bidang datar dapat representasikan dalam bentuk persamaan parametrik. Dalam persamaan ini, setiap titik-titik pada kurva dan merupakan fungsi dari t. Variabel t dinamakan parameter. Secara singkat ditulis: = (t) = (t) Membuat Sketsa Kurva Persamaan parametrik. Gambarlah kurva persamaan parametrik: = t, = t untuk -4 t 4 Jawab a. Pertama-tama kita buat tabel ang terdiri dari kolom t, dan. Kemudian plot nilai-nilai terhadap, untuk mempermudah dapat menggunakan perangkat lunak. Tabel t, dan Kurva antara dan t = t = t Kurva ang dihasilkan berupa parabola.. Gambarlah kurva persamaan parametrik : = cos t dan = sin t untuk 0 t Pertama-tama kita buat tabel ang terdiri dari kolom t, dan. Hasilna ditunjukkkan pada tabel dibawah ini

2 Tabel nilai t, dan t t

3 Dalam menajikan data-data nilai t, buatlah selisih antara nilai t cukup kecil supaa diperoleh kurva ang smooth. Makin kecil, kurva makin smooth. Kurva ang dihasilkan Kurva ang dihasilkan berbentuk lingkaran. 3. Gambarlah kurva persamaan parametrik : = cos t dan = sin t untuk 0 t t t

4 Kurva ang dihasilkan: X Mengubah Persamaan Parametrik Menjadi Persamaan Kartesian. Ubahlah persamaan parametrik ke dalam bentuk kartesian a. = t -, = t b. = cos t dan = sin t Jawab. a. persamaan parametrik : = t t = + = t = ( + ) = + + persamaan kartesian : = + + Ini adalah persamaan kuadrat, kurvana berupa parabola b. persamaan parametrik : = cos t dan = sin t cost sin t persamaan identitas: sin t + cos t = 4 Ini adalah persamaan lingkaran ang berpusat di (0, 0) dan berjari-jari 4

5 Mengubah Persamaan Kartesian Menjadi Persamaan Parametrik. Tentukan persamaan parametrik dari persamaan kartesian = 9 Jawab Misal 3t 9 3t 9 3 t 3 Jadi persamaan parametrik: 3t, t Catatan: bisa saja satu bentuk persamaan kartesian memiliki bentuk parametrik lebih dari satu. Coba pikirkan, kenapa?. Tentukan persamaan parametrik dari persamaan kartesian 6 Jawab Misal = sin 6sin sin 6sin cos 3sin Jadi persamaan parametrik: = sin, = 3sin Atau Misal = cos 6cos cos 6cos sin 3sin Jadi persamaan parametrik: = cos, = 3sin 3. Tentukan persamaan parametrik dari persamaan kartesian ! 5

6 Jawab: Bandingkan dengan cos + sin = 6 9 cos 6 4cos 9 sin 3sin Jadi persamaan parametrik: = 4cos, = 3sin Latihan. Gambarkan sketsa grafik persamaan parametrik berikut ini a. = t, = t + 4, - t 3 b. = 3t, = 3t +, -4 t 4 c. = 3t, = t -3 untuk-3 t 3 d. = 3t, = t 3 untuk-3 t 3 e. f. g. t 4 3, t 3 t t, untuk-3 t 3 4, t, untuk- t t, t, untuk-3 t 3 h. 4sin, 4cos, untuk 0 i. 5cos, 3sin, untuk 0 j. sec, tan, untuk-3 3 k. = cost - cos t, = sint - cost sint, untuk -0 t l. Persamaan Lemniscate Bernoulli 6

7 Untuk 0 t m. = 3cost - 7cos 3/7t, = 7sin t 7sin3/7t, untuk 0 t 4 n. = 7cost + 7cos7/7t, = 7sin t 7sin7/7t, untuk 0 t 4 o. = cost + /cos7t + /3sin7t, = sin t + / sin 7t + /3cos7t, untuk 0 t. Tentukanlah bentuk kartesian dari persamaan parametrik berikut ini a. = t + 4, = -t b. = t +, = t - c. 3 t, 4t d. = t, = t 3 e. = t -, = t 3 + f. = t, t g. t t, t t h. = 3cos, = 4sin i. = sin, = cos j. = 3cos, = 5cos k. = 3sec, = 3tan l. t t, t t 3. Tentukan persamaan parametrik dari persamaan kartesian berikut ini a. 4, misal = cos 7

8 b., gunakan + tan = sec c. 3, gunakan = sin atau = /t 4., Sederhanakan kedalam bentuk ubah kedalam bentuk persamaan parametrik ( ) ( ) kemudian 5. Sederhanakan kedalam bentuk kemudian ubah kedalam bentuk persamaan parametrik ( ) ( ) a b 6. Dengan mensubtitusi = t, tunjukkan bahwa persamaan kartesian dapat dikonversi menjadi persamaan parametrik 3t t, 3t t 7. Ambil contoh kasus gerak parabola seperti di ilustrasikan, gerak ini dapat diuraikan menjadi dua komponen aitu dalam arah /horizontal dan dalam arah /vertikal. 3 v o Berdasarkan konsep-konsep fisika, tentukan persamaan parametrik untuk menentukankedudukan dan. 8

9 SISTIM KOORDINAT KUTUB Dalam bagian ini, kita akan mempelajari koordinat kutub dan hubunganna dengan koordinat kartesian. Koordinat polar menunjukkan posisi relatif suatu titik terhadap sumbu polar dan titik kutub O (0,0). Titik pada koordinat kutub dinatakan jari-jari dan sudut. P (r, ) Koordinat kutub : O r P (r, ) r : jarak dari O ke P (arah dari O menuju P) : sudut antara sumbu dan garis OP Dalam sistim koordinat polar titik asal O dinamakan kutub (pole) dan sumbu dinamakan sumbu kutub (polar ais). Setiap titik pada koordinat kartesius diperoleh dari perpotongan antara dan, sedangkan titik pada koordinat polar merupakan titik potong antara jari-jari lingkaran ang berpusat pada titik kutub dan garis arah sudut. Sistim Koordinat Kartesian Sistim Koordinat Kutub 9

10 Koordinat Kutub Sekarang kita belajar menatakan posisi suatu titik dalam koordinat polar. Perhatikanlah beberapa contoh titik-titik dibawah ini /4 D C - - E - B /4 A 3 - F 5/4 7/4-3 Dalam gambar diatas ada dua lingkaran ang kecil berjari-jari dan ang besar berjari-jari 3. Dan juga terdapat dua garis lurus ang menunjukkan sudut diukur dari sumbu polar. Titik A terdapat pada lingkaran kecil (r=) dengan sudut /4 sehingga dapat dinatakan A (, /4) Titik B terdapat pada lingkaran besar (r=3) dengan sudut / sehingga dapat dinatakan B (3, /). Coba lanjutkan untuk titik C, D, E dan F sebagai latihan. Konversi koordinat kutub ke koordinat kartesius Kartesius ke Kutub Kutub ke Kartesius P (r, ) r = + = r cos r = tan - (/) = r sin O 0

11 Contoh:. Ubahlah titik-titik dibawah ini ke bentuk kutub a. (-3,-4) b. (5,- 7). Ubahlah titik-titik dibawah ini ke bentuk kartesius a. (, /3 ) b. (-3, 4/3 ) Jawab a. Dari titik (-3, -4) diperoleh = -3 dan = -4 r = + = (-3) + (-4) = 5 r = 5 = tan - (4/3) = 33 o Kartesius: (-3, -4), kutub: (5, 33 o ) b. Dari titik (5, -7) diperoleh = -3 dan = -4 r = + = (5) + (-7) = = 7 r = 7 = tan - (-7/5) = 305,54 o Kartesius: (5, -7), kutub: ( 7, 305,54 o ). a. Dari titik (, /3 ) diperoleh r = dan = /3 = r cos = cos/3 = / =

12 = r sin = sin/3 = / 3 = 3 Kutub (, /3 ), kartesius: (, 3 ) b. Dari titik (-3, 4/3 ) diperoleh r = - dan = 4/3 = r cos = -3 cos 4/3 = -3 (-/) = 3/ = r sin = sin 4/3 = -3 (-/ 3 ) = 3/ 3 Kutub (-3, 4/3 ), kartesius: (3/, 3/ 3 ) Dalam sistim koordinat kartesius, setiap titik dinatakan oleh dan secara spesifik artina titik berbeda, maka dan na pun berbeda. Lain halna dalam sistim koordinat kutub karena r puna arah dan nilai puna acuan arah putar dan bersifat periodik sebesar maka untuk titik ang sama dapat dinatkan oleh r dan ang berbeda-beda dengan jumlah representasi tak berhingga. Perhatikanlah contoh berikut A /4 3 -

13 Dalam sistim kartesius: A (, ) Dalam sistim kutub: A (, /4), A (, /4 + ), A (, /4 + 4 ), A (, /4 + n ) Boleh juga A (, -7 /4), A (, -7 /4+ ), A (, -7 /4+4 ), A (, -7 /4+ n ) Boleh juga A (-, 5 /4), A (-, 5 /4+ ), A (-, 5 /4+4 ), A (-, 5 /4+ n ) Dengan n =,, 3, Mengkonversi persamaan kartesian ke kutub. Ubahlah persamaan berikut ke kutub = 3-8 jawab ingat: = r cos dan = r sin = 3-8 r sin = 3r cos - 8 r sin - 3r cos = - 8 r (sin - 3 cos ) = r 3cos sin. Ubahlah persamaan berikut ke kutub + ( - 3) = 9 jawab + ( - 3) = = = 0 r 6 r sin = 0 3

14 r(r - 6 sin ) = 0 r - 6 sin = 0 r = 6 sin Mengkonversi persamaan kutub ke kartesian 3. Ubahlah persamaan berikut ke kartesian r cos = -4 jawab r cos = -4 = Ubahlah persamaan berikut ke kartesian r = 4r cos Jawab r = 4r cos + = = = 4 ( - ) + = 4 4

15 Membuat grafik pada sistim koordinat kutub Buatlah grafik himpunan titik-titik koordinat polar dengan sarat-sarat berikut: a. r = b. - r 3 c. r 0, = /4 d. /4 /6 Jawab Solusina ditunjukkan pada gambar dibawah ini a. b c. d. / /4 / Latihan. Manakah titik-titik koordinat polar berikut ini ang menunjukkan titik ang sama 5

16 a. (3, 0) b. (-3, 0) c. (, /3) d. (, 7 /3) e. (-3, ) f. (, /3) g. (-3, ) h. (-, - /3). Plot titik-titik koordinat polar berikut ini a. (, /6) b. (-, /6) c. (, /6) d. (3, /6) e. (, /4) f. (, - /4) g. (3, 5 /6) h. (-3, 0 /4) 3. Konversi koordinat kartesius dibawah ini menjadi koordinat polar a. (3, 4) b. (-, 3 ) c. (, -) d. (0, - ) e. (-5, 7) f. (-6, -4 3 ) g. (-8, 6) h. (, -5) 4. Konversi koordinat polar dibawah ini menjadi koordinat kartesius a. (, /4) 6

17 b. (0, /) c. (-3, /3) d. (- 7, 5 /6) e. ( 3, - /4) f. (, /4) g. (0, /) h. (-3, /3) 5. Buatlah grafik dari himpunan titik-titik koordinat polar ang memenuhi sarat berikut ini a. r = 4 b. = /3, r - c. = /3, - r 3 d. r =, 0 e. r, 0 / f. -3 r, = /4 g. r 0, = /4 h. /3 r 5 /6 6. Konversi persamaan polar berikut ini menjadi persamaan kartesius a. r cos = 4 b. r sin = -5 c. r cos + r sin = d. r = cot csc e. r = cos + sin f. r + r cos sin = g. r sin = h. r = cos - sin 7. Konversi persamaan kartesius berikut ini menjadi persamaan polar 7

18 a. = 7 b. - = 3 c. = 5 d. = e. + = 5 f. - = g. + + = 8

Respect, Professionalism, & Entrepreneurship. Pengantar Kalkulus. Pertemuan - 1

Respect, Professionalism, & Entrepreneurship. Pengantar Kalkulus. Pertemuan - 1 Mata Kuliah Kode SKS : Kalkulus : CIV-101 : 3 SKS Pengantar Kalkulus Pertemuan - 1 Kemampuan Akhir ang Diharapkan : Mahasiswa mampu menjelaskan sistem bilangan real Mahasiswa mampu menelesaikan pertaksamaan

Lebih terperinci

MA1201 MATEMATIKA 2A Hendra Gunawan

MA1201 MATEMATIKA 2A Hendra Gunawan MA101 MATEMATIKA A Hendra Gunawan Semester II, 016/017 10 Maret 01 Kuliah ang Lalu 10.1- Parabola, Elips, dan Hiperbola 10.4 Persamaan Parametrik Kurva di Bidang 10.5 Sistem Koordinat Polar 11.1 Sistem

Lebih terperinci

LINGKARAN. Lingkaran. pusat lingkaran diskriminan posisi titik posisi garis garis kutub gradien. sejajar tegak lurus persamaan lingkaran

LINGKARAN. Lingkaran. pusat lingkaran diskriminan posisi titik posisi garis garis kutub gradien. sejajar tegak lurus persamaan lingkaran LINGKARAN Persamaan Persamaan garis singgung lingkaran Persamaan lingkaran berpusat di (0, 0) dan (a, b) Kedudukan titik dan garis terhadap lingkaran Merumuskan persamaan garis singgung yang melalui suatu

Lebih terperinci

Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f.

Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f. Pertemuan ke 8 GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(,y): y = f(), D f } disebut grafik fungsi f. Grafik metode yang paling umum untuk menyatakan hubungan antara dua himpunan yaitu dengan menggunakan

Lebih terperinci

Fungsi dan Grafik Diferensial dan Integral

Fungsi dan Grafik Diferensial dan Integral Sudaratno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral ii Darpublic BAB 5 Bangun Geometris 5.1. Persamaan Kurva Persamaan suatu kurva secara umum dapat kita tuliskan sebagai F (, )

Lebih terperinci

Dr. Ramadoni Syahputra Jurusan Teknik Elektro FT UMY

Dr. Ramadoni Syahputra Jurusan Teknik Elektro FT UMY SISTEM-SISTEM KOORDINAT Dr. Ramadoni Syahputra Jurusan Teknik Elektro FT UMY Sistem Koordinat Kartesian Dalam sistem koordinat Kartesian, terdapat tiga sumbu koordinat yaitu sumbu x, y, dan z. Suatu titik

Lebih terperinci

PP' OP = OP' PERSAMAAN UMUM LINGKARAN

PP' OP = OP' PERSAMAAN UMUM LINGKARAN Bab III : Lingkaran 30 Lingkaran adalah tempat kedudukan titik-titik ang berjarak sama terhadap suatu titik tetap. Jarak ang sama itu disebut jari-jari sedangkan titik tetap dinamakan pusat lingkaran 3..

Lebih terperinci

Sistem Koordinat dalam 2 Dimensi Ruang Mengingat kembali sebelum belajar kalkulus

Sistem Koordinat dalam 2 Dimensi Ruang Mengingat kembali sebelum belajar kalkulus Sistem Koordinat dalam 2 Dimensi Ruang Mengingat kembali sebelum belajar kalkulus Sistem Koordinat pada Bidang Datar Disusun dengan pasangan angka urut (ordered pair) (a,b) : a dan b berturut- turut adalah

Lebih terperinci

Ringkasan Kalkulus 2, Untuk dipakai di ITB 36

Ringkasan Kalkulus 2, Untuk dipakai di ITB 36 Ringkasan Kalkulus 2, Untuk dipakai di ITB 36 Irisan Kerucut animation 1 animation 2 Irisan kerucut adalah kurva ang terbentuk dari perpotongan antara sebuah kerucut dengan bidang datar. Kurva irisan ini

Lebih terperinci

Buku Pendalaman Konsep. Trigonometri. Tingkat SMA Doddy Feryanto

Buku Pendalaman Konsep. Trigonometri. Tingkat SMA Doddy Feryanto Buku Pendalaman Konsep Trigonometri Tingkat SMA Doddy Feryanto Kata Pengantar Trigonometri merupakan salah satu jenis fungsi yang sangat banyak berguna di berbagai bidang. Di bidang matematika sendiri,

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN

RENCANA PELAKSANAAN PEMBELAJARAN RENCANA PELAKSANAAN PEMBELAJARAN Mata Pelajaran : Matematika Kelas/ Semester: XI Program IPA/ Alokasi Waktu: jam Pelajaran (3 Pertemuan) A. Standar Kompetensi Menggunakan konsep limit ungsi dan turunan

Lebih terperinci

BAB 3 TRIGONOMETRI. csc = sec = cos. cot = tan

BAB 3 TRIGONOMETRI. csc = sec = cos. cot = tan BB TRIGONOMETRI RINGKSN MTERI. Perbandingan C a B c b a proyektor b proyektum c proyeksi b a + c sin b a cos b c tan sin a cos c. Sifat-sifat Kwadran csc sec cot b sin a b cos c c tan a sin + cos tan +

Lebih terperinci

BAB 4 PERSAMAAN LINGKARAN

BAB 4 PERSAMAAN LINGKARAN STANDAR KOMPETENSI: BAB 4 PERSAMAAN LINGKARAN Menusun persamaan lingkaran dan garis singgungna. KOMPETENSI DASAR Menusun persamaan lingkaran ang memenuhi persaratan ang ditentukan Menentukan persamaan

Lebih terperinci

A. Persamaan Kuadrat dan Fungsi Kuadrat. Salah satu akar persamaan kuadrat ( a ) (3a ) 3a 0 adalah, maka akar lainna adalah. Nilai m ang memenuhi agar persamaan kuadrat ( m ) (m ) ( m ) 0 mempunai dua

Lebih terperinci

III HASIL DAN PEMBAHASAN

III HASIL DAN PEMBAHASAN Fungsi periodizer kutub tersebut dapat dituliskan pula sebagai: p θ, N, θ 0 = π N N.0 n= n sin Nn θ θ 0. () f p θ, N, θ 0 = π N N j= j sin Nj θ θ 0 diperoleh dengan menyubstitusi variabel θ pada f θ =

Lebih terperinci

FUNGSI DAN GRAFIK KED

FUNGSI DAN GRAFIK KED FUNGSI DAN GRAFIK 1.1 Pendahuluan Deinisi unsi adalah suatu aturan padanan yan menhubunkan tiap objek x dalam satu himpunan, yan disebut daerah asal, denan sebuah nilai unik x dari himpunan kedua. Himpunan

Lebih terperinci

Persamaan Parametrik

Persamaan Parametrik oki neswan (fmipa-itb) Persamaan Parametrik Kita telah lama terbiasa dengan kurva yang dide nisikan oleh sebuah persamaan yang menghubungkan koordinat x dan y: Contohnya persamaan eksplisit seperti y x

Lebih terperinci

yang tak terdefinisikan dalam arti keberadaannya tidak perlu didefinisikan.

yang tak terdefinisikan dalam arti keberadaannya tidak perlu didefinisikan. 3 Gariis Lurus Dalam geometri aksiomatik/euclide konsep garis merupakan salah satu unsur ang tak terdefinisikan dalam arti keberadaanna tidak perlu didefinisikan. Karakteristik suatu garis diberikan pada

Lebih terperinci

Matematika EBTANAS Tahun 1999

Matematika EBTANAS Tahun 1999 Matematika EBTANAS Tahun 999 EBT-SMA-99-0 Akar-akar persamaan kuadrat + = 0 adalah α dan β. Persamaan kuadrat baru yang akar-akarnya (α + ) dan (β + ) + = 0 + 7 = 0 + = 0 + 7 = 0 + = 0 EBT-SMA-99-0 Akar-akar

Lebih terperinci

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Mekanika Bahan Kode : TSP 205. Analisis Penampang. Pertemuan 4, 5, 6

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Mekanika Bahan Kode : TSP 205. Analisis Penampang. Pertemuan 4, 5, 6 Mata Kuliah : Mekanika Bahan Kode : TSP 05 SKS : SKS nalisis Penampang Pertemuan 4, 5, 6 TU : Mahasiswa dapat menghitung properti dasar penampang, seperti luas, momen statis, momen inersia TK : Mahasiswa

Lebih terperinci

B. Pengertian skalar dan vektor Dalam mempelajari dasar-dasar fisika, terdapat beberapa macam kuantitas kelompok besaran yaitu Vektor dan Skalar.

B. Pengertian skalar dan vektor Dalam mempelajari dasar-dasar fisika, terdapat beberapa macam kuantitas kelompok besaran yaitu Vektor dan Skalar. ANALISIS VEKTOR A. Deskripsi Materi ini akan membahas tentang pengertian, sifat, operasi dan manipulasi besaran fisik scalar dan vector. Pada pembahasan materi medan elektromagnetik berikutna akan melibatkan

Lebih terperinci

PERBANDINGAN DAN FUNGSI TRIGONOMETRI

PERBANDINGAN DAN FUNGSI TRIGONOMETRI PERBANDINGAN DAN FUNGSI TRIGONOMETRI D. Rumus Perbandingan Trigonometri di Semua Kuadran Dalam pembahasan sebelumna, kita telah melihat nilai perbandingan trigonometri untuk sudut sudut istimewa ang besarna

Lebih terperinci

Peta Kompetensi Mata Kuliah Geometri Analitik Bidang dan Ruang (PEMA4317) xiii

Peta Kompetensi Mata Kuliah Geometri Analitik Bidang dan Ruang (PEMA4317) xiii ix G Tinjauan Mata Kuliah eometri Analitik merupakan suatu bidang studi dari hasil perkawinan antara Geometri dan Aljabar. Kita telah mengetahui bahwa himpunan semua titik pada suatu garis lurus berkorespondensi

Lebih terperinci

(A) 3 (B) 5 (B) 1 (C) 8

(A) 3 (B) 5 (B) 1 (C) 8 . Turunan dari f ( ) = + + (E) 7 + +. Turunan dari y = ( ) ( + ) ( ) ( + ) ( ) ( + ) ( + ) ( + ) ( ) ( + ) (E) ( ) ( + ) 7 5 (E) 9 5 9 7 0. Jika f ( ) = maka f () = 8 (E) 8. Jika f () = 5 maka f (0) +

Lebih terperinci

PERSAMAAN DIFFERENSIAL ORDE I. Nurdinintya Athari

PERSAMAAN DIFFERENSIAL ORDE I. Nurdinintya Athari PERSAMAAN DIFFERENSIAL ORDE I Nurdininta Athari Definisi PERSAMAAN DIFERENSIAL Persamaan diferensial adalah suatu persamaan ang memuat satu atau lebih turunan fungsi ang tidak diketahui. Jika persamaan

Lebih terperinci

Modul 10. Fungsi Trigonometri

Modul 10. Fungsi Trigonometri Modul 10 Fungsi Trigonometri 10.1. Fungsi Gonometri Sudut Lancip A c a b 0 A Sudut adalah sudut lancip dengan titik sudut 0, sedang titik A adalah salah satu titik pada kaki sudut tersebut. Jika 0A diproeksikan

Lebih terperinci

BAB V PENERAPAN DIFFERENSIASI

BAB V PENERAPAN DIFFERENSIASI BAB V PENERAPAN DIFFERENSIASI 5.1 Persamaan garis singgung Bentuk umum persamaan garis adalah = m + n, dimana m adalah koeffisien arah atau kemiringan garis dan n adalah penggal garis. Sekarang perhatikan

Lebih terperinci

PRAKTIKUM 5 GRAFIK. >plot(sin(x),x=-2*pi..2*pi); Atau dinyatakan dalam grafik fungsi yang terdefinisi

PRAKTIKUM 5 GRAFIK. >plot(sin(x),x=-2*pi..2*pi); Atau dinyatakan dalam grafik fungsi yang terdefinisi PRAKTIKUM 5 GRAFIK 1. MINGGU KE : 6. PERALATAN : LCD, E-LEARNING 3. SOFTWARE : MAPLE 4. TUJUAN Dengan menggunakan Maple, mahasiswa dapat Menggambar grafik dimensi, grafik dalam persamaan parameter, grafik

Lebih terperinci

1. Pengertian Tentang Fungsi dan Grafik

1. Pengertian Tentang Fungsi dan Grafik Darpublic Oktober 3 www.darpublic.com. Pengertian Tentang Fungsi dan Grafik Fungsi Apabila suatu besaran memiliki nilai ang tergantung dari nilai besaran lain, maka dikatakan bahwa besaran tersebut merupakan

Lebih terperinci

BAB II FUNGSI DAN GRAFIK FUNGSI

BAB II FUNGSI DAN GRAFIK FUNGSI BAB II FUNGSI DAN GRAFIK FUNGSI. Funsi. Graik Funsi. Barisan dan Deret.4 Irisan Kerucut. Funsi Dalam berbaai aplikasi, korespondensi/hubunan antara dua himpunan serin terjadi. Sebaai contoh, volume bola

Lebih terperinci

ANALISA VARIABEL KOMPLEKS

ANALISA VARIABEL KOMPLEKS ANALISA VARIABEL KOMPLEKS Oleh: BUDI NURACHMAN, IR BAB I BILANGAN KOMPLEKS Dengan memiliki sistem bilangan real R saja kita tidak dapat menelesaikan persamaan +=0. Jadi disamping bilangan real kita perlu

Lebih terperinci

King s Learning Be Smart Without Limits

King s Learning Be Smart Without Limits Nama Siswa : LEMBAR AKTIVITAS SISWA PERSAMAAN LINGKARAN Jadi dapat disimpulkan bahwa persamaan lingkaran dengan pusat O(0,0) dan jari-jari = r adalah Kelas : Persamaan lingkaran: Kompetensi Dasar (KURIKULUM

Lebih terperinci

TURUNAN FUNGSI. dy (y atau f (x) atau ) dx. Hal-hal yang perlu diingat untuk menyelesaikan turunan fungsi aljabar adalah :

TURUNAN FUNGSI. dy (y atau f (x) atau ) dx. Hal-hal yang perlu diingat untuk menyelesaikan turunan fungsi aljabar adalah : TURUNAN FUNGSI dy (y atau f () atau ) d Hal-hal yang perlu diingat untuk menyelesaikan turunan fungsi aljabar adalah :. ( a + b) = ( a + ab + b ). ( a b) = ( a ab + b ) m n m n. a = a 4. a m = a m m m.

Lebih terperinci

MATEMATIKA DASAR TAHUN 1987

MATEMATIKA DASAR TAHUN 1987 MATEMATIKA DASAR TAHUN 987 MD-87-0 Garis singgung pada kurva y di titik potong nya dengan sumbu yang absisnya positif mempunyai gradien 0 MD-87-0 Titik potong garis y + dengan parabola y + ialah P (5,

Lebih terperinci

Hendra Gunawan. 4 September 2013

Hendra Gunawan. 4 September 2013 MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 4 September 2013 Latihan (Kuliah yang Lalu) 1. Tentukan daerah asal dan daerah nilai fungsi 2 f(x) = 1 x. sudah dijawab 2. Gambar grafik fungsi

Lebih terperinci

MATEMATIKA TEKNIK 1 3 SKS TEKNIK ELEKTRO UDINUS

MATEMATIKA TEKNIK 1 3 SKS TEKNIK ELEKTRO UDINUS MATEMATIKA TEKNIK 3 SKS TEKNIK ELEKTRO UDINUS BAB I BILANGAN KOMPLEKS Dengan memiliki sistem bilangan real R saja kita tidak dapat menelesaikan persamaan +=0. Jadi disamping bilangan real kita perlu bilangan

Lebih terperinci

FUNGSI DAN GRAFIK KED. Fungsi Bukan Fungsi Definisi

FUNGSI DAN GRAFIK KED. Fungsi Bukan Fungsi Definisi FUNGSI DAN GRAFIK Deinisi Funsi adalah suatu aturan padanan yan menhubunkan tiap objek x dalam satu himpunan, yan disebut daerah asal, denan sebuah nilai unik x dari himpunan kedua. Himpunan nilai ya diperoleh

Lebih terperinci

Matematika EBTANAS Tahun 2002

Matematika EBTANAS Tahun 2002 Matematika EBTANAS Tahun 00 EBT-SMA-0-0 Ditentukan nilai a = 9, b = dan c =. Nilai a b c = 9 EBT-SMA-0-0 Hasil kali akar-akar persamaan kuadrat + = 0 adalah EBT-SMA-0-0 Persamaan kuadrat + (m ) + 9 = 0

Lebih terperinci

Geometri pada Bidang, Vektor

Geometri pada Bidang, Vektor Jurusan Matematika FMIPA Unsyiah September 9, 2011 Sebuah kurva bidang (plane curve) ditentukan oleh pasangan persamaan parametrik x = f(t), y = g(t), t dalam I dengan f dan g kontinu pada selang I. I

Lebih terperinci

Hendra Gunawan. 5 Maret 2014

Hendra Gunawan. 5 Maret 2014 MA101 MATEMATIKA A Hendra Gunawan Semester II, 013/014 5 Maret 014 Kuliah yang Lalu 10.1 Parabola, aboa, Elips, danhiperbola a 10.4 Persamaan Parametrik Kurva di Bidang 10.5 SistemKoordinatPolar 11.1 Sistem

Lebih terperinci

MODUL 2 GARIS LURUS. Mesin Antrian Bank

MODUL 2 GARIS LURUS. Mesin Antrian Bank 1 MODUL 2 GARIS LURUS Gambar 4. 4 Mesin Antrian Bank Persamaan garis lurus sangat berperan penting terhadap kemajuan teknologi sekarang ini. Bagi programmer handal, banyak aplikasi yang membutuhkan persamaan

Lebih terperinci

FUNGSI dan LIMIT. 1.1 Fungsi dan Grafiknya

FUNGSI dan LIMIT. 1.1 Fungsi dan Grafiknya FUNGSI dan LIMIT 1.1 Fungsi dan Grafiknya Fungsi : suatu aturan yang menghubungkan setiap elemen suatu himpunan pertama (daerah asal) tepat kepada satu elemen himpunan kedua (daerah hasil) fungsi Daerah

Lebih terperinci

Lingkaran. A. Persamaan Lingkaran B. Persamaan Garis Singgung Lingkaran

Lingkaran. A. Persamaan Lingkaran B. Persamaan Garis Singgung Lingkaran Bab Sumber: www.panebiancod.com Setelah mempelajari bab ini, Anda harus mampu merumuskan persamaan lingkaran dan menggunakannya dalam pemecahan masalah; menentukan persamaan garis singgung pada lingkaran

Lebih terperinci

PERSAMAAN BIDANG RATA DAN VEKTOR NORMAL. (,, ) dan (,, ). Dan misalkan

PERSAMAAN BIDANG RATA DAN VEKTOR NORMAL. (,, ) dan (,, ). Dan misalkan PERSAAAN BIDANG RATA DAN VEKTOR NORAL Bila terdapat tiga titik yang tidak kolinear maka ketiga titik itu menentukan sebuah bidang rata. dan. Dan misalkan isalkan ketiga titik itu masing-masing vector-vektor

Lebih terperinci

BAB I ANALISIS VEKTOR

BAB I ANALISIS VEKTOR BAB I ANALISIS VEKTOR A. Deskripsi Materi ini akan membahas tentang pengertian, sifat, operasi dan manipulasi besaran fisik scalar dan vector. Pada pembahasan materi medan elektromagnetik berikutna akan

Lebih terperinci

Matematika Dasar FUNGSI DAN GRAFIK

Matematika Dasar FUNGSI DAN GRAFIK FUNGSI DAN GRAFIK Suatu pengaitan dari himpunan A ke himpunan B disebut fungsi bila mengaitkan setiap anggota dari himpunan A dengan tepat satu anggota dari himpunan B. Notasi : f : A B f() y Himpunan

Lebih terperinci

Fungsi dan Grafik Diferensial dan Integral

Fungsi dan Grafik Diferensial dan Integral Sudaratno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral Darpublic Hak cipta pada penulis, SUDIRHAM, SUDARYATNO Fungsi dan Grafik, Diferensial dan Integral Oleh: Sudaratmo Sudirham Darpublic,

Lebih terperinci

TRIGONOMETRI. B Nilai Perbandingan Trigonometri Sudut Istimewa

TRIGONOMETRI. B Nilai Perbandingan Trigonometri Sudut Istimewa TRIGONOMETRI PERBANDINGAN TRIGONOMETRI A Nilai Perbandingan Trigonometri Perhatikan segitiga berikut! Y Sin = r y Cosec = y r r y Cos = r x Sec = x r O x X Tan = x y Cotan = y x Selanjutnya nilai perbandingan

Lebih terperinci

KESETIMBANGAN MOMEN GAYA

KESETIMBANGAN MOMEN GAYA 43 MDUL PERTEMUAN KE 5 MATA KULIAH : ( sks) MATERI KULIAH: Momen gaa, sarat kedua kesetimbangan, resultan gaa sejajar, pusat berat, kopel. PKK BAHASAN: KESETIMBANGAN MMEN GAYA 5. PENGERTIAN MMEN GAYA Besar

Lebih terperinci

Analisis Tegangan dan Regangan

Analisis Tegangan dan Regangan a home base to ecellence Mata Kuliah : Mekanika Bahan Kode : TSP 05 SKS : 3 SKS Analisis Tegangan dan Regangan Pertemuan - 10 a home base to ecellence TIU : Mahasiswa dapat menganalisis tegangan normal

Lebih terperinci

SOAL-SOAL LATIHAN. 2. UN A35 dan E Nilai dari 1 37 D C B E. 3. UN A Hasil dari. x 4x. 4. UN A35 dan D

SOAL-SOAL LATIHAN. 2. UN A35 dan E Nilai dari 1 37 D C B E. 3. UN A Hasil dari. x 4x. 4. UN A35 dan D . UN A dan E8 Nilai dari d.... UN A dan E8. UN A Hasil dari SOAL-SOAL LATIHAN C. C C. UN A dan D d... D. C. C D. C E. E. C Luas daerah yang dibatasi oleh kurva y dan y adalah 9 satuan luas C. satuan luas

Lebih terperinci

a. Y= x 2-3x + 8 b. Y= x 2-6x + 8 c. Y= x 2-6x - 8 d. Y= -x 2 + 6x + 8 e. Y= x 2-3x + 8

a. Y= x 2-3x + 8 b. Y= x 2-6x + 8 c. Y= x 2-6x - 8 d. Y= -x 2 + 6x + 8 e. Y= x 2-3x + 8 1. Sebuah baju setelah dikenakan potongan harga dijual dengan harga Rp 0.000,00. Diskon baju tersebut 0 %. Maka harga baju sebelum didiskon adalah Rp 1.000,00 Rp 15.000,00 Rp.000,00 Rp 7.000,00 e. Rp 75.000,00.

Lebih terperinci

Nurdinintya Athari PERSAMAAN DIFFERENSIAL ORDE 2

Nurdinintya Athari PERSAMAAN DIFFERENSIAL ORDE 2 Nurdininta Athari PERSAMAAN DIFFERENSIAL ORDE 2 2 PDB ORDE II Bentuk umum : + p() + g() = r() p(), g() disebut koefisien jika r() = 0, maka Persamaan Differensial diatas disebut homogen, sebalikna disebut

Lebih terperinci

Silabus. Kegiatan Pembelajaran Instrume n. - Menentukan nilai. Tugas individu. (sinus, cosinus, tangen, cosecan, secan, dan

Silabus. Kegiatan Pembelajaran Instrume n. - Menentukan nilai. Tugas individu. (sinus, cosinus, tangen, cosecan, secan, dan Silabus Nama Sekolah Mata Pelajaran Kelas / Program Semester : SMK : MATEMATIKA : XI / TEKNOLOGI, KESEHATAN, DAN PERTANIAN : GANJIL Standar Kompetensi:7. Menerapkan perbandingan, fungsi,, dan identitas

Lebih terperinci

Kelompok : SMK Tingkat : XII ( Duabelas ) Bidang Keahlian : Ti, Kes, Sos Hari/Tanggal : Prog. Keahlian : Ti, Kes, Sos W a k t u : 0

Kelompok : SMK Tingkat : XII ( Duabelas ) Bidang Keahlian : Ti, Kes, Sos Hari/Tanggal : Prog. Keahlian : Ti, Kes, Sos W a k t u : 0 Kelompok : SMK Tingkat : XII ( Duabelas ) Bidang Keahlian : Ti, Kes, Sos Hari/Tanggal : Prog. Keahlian : Ti, Kes, Sos W a k t u : 0 PETUNJUK UMUM :. Isikan identitas Anda ke dalam Lembar Jawaban Komputer

Lebih terperinci

KEDUDUKAN DUA GARIS LURUS, SUDUT DAN JARAK

KEDUDUKAN DUA GARIS LURUS, SUDUT DAN JARAK 1 KEGIATAN BELAJAR 4 KEDUDUKAN DUA GARIS LURUS, SUDUT DAN JARAK Setelah mempelajari kegiatan belajar 4 ini, mahasiswa diharapkan mampu: 1. Menentukan kedudukan dua garis lurus di bidang dan di ruang 2.

Lebih terperinci

PREDIKSI SOAL UAN MATEMATIKA 2009 KELOMPOK TEKNIK

PREDIKSI SOAL UAN MATEMATIKA 2009 KELOMPOK TEKNIK PREDIKSI SOAL UAN MATEMATIKA 2009 KELOMPOK TEKNIK 1. Jarak kota P dan kota R pada sebuah peta adalah 20 cm. Jika skala pada peta tersebut 1:2.500.000, maka jarak sebenarnya dua kota tersebut adalah. A.

Lebih terperinci

Pengertian. Transformasi geometric transformation. koordinat dari objek Transformasi dasar: Translasi Rotasi Penskalaan

Pengertian. Transformasi geometric transformation. koordinat dari objek Transformasi dasar: Translasi Rotasi Penskalaan Pengertian Transformasi geometric transformation Transformasi = mengubah deskripsi koordinat dari objek Transformasi dasar: Translasi Rotasi Penskalaan Translasi Mengubah posisi objek: perpindahan lurus

Lebih terperinci

APLIKASI INTEGRAL 1. LUAS DAERAH BIDANG

APLIKASI INTEGRAL 1. LUAS DAERAH BIDANG Bahan ajar Kalkulus Integral 9 APLIKASI INTEGRAL. LUAS DAERAH BIDANG Misalkan f() kontinu pada a b, dan daerah tersebut dibagi menjadi n sub interval h, h,, h n yang panjangnya,,, n (anggap n ), ambil

Lebih terperinci

8. Nilai x yang memenuhi 2 log 2 (4x -

8. Nilai x yang memenuhi 2 log 2 (4x - 1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p p > l 2 < p < 3 p > 3 1 < p < 2 p < 1 atau p > 2 2. Fungsi kuadrat yang mempunyai nilai maksimum

Lebih terperinci

panjang yang berukuran x i dan y i. Ambil sebuah titik pada sub persegi d

panjang yang berukuran x i dan y i. Ambil sebuah titik pada sub persegi d INTEGAL ANGKAP. Integral angkap Dua. Volume dan Pusat Massa. Integral angkap Tiga.4 Koordinat Tabung dan Koordinat Bola.. Intergral angkap Dua Misal diberikan daerah di bidang XOY ang berbentuk persegi

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Fungsi Dua Peubah

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Fungsi Dua Peubah Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Fungsi Dua Peubah [MA114] Sistem Koordinat Kuadran II Kuadran I P(,) z P(,,z) Kuadran III Kuadran IV R (Bidang) Oktan 1 R 3 (Ruang) 7/6/007

Lebih terperinci

BUKU DIKTAT ANALISA VARIABEL KOMPLEKS. OLEH : DWI IVAYANA SARI, M.Pd

BUKU DIKTAT ANALISA VARIABEL KOMPLEKS. OLEH : DWI IVAYANA SARI, M.Pd BUKU DIKTAT ANALISA VARIABEL KOMPLEKS OLEH : DWI IVAYANA SARI, M.Pd i DAFTAR ISI BAB I. BILANGAN KOMPLEKS... 1 I. Bilangan Kompleks dan Operasinya... 1 II. Operasi Hitung Pada Bilangan Kompleks... 1 III.

Lebih terperinci

Sudaryatno Sudirham. Studi Mandiri. Fungsi dan Grafik. Darpublic

Sudaryatno Sudirham. Studi Mandiri. Fungsi dan Grafik. Darpublic Sudaratno Sudirham Studi Mandiri Fungsi dan Grafik ii Darpublic BAB 1 Pengertian Tentang Fungsi dan Grafik 1.1. Fungsi Apabila suatu besaran memiliki nilai ang tergantung dari nilai besaran lain, maka

Lebih terperinci

e. y 8. Himpunan penyelesaian dari sistem persamaan 2x - 3y = - 4 dan 3x + 4y = 11 adalah x dan y. Nilai dari 2x + y = a. 2 d. 5 b. 3 e. 6 c.

e. y 8. Himpunan penyelesaian dari sistem persamaan 2x - 3y = - 4 dan 3x + 4y = 11 adalah x dan y. Nilai dari 2x + y = a. 2 d. 5 b. 3 e. 6 c. . Agar mendapat untung %, sebuah rumah harus dijual dengan harga Rp. 0.000.000,00. Harga pembelian rumah tersebut adalah. a. Rp 7.00.000,00 d. Rp.00.000,00 b. Rp 8.00.000,00 e. Rp.000.000,00 c. Rp 0.000.000,00.

Lebih terperinci

integral = 2 . Setiap fungsi ini memiliki turunan ( ) = adalah ( ) = 6 2.

integral = 2 . Setiap fungsi ini memiliki turunan ( ) = adalah ( ) = 6 2. integral 13.1 PENGERTIAN INTEGRAL Untuk itu, coba tentukan turunan fungsi berikut. Perhatikan bahwa fungsi ini memiliki bentuk umum 6 2. Jadi, turunan fungsi = 2 =2 3. Setiap fungsi ini memiliki turunan

Lebih terperinci

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Kalkulus Kode : CIV Turunan. Pertemuan 3, 4, 5, 6, 7

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Kalkulus Kode : CIV Turunan. Pertemuan 3, 4, 5, 6, 7 Mata Kuliah : Kalkulus Kode : CIV - 101 SKS : 3 SKS Turunan Pertemuan 3, 4, 5, 6, 7 Kemampuan Akhir ang Diharapkan Mahasiswa mampu : - menjelaskan arti turunan ungsi - mencari turunan ungsi - menggunakan

Lebih terperinci

Pengertian Fungsi. Kalkulus Dasar 2

Pengertian Fungsi. Kalkulus Dasar 2 Funsi Penertian Funsi Relasi : aturan an menawankan himpunan Funsi Misalkan A dan B himpunan. Relasi biner dari A ke B merupakan suatu unsi jika setiap elemen di dalam A dihubunkan denan tepat satu elemen

Lebih terperinci

f(-1) = = -7 f (4) = = 3 Dari ketiga fungsi yang didapat ternyata yang terkecil -7 dan terbesar 11. Rf = {y -7 y 11, y R}

f(-1) = = -7 f (4) = = 3 Dari ketiga fungsi yang didapat ternyata yang terkecil -7 dan terbesar 11. Rf = {y -7 y 11, y R} 1. Persamaan (m - 1)x 2-8x - 8m = 0 mempunyai akar-akar real, maka nilai m adalah... -2 m -1-2 m 1-1 m 2 Kunci : C D 0 b 2-4ac 0 (-8)² - 4(m - 1) 8m 0 64-32m² + 32m 0 m² - m - 2 0 (m - 2)(m + 1) 0 m -1

Lebih terperinci

Open Source. Not For Commercial Use. Vektor

Open Source. Not For Commercial Use. Vektor Ringkasan Kalkulus 2, Untuk dipakai di ITB 1 Vektor Vektor adalah sebuah besaran ang mempunai nilai dan arah. Secara geometri vektor biasana digambarkan sebagai anak panah berarah (lihat gambar di samping)

Lebih terperinci

UN SMA IPA 2002 Matematika

UN SMA IPA 2002 Matematika UN SMA IPA 00 Matematika Kode Soal Doc. Name: UNSMAIPA00MAT999 Doc. Version : 0-0 halaman 0. Ditentukan nilai a = 9, b =, dan c =. Nilai 9 8 0. Hasil kali akar-akar persamaan kuadrat 0 adalah... - a b

Lebih terperinci

2. Memahami dan mampu menyelesaikan Permasalahan yang berkaitan dengan vektor di Ruang Tiga, yaitu Persamaan Bidang

2. Memahami dan mampu menyelesaikan Permasalahan yang berkaitan dengan vektor di Ruang Tiga, yaitu Persamaan Bidang TUJUAN EMBELAJARAN Agar pembaca memahami tentang Sistem Koordinat Kartesian beserta fungsinya yaitu titik, jarak dua titik, persamaan bola serta Vektor dalam ruang dimensi tiga beserta aplikasinya yaitu

Lebih terperinci

Persamaan Parabola KEGIATAN BELAJAR 10

Persamaan Parabola KEGIATAN BELAJAR 10 1 KEGIATAN BELAJAR 10 Persamaan Parabola Setelah mempelajari kegiatan belajar 10 ini, mahasiswa diharapkan mampu: 1. Menentukan persamaan Parabola 2. Melukis Persamaan Parabola Anda tentu sangat mengenal

Lebih terperinci

BAB I. SISTEM KOORDINAT, NOTASI & FUNGSI

BAB I. SISTEM KOORDINAT, NOTASI & FUNGSI BAB I. SISTEM KRDINAT, NTASI & FUNGSI (Pertemuan ke 1 & 2) PENDAHULUAN Diskripsi singkat Pada bab ini akan dijelaskan tentang bilangan riil, sistem koordinat Cartesius, notasi-notasi ang sering digunakan

Lebih terperinci

Pertemuan 6 APLIKASI TURUNAN

Pertemuan 6 APLIKASI TURUNAN Kalkulus Pertemuan 6 APLIKASI TURUNAN Menggambar Grafik Fungsi : Gambarlah grafik dari fungsi berikut! 4 f ( ) Beberapa informasi yang diperlukan untuk mengambar grafik dari fungsi tersebut adalah sebagai

Lebih terperinci

Analisis Vektor. Ramadoni Syahputra Jurusan Teknik Elektro FT UMY

Analisis Vektor. Ramadoni Syahputra Jurusan Teknik Elektro FT UMY Analisis Vektor Ramadoni Syahputra Jurusan Teknik Elektro FT UMY Analisis Vektor Analisis vektor meliputi bidang matematika dan fisika sekaligus dalam pembahasannya Skalar dan Vektor Skalar Skalar ialah

Lebih terperinci

Ringkasan Materi Kuliah Bab II FUNGSI

Ringkasan Materi Kuliah Bab II FUNGSI Ringkasan Materi Kuliah Bab II FUNGSI. FUNGSI REAL, FUNGSI ALJABAR, DAN FUNGSI TRIGONOMETRI. TOPIK-TOPIK YANG BERKAITAN DENGAN FUNGSI.3 FUNGSI KOMPOSISI DAN FUNGSI INVERS. FUNGSI REAL, FUNGSI ALJABAR,

Lebih terperinci

Tanah Homogen Isotropis

Tanah Homogen Isotropis Tanah Homogen Isotropis adalah tanah homogen yang mempunyai nilai k sama besar pada semua arah (kx = kz = ks). ks kx x z kz s Tanah Homogen Anisotropis adalah tanah homogen yang memiliki nilai k tidak

Lebih terperinci

AB = AB = ( ) 2 + ( ) 2

AB = AB = ( ) 2 + ( ) 2 Nama Siswa Kelas LEMBAR AKTIVITAS SISWA HUBUNGAN ANTAR GARIS Titik Tengah Sebuah Segmen Garis : : Kompetensi Dasar (KURIKULUM 2013): 3.10 Menganalisis sifat dua garis sejajar dan saling tegak lurus dan

Lebih terperinci

ANALISA VEKTOR. Skalar dan Vektor

ANALISA VEKTOR. Skalar dan Vektor ANALISA VEKTOR Skalar dan Vektor Skalar merupakan besaran ang dapat dinatakan dengan sebuah bilangan nata. Contoh dari besaran skalar antara lain massa, kerapatan, tekanan, dan volume. Sedangkan besaran

Lebih terperinci

Jawab: Titik awal (x 1, y 1 ) = A(2,1) dan Titik akhir (x 2, y 2 ) = B(8,5) dx = x 2 x 1 = 8 2 = 6 dan dy = y 2 y 1 = 5 1 = 4

Jawab: Titik awal (x 1, y 1 ) = A(2,1) dan Titik akhir (x 2, y 2 ) = B(8,5) dx = x 2 x 1 = 8 2 = 6 dan dy = y 2 y 1 = 5 1 = 4 .. Algoritma DDA (Digital Diferential Analer ) DDA adalah algoritma pembentuk garis ang didasarkan pada perasamaan (-8). Garis dibuat menggunakan titik awal (, ) dan titik akhir (, ). Setiap koordinat

Lebih terperinci

Bab III. 3.1.1 Kecepatan relatif dua buah titik pada satu penghubung kaku. Penghubung berputar terhadap satu titik tetap

Bab III. 3.1.1 Kecepatan relatif dua buah titik pada satu penghubung kaku. Penghubung berputar terhadap satu titik tetap Diktat KINEMTIK leh : Ir. Erwin Sulito - Ir. Endi Sutikno ab III KECEPTN RELTIF DN PERCEPTN RELTIF 3.1 KECEPTN RELTIF 3.1.1 Kecepatan relatif dua buah titik pada satu penghubung kaku Penghubung berputar

Lebih terperinci

PENDAHULUAN KALKULUS

PENDAHULUAN KALKULUS . BILANGAN REAL PENDAHULUAN KALKULUS Ada beberapa jenis bilangan ang telah kita kenal ketika di bangku sekolah. Bilangan-bilangan tersebut adalah bilangan asli, bulat, cacah, rasional, irrasional. Tahu

Lebih terperinci

(D) 2 x < 2 atau x > 2 (E) x > Kurva y = naik pada

(D) 2 x < 2 atau x > 2 (E) x > Kurva y = naik pada f =, maka fungsi f naik + 1 pada selang (A), 0 (D), 1. Jika ( ) (B) 0, (E) (C),,. Persamaan garis singgung kurva lurus + = 0 adalah (A) + = 0 (B) + = 0 (C) + + = 0 (D) + = 0 (E) + + = 0 = ang sejajar dengasn

Lebih terperinci

Persamaan Diferensial Orde Satu

Persamaan Diferensial Orde Satu Modul Persamaan Diferensial Orde Satu P PENDAHULUAN Prof. SM. Nababan, Ph. ersamaan Diferensial (PD) adalah salah satu cabang matematika ang banak digunakan untuk menjelaskan masalah-masalah fisis. Masalahmasalah

Lebih terperinci

TRIGONOMETRI. 5. tan (A + B) = tan A.tan. Pengertian Sinus, Cosinus dan Tangen. 6. tan (A - B) = Sin α = r. Rumus-rumus Sudut Rangkap :

TRIGONOMETRI. 5. tan (A + B) = tan A.tan. Pengertian Sinus, Cosinus dan Tangen. 6. tan (A - B) = Sin α = r. Rumus-rumus Sudut Rangkap : TRIGONOMETRI 5. tan (A + B) tan A + tan B tan A.tan B Pengertian Sinus, Cosinus dan Tangen r Hubungan Fungsi Trigonometri :. sin +. tan. sec 4. cosec 5. cotan 6. 7. cos sin cos cos sin cos sin tan + cot

Lebih terperinci

Matematik Ekonom Fungsi nonlinear

Matematik Ekonom Fungsi nonlinear 1 FUNGSI Fungsi adalah hubungan antara 2 buah variabel atau lebih, dimana masing-masing dari dua variabel atau lebih tersebut saling pengaruh mempengaruhi. Variabel merupakan suatu besaran yang sifatnya

Lebih terperinci

Fungsi dan Grafik Diferensial dan Integral

Fungsi dan Grafik Diferensial dan Integral Sudaratn Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral Darpublic BAB 6 Fungsi Trignmetri 6.. Peubah Bebas Bersatuan Derajat Berikut ini adalah fungsi-fungsi trignmetri dengan sudut

Lebih terperinci

Matematika Proyek Perintis I Tahun 1980

Matematika Proyek Perintis I Tahun 1980 Matematika Proyek Perintis I Tahun 980 MA-80-0 Di antara lima hubungan di bawah ini, yang benar adalah Jika B C dan B C, maka A C Jika A B dan C B, maka A C Jika B A dan C B, maka A C Jika A C dan C B,

Lebih terperinci

RINGKASAN IRISAN KERUCUT (PARABOLA, ELIPS, DAN HIPERBOLA)

RINGKASAN IRISAN KERUCUT (PARABOLA, ELIPS, DAN HIPERBOLA) NAMA: KELAS: PENGERTIAN IRISAN KERUCUT Bangun Ruang Kerucut yang dipotong oleh sebuah bidang datar. RINGKASAN IRISAN KERUCUT (PARABOLA, ELIPS, DAN HIPERBOLA) Macam-macam Irisan Kerucut: 1. Parabola 2.

Lebih terperinci

Bagian 7 Koordinat Kutub

Bagian 7 Koordinat Kutub Bagian 7 Koordinat Kutub Bagian 7 Koordinat Kutub mempelajari bagaimana teknik integrasi yang telah Anda pelajari dalam bagian sebelumnya dapat digunakan untuk menyelesaikan soal yang berhubungan dengan

Lebih terperinci

Bab1. Sistem Bilangan

Bab1. Sistem Bilangan Modul Pra Kalkulus -0. Bab. Sistim Bilangan Bab. Sistem Bilangan. Sistim Bilangan Jenis bilangan berkembang sejalan dengan perkembangan peradaban dan ilmu pengetahuan. Jenis bilangan yang pertama kali

Lebih terperinci

LATIHAN 2 PREDIKSI UJIAN NASIONAL 2010 MGMP MATEMATIKA SMK TEKNIK KAABUPATEN KLATEN

LATIHAN 2 PREDIKSI UJIAN NASIONAL 2010 MGMP MATEMATIKA SMK TEKNIK KAABUPATEN KLATEN LATIHAN PREDIKSI UJIAN NASIONAL 00 MGMP MATEMATIKA SMK TEKNIK KAABUPATEN KLATEN Pilihlah jawaban ang tepat di antara alternatip ang ada, dengan memberikan tanda bulatan pada a, b, c, d atau d!. Harga lusin

Lebih terperinci

MATA PELAJARAN WAKTU PELAKSANAAN PETUNJUK UMUM

MATA PELAJARAN WAKTU PELAKSANAAN PETUNJUK UMUM MATA PELAJARAN Mata Pelajaran Jenjang Kelompok : Matematika : SMK : Teknologi, Kesehatan dan Pertanian WAKTU PELAKSANAAN Hari : Sabtu Tanggal : 9 Januari 0 Jam : 07.00 09.00 PETUNJUK UMUM Isikan identitas

Lebih terperinci

Adalah : hubungan antara variabel bebas x, variabel

Adalah : hubungan antara variabel bebas x, variabel Adalah : hubungan antara variabel bebas, variabel Bentuk Umum : bebas dan turunanna. d d F(,,, n d,..., ) n Persamaan differensial (PD) menatakan hubungan dinamik, maksudna hubungan tersebut memuat besaran

Lebih terperinci

Fungsi Komposisi dan Fungsi Invers

Fungsi Komposisi dan Fungsi Invers Bab 6 Sumber: Let s Learn about Korea, 00 Fungsi Komposisi dan Fungsi Invers Setelah mempelajari bab ini, Anda harus mampu menggunakan konsep, siat, dan aturan ungsi komposisi dalam pemecahan masalah;

Lebih terperinci

Semua informasi tentang buku ini, silahkan scan QR Code di cover belakang buku ini

Semua informasi tentang buku ini, silahkan scan QR Code di cover belakang buku ini GEOMETRI ANALITIK, oleh I Made Suarsana, S.Pd., M.Si. Hak Cipta 2014 pada penulis GRAHA ILMU Ruko Jambusari 7A Yogyakarta 55283 Telp: 0274-889398; Fax: 0274-889057; E-mail: info@grahailmu.co.id Hak Cipta

Lebih terperinci

Fungsi dan Grafik Diferensial dan Integral

Fungsi dan Grafik Diferensial dan Integral Sudaratno Sudirham Studi Mandiri Fungsi dan Grafik Diferensial dan Integral ii Darpublic BAB 9 Turunan Fungsi-Fungsi (1 (Fungsi Mononom, Fungsi Polinom 9.1. Pengertian Dasar Kita telah melihat bahwa apabila

Lebih terperinci

Jika t = π, maka P setengah C P(x,y) jalan mengelilingi ligkaran, t y. P(-1,0). t = 3/2π, maka P(0,-1) t>2π, perlu lebih 1 putaran t<2π, maka = t

Jika t = π, maka P setengah C P(x,y) jalan mengelilingi ligkaran, t y. P(-1,0). t = 3/2π, maka P(0,-1) t>2π, perlu lebih 1 putaran t<2π, maka = t Fungsi Trigonometri Fungsi trigonometri berdasarkan lingkaran satuan (C), dengan jari-jari 1 dan pusat dititik asal. X 2 + y 2 = 1 Panjang busur AP = t Keliling C = 2π y Jika t = π, maka P setengah C P(,y)

Lebih terperinci

15. TURUNAN (DERIVATIF)

15. TURUNAN (DERIVATIF) 5. TURUNAN (DERIVATIF) A. Rumus-Rumus Turunan Fungsi Aljabar dan Trigonometri Untuk u dan v adalah fungsi dari x, dan c adalah konstanta, maka:. y = u + v, y = u + v. y = c u, y = c u. y = u v, y = v u

Lebih terperinci